Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2001;25(3):137–144. doi: 10.1023/A:1011044312536

Hypothermia Attenuates β1 Integrin Expression on Extravasated Neutrophils in an Animal Model of Meningitis

Mark E Rowin 1, Vivian Xue 1, Jose Irazuzta 1
PMCID: PMC7101612  PMID: 11403204

Abstract

Brain injury in meningitis occurs in part as a consequence of leukocyte migration and activation. Leukocyte integrins are pivotal in the inflammatory response by mediating adhesion to vascular endothelium and extracellular matrix proteins. We have demonstrated that moderate hypothermia early in the course of meningitis decreases leukocyte sequestration within the brain parenchyma. This study examines whether hypothermia alters neutrophil integrin expression in a rabbit model of bacterial meningitis. Prior to the induction of meningitis, peripheral blood samples were obtained and the neutrophils isolated. Sixteen hours after inducing group B streptococcal meningitis, animals were treated with antibiotics, IV fluids, and mechanically ventilated. Animals were randomized to hypothermia (32–33°C) or normothermia conditions. After 10 hours of hypothermia or normothermia, neutrophils were isolated from the blood and cerebral spinal fluid (CSF), stained for β1 and β2 integrins, and analyzed using flow cytometry. Cerebral spinal fluid neutrophil β1 integrin expression was significantly decreased in hypothermic animals. Beta-1 integrins can assume a higher affinity or "activated" state following inflammatory stimulation. Expression of "activated" β1 integrins was also significantly decreased in hypothermic animals. Beta2 CSF neutrophil integrin expression was decreased in hypothermic animals, but failed to reach significance. These data suggest hypothermia may attenuate extravasated leukocyte expression of both total and "activated" β1 integrins.

