Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2005:17–32. doi: 10.1007/3-211-29981-5_3

The virus-immunity ecosystem

P C Doherty 3,4, S J Turner 3
Editors: C J Peters1, Charles H Calisher2
PMCID: PMC7120975  PMID: 16355866

Summary

The ecology of pathogenic viruses can be considered both in the context of survival in the macro-environments of nature, the theme pursued generally by epidemiologists, and in the micro-environments of the infected host. The long-lived, complex, higher vertebrates have evolved specialized, adaptive immune systems designed to minimise the consequences of such parasitism. Through evolutionary time, the differential selective pressures exerted variously by the need for virus and host survival have shaped both the “one-host” and vertebrate immunity. With the development of vaccines to protect us from many of our most familiar parasites, the most dangerous pathogens threatening us now tend to be those “emerging”, or adventitious, infectious age sporadically enter human populations from avian or other wild-life reservoirs. Such incursions must, of course, have been happening through the millenia, and are likely to have led to the extraordinary diversity of recognition molecules, the breadth in effector functions, and the persistent memory that distinguishes the vertebrate, adaptive immune system from the innate response mechanisms that operate more widely through animal biology. Both are important to contemporary humans and, particularly in the period immediately following infection, we still rely heavily on an immediate response capacity, elements of which are shared with much simpler, and more primitive organisms. Perhaps we will now move forward to develop useful therapies that exploit, or mimic, such responses. At this stage, however, most of our hopes for minimizing the threat posed by viruses still focus on the manipulation of the more precisely targeted, adaptive immune system.

Keywords: Respiratory Syncytial Virus, Curr Opin Immunol, Venezuelan Equine Encephalitis Virus

References

  • 1.Ahmadzadeh M., Farber D.L. Functional plasticity of an antigen-specific memory CD4 T cell population. Proc Natl Acad Sci USA. 2002;99:11802–11807. doi: 10.1073/pnas.192263099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Altman J.D., Moss P.A., Goulder P.J., Barouch D.H., McHeyzer-Williams M.G., Bell J.I., McMichael A.J., Davis M.M. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94–96. doi: 10.1126/science.274.5284.94. [DOI] [PubMed] [Google Scholar]
  • 3.Amara R.R., Smith J.M., Staprans S.I., Montefiori D.C., Villinger F., Altman J.D., O’Neil S.P., Kozyr N.L., Xu Y., Wyatt L.S., Earl P.L., Herndon J.G., McNicholl J.M., McClure H.M., Moss B., Robinson H.L. Critical role for Env as well as Gag-Pol in control of a simian-human immunodeficiency virus 89.6P challenge by a DNA prime/recombinant modified vaccinia virus Ankara vaccine. J Virol. 2002;76:6138–6146. doi: 10.1128/JVI.76.12.6138-6146.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Andreansky S., Liu H., Adler H., Koszinowski U.H., Efstathiou S., Doherty P.C. The limits of protection by “quomemory”quo T cells in Ig-/-mice persistently infected with a {gamma}-herpesvirus. Proc Natl Acad Sci USA. 2004;101:2017–2022. doi: 10.1073/pnas.0307320101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Arnold P.Y., La Gruta N.L., Miller T., Vignali K.M., Adams P.S., Woodland D.L., Vignali D.A. The majority of immunogenic epitopes generate CD4+T cells that are dependent on MHC class II-bound peptide-flanking residues. J Immunol. 2002;169:739–749. doi: 10.4049/jimmunol.169.2.739. [DOI] [PubMed] [Google Scholar]
  • 6.Arnold P.Y., Vignali K.M., Miller T.B., La Gruta N.L., Cauley L.S., Haynes L., Scott Adams P., Swain S.L., Woodland D.L., Vignali D.A. Reliable generation and use of MHC class II:gamma2aFc multimers for the identification of antigen-specific CD4(+) T cells. J Immunol Meth. 2002;271:137–151. doi: 10.1016/S0022-1759(02)00343-5. [DOI] [PubMed] [Google Scholar]
  • 7.Arstila T.P., Casrouge A., Baron V., Even J., Kanellopoulos J., Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science. 1999;286:958–961. doi: 10.1126/science.286.5441.958. [DOI] [PubMed] [Google Scholar]
