Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;55(1):23–34. doi: 10.1016/0165-5728(94)90143-0

Alteration of intracerebral cytokine production in mice infected with herpes simplex virus types 1 and 2

Gail Lewandowski a,, Monte V Hobbs b, Floyd E Bloom a
PMCID: PMC7119528  PMID: 7962482

Abstract

Previously we reported that a lethal strain of herpes simplex virus type 2 (HSV-2) infects the brain following ocular inoculation of mice. We now demonstrate that HSV-2 mediates an unusual intracellular sequestering of class II major histocompatibility complex (MHC) antigens. With use of an RNase protection assay, we observed a selective inhibition of IFN-γ and IL-6 gene transcription in brains of mice infected with HSV-2. It is likely that the inhibition of cytokine gene expression was mediated through a failure to activate CD4+ lymphocytes. These data suggest that the infecting herpesvirus can influence the profile of intracerebrally produced cytokines, which in turn may determine the outcome of the infection.

References

  1. Arai K.-I., Lee F., Miyajima A., Miyatake S., Arai N., Yokata T. Cytokines: Coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 1990;59:783–836. doi: 10.1146/annurev.bi.59.070190.004031. [DOI] [PubMed] [Google Scholar]
  2. Brodsky F.M., Guagliardi L.E. The cell biology of antigen processing and presentation. Annu. Rev. Immunol. 1991;9:707–744. doi: 10.1146/annurev.iy.09.040191.003423. [DOI] [PubMed] [Google Scholar]
  3. Buchmeier N.A., Cooper N.R. Suppression of monocyte functions by human cytomegalovirus. Immunology. 1989;66:278–283. [PMC free article] [PubMed] [Google Scholar]
  4. Burgert H.G., Maryanski J.L., Kvist S. Vol. 84. 1987. ‘E3/19k’ protein of adenovirus type 2 inhibits lysis of cytolytic T lymphocytes by blocking cell-surface expression of histocompatibility class I antigens; pp. 1356–1360. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell A., Slater J., Cavanaugh V., Stenberg R. An early event in murine cytomegalovirus replication inhibits presentation of cellular antigens to cytotoxic T lymphocytes. J. Virol. 1992;66(5):3011–3017. doi: 10.1128/jvi.66.5.3011-3017.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ceman S., Rudersdorf R., Long E.O., Demars R. MHC class II deletion mutant express normal levels of transgene encoded class II molecules that have abnormal conformation and impaired antigen presentation ability. J. Immunol. 1992;149:754–761. [PubMed] [Google Scholar]
  7. Chan W.L., Javanovic T., Lukic M.L. Infiltration of immune T cells in the brain of mice with herpes simplex virus-induced encephalitis. J. Neuroimmunol. 1989;23:195–201. doi: 10.1016/0165-5728(89)90051-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidium thiocynate-phenol-chloroform extraction. Anal. Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Chung I.Y., Benveniste E.N. Tumor necrosis factor alpha production by astrocytes. J. Immunol. 1990;144:2999. [PubMed] [Google Scholar]
  10. Croen K.D. Evidence for an antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J. Clin. Invest. 1993;91:2446–2452. doi: 10.1172/JCI116479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Del Val M., Hengel H., Häcker H., Hartlaub U., Ruppert T., Lucin P., Koszinowski U.H. Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J. Exp. Med. 1992;176:729–738. doi: 10.1084/jem.176.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Deschl U., Stitz L., Herzog S., Frese K., Rott R. Determination of immune cells and expression of major histocompatibility complex class II antigen in encephalitic lesions of experimental Borna disease. Acta Neuropathol. 1990;81:41–50. doi: 10.1007/BF00662636. [DOI] [PubMed] [Google Scholar]
  13. Dickson D.W., Lee S.C., Mattiace L.A., Yen S.-H.C., Brosnan C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia. 1993;7:75–83. doi: 10.1002/glia.440070113. [DOI] [PubMed] [Google Scholar]
  14. Doherty P.C., Allan J.E., Lynch F., Ceredig R. Dissection of an inflammatory process induced by CD8+ T cells. Immunol. Today. 1990;11:55–59. doi: 10.1016/0167-5699(90)90019-6. [DOI] [PubMed] [Google Scholar]
