Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 1998;16(4):349–354. doi: 10.1038/nbt0498-349

Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk

Joaquin Castilla 1, Belén Pintado 2, Isabel Sola 1, José M Sánchez-Morgado 1, Luis Enjuanes 1,
PMCID: PMC7097410  PMID: 9555725

Abstract

Protection against enteric infections can be provided by the oral administration of pathogen-neutralizing antibodies. To provide passive immunity, 18 lines of transgenic mice secreting a recombinant monoclonal antibody (Mab) neutralizing transmissible gastroenteritis coronavirus (TGEV) into the milk were generated. The genes encoding a chimeric Mab with the variable modules of the murine TGEV-specific Mab 6A.C3 and the constant modules of a human IgG1, isotype Mab were expressed under the control of regulatory sequences derived from the whey acidic protein, which is an abundant milk protein. The Mab 6A.C3 binds to a highly conserved epitope present in coronaviruses of several species, which does not allow the selection of neutralization escape mutants. Antibody expression titers of 106 were obtained in the milk of transgenic mice that reduced TGEV infectivity 106-fold. The antibody was synthesized at high levels throughout lactation. Integration of matrix attachment region sequences with the antibody genes led to a 20- to 10,000-fold increase in the antibody titer in 50% of the transgenic animals. Antibody expression levels were transgene copy number independent and related to the site of integration. The generation of transgenic animals producing virus neutralizing antibodies in milk could provide an approach to protection against neonatal infections of the enteric tract.