Keywords: integrin, hypothermia, meningitis, neutrophils

References

  • 1.Hansbrough J. F., Wikstrom T., Braide M., Tenehaus M., Rennekampee O. H., Kiessig V., Bjursten L. M. Neutrophil activation and tissue neutrophil sequestration in a rat model of thermal injury. J. Surg. Res. 1996;61:17–22. doi: 10.1006/jsre.1996.0074. [DOI] [PubMed] [Google Scholar]
  • 2.Matthay M. A., Folkesson H. G., Campagna A., Kheradmand F. Alveolar epithelial barrier and acute lung injury. NewHorizons. 1993;1:613–622. [PubMed] [Google Scholar]
  • 3.Miota J. M., Williams T. J., Hellewell P. G., Jeffery P. K. A role for the beta 2 integrin CD11b in mediating experimental lung injury in mice. Am. J. Respir. Cell Mol. Biol. 1996;14:363–373. doi: 10.1165/ajrcmb.14.4.8600941. [DOI] [PubMed] [Google Scholar]
  • 4.Jaeschke H., Farhood A., Smith C. W. Neutrophils contribute to ischemia-reperfusion injury in rat liver in vivo. FASEB J. 1990;4:3355–3359. [PubMed] [Google Scholar]
  • 5.Granert C., Raud J., Xie X., Lindquist L., Lindbom L. Inhibition of leukocyte rolling with polysaccharide fucoidin prevents pleocytosis in experimental meningitis in the rabbit. J. Clin. Invest. 1994;93:929–936. doi: 10.1172/JCI117098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Kornelisse R. F., De Groot R., Neijens H. J. Bacterial meningitis: mechanisms of disease and therapy. Eur. J. Pediatr. 1995;154:85–96. doi: 10.1007/BF01991906. [DOI] [PubMed] [Google Scholar]
  • 7.Hansen P. R., Stawski G. Neutrophil mediated damage to isolated myocytes after anoxia and reoxygenation. Cardiovasc. Res. 1994;28:565–569. doi: 10.1093/cvr/28.4.565. [DOI] [PubMed] [Google Scholar]
  • 8.Leib S., Kim Y., Chow L., Sheldon R., Tauber M. Reactive oxygen intermediates contribute to necrotic and apototic Hypothermia Attenuates Integrin Expression 143 neuronal injury in an infant rat model of bacterial meningitis due to Group B Streptococcus. J. Clin. Invest. 1996;98:2632–2639. doi: 10.1172/JCI119084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Tuomanen E., Baruch A. New antibodies as adjunctive therapies for gram positive bacterial meningitis. Pediatr. Infect. Dis. J. 1989;8:923–928. doi: 10.1097/00006454-198912000-00047. [DOI] [PubMed] [Google Scholar]
  • 10.Vedder N., Winn R., Rice C., Chi Y., Arfors K., Harlan J. A monoclonal antibody to the adherence-promoting leukocyte glycoprotein CD-13 reduces organ injury and improves survival from hemorrhagic shock and resuscitation in rabbits. J. Clin. Invest. 1988;81:939–944. doi: 10.1172/JCI113407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Saez-Llorens X., Jafari H. S., Severien F., Olsen K. D., Hansen E. J., Singer I. I., McCracken G. H. Enhanced attenuation of meningeal inflammation and brain edema by concomitant administration of anti-CD18 monoclonal antibodies and dexamethasone in experimental Haemophilus meningitis. J. Clin. Invest. 1991;88:2003–2011. doi: 10.1172/JCI115527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Arnaout M. A. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037–1050. [PubMed] [Google Scholar]
  • 13.Bohnsack J. F., Zhou X. Divalent cation substitution reveals CD18-and very late antigen-dependent pathways that mediate human PMN adherence to fibronectin. J. Immunol. 1992;149:1340–1347. [PubMed] [Google Scholar]
  • 14.Bohnsack J. F., Akiyama S. K., Damsky C. H., Knape W. A., Zimmerman G. A. Human neutrophil adherence to laminin in vitro. Evidence for a distinct neutrophil integrin receptor for laminin. J. Exp. Med. 1990;171:1221–1237. doi: 10.1084/jem.171.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Reinhardt P. H., Elliot J. F., Kubes P. Neutrophils can adhere via a4b1-Integrin under flow conditions. Blood. 1997;89:3837–3846. [PubMed] [Google Scholar]
  • 16.Kubes P., Niu X., Smith C. W., Kehrli M., Jr., Reinhardt P., Woodman R. A novel beta 1-dependent adhesion pathway on neutrophils: a mechanism invoked by dihydrocytochalasin B or endothelial transmigration. FASEB J. 1995;9:1103–1111. [PubMed] [Google Scholar]