  15. Feduchi E., Carrasco L. Mechanism of inhibition of HSV-1 replication by tumor necrosis factor and interferongamma. Virology. 1991;180:822–825. doi: 10.1016/0042-6822(91)90100-p. [DOI] [PubMed] [Google Scholar]
  16. Feduchi E., Alonso M.A., Carrasco L. Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus. J. Virol. 1989;63:1354–1359. doi: 10.1128/jvi.63.3.1354-1359.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fraser N.W., Spivack J.G., Wroblewska Z., Block T., Deshmane S.L., Valyi-Nagy T., Natarajan R., Gesser R.M. A review of the molecular mechanism of HSV-1 latency. Current Eye Research. 1991;10:1–13. doi: 10.3109/02713689109020352. [DOI] [PubMed] [Google Scholar]
  18. Frei K., Siepl C., Groscurth P., Bordner S., Fontana A. Immunobiology of microglial cells. Ann. NY. Acad. Sci. 1988;540:218. doi: 10.1111/j.1749-6632.1988.tb27064.x. [DOI] [PubMed] [Google Scholar]
  19. Guilian D., Corpuz M. Microglial secretion products and their impact on the nervous system. Adv. Neurol. 1993;59:315–320. [PubMed] [Google Scholar]
  20. Hartung H.-P., Jung S., Stoll G., Zielasek J., Schmidt B., Archelos J.J., Toyka K.V. Inflammatory mediators in demyelinating disorders of the CNS and PNS. J. Neuroimmunol. 1992;40:197–210. doi: 10.1016/0165-5728(92)90134-7. [DOI] [PubMed] [Google Scholar]
  21. Hickey W.F., Kimura H. Perivascular microglial cells of the CNS are bone marrow derived and present antigen in vivo. Science. 1988;239:290–293. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
  22. Ho D.Y. Herpes simplex virus latency: Molecular Aspects. Prog. Med. Virol. 1992;39:76–115. [PubMed] [Google Scholar]
  23. Hobbs M., Weigle W.O., Noonan D.J., Torbett B.R., McEvilly R.J., Koch R.J., Cardenas G.J., Ernst D.N. Pattern of cytokine gene expression by CD4+ T cells from young and old mice. J. Immunol. 1993;150:3602–3614. [PubMed] [Google Scholar]
  24. Huchet R., Bruley-Rosset M., Mathiot C., Grandjon D., Halle-Panneko O. Involvement of IFN-gamma and transforming growth factor-beta in graft-vs-host reaction-associated immunosuppression. J. Immunol. 1993;150:2517–2524. [PubMed] [Google Scholar]
  25. Jennings S.R., Rice P.L., Kloszewski E.D., Anderson R.W., Thompson D.L., Tevethia S.S. Effect of herpes simplex virus types 1 and 2 on surface expression of class I major histocompatibility complex antigens on infected cells. J. Virol. 1985;56:757–766. doi: 10.1128/jvi.56.3.757-766.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Joly E., Oldstone M.B.A. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science. 1991;253:1283–1285. doi: 10.1126/science.1891717. [DOI] [PubMed] [Google Scholar]
  27. Joseph J., Knobler R.L., Lublin F.D., Hart M.N. In: Coronaviruses and Their Diseases. Cavanagh D., Brown T.D.K., editors. Plenum Press; New York: 1990. pp. 579–591. [Google Scholar]
  28. Karupiah G., Xie Q.-W., Buller R.M.L., Nathan C., Duarte C., MacMicking J.D. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993;261:1445–1448. doi: 10.1126/science.7690156. [DOI] [PubMed] [Google Scholar]
  29. Klavinskis L.S., Geckeler R., Oldstone M.B.A. Cytotoxic T lymphocyte control of acute lymphocytic choriomening itis virus infection: Interferon gamma, but not tumor necrosis factor alpha, displays antiviral activity in vivo. J. Gen. Virol. 1989;70:3317–3325. doi: 10.1099/0022-1317-70-12-3317. [DOI] [PubMed] [Google Scholar]
  30. Kohonen-Corish M.R., Blanden R.V., King N.J. Induction of cell surface expression of HLA antigens by human INF-gamma encoded by recombinant vaccinia virus. J. Immunol. 1989;143:623–627. [PubMed] [Google Scholar]
  31. Kumano Y., Yamamoto M., Mori R. Protection against herpes simplex virus infection in mice by recombinant murine interferon-gamma in combination with antibody. Antiviral Res. 1987;7:289–301. doi: 10.1016/0166-3542(87)90012-x. [DOI] [PubMed] [Google Scholar]
  32. Kunder S.C., Kelly K.M., Morahan P.S. Biological response modifier-mediated resistance to herpesvirus infections requires induction of alpha/beta interferon. Antiviral Res. 1993;21:129–139. doi: 10.1016/0166-3542(93)90049-o. [DOI] [PubMed] [Google Scholar]