References

  • 1.Lamm ME, Nedrud JG, Kaetzel CS, Mazanec MB. IgA and mucosal defense. APMIS. 1995;103:241–246. doi: 10.1111/j.1699-0463.1995.tb01101.x. [DOI] [PubMed] [Google Scholar]
  • 2.Liew FY, Russell SM, Appleyard G, Brand CM, Beale J. Cross protection in mice infected with influenza A virus by the respiratory route is correlated with local IgA antibody rather than serum antibody or cytotoxic T cell reactivity. Eur. J. Immunol. 1984;14:350–356. doi: 10.1002/eji.1830140414. [DOI] [PubMed] [Google Scholar]
  • 3.Staats HF, Jackson RJ, Marinaro M, Takahashi I, Kiyono H, McGhee JR. Mucosal immunity to infection with implications for vaccine development. Curr. Opin. Immunol. 1994;6:572–58. doi: 10.1016/0952-7915(94)90144-9. [DOI] [PubMed] [Google Scholar]
  • 4.Saif LJ, Wesley RD. Diseases of swine. 1992. Transmissible gastroenteritis; pp. 362–386. [Google Scholar]
  • 5.Enjuanes L, Van der Zeijst BAM. The coronaviridae. 1995. Molecular basis of transmissible gastroenteritis coronavirus epidemiology; pp. 337–376. [Google Scholar]
  • 6.Stone SS, Kemeny LJ, Woods RD, Jensen MT. Efficacy of isolated colostral IgA, IgG, and lgM(A) to protect neonatal pigs against the coronavirus transmissible gastroenteritis. Am. J. Vet. Res. 1977;38:1285–1288. [PubMed] [Google Scholar]
  • 7.Castilla J, Sola I, Enjuanes L. Interference of coronavirus infection by expression of immunoglobulin G (IgG) or IgA virus-neutralizing antibodies. J. Virol. 1997;71:5251–5258. doi: 10.1128/jvi.71.7.5251-5258.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hennighausen L, Ruíz L, Wall R. Transgenic animals-production of foreign proteins in milk. Curr. Opin. Biotechnol. 1990;1:74–7. doi: 10.1016/0958-1669(90)90013-B. [DOI] [PubMed] [Google Scholar]
  • 9.Simons JR, McClenaghan M, Clark AJ. Alteration of the quality of milk by expression of sheep β-lactoblobulin in transgenic mice. Nature. 1987;328:530–532. doi: 10.1038/328530a0. [DOI] [PubMed] [Google Scholar]
  • 10.Sola, I., Castilla, J., Pintado, B., Sánchez-Morgado, J.M., Whitelaw, B., Clark, J. and Enjuanes, L. 1997. Transgenic mice secreting coronavirus neutralizing antibodies into the milk. J. Virol. In press. [DOI] [PMC free article] [PubMed]
  • 11.Antón IM, Suñé C, Meloen RH, Borrás-Cuesta F, Enjuanes L. A transmissible gastroenteritis coronavirus nucleoprotein epitope elicits T helper cells that collaborate in the in vitro antibody synthesis to the three major structural viral proteins. Virology. 1995;212:746–751. doi: 10.1006/viro.1995.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Torres JM, Sánchez CM, Suñé C, Smerdou C, Prevec L, Graham F, Enjuanes L. Induction of antibodies protecting against transmissible gastroenteritis coronavirus (TGEV) by recombinant adenovirus expressing TGEV spike protein. Virology. 1995;213:503–516. doi: 10.1006/viro.1995.0023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Gebauer F, Posthumus WAR, Correa I, Suñé C, Sánchez CM, Smerdou C. Residues involved in the formation of the antigenic sites of the S protein of transmissible gastroenteritis coronavirus. Virology. 1991;183:225–238. doi: 10.1016/0042-6822(91)90135-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Sánchez CM, Jiménez G, Laviada MD, Correa I, Suñé C, Bullido MJ. Antigenic homology among coronaviruses related to transmissible gastroenteritis virus. Virology. 1990;174:410–417. doi: 10.1016/0042-6822(90)90094-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.S´nchez CM, Gebauer F, Suñé C, Mendéz A, Dopazo J, Enjuanes L. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology. 1992;190:92–105. doi: 10.1016/0042-6822(92)91195-Z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Bonifer C, Vidal M, Grosveld F, Sippel AE. Tissue specific and protein position independent expression of the complete gene domain for chicken lysozyme in transgenic mice. EMBO J. 1990;9:2843–2848. doi: 10.1002/j.1460-2075.1990.tb07473.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Jenuwein T, Forrester WC, Fernández-Herrero LA, Laible G, Dull M, Grosschedl R. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature. 1997;385:269–272. doi: 10.1038/385269a0. [DOI] [PubMed] [Google Scholar]
  • 18.Kirillov A, Kidtler B, Mostoslavsky R, Cedar H, Wirtz T, Bergman Y. A role for nuclear NF-kB in B-cell-specific demethylation of the Ig k locus. Nat. Genet. 1996;13:435–441. doi: 10.1038/ng0895-435. [DOI] [PubMed] [Google Scholar]
  • 19.Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B. Prolactin regulation of β-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J. 1988;7:2089–2095. doi: 10.1002/j.1460-2075.1988.tb03048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Shamay A, Solinas S, Pursel VG, McKnight RA, Alexander L, Beattie C. Production of the mouse whey acidic protein in transgenic pigs during lactation. J. Anim. Sci. 1991;69:4552–4562. doi: 10.2527/1991.69114552x. [DOI] [PubMed] [Google Scholar]