  • 17.Gao J. X., Issekutz A. C. Polymorphonuclear leukocyte migration through human dermal fibroblast monolayers is dependent on both beta-2 integrin (CD11/CD18) and beta-1 integrin (CD29) mechanisms. Immunology. 1995;85:485–492. [PMC free article] [PubMed] [Google Scholar]
  • 18.Gao J. X., Issekutz A. C. The b1 integrin, very late activation antigen-4 on human neutrophils can contribute to neutrophil migration through connective tissue fibroblast barriers. Immunology. 1997;90:448–454. doi: 10.1111/j.1365-2567.1997.00448.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Attibele N., Wyde P., Trial J., Smole S., Smith C., Rossen R. Measles virus-induced changes in leukocyte function antigen 1 expression and leukocyte aggregation: possible role in measles virus pathogenesis. J. Virol. 1993;67:1075–1079. doi: 10.1128/jvi.67.2.1075-1079.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bergelson J., Chan B., Finberg R., Hemler M. The integrin VLA-2 binds echovirus 1 and extracellular matrix ligands by different mechanisms. J. Clin. Invest. 1993;92:232–239. doi: 10.1172/JCI116555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Rao S., Ogata K., Catanzaro A. Mycobacterium avium-M. intracellulare binds to the integrin receptor alpha V beta 3 on human monocytes and monocyte-derived macrophages. Infect. Immun. 1993;61:663–670. doi: 10.1128/iai.61.2.663-670.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Christensen J., Andersson E., Scheynius A., Marker O., Thomsen A. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection. J. Immunol. 1995;154:5293–5301. [PubMed] [Google Scholar]
  • 23.Weeks B., Klotman M., Dhawan S., Kibbey M., Rappasport J., Kleinman H. HIV-1 infection of human T lymphocytes results in enhanced alpha 5 beta 1 integrin expression. J. Cell Biol. 1991;114:847–853. doi: 10.1083/jcb.114.4.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Leblond V., Legendre C., Gras G., Dereuddre-Bosquet N., Lafuma C., Dormont D. Quantitative study of beta-1 integrin expression and fibronectin interaction profile of T lymphocytes in vitro infected with HIV. AIDS Res. Hum. Retroviruses. 2000;16:423–433. doi: 10.1089/088922200309089. [DOI] [PubMed] [Google Scholar]
  • 25.Whalen M. J., Carlos T. M., Clark R. S., Marion D. W., Dekosky M. S., Heineman S., Schiding J. K., Memarzadeh F., Dixon C. E., Kochanek P. M. The relationship between brain temperature and neutrophil accumulation after traumatic injury in rats. Acta. Neurochir. Suppl. 1997;70:260–261. doi: 10.1007/978-3-7091-6837-0_80. [DOI] [PubMed] [Google Scholar]
  • 26.Whalen M. J., Carlos T. M., Clark R. S., Marion D. W., Dekosky S. T., Heineman S., Schiding J. K., Memarzadeh F., Kochanek P. M. The effect of brain temperature on acute inflammation after traumatic brain injury in rats. J. Neurotrauma. 1997;14:561–572. doi: 10.1089/neu.1997.14.561. [DOI] [PubMed] [Google Scholar]
  • 27.Chatzipanteli K., Alonso O., Kraydieh S., Dietrich W. Importance of posttraumatic hypothermia and hyperthemia on the inflammatory response after fluid percussion brain injury: biochemical and immunocytochemical studies. J. Cereb. Blood Flow Metab. 2000;20:531–542. doi: 10.1097/00004647-200003000-00012. [DOI] [PubMed] [Google Scholar]
  • 28.Chatzipanteli K., Yanagawa Y., Marcillo A., Kraydieh S., Yezierski R., Dietrich W. Posttraumatic hypothermia reduces polymorphonuclear leukocyte accumulation following spinal cord injury in rats. J. Neurotrauma. 2000;17:321–332. doi: 10.1089/neu.2000.17.321. [DOI] [PubMed] [Google Scholar]
  • 29.Irazuzta, J., R. Pretzlaff, M. Rowin, K. Milam, and B. Zingarelli. 2000. Hypothermia in the treatment of severe bacterial meningitis. Brain Res. (in press). [DOI] [PubMed]
  • 30.Irazuzta J., Olson J., Kiefaber M., Wong H. Hypothermia decreases excitatory neurotransmitter release in bacterial meningitis in rabbits. Brain Res. 1999;847:143–148. doi: 10.1016/s0006-8993(99)02120-4. [DOI] [PubMed] [Google Scholar]
  • 31.Rowin M., Xue V., Irazuzta J. Integrin expression on neutrophils in a rabbit model of group B streptococcal meningitis. Inflammation. 2000;24:157–174. doi: 10.1023/a:1007085627268. [DOI] [PubMed] [Google Scholar]