  • 8.Barbato G., Bianchi E., Ingallinella P., Hurni W.H., Miller M.D., Ciliberto G., Cortese R., Bazzo R., Shiver J.W., Pessi A. Structural analysis of the epitope of the anti-HIV antibody 2F5 sheds light into its mechanism of neutralization and HIV fusion. J Mol Biol. 2003;330:1101–1115. doi: 10.1016/S0022-2836(03)00611-9. [DOI] [PubMed] [Google Scholar]
  • 9.Barber D.L., Wherry E.J., Ahmed R. Cutting edge: rapid in vivo killing by memory CD8 T cells. J Immunol. 2003;171:27–31. doi: 10.4049/jimmunol.171.1.27. [DOI] [PubMed] [Google Scholar]
  • 10.Barouch D.H., Santra S., Schmitz J.E., Kuroda M.J., Fu T.M., Wagner W., Bilska M., Craiu A., Zheng X.X., Krivulka G.R., Beaudry K., Lifton M.A., Nickerson C.E., Trigona W.L., Punt K., Freed D.C., Guan L., Dubey S., Casimiro D., Simon A., Davies M.E., Chastain M., Strom T.B., Gelman R.S., Montefiori D.C., Lewis M.G., Emini E.A., Shiver J.W., Letvin N.L. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science. 2000;290:486–492. doi: 10.1126/science.290.5491.486. [DOI] [PubMed] [Google Scholar]
  • 11.Barouch D.H., Kunstman J., Kuroda M.J., Schmitz J.E., Santra S., Peyerl F.W., Krivulka G.R., Beaudry K., Lifton M.A., Gorgone D.A., Montefiori D.C., Lewis M.G., Wolinsky S.M., Letvin N.L. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature. 2002;415:335–339. doi: 10.1038/415335a. [DOI] [PubMed] [Google Scholar]
  • 12.Belz G.T., Xie W., Doherty P.C. Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J Immunol. 2001;166:4627–4633. doi: 10.4049/jimmunol.166.7.4627. [DOI] [PubMed] [Google Scholar]
  • 13.Belz G.T., Wodarz D., Diaz G., Nowak M.A., Doherty P.C. Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol. 2002;76:12388–12393. doi: 10.1128/JVI.76.23.12388-12393.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Belz G.T., Liu H., Andreansky S., Doherty P.C., Stevenson P.G. Absence of a functional defect in CD8+ T cells during primary murine gammaherpesvirus-68 infection of I-A(b-/-) mice. J Gen Virol. 2003;84:337–341. doi: 10.1099/vir.0.18821-0. [DOI] [PubMed] [Google Scholar]
  • 15.Bennett S.R., Carbone F.R., Karamalis F., Miller J.F., Heath W.R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med. 1997;186:65–70. doi: 10.1084/jem.186.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Bennett S.R., Falta M.T., Bill J., Kotzin B.L. Antigen-specific T cells in rheumatoid arthritis. Curr Rheumatol Rep. 2003;5:255–263. doi: 10.1007/s11926-003-0003-y. [DOI] [PubMed] [Google Scholar]
  • 17.Berard M., Brandt K., Bulfone-Paus S., Tough D.F. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol. 2003;170:5018–5026. doi: 10.4049/jimmunol.170.10.5018. [DOI] [PubMed] [Google Scholar]
  • 18.Binder G.K., Griffin D.E. Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science. 2001;293:303–306. doi: 10.1126/science.1059742. [DOI] [PubMed] [Google Scholar]
  • 19.Binder G.K., Griffin D.E. Immune-mediated clearance of virus from the central nervous system. Microbes Infect. 2003;5:439–448. doi: 10.1016/S1286-4579(03)00047-9. [DOI] [PubMed] [Google Scholar]
  • 20.Blattman J.N., Sourdive D.J., Murali-Krishna K., Ahmed R., Altman J.D. Evolution of the T cell repertoire during primary, memory, and recall responses to viral infection. J Immunol. 2000;165:6081–6090. doi: 10.4049/jimmunol.165.11.6081. [DOI] [PubMed] [Google Scholar]
  • 21.Blattman J.N., Antia R., Sourdive D.J., Wang X., Kaech S.M., Murali-Krishna K., Altman J.D., Ahmed R. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med. 2002;195:657–664. doi: 10.1084/jem.20001021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Brown S.A., Stambas J., Zhan X., Slobod K.S., Coleclough C., Zirkel A., Surman S., White S.W., Doherty P.C., Hurwitz J.L. Clustering of Th cell epitopes on exposed regions of HIV envelope despite defects in antibody activity. J Immunol. 2003;171:4140–4148. doi: 10.4049/jimmunol.171.8.4140. [DOI] [PubMed] [Google Scholar]
  • 23.Burton D.R., Desrosiers R.C., Doms R.W., Koff W.C., Kwong P.D., Moore J.P., Nabel G.J., Sodroski J., Wilson I.A., Wyatt R.T. HIV vaccine design and the neutralizing antibody problem. Nat Immunol. 2004;5:233–236. doi: 10.1038/ni0304-233. [DOI] [PubMed] [Google Scholar]
  • 24.Cabarrocas J., Bauer J., Piaggio E., Liblau R., Lassmann H. Effective and selective immune surveillance of the brain by MHC class I-restricted cytotoxic T lymphocytes. Eur J Immunol. 2003;33:1174–1182. doi: 10.1002/eji.200323492. [DOI] [PubMed] [Google Scholar]