  • 21.Hogan B, Beddington R, Costantini F, Lacy E. Manipulating the mouse embryo. 1994. [Google Scholar]
  • 22.Pittius CW, Hennighausen L, Lee E, Westphal H, Nicols E, Vitale J, Gordon K. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proc. Natl. Acad. Sci. USA. 1988;85:5874–5878. doi: 10.1073/pnas.85.16.5874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wall RJ, Pursel VG, Shamay A, McKnight RA, Pittius CW, Hennighausen L. High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc. Natl. Acad. Sci. USA. 1991;88:1696–1700. doi: 10.1073/pnas.88.5.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Velander WH, Johnson JL, Page RL, Russell CG, Subramanian A, Wilkins TD. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc. Natl. Acad. Sci. USA. 1992;89:12003–12007. doi: 10.1073/pnas.89.24.12003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Phi-Van L, von Kries JR, Odtertag W, Stratling WH. The chicken lysozyme 5′ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol. Cell. Biol. 1990;10:2302–2307. doi: 10.1128/MCB.10.5.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.McKnight RA, Shamay A, Sankaran L, Wall RJ, Hennighausen L. Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc. Natl. Acad. Sci. USA. 1992;89:6943–6947. doi: 10.1073/pnas.89.15.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.McKnight RA, Spencer M, Wall RJ, Hennighausen L. Severe position effects imposed on a 1 Kb mouse whey acidic protein gene promoter are overcome by heterologous matrix attachment regions. Mol. Reprod. Dev. 1996;44:179–184. doi: 10.1002/(SICI)1098-2795(199606)44:2<179::AID-MRD6>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  • 28.Poljak L, Seum C, Mattioni T, Laemmli UK. SARs stimulate but do not confer position independent gene expression. Nucl. Acids. Res. 1994;22:4386–4394. doi: 10.1093/nar/22.21.4386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Storb U. Transgenic mice with immunoglobulin genes. Annu. Rev. Immunol. 1987;5:151–174. doi: 10.1146/annurev.iy.05.040187.001055. [DOI] [PubMed] [Google Scholar]
  • 30.Lo D, Pursel VG, Linton PJ, Sandgren E, Behringer R, Rexroad C. Expression of mouse IgA by transgenic mice, pigs, and sheep. Eur. J. Immunol. 1991;21:1001–1006. doi: 10.1002/eji.1830210421. [DOI] [PubMed] [Google Scholar]
  • 31.Weidle UH, Lenz H, Brem G. Genes encoding a mouse monoclonal antibody are expressed in transgenic mice, rabbits and pigs. Gene. 1991;98:185–191. doi: 10.1016/0378-1119(91)90172-8. [DOI] [PubMed] [Google Scholar]
  • 32.Kooyman DL, Pinkert CA. Transgenic mice expressing a chimeric anti–E coli immunoglobulin α heavy chain gene. Transgenic Res. 1994;3:167–175. doi: 10.1007/BF01973984. [DOI] [PubMed] [Google Scholar]
  • 33.Yarus S, Rosen JM, Cole AM, Diamond G. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc. Natl. Acad. Sci. USA. 1996;93:14118–14121. doi: 10.1073/pnas.93.24.14118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Reed WA, Elzer PH, Enright FM, Jaynes JM, Morrey JD, White KL. Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Transgenic Res. 1997;6:337–347. doi: 10.1023/A:1018423015014. [DOI] [PubMed] [Google Scholar]
  • 35.Limonta J, Pedraza A, Rodriguez A, Freyre FM, Barral AM, Castro FO. Production of active anti-CD6 mouse-human chimeric antibodies in the milk of transgenic mice. Immunotechnology. 1995;1:107–113. doi: 10.1016/1380-2933(95)00010-0. [DOI] [PubMed] [Google Scholar]
  • 36.Liu AY, Mack PW, Champion CI, Robinson RR. Expression of mouse: human immunoglobulin heavy chain cDNA in lymphoid cells. Gene. 1987;54:33–40. doi: 10.1016/0378-1119(87)90344-1. [DOI] [PubMed] [Google Scholar]
  • 37.Xoma Co. (Berkelely, CA). 1987. Expression of mouse-human immunoglobulins. Patent WO 87/02671.
  • 38.Potter H, Weir L, Leder P. Enhancer-dependent expression of human k immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Natl. Acad. Sci. USA. 1984;81:7161–7165. doi: 10.1073/pnas.81.22.7161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Phi-Van L, Stratling WH. The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. EMBO J. 1988;7:655–664. doi: 10.1002/j.1460-2075.1988.tb02860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Fink PS. Using sodium chloride step gradients to fractionate DNA fragments. Bio/Techniques. 1991;10:447–449. [PubMed] [Google Scholar]
  • 41.Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 1989. [Google Scholar]
  • 42.Nagasawa H. A device for milk collection from mice. Lab. Anim. Sci. 1979;29:633–635. [PubMed] [Google Scholar]

Articles from Nature Biotechnology are provided here courtesy of Nature Publishing Group

RESOURCES