  • 32.Yednock T., Cannon C., Vandevert C., Goldbach E., Shaw G., Ellis D., Liaw C., Fritz L., Tanner L. Alpha 4 beta 1 integrin-dependent cell adhesion is regulated by a low affinity receptor pool that is conformationally responsive to ligand. J. Bio. Chem. 1995;270:28740–28750. doi: 10.1074/jbc.270.48.28740. [DOI] [PubMed] [Google Scholar]
  • 33.Albelda S. M., Buck C. A. Integrins and other cell adhesion molecules. FASEB J. 1990;4:2868–2880. [PubMed] [Google Scholar]
  • 34.Marcantonio E. E., Hynes R. Antibodies to conserve cytoplasmic domain of the integrin beta-1 subunit react with proteins in vertebrates, invertebrates, and fungi. J. Cell Biol. 1988;106:1765–1772. doi: 10.1083/jcb.106.5.1765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Brower D. L., Brower S. M., Hayward D. C., Ball E. E. Molecular evolution of integrins: genes encoding integrin beta subunits from a coral and a sponge. Proc. Natl. Acad. Sci. U.S.A. 1997;94:9182–9187. doi: 10.1073/pnas.94.17.9182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Yenari M. A., Kunis D., Sun G. H., Onley D., Watson L., Turner S., Whitaker S., Steinberg G. K. Hu23F2G, an antibody recognizing the leukocyte CD11/CD18 integrin, reduces injury in a rabbit model of transient focal cerebral ischemia. Exp. Neurol. 1998;153:223–233. doi: 10.1006/exnr.1998.6876. [DOI] [PubMed] [Google Scholar]
  • 37.Bavbek M., Polin R., Kwan A. L., Arthur A. S., Kassell N. F., Lee K. S. Monoclonal antibody against ICAM-1 and CD-18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke. 1998;29:1930–1936. doi: 10.1161/01.str.29.9.1930. [DOI] [PubMed] [Google Scholar]
  • 38.Rogers C., Edelman E. R., Simon D. I. A MAb to the beta 2-leukocyte integrin Mac-1 reduces intimal thickening after angioplasty or stent implantation in rabbits. Proc. Natl. Acad. Sci. U.S.A. 1998;95:10134–10139. doi: 10.1073/pnas.95.17.10134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Enomoto-Iwamoto M., Iwamoto M., Nakashima K., Mukudai Y., Boettiger D., Pacifici M., Kurisu K., Suzuki F. Involvement of alpha5 beta1 integrin in matrix interactions and proliferation of chondrocytes. J. Bone Miner. Res. 1997;12:1124–1132. doi: 10.1359/jbmr.1997.12.7.1124. [DOI] [PubMed] [Google Scholar]
  • 40.Espinosa G., Lopez-Farre A., Cernadas M. R., Manzarbeitia F., Tan D., Digiuni E., Mosquera J. R., Monton M., Hernando L., Casado S., Caramelo C. Role of endothelin in the pathophysiology of renal ischemia-reperfusion in normal rabbits. Kidney Int. 1996;50:776–782. doi: 10.1038/ki.1996.376. [DOI] [PubMed] [Google Scholar]
  • 41.Rowin M., Pretzlaff R., Xue V., Irazuzta J. Role of beta 1 integrins on CSF neutrophils in a rabbit model of meningitis. Crit. Care Med. 1999;27:129. [Google Scholar]
  • 42.Rowin M., Xue V., Irazuzta J. Hypothermia attenuates b1 integrin expression on neutrophils in an animal model of meningitis. Ped. Res. 1999;45:173. doi: 10.1023/A:1011044312536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Clifton G., Jiang J., Lyeth B., Jenkins L., Hamm R., Hayes R. Marked protection by moderate hypothermia after experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 1991;11:114–121. doi: 10.1038/jcbfm.1991.13. [DOI] [PubMed] [Google Scholar]
  • 44.Dietrich W., Alonso O., Busto R., Globus M., Ginsberg M. Post-traumatic brain hypothermia reduces histopathologic damage following concussive brain injury in the rat. Acta Neuropathol. 1994;87:250–258. doi: 10.1007/BF00296740. [DOI] [PubMed] [Google Scholar]
  • 45.Clifton G., Allen S., Barrodale P., Plenger P., Berry J., Koch S., Fletcher J., Hayes R., Choi S. A phase II study of moderate hypothermia in severe brain injury. J. Neurotrauma. 1993;10:263–271. doi: 10.1089/neu.1993.10.263. [DOI] [PubMed] [Google Scholar]
  • 46.Cornejo C., Kierney P., Vedder N., Winn R. Mild hypothermia during reperfusion reduces injury following ischemia of the rabbit ear. Shock. 1998;9:116–120. doi: 10.1097/00024382-199802000-00007. [DOI] [PubMed] [Google Scholar]