  • 25.Cardin R.D., Brooks J.W., Sarawar S.R., Doherty P.C. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med. 1996;184:863–871. doi: 10.1084/jem.184.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Cassese G., Arce S., Hauser A.E., Lehnert K., Moewes B., Mostarac M., Muehlinghaus G., Szyska M., Radbruch A., Manz R.A. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol. 2003;171:1684–1690. doi: 10.4049/jimmunol.171.4.1684. [DOI] [PubMed] [Google Scholar]
  • 27.Castrucci M.R., Hou S., Doherty P.C., Kawaoka Y. Protection against lethal lymphocytic choriomeningitis virus (LCMV) infection by immunization of mice with an influenza virus containing an LCMV epitope recognized by cytotoxic T lymphocytes. J Virol. 1994;68:3486–3490. doi: 10.1128/jvi.68.6.3486-3490.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Christensen J.P., Cardin R.D., Branum K.C., Doherty P.C. CD4(+) T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN-gamma. Proc Natl Acad Sci USA. 1999;96:5135–5140. doi: 10.1073/pnas.96.9.5135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Christensen J.P., Doherty P.C., Branum K.C., Riberdy J.M. Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory. J Virol. 2000;74:11690–11696. doi: 10.1128/JVI.74.24.11690-11696.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Clark R., Griffiths G.M. Lytic granules, secretory lysosomes and disease. Curr Opin Immunol. 2003;15:516–521. doi: 10.1016/S0952-7915(03)00113-4. [DOI] [PubMed] [Google Scholar]
  • 31.Crotty S., Felgner P., Davies H., Glidewell J., Villarreal L., Ahmed R. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol. 2003;171:4969–4973. doi: 10.4049/jimmunol.171.10.4969. [DOI] [PubMed] [Google Scholar]
  • 32.Doherty P.C., Reid H.W., Smith W. Louping-ill encephalomyelitis in the sheep. IV. Nature of the perivascular inflammatory reaction. J Comp Pathol. 1971;81:545–549. doi: 10.1016/0021-9975(71)90083-1. [DOI] [PubMed] [Google Scholar]
  • 33.Doherty P.C., Zinkernagel R.M. T-cell-mediated immunopathology in viral infections. Transplant Rev. 1974;19:89–120. doi: 10.1111/j.1600-065x.1974.tb00129.x. [DOI] [PubMed] [Google Scholar]
  • 34.Doherty P.C., Zinkernagel R.M. A biological role for the major histocompatibility antigens. Lancet. 1975;1:1406–1409. doi: 10.1016/S0140-6736(75)92610-0. [DOI] [PubMed] [Google Scholar]
  • 35.Doherty P.C., Allan W., Boyle D.B., Coupar B.E., Andrew M.E. Recombinant vaccinia viruses and the development of immunization strategies using influenza virus. J Infect Dis. 1989;159:1119–1122. doi: 10.1093/infdis/159.6.1119. [DOI] [PubMed] [Google Scholar]
  • 36.Doherty P.C. Virus infections in mice with targeted gene disruptions. Curr Opin Immunol. 1993;5:479–483. doi: 10.1016/0952-7915(93)90026-O. [DOI] [PubMed] [Google Scholar]
  • 37.Doherty P.C., Hou S., Southern P.J. Lymphocytic choriomeningitis virus induces a chronic wasting disease in mice lacking class I major histocompatibility complex glycoproteins. J Neuroimmunol. 1993;46:11–17. doi: 10.1016/0165-5728(93)90228-Q. [DOI] [PubMed] [Google Scholar]
  • 38.Doherty P.C., Topham D.J., Tripp R.A. Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev. 1996;150:23–44. doi: 10.1111/j.1600-065X.1996.tb00694.x. [DOI] [PubMed] [Google Scholar]
  • 39.Doherty P.C., Topham D.J., Tripp R.A., Cardin R.D., Brooks J.W., Stevenson P.G. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol Rev. 1997;159:105–117. doi: 10.1111/j.1600-065X.1997.tb01010.x. [DOI] [PubMed] [Google Scholar]
  • 40.Doherty P.C., Christensen J.P. Accessing complexity: the dynamics of virus-specific T cell responses. Annu Rev Immunol. 2000;18:561–592. doi: 10.1146/annurev.immunol.18.1.561. [DOI] [PubMed] [Google Scholar]
  • 41.Doherty R.L., Carley J.G., Best J.C. Isolation of Ross River virus from man. Med J Aust. 1972;1:1083–1084. doi: 10.5694/j.1326-5377.1972.tb116646.x. [DOI] [PubMed] [Google Scholar]
  • 42.Edwards B.M., Barash S.C., Main S.H., Choi G.H., Minter R., Ullrich S., Williams E., Du Fou L., Wilton J., Albert V.R., Ruben S.M., Vaughan T.J. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS. J Mol Biol. 2003;334:103–118. doi: 10.1016/j.jmb.2003.09.054. [DOI] [PubMed] [Google Scholar]
  • 43.Ennis F.A., Cruz J., Jameson J., Klein M., Burt D., Thipphawong J. Augmentation of human influenza A virus-specific cytotoxic T lymphocyte memory by influenza vaccine and adjuvanted carriers (ISCOMS) Virology. 1999;259:256–261. doi: 10.1006/viro.1999.9765. [DOI] [PubMed] [Google Scholar]
