Abstract
Recently, we demonstrated elevated levels of xanthine oxidase in serum of patients with various inflammatory and autoimmune rheumatic diseases. The present study reports the antiarthritic efficacy of the xanthine oxidase inhibitor and immunosuppressant allopurinol in DBA/1xB10A(4r) mice suffering from peroxochromateinduced arthritis. A profound dose-dependent suppression of arthritis was noted (P <0.001). The ED50 was 80±14μmol/kg/day. The arthritis index correlated positively to the phagocytic production of oxygen radicals (r 2>0.672) and negatively to the concentration of allopurinol (r 2=0.915). Ex vivo, allopurinol and various conventional antirheumatic drugs were screened for the inhibition of 12-otetradecanoylphorbol-13-acetate-stimulated whole human blood chemiluminescence. The concentrations of antirheumatic drugs required to inhibit the chemiluminescence by 50% were compared to the therapeutic doses administered to rheumatic patients. Whiled-penicillamine andcis-platinum(II) increased the phagocytic generation of superoxide, nonsteroidal antiinflammatory drugs (NSAIDs), steroids, and slow-acting antirheumatic drugs (SAARDs) inhibited the whole blood chemiluminescence in a dose-dependent manner. Therapeutic doses of NSAIDs, SAARDs, or steroids inhibited the phagocytic generation of reactive oxygen species by 10–50%. In addition to well-known mechanisms of action of NSAIDs and SAARDs, our results support the hypothesis that most common anti-rheumatic drugs act also by modulating the levels of reactive oxygen species, which serve important mediator and signal transduction functions in inflammatory and autoimmune diseases. Pharmacologically safe antioxidants like allopurinol, which simultaneously modify the oxidative burst of phagocytes, inhibit xanthine oxidase, and display immunosuppressive effects may well be suited to control the consequences of chronic phagocytic hyperreactivity in rheumatic patients.
Keywords: Reactive Oxygen Species, Arthritis, Rheumatic Patient, Rheumatic Disease, Therapeutic Dose
References
- 1.Miesel R., Zumber M. Elevated levels of xanthine oxidase in serum of patients with inflammatory and autoimmune rheumatic diseases. Inflammation. 1993;17:551–561. doi: 10.1007/BF00914193. [DOI] [PubMed] [Google Scholar]
- 2.Staal F. J. T., Roederer M., Herzenberg L. A., Herzenberg L. A. Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc. Natl. Acad. Sci. U.S.A. 1990;87:9943–9947. doi: 10.1073/pnas.87.24.9943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.McCord J. M. Oxygen-derived free radicals in post-ischemic tissue injury. N. Engl. J. Med. 1985;312:159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
- 4.Engerson T. D., McKelvey T. G., Rhyne D. B., Boggio E. B., Snyder S. J., Jones H. P. The conversion of xanthine dehydrogenase to oxidase in ischaemic rat tissue. J. Clin. Invest. 1987;79:1564–1570. doi: 10.1172/JCI112990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Parks D. A., Granger D. N. Xanthine oxidase: Biochemistry, distribution and physiology. Acta Physiol. Scand. 1986;126:87–99. [PubMed] [Google Scholar]
- 6.Miesel R., Haas R. Reactivity of an active center analogue of Cu2Zn2superoxide dismutase in a murine model of acute and chronic inflammation. Inflammation. 1993;17:595–611. doi: 10.1007/BF00914197. [DOI] [PubMed] [Google Scholar]
- 7.Halliwell B., Gutteridge J. M. C. The chemistry of oxygen radicals and other oxygen-derived species. In: Halliwell B., Gutteridge J. M. C., editors. Free Radicals in Biology and Medicine. 2nd ed. Oxford: Clarendon Press; 1989. pp. 22–85. [Google Scholar]
- 8.Altmann H. Poly-(ADP-Ribose-)Synthese und Regulationsstörungen bei Erkrankungen. [Poly-(ADP-ribose) synthesis and defects in the regulation of DNA metabolism connected to human diseases] Wien. Klini. Wochenschr. 1983;24:861–864. [PubMed] [Google Scholar]
- 9.Lenardo M. J., Baltimore D. NF-κB: A pleiotropic mediator of inducible and tissue-specific gene control. Cell. 1989;47:227–229. doi: 10.1016/0092-8674(89)90833-7. [DOI] [PubMed] [Google Scholar]
- 10.Schreck R., Albermann K., Baeuerle P. A. Nuclear factorκB: an oxidative stress-responsive transcription factor of eukaryotic cells (a review) Free Radic. Res. Commun. 1992;17:221–237. doi: 10.3109/10715769209079515. [DOI] [PubMed] [Google Scholar]
- 11.Miesel, R., R.Graetz, R.Hartung, F.Hiepe, G.Burmester, and H.Kroeger. 1994. Whole blood chemiluminescence and rheumatic diseases (submitted).