  • 47.Bering E. Effect of body temperature change on cerebral oxygen consumption of the intact monkey. Am. J. Physiol. 1961;31:417–419. [Google Scholar]
  • 48.Marion D., Penrod L., Kelsey S., Obrist W., Kochanek P., Palmer A., Wisniewski S., Dekosky S. Treatment of traumatic brain injury with moderate hypothermia. N.E.J.M. 1997;336:540–546. doi: 10.1056/NEJM199702203360803. [DOI] [PubMed] [Google Scholar]
  • 49.Garbulinski T., Domoradzka B. O., Switala M., Debowy J. Responses of neutrophils and lymphocytes in cold stress: effects of nonsteroid anti-inflammatory drugs. Pol. J. Pharmacol. Pharm. 1991;43:353–359. [PubMed] [Google Scholar]
  • 50.Williams H., Rebuck N., Elliot M., Finn A. Changes in leukocyte count and soluble intercellular adhesion molecule-1 and E-selectin during cardiopulmonary bypass in children. Perfusion. 1998;13:322–327. doi: 10.1177/026765919801300507. [DOI] [PubMed] [Google Scholar]
  • 51.Boldt J., Osmer C., Linke L., Gorlach G., Hemplemann G. Hypothermic versus normothermic cardiopulmonary bypass: influence on circulating adhesion molecules. J. Cardiothorac. Vasc. Anesth. 1996;10:342–347. doi: 10.1016/S1053-0770(96)80094-2. [DOI] [PubMed] [Google Scholar]
  • 52.Menasche P., Peynet J., Haeffner-Cavaillon N., Carreno M., De Chaumaray T., Dillisse V., Faris B., Piwnica A., Bloch G., Tedgui A. Influence of temperature on neutrophil trafficking during clinical cardiopulmonary bypass. Circulation. 1995;92:334–340. doi: 10.1161/01.cir.92.9.334. [DOI] [PubMed] [Google Scholar]
  • 53.Finn A., Moat N., Rebuck N., Klein N., Strobel S., Elliot M. Changes in neutrophil CD11b/CD18 and L-selectin expression and release of interleukin 8 and elastase in paediatric cardiopulmonary bypass. Agents Actions. 1993;38:44–46. doi: 10.1007/BF01991132. [DOI] [PubMed] [Google Scholar]
  • 54.Paugam C., Chollet-Martin S., Dehoux M., Chatel D., Brient N., Desmonts J., Philip I. Neutrophil expression of CD11b/CD18 and IL-8 secretion during northmothermic cardiopulmonary bypass. J. Cardiothorac. Vasc. Anesth. 1997;11:575–579. doi: 10.1016/s1053-0770(97)90007-0. [DOI] [PubMed] [Google Scholar]
  • 55.Hawkins H. K., Heffelfinger S. C., Anderson D. C. Leukocyte adhesion deficiency: clinical and postmortem observations. Ped. Path. 1992;12:119–130. doi: 10.3109/15513819209023288. [DOI] [PubMed] [Google Scholar]
  • 56.Jaeschke H., Farhood A., Fischer M. A., Smith C. W. Sequestration of neutrophils in the hepatic vasculature during endotoxemia is independent of b2 integrins and intercellular adhesion molecule-1. Shock. 1996;6:351–356. doi: 10.1097/00024382-199611000-00009. [DOI] [PubMed] [Google Scholar]
  • 57.Doerschuk C. M., Winn R. K., Coxson H. O., Harlan J. M. CD18-dependent and independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J. Immunol. 1990;144:2327–2333. [PubMed] [Google Scholar]
  • 58.Hellewell P. G., Young S. K., Henson P. M., Worthen G. S. Disparate role of the b2-integrin CD18 in the local accumulation of neutrophils in pulmonary and cutaneous inflammation in the rabbit. Am. J. Respir. Cell Mol. Biol. 1994;10:391–398. doi: 10.1165/ajrcmb.10.4.7510985. [DOI] [PubMed] [Google Scholar]
  • 59.Tan T., Smith C., Hawkins E., Kaplan S. Anti-CD11b monoclonal antibody in an infant rat model of Haemophilus influenzae type b sepsis and meningitis. J. Antimicrob. Chemother. 1997;39:209–216. doi: 10.1093/jac/39.2.209. [DOI] [PubMed] [Google Scholar]
  • 60.Bogdan I., Leib S. L., Bergeron M., Chow L., Tauber M. G. Tumor necrosis factor-alpha contributes to apoptosis in hippocampal neurons during experimental group B streptococcal meningitis. J. Infect. Dis. 1997;176:693–697. doi: 10.1086/514092. [DOI] [PubMed] [Google Scholar]
  • 61.Lahrtz F., Piali L., Spanaus K., Seebach J., Fontana A. Chemokines and chemotaxis of leukocytes in infectious meningitis. J. Neuroimmunology. 1998;85:33–43. doi: 10.1016/s0165-5728(97)00267-1. [DOI] [PubMed] [Google Scholar]

Articles from Inflammation are provided here courtesy of Nature Publishing Group

RESOURCES