  • 44.Fagraeus A. Cellular reaction in antibody formation. Acta Haematol. 1958;20:1–8. doi: 10.1159/000205460. [DOI] [PubMed] [Google Scholar]
  • 45.Faroudi M., Utzny C., Salio M., Cerundolo V., Guiraud M., Muller S., Valitutti S. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc Natl Acad Sci USA. 2003;100:14145–14150. doi: 10.1073/pnas.2334336100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Ferguson N.M., Galvani A.P., Bush R.M. Ecological and immunological determinants of influenza evolution. Nature. 2003;422:428–433. doi: 10.1038/nature01509. [DOI] [PubMed] [Google Scholar]
  • 47.Flynn K.J., Belz G.T., Altman J.D., Ahmed R., Woodland D.L., Doherty P.C. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity. 1998;8:683–691. doi: 10.1016/S1074-7613(00)80573-7. [DOI] [PubMed] [Google Scholar]
  • 48.Flynn K.J., Riberdy J.M., Christensen J.P., Altman J.D., Doherty P.C. In vivo proliferation of naive and memory influenza-specific CD8(+) T cells. Proc Natl Acad Sci USA. 1999;96:8597–8602. doi: 10.1073/pnas.96.15.8597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Gewurz B.E., Gaudet R., Tortorella D., Wang E.W., Ploegh H.L. Virus subversion of immunity: a structural perspective. Curr Opin Immunol. 2001;13:442–450. doi: 10.1016/S0952-7915(00)00239-9. [DOI] [PubMed] [Google Scholar]
  • 50.Graham M.B., Dalton D.K., Giltinan D., Braciale V.L., Stewart T.A., Braciale T.J. Response to influenza infection in mice with a targeted disruption in the interferon gamma gene. J Exp Med. 1993;178:1725–1732. doi: 10.1084/jem.178.5.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Graham M.B., Braciale T.J. Resistance to and recovery from lethal influenza virus infection in B lymphocyte-deficient mice. J Exp Med. 1997;186:2063–2068. doi: 10.1084/jem.186.12.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Griffin D., Levine B., Tyor W., Ubol S., Despres P. The role of antibody in recovery from alphavirus encephalitis. Immunol Rev. 1997;159:155–161. doi: 10.1111/j.1600-065X.1997.tb01013.x. [DOI] [PubMed] [Google Scholar]
  • 53.Guidotti L.G., Borrow P., Brown A., McClary H., Koch R., Chisari F.V. Noncytopathic clearance of lymphocytic choriomeningitis virus from the hepatocyte. J Exp Med. 1999;189:1555–1564. doi: 10.1084/jem.189.10.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Hahn Y.S. Subversion of immune responses by hepatitis C virus: immunomodulatory strategies beyond evasion? Curr Opin Immunol. 2003;15:443–449. doi: 10.1016/S0952-7915(03)00076-1. [DOI] [PubMed] [Google Scholar]
  • 55.Halstead S.B. Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res. 2003;60:421–467. doi: 10.1016/S0065-3527(03)60011-4. [DOI] [PubMed] [Google Scholar]
  • 56.Hammarlund E., Lewis M.W., Hansen S.G., Strelow L.I., Nelson J.A., Sexton G.J., Hanifin J.M., Slifka M.K. Duration of antiviral immunity after smallpox vaccination. Nat Med. 2003;9:1131–1137. doi: 10.1038/nm917. [DOI] [PubMed] [Google Scholar]
  • 57.Hathcock K.S., Kaech S.M., Ahmed R., Hodes R.J. Induction of telomerase activity and maintenance of telomere length in virus-specific effector and memory CD8+ T cells. J Immunol. 2003;170:147–152. doi: 10.4049/jimmunol.170.1.147. [DOI] [PubMed] [Google Scholar]
  • 58.Homann D., Teyton L., Oldstone M.B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nat Med. 2001;7:913–919. doi: 10.1038/90950. [DOI] [PubMed] [Google Scholar]
  • 59.Hou S., Hyland L., Ryan K.W., Portner A., Doherty P.C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature. 1994;369:652–654. doi: 10.1038/369652a0. [DOI] [PubMed] [Google Scholar]
  • 60.Hyland L., Sangster M., Sealy R., Coleclough C. Respiratory virus infection of mice provokes a permanent humoral immune response. J Virol. 1994;68:6083–6086. doi: 10.1128/jvi.68.9.6083-6086.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Jameson J., Cruz J., Terajima M., Ennis F.A. Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species. J Immunol. 1999;162:7578–7583. [PubMed] [Google Scholar]
  • 62.Johnson B.J., Costelloe E.O., Fitzpatrick D.R., Haanen J.B., Schumacher T.N., Brown L.E., Kelso A. Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proc Natl Acad Sci USA. 2003;100:2657–2662. doi: 10.1073/pnas.0538056100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Johnson W.E., Desrosiers R.C. Viral persistance: HIV’s strategies of immune system evasion. Annu Rev Med. 2002;53:499–518. doi: 10.1146/annurev.med.53.082901.104053. [DOI] [PubMed] [Google Scholar]