  33. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  34. Lampson L.A., Hickey W.F. Monoclonal antibody analysis of MHC expression in human brain biopsies: tissue ranging from ‘histologically normal’ to that showing different levels of glial tumor involvement. J. Immunol. 1986;136:4054–4062. [PubMed] [Google Scholar]
  35. LaVail J.H., Zhan J., Margolis T.P. HSV (type 1) infection of the trigeminal complex. Brain Res. 1990;514:181–188. doi: 10.1016/0006-8993(90)91414-c. [DOI] [PubMed] [Google Scholar]
  36. Lewandowski G.A., Grill S.P., Fisher M.H., Dutschman G.E., Efange S.M., Bardos T.J., Cheng Y.-C. Anti-herpes simplex virus activity of 5-substituted 2-pyrimidinone nucleosides. Antimicrob. Agents. Chemother. 1989;33:340–345. doi: 10.1128/aac.33.3.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lewandowski G.A., Lo D., Bloom F.E. Vol. 90. 1993. Interference with major histocompatibility complex class II-restricted antigen presentation in the brain by herpes simplex virus type 1: A possible mechanism of evasion of the immune response; pp. 2005–2009. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Liebermann A.P., Pitha P.M., Shin H.S., Shin M.L. Vol. 86. 1986. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus; p. 6348. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Maehlen J., Olsson T., Love A., Klareskog L., Norrby E., Kristensson K. Persistence of measles virus in rat brain neurons is promoted by depletion of CD8+ T cells. J. Neuroimmunol. 1989;21:149–155. doi: 10.1016/0165-5728(89)90170-7. [DOI] [PubMed] [Google Scholar]
  40. Martin X., Dolivo M. Neuronal and transneuronal tracing in the trigeminal system of the rat using the herpes virus suis. Brain Res. 1983;273:253–276. doi: 10.1016/0006-8993(83)90850-8. [DOI] [PubMed] [Google Scholar]
  41. Maudsley D.J., Pound J.D. Modulation of MHC antigen expression by viruses and oncogenes. Immunol. Today. 1991;12:429–431. doi: 10.1016/0167-5699(91)90013-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mauerhoff T., Pujol-Borrell R., Mirakian R., Bottazzo G.F. Differential expression and regulation of major histocompatibility complex (MHC) products in neural and glial cells of the human fetal brain. J. Neuroimmunol. 1988;18:271–289. doi: 10.1016/0165-5728(88)90049-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mellencamp M.W., O'Brien P.C.M., Stevenson J.R. Pseudorabies virus-induced suppression of major histocompatibility complex class I antigen expression. J. Virol. 1991;65:3365–3368. doi: 10.1128/jvi.65.6.3365-3368.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Merrill J.E., Kono D.H., Clayton J., Ando D.G., Hinton D.R. Vol. 89. 1992. Inflammatory leukocytes and cytokines in the peptide-induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice; pp. 574–578. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Mosmann T.R., Cherwinski H.M., Bond M.W., Giedlin M.A., Coffman R.L. Two types of murine helper T cell clone. J. Immunol. 1986;136:2348–2357. [PubMed] [Google Scholar]
  46. Nash A.A., Jayasuriya A., Phelan J., Cobbold S.P., Waldmann H., Prospero T. Differential roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. J. Gen. Virol. 1987;68:825–833. doi: 10.1099/0022-1317-68-3-825. [DOI] [PubMed] [Google Scholar]
  47. Olsson T., Maehlen J., Love A., Klareskog L., Norrby E., Kristensson K. Induction of class I and class II transplantation antigens in rat brain during fatal and non-fatal measles virus infection. J. Neuroimmunol. 1987;16:215–224. doi: 10.1016/0165-5728(87)90076-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Richt J.A., Stitz L., Wekerle H., Rott R. Borna disease, a progressive meningoencephalomyelitis as a model for CD4+ T cell-mediated immunopathology in the brain. J. Exp. Med. 1989;170:1045–1050. doi: 10.1084/jem.170.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rodriquez M., Lindsley M.D. Immunosuppression promotes CNS remyelination in chronic virus-induced demyelinating disease. Neurology. 1992;42:348–357. doi: 10.1212/wnl.42.2.348. [DOI] [PubMed] [Google Scholar]
  50. Rossol-Voth R., Rossol S., Schutt K.H., Corridori S., de Cian W., Falke D. In vivo protective effect of tumour necrosis factor alpha against experimental infection with herpes simplex virus type 1. J. Gen. Virol. 1991;72:143–147. doi: 10.1099/0022-1317-72-1-143. [DOI] [PubMed] [Google Scholar]