- 12.Sen R., Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappa B by a posttranslational mechanism. Cell. 1986;47:921–928. doi: 10.1016/0092-8674(86)90807-x. [DOI] [PubMed] [Google Scholar]
- 13.Miesel R., Zuber M. Copper-dependent antioxidase defences in inflammatory and autoimmune rheumatic diseases. Inflammation. 1993;17:283–294. doi: 10.1007/BF00918991. [DOI] [PubMed] [Google Scholar]
- 14.Yokoyama Y., Beckman J. S., Beckman T. K. Circulating xanthine oxidase: Potential mediator of ischemic injury. Am. J. Physiol. 1990;258:564–570. doi: 10.1152/ajpgi.1990.258.4.G564. [DOI] [PubMed] [Google Scholar]
- 15.Grum C. M., Ragsdale R. A., Ketai L. H., Simon R. H. Plasma hypoxanthine and exercise. Am. Rev. Respir. Dis. 1987;136:98–101. doi: 10.1164/ajrccm/136.1.98. [DOI] [PubMed] [Google Scholar]
- 16.Friedl H. P., Smith D. J., Till G. O., Thomson P. D., Louis D. S., Ward P. A. Ischemia-reperfusion in humans. Appearance of xanthine oxidase activity. Am. J. Pathol. 1990;136:491–495. [PMC free article] [PubMed] [Google Scholar]
- 17.Friedl H. P., Till G. O., Trentz O., Ward P. A. Role of histamine, complement and xanthine oxidase in thermal injury of skin. Am. J. Pathol. 1989;135:203–217. [PMC free article] [PubMed] [Google Scholar]
- 18.Nagano T., Fridovich I. Does the aerobic xanthine oxidase reaction generate singlet oxygen? Photochem. Photobiol. 1985;41:33–37. doi: 10.1111/j.1751-1097.1985.tb03444.x. [DOI] [PubMed] [Google Scholar]
- 19.Petrone W. F., English D. K., Wong K., McCord J. M. Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma. Proc. Natl. Acad. Sci. U.S.A. 1980;77:1159–1163. doi: 10.1073/pnas.77.2.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Lewis M. S., Whatley R. E., Cain P., McIintyre T. M., Prescott S. M., Zimmerman G. A. Hydrogen peroxide stimulates the platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion. J. Clin. Invest. 1988;82:2045–2055. doi: 10.1172/JCI113825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Wooley P. H., Luthra H. S., Stuart J. M., David C. S. Type II collagen-induced arthritis in mice. Major histocompatibility complex (I region) linkage and antibody response. J. Exp. Med. 1981;154:688–700. doi: 10.1084/jem.154.3.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Miesel R., Weser U. Chemiluminescence assays of Cu2Zn2 superoxide dismutase mimicking Cu-complexes. Free Radic. Res. Commun. 1991;12–13:253–258. doi: 10.3109/10715769109145793. [DOI] [PubMed] [Google Scholar]
- 23.Miesel R., Hartmann H. J., Li Y., Weser U. Reactivity of active center analogues of Cu2Zn2 superoxide dismutase on activated polymorphonuclear leukocytes. Inflammation. 1990;14:409–419. doi: 10.1007/BF00914092. [DOI] [PubMed] [Google Scholar]
- 24.Miesel R., Weser U. Reactivity of active center analogues of Cu2Zn2 superoxide dismutase during the aqueous decay of K3CrO8. Inorg. Chim. Acta. 1988;160:119–121. [Google Scholar]
- 25.Forth W., Henschler D., Rummel W. Allgemeine Pharmakologie. In: Forth W., Henschler D., Rummel W., editors. Allgemeine und spezielle Pharmakologie und Toxikologie. Mannheim: BI Wissenschaftsverlag; 1983. pp. 1–84. [Google Scholar]
- 26.Lewis A. J., Carlson R. P., Chang J. Experimental models of inflammation. In: Glynn L. E., Houck J. C., Weissmann G., editors. Handbook of Inflammation 5. The pharmacology of inflammation. Amsterdam: Elsevier; 1985. pp. 371–397. [Google Scholar]
- 27.Maly F. E., Nakamura M., Gauchat J. F., Urwyler A., Walker C., Dahinden C. A., Cross A. R., Jones O. T., de Weck A. L. Superoxide-dependent nitroblue tetrazolium blue reduction and expression of cytochrome b-245 components by human tonsillarB-lymphocytes and B cell lines. J. Immunol. 1989;142:1260–1267. [PubMed] [Google Scholar]
- 28.Kelley W. N., Beardmore T. D. Allopurinol: Alteration in pyrimidine metabolism in man. Science. 1970;169:388–390. doi: 10.1126/science.169.3943.388. [DOI] [PubMed] [Google Scholar]
- 29.Chocair P., Duley J., Simmonds H. A., Cameron J. S., Ianhez L., Arap S., Sabbaga E. Low-dose allopurinol plus azathioprine/cyclosporin/prednisoline, a novel immunosuppressive regimen. Lancet. 1993;342:83–84. doi: 10.1016/0140-6736(93)91287-v. [DOI] [PubMed] [Google Scholar]
- 30.Van Lieshout-Zuidema M. F., Breedveld F. C. Withdrawal of longterm antihyperuricemic therapy in tophaceous gout. J. Rheumatol. 1993;20:1383–1385. [PubMed] [Google Scholar]
- 31.Malkiel S., Har-El R., Schwalb H., Uretzky G., Borman J. B., Chevion M. Interaction between allopurinol and copper: Possible role in myocardial protection. Free Radic. Res. Commun. 1993;18:7–15. doi: 10.3109/10715769309149909. [DOI] [PubMed] [Google Scholar]
- 32.Deuschle U., Weser U. Copper and inflammation. Prog. Clin. Biochem. Med. 1985;2:97–130. [Google Scholar]
- 33.Sorenson J. R. Copper-complexes—a unique class of anti-arthritic drugs. Prog. Med. Chem. 1978;15:211–266. doi: 10.1016/s0079-6468(08)70257-1. [DOI] [PubMed] [Google Scholar]
- 34.Miesel, R., A.Dietrich, N.Ulbrich, H.Kroeger, and A. N.Mitchison. 1994. Assessment of collagen type II induced arthritis in mice by whole blood chemiluminescence.Autoimmunity, in press. [DOI] [PubMed]