  • 64.Kaech S.M., Tan J.T., Wherry E.J., Konieczny B.T., Surh C.D., Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4:1191–1198. doi: 10.1038/ni1009. [DOI] [PubMed] [Google Scholar]
  • 65.Kapasi Z.F., Murali-Krishna K., McRae M.L., Ahmed R. Defective generation but normal maintenance of memory T cells in old mice. Eur J Immunol. 2002;32:1567–1573. doi: 10.1002/1521-4141(200206)32:6<1567::AID-IMMU1567>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • 66.Karlsson A.C., Martin J.N., Younger S.R., Bredt B.M., Epling L., Ronquillo R., Varma A., Deeks S.G., McCune J.M., Nixon D.F., Sinclair E. Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J Immunol Meth. 2003;283:141–153. doi: 10.1016/j.jim.2003.09.001. [DOI] [PubMed] [Google Scholar]
  • 67.Kaufmann S.H., Doherty P.C. Immunity to infection. Curr Opin Immunol. 1997;9:453–455. doi: 10.1016/S0952-7915(97)80094-5. [DOI] [PubMed] [Google Scholar]
  • 68.Kaverin N.V., Rudneva I.A., Ilyushina N.A., Varich N.L., Lipatov A.S., Smirnov Y.A., Govorkova E.A., Gitelman A.K., Lvov D.K., Webster R.G. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol. 2002;83:2497–2505. doi: 10.1099/0022-1317-83-10-2497. [DOI] [PubMed] [Google Scholar]
  • 69.Klein G. Epstein-Barr virus strategy in normal and neoplastic B cells. Cell. 1994;77:791–793. doi: 10.1016/0092-8674(94)90125-2. [DOI] [PubMed] [Google Scholar]
  • 70.Koch M., Pancera M., Kwong P.D., Kolchinsky P., Grundner C., Wang L., Hendrickson W.A., Sodroski J., Wyatt R. Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition. Virology. 2003;313:387–400. doi: 10.1016/S0042-6822(03)00294-0. [DOI] [PubMed] [Google Scholar]
  • 71.Krmpotic A., Busch D.H., Bubic I., Gebhardt F., Hengel H., Hasan M., Scalzo A.A., Koszinowski U.H., Jonjic S. MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol. 2002;3:529–535. doi: 10.1038/ni799. [DOI] [PubMed] [Google Scholar]
  • 72.Lehner T. Innate and adaptive mucosal immunity in protection against HIV infection. Vaccine. 2003;21([Suppl] 2):68–76. doi: 10.1016/S0264-410X(03)00204-4. [DOI] [PubMed] [Google Scholar]
  • 73.Liblau R.S., Wong F.S., Mars L.T., Santamaria P. Autoreactive CD8 T cells in organspecific autoimmunity: emerging targets for therapeutic intervention. Immunity. 2002;17:1–6. doi: 10.1016/S1074-7613(02)00338-2. [DOI] [PubMed] [Google Scholar]
  • 74.Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol. 2003;3:361–370. doi: 10.1038/nri1083. [DOI] [PubMed] [Google Scholar]
  • 75.Liu H., Andreansky S., Diaz G., Hogg T., Doherty P.C. Reduced functional capacity of CD8(+) T cells expanded by post-exposure vaccination of gamma-herpesvirus-infected CD4-deficient mice. J Immunol. 2002;168:3477–3483. doi: 10.4049/jimmunol.168.7.3477. [DOI] [PubMed] [Google Scholar]
  • 76.Malby R.L., Tulip W.R., Harley V.R., McKimm-Breschkin J.L., Laver W.G., Webster R.G., Colman P.M. The structure of a complex between the NC10 antibody and influenza virus neuraminidase and comparison with the overlapping binding site of the NC41 antibody. Structure. 1994;2:733–746. doi: 10.1016/S0969-2126(00)00074-5. [DOI] [PubMed] [Google Scholar]
  • 77.Mangada M.M., Ennis F.A., Rothman A.L. Quantitation of dengue virus specific CD4+ T cells by intracellular cytokine staining. J Immunol Meth. 2004;284:89–97. doi: 10.1016/j.jim.2003.10.003. [DOI] [PubMed] [Google Scholar]
  • 78.Marshall D.R., Turner S.J., Belz G.T., Wingo S., Andreansky S., Sangster M.Y., Riberdy J.M., Liu T., Tan M., Doherty P.C. Measuring the diaspora for virus-specific CD8+ T cells. Proc Natl Acad Sci USA. 2001;98:6313–6318. doi: 10.1073/pnas.101132698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Matloubian M., Concepcion R.J., Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol. 1994;68:8056–8063. doi: 10.1128/jvi.68.12.8056-8063.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Matsuda S., Gidlund M., Chiodi F., Cafaro A., Nygren A., Morein B., Nilsson K., Fenyo E.M., Wigzell H. Enhancement of human immunodeficiency virus (HIV) replication in human monocytes by low titres of anti-HIV antibodies in vitro. Scand J Immunol. 1989;30:425–434. doi: 10.1111/j.1365-3083.1989.tb02446.x. [DOI] [PubMed] [Google Scholar]
  • 81.Mikloska Z., Cunningham A.L. Herpes simplex virus type 1 glycoproteins gB, gC and gD are major targets for CD4 T-lymphocyte cytotoxicity in HLA-DR expressing human epidermal keratinocytes. J Gen Virol. 1998;79:353–361. doi: 10.1099/0022-1317-79-2-353. [DOI] [PubMed] [Google Scholar]