  51. Sanna P.P., Jirikowski G.F., Lewandowski G.A., Bloom F.E. Application of DAPI cytochemistry to neurobiology. Biotechnol. Histochem. 1992;67:346–350. doi: 10.3109/10520299209110047. [DOI] [PubMed] [Google Scholar]
  52. Scheppler J.A., Nicholson J.K., Swan D.C., Ahmed-Ansari A., McDougal J.S. Down-modulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection. J. Immunol. 1989;143:2858–2866. [PubMed] [Google Scholar]
  53. Schmitt D.A., Sasaki H., Pollard R.B., Suzuki F. Antiviral effects of recombinant human tumor necrosis factor-alpha in combination with natural interferon-beta in mice infected with herpes simplex virus type-1. Antiviral Res. 1992;19:347–352. doi: 10.1016/0166-3542(92)90015-w. [DOI] [PubMed] [Google Scholar]
  54. Simmons A., Tscharke D.C. Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: Implications for the fate of virally infected neurons. J. Exp. Med. 1992;175:1337–1344. doi: 10.1084/jem.175.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Simmons A., Tscharke D., Speck P. The role of immune mechanisms in control of herpes simplex virus infection of the peripheral nervous system. Curr. Top. Microbiol. Immunol. 1992;179:31–56. doi: 10.1007/978-3-642-77247-4_3. [DOI] [PubMed] [Google Scholar]
  56. Sokawa Y., Ando T., Ishihara Y. Induction of 2′,5′-oligoadenylate synthetase and interferon in mouse trigeminal ganglia infected with herpes simplex virus. Infect. Immun. 1980;28:719–723. doi: 10.1128/iai.28.3.719-723.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Streit W.J., Graeber M.B., Kreutzberg G.W. Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp. Neurol. 1989;105:115–126. doi: 10.1016/0014-4886(89)90111-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Svennerholm B., Ziegler R., Lycke E. Herpes simplex virus infection of the rat sensory neuron effects of interferon on cultured cells. Arch. Virol. 1989;104:153–156. doi: 10.1007/BF01313816. [DOI] [PubMed] [Google Scholar]
  59. Swain S.L., Bradley L.M., Croft M., Tonkonogy S., Atkins G., Weinberg A.D., Duncan D.D., Hedrick S.M., Dutton R.W., Huston G. Helper T-cell subsets: Phenotype, function and the role of lymphokines in regulating their development. Immunol. Rev. 1991;123:115–144. doi: 10.1111/j.1600-065x.1991.tb00608.x. [DOI] [PubMed] [Google Scholar]
  60. Van Snick J. Interleukin-6: An overview. Annu. Rev. Immunol. 1990;8:253–278. doi: 10.1146/annurev.iy.08.040190.001345. [DOI] [PubMed] [Google Scholar]
  61. Weinstein D.L., Walker D.G., Akiyama H., McGeer P.L. Herpes simplex virus type 1 infection of the CNS induces major histocompatibility complex antigen expression on rat microglia. J. Neurosci. Res. 1990;26:55–65. doi: 10.1002/jnr.490260107. [DOI] [PubMed] [Google Scholar]
  62. Williamson J.S.P., Sykes K.C., Stohlman S.A. Characterization of brain-infiltrating mononuclear cells during infection with mouse hepatitis virus strain JHM. J. Neuroimmunol. 1991;32:199–207. doi: 10.1016/0165-5728(91)90189-E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wong G.H.W., Goeddel D.V. Tumour necrosis factors alpha and beta inhibit virus replication and synergize with interferons. Nature. 1986;323:819–822. doi: 10.1038/323819a0. [DOI] [PubMed] [Google Scholar]
  64. Wong G.H.W., Bartlett P.F., Clark-Lewis I., Battye F., Schrader J.W. Inducible expression of H-2 and Ia antigens on brain cells. Nature. 1984;310:688. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  65. Yamada M., Arao Y., Hantano A., Uno F., Nii S. Effect of recombinant mouse interferon-beta on acute and latent herpes simplex infection in mice. Arch. Virol. 1988;99:101–109. doi: 10.1007/BF01311027. [DOI] [PubMed] [Google Scholar]
  66. Yamaguchi K., Goto N., Kyuwa S., Hayami M., Toyoda Y. Protection of mice from a lethal coronavirus infection in the central nervous system by adoptive transfer of virus-specific T cell clones. J. Neuroimmunol. 1991;32:1–9. doi: 10.1016/0165-5728(91)90065-F. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neuroimmunology are provided here courtesy of Elsevier

RESOURCES