  • 82.Moskophidis D., Lechner F., Pircher H., Zinkernagel R.M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993;362:758–761. doi: 10.1038/362758a0. [DOI] [PubMed] [Google Scholar]
  • 83.Moss D.J., Burrows S.R., Silins S.L., Misko I., Khanna R. The immunology of Epstein-Barr virus infection. Philos Trans R Soc Lond B Biol Sci. 2001;356:475–488. doi: 10.1098/rstb.2000.0784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Mozdzanowska K., Feng J., Eid M., Kragol G., Cudic M., Otvos L., Jr, Gerhard W. Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine. 2003;21:2616–2626. doi: 10.1016/S0264-410X(03)00040-9. [DOI] [PubMed] [Google Scholar]
  • 85.Murali-Krishna K., Lau L.L., Sambhara S., Lemonnier F., Altman J., Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science. 1999;286:1377–1381. doi: 10.1126/science.286.5443.1377. [DOI] [PubMed] [Google Scholar]
  • 86.Nash P., Barrett J., Cao J.X., Hota-Mitchell S., Lalani A.S., Everett H., Xu X.M., Robichaud J., Hnatiuk S., Ainslie C., Seet B.T., McFadden G. Immunomodulation by viruses: the myxoma virus story. Immunol Rev. 1999;168:103–120. doi: 10.1111/j.1600-065X.1999.tb01286.x. [DOI] [PubMed] [Google Scholar]
  • 87.Nguyen T.H., Lei H.Y., Nguyen T.L., Lin Y.S., Huang K.J., Le B.L., Lin C.F., Yeh T.M., Do Q.H., Vu T.Q., Chen L.C., Huang J.H., Lam T.M., Liu C.C., Halstead S.B. Dengue hemorrhagic fever in infants: a study of clinical and cytokine profiles. J Infect Dis. 2004;189:221–232. doi: 10.1086/380762. [DOI] [PubMed] [Google Scholar]
  • 88.Oldstone M.B. Molecular mimicry and immune-mediated diseases. Faseb J. 1998;12:1255–1265. doi: 10.1096/fasebj.12.13.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Olive M., Eisenlohr L.C., Flomenberg P. Quantitative analysis of adenovirus-specific CD4+ T-cell responses from healthy adults. Viral Immunol. 2001;14:403–413. doi: 10.1089/08828240152716646. [DOI] [PubMed] [Google Scholar]
  • 90.Ostler T., Davidson W., Ehl S. Virus clearance and immunopathology by CD8(+) T cells during infection with respiratory syncytial virus are mediated by IFN-gamma. Eur J Immunol. 2002;32:2117–2123. doi: 10.1002/1521-4141(200208)32:8<2117::AID-IMMU2117>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  • 91.Ostrowski M.A., Gu J.X., Kovacs C., Freedman J., Luscher M.A., MacDonald K.S. Quantitative and qualitative assessment of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cell immunity to gag in HIV-1-infected individuals with differential disease progression: reciprocal interferon-gamma and interleukin-10 responses. J Infect Dis. 2001;184:1268–1278. doi: 10.1086/324005. [DOI] [PubMed] [Google Scholar]
  • 92.Parham P., Adams E.J., Arnett K.L. The origins of HLA-A,B,C polymorphism. Immunol Rev. 1995;143:141–180. doi: 10.1111/j.1600-065X.1995.tb00674.x. [DOI] [PubMed] [Google Scholar]
  • 93.Parham P. Virtual reality in the MHC. Immunol Rev. 1999;167:5–15. doi: 10.1111/j.1600-065X.1999.tb01378.x. [DOI] [PubMed] [Google Scholar]
  • 94.Parry C.M., Simas J.P., Smith V.P., Stewart C.A., Minson A.C., Efstathiou S., Alcami A. A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med. 2000;191:573–578. doi: 10.1084/jem.191.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Pien G.C., Nguyen K.B., Malmgaard L., Satoskar A.R., Biron C.A. A unique mechanism for innate cytokine promotion of T cell responses to viral infections. J Immunol. 2002;169:5827–5837. doi: 10.4049/jimmunol.169.10.5827. [DOI] [PubMed] [Google Scholar]
  • 96.Price G.E., Gaszewska-Mastarlarz A., Moskophidis D. The role of alpha/beta and gamma interferons in development of immunity to influenza A virus in mice. J Virol. 2000;74:3996–4003. doi: 10.1128/JVI.74.9.3996-4003.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Redwine J.M., Buchmeier M.J., Evans C.F. In vivo expression of major histocompatibility complex molecules on oligodendrocytes and neurons during viral infection. Am J Pathol. 2001;159:1219–1224. doi: 10.1016/S0002-9440(10)62507-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Reid H.W., Doherty P.C., Dawson A.M. Louping-ill encephalomyelitis in the sheep. 3. Immunoglobulins in cerebrospinal fluid. J Comp Pathol. 1971;81:537–543. doi: 10.1016/0021-9975(71)90082-X. [DOI] [PubMed] [Google Scholar]
  • 99.Riberdy J.M., Flynn K.J., Stech J., Webster R.G., Altman J.D., Doherty P.C. Protection against a lethal avian influenza A virus in a mammalian system. J Virol. 1999;73:1453–1459. doi: 10.1128/jvi.73.2.1453-1459.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Ridge J.P., Di Rosa F., Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998;393:474–478. doi: 10.1038/30989. [DOI] [PubMed] [Google Scholar]
  • 101.Rodriguez M., Zoecklein L.J., Howe C.L., Pavelko K.D., Gamez J.D., Nakane S., Papke L.M. Gamma interferon is critical for neuronal viral clearance and protection in a susceptible mouse strain following early intracranial Theiler’s murine encephalomyelitis virus infection. J Virol. 2003;77:12252–12265. doi: 10.1128/JVI.77.22.12252-12265.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Roth A., Yssel H., Pene J., Chavez E.A., Schertzer M., Lansdorp P.M., Spits H., Luiten R.M. Telomerase levels control the lifespan of human T lymphocytes. Blood. 2003;102:849–857. doi: 10.1182/blood-2002-07-2015. [DOI] [PubMed] [Google Scholar]
  • 103.Saikh K.U., Lee J.S., Kissner T.L., Dyas B., Ulrich R.G. Toll-like receptor and cytokine expression patterns of CD56+ T cells are similar to natural killer cells in response to infection with Venezuelan equine encephalitis virus replicons. J Infect Dis. 2003;188:1562–1570. doi: 10.1086/379196. [DOI] [PubMed] [Google Scholar]
  • 104.Sangster M.Y., Topham D.J., D’Costa S., Cardin R.D., Marion T.N., Myers L.K., Doherty P.C. Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol. 2000;164:1820–1828. doi: 10.4049/jimmunol.164.4.1820. [DOI] [PubMed] [Google Scholar]
  • 105.Sangster M.Y., Riberdy J.M., Gonzalez M., Topham D.J., Baumgarth N., Doherty P.C. An early CD4+ T cell-dependent immunoglobulin A response to influenza infection in the absence of key cognate T-B interactions. J Exp Med. 2003;198:1011–1021. doi: 10.1084/jem.20021745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Sarawar S.R., Blackman M.A., Doherty P.C. Superantigen shock in mice with an inapparent viral infection. J Infect Dis. 1994;170:1189–1194. doi: 10.1093/infdis/170.5.1189. [DOI] [PubMed] [Google Scholar]
  • 107.Schluns K.S., Lefrancois L. Cytokine control of memory T-cell development and survival. Nat Rev Immunol. 2003;3:269–279. doi: 10.1038/nri1052. [DOI] [PubMed] [Google Scholar]
  • 108.Schwimmbeck P.L., Dyrberg T., Drachman D.B., Oldstone M.B. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest. 1989;84:1174–1180. doi: 10.1172/JCI114282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Shope R.E. The discovery of arbovirus diseases. Ann NYAcad Sci. 1994;740:138–145. doi: 10.1111/j.1749-6632.1994.tb19864.x. [DOI] [PubMed] [Google Scholar]
  • 110.Shope R.E. Epidemiology of other arthropod-borne flaviviruses infecting humans. Adv Virus Res. 2003;61:373–391. doi: 10.1016/s0065-3527(03)61009-2. [DOI] [PubMed] [Google Scholar]
  • 111.Slifka M.K., Matloubian M., Ahmed R. Bone marrow is a major site of long-term antibody production after acute viral infection. J Virol. 1995;69:1895–1902. doi: 10.1128/jvi.69.3.1895-1902.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Slifka M.K., Ahmed R. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr Opin Immunol. 1998;10:252–258. doi: 10.1016/S0952-7915(98)80162-3. [DOI] [PubMed] [Google Scholar]
  • 113.Slifka M.K., Whitton J.L. Antigen-specific regulation of T cell-mediated cytokine production. Immunity. 2000;12:451–457. doi: 10.1016/S1074-7613(00)80197-1. [DOI] [PubMed] [Google Scholar]
  • 114.Smith-Jensen T., Burgoon M.P., Anthony J., Kraus H., Gilden D.H., Owens G.P. Comparison of immunoglobulin G heavy-chain sequences in MS and SSPE brains reveals an antigen-driven response. Neurology. 2000;54:1227–1232. doi: 10.1212/wnl.54.6.1227. [DOI] [PubMed] [Google Scholar]
  • 115.Sprent J., Tough D.F. T cell death and memory. Science. 2001;293:245–248. doi: 10.1126/science.1062416. [DOI] [PubMed] [Google Scholar]
  • 116.Spriggs M.K. One step ahead of the game: viral immunomodulatory molecules. Annu Rev Immunol. 1996;14:101–130. doi: 10.1146/annurev.immunol.14.1.101. [DOI] [PubMed] [Google Scholar]
  • 117.Stevenson P.G., Belz G.T., Altman J.D., Doherty P.C. Virus-specific CD8(+) T cell numbers are maintained during gamma-herpesvirus reactivation in CD4-deficient mice. Proc Natl Acad Sci USA. 1998;95:15565–15570. doi: 10.1073/pnas.95.26.15565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Stevenson P.G., Belz G.T., Castrucci M.R., Altman J.D., Doherty P.C. A gammaherpesvirus sneaks through a CD8(+) T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci USA. 1999;96:9281–9286. doi: 10.1073/pnas.96.16.9281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Tan J.T., Dudl E., LeRoy E., Murray R., Sprent J., Weinberg K.I., Surh C.D. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA. 2001;98:8732–8737. doi: 10.1073/pnas.161126098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Topham D.J., Tripp R.A., Doherty P.C. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol. 1997;159:5197–5200. [PubMed] [Google Scholar]
  • 121.Topham D.J., Doherty P.C. Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence of B cells. J Virol. 1998;72:882–885. doi: 10.1128/jvi.72.1.882-885.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Topham D.J., Cardin R.C., Christensen J.P., Brooks J.W., Belz G.T., Doherty P.C. Perforin and Fas in murine gammaherpesvirus-specific CD8(+) T cell control and morbidity. J Gen Virol. 2001;82:1971–1981. doi: 10.1099/0022-1317-82-8-1971. [DOI] [PubMed] [Google Scholar]
  • 123.Turner S.J., Diaz G., Cross R., Doherty P.C. Analysis of clonotype distribution and persistence for an influenza virus-specific CD8+T cell response. Immunity. 2003;18:549–559. doi: 10.1016/S1074-7613(03)00087-6. [DOI] [PubMed] [Google Scholar]
  • 124.Turnley A.M., Starr R., Bartlett P.F. Failure of sensory neurons to express class I MHC is due to differential SOCS1 expression. J Neuroimmunol. 2002;123:35–40. doi: 10.1016/S0165-5728(01)00480-5. [DOI] [PubMed] [Google Scholar]
  • 125.Valenzuela H.F., Effros R.B. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol. 2002;105:117–125. doi: 10.1006/clim.2002.5271. [DOI] [PubMed] [Google Scholar]
  • 126.Webby R.J., Andreansky S., Stambas J., Rehg J.E., Webster R.G., Doherty P.C., Turner S.J. Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc Natl Acad Sci USA. 2003;100:7235–7240. doi: 10.1073/pnas.1232449100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:152–179. doi: 10.1128/mr.56.1.152-179.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Wodarz D., Krakauer D.C. Defining CTL-induced pathology: implications for HIV. Virology. 2000;274:94–104. doi: 10.1006/viro.2000.0399. [DOI] [PubMed] [Google Scholar]
  • 129.Woodland D.L., Dutton R.W. Heterogeneity of CD4(+) and CD8(+) T cells. Curr Opin Immunol. 2003;15:336–342. doi: 10.1016/S0952-7915(03)00037-2. [DOI] [PubMed] [Google Scholar]
  • 130.Yewdell J., Anton L.C., Bacik I., Schubert U., Snyder H.L., Bennink J.R. Generating MHC class I ligands from viral gene products. Immunol Rev. 1999;172:97–108. doi: 10.1111/j.1600-065X.1999.tb01359.x. [DOI] [PubMed] [Google Scholar]
  • 131.Yewdell J.W., Norbury C.C., Bennink J.R. Mechanisms of exogenous antigen presentation by MHC class I molecules in vitro and in vivo: implications for generating CD8+ T cell responses to infectious agents, tumors, transplants, and vaccines. Adv Immunol. 1999;73:1–77. doi: 10.1016/S0065-2776(08)60785-3. [DOI] [PubMed] [Google Scholar]
  • 132.Yoder S.M., Zhu Y., Ikizler M.R., Wright P.F. Role of complement in neutralization of respiratory syncytial virus. J Med Virol. 2004;72:688–694. doi: 10.1002/jmv.20046. [DOI] [PubMed] [Google Scholar]
  • 133.Zajac A.J., Blattman J.N., Murali-Krishna K., Sourdive D.J., Suresh M., Altman J.D., Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188:2205–2213. doi: 10.1084/jem.188.12.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Zhang W.J., Sarawar S., Nguyen P., Daly K., Rehg J.E., Doherty P.C., Woodland D.L., Blackman M.A. Lethal synergism between influenza infection and staphylococcal enterotoxin B in mice. J Immunol. 1996;157:5049–5060. [PubMed] [Google Scholar]
  • 135.Zhang X., Fujii H., Kishimoto H., LeRoy E., Surh C.D., Sprent J. Aging leads to disturbed homeostasis of memory phenotype CD8(+) cells. J Exp Med. 2002;195:283–293. doi: 10.1084/jem.20011267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Zhong W., Marshall D., Coleclough C., Woodland D.L. CD4+ T cell priming accelerates the clearance of Sendai virus in mice, but has a negative effect on CD8+ T cell memory. J Immunol. 2000;164:3274–3282. doi: 10.4049/jimmunol.164.6.3274. [DOI] [PubMed] [Google Scholar]

Articles from Infectious Diseases from Nature: Mechanisms of Viral Emergence and Persistence are provided here courtesy of Nature Publishing Group

RESOURCES