Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2009:221–305. doi: 10.1007/978-1-60327-297-1_23

Defense Against Biological Weapons (Biodefense)

Vassil St Georgiev 2,
Editor: Vassil St Georgiev1
PMCID: PMC7122899

Abstract

Biological warfare (germ warfare) is defined as the use of any disease-causing organism or toxin(s) found in nature as weapons of war with the intent to destroy an adversary. Though rare, the use of biological weapons has occurred throughout the centuries.

Contributor Information

Vassil St. Georgiev, Email: vgeorgiev@niaid.nih.gov.

Vassil St. Georgiev, Email: vgeorgiev@niaid.nih.gov.

References

  • 1.Wheelis M. A short history of biological warfare and weapons. In: Chevrier M.I., Chomiczewski K., Dando M.R., Garrigue H., Granaztoi G., Pearson G.S., editors. The Implementation of Legally Binding Measures to Strenghten the Biological and Toxin Weapons Convention. Amsterdam: ISO Press; 2003. pp. 15–31. [Google Scholar]
  • 2.Fenn E.A. Biological warfare in eighteen-century North America: beyond Jeffery Amherst. J. Am. History. 2000;86(3):1552–1580. doi: 10.2307/2567577. [DOI] [PubMed] [Google Scholar]
  • 3.Wheelis M. Biological sabotage in World War I. In: Geissler E., Moon J.E.V.C., editors. Biological and Toxin Weapons: Research, Development and Use from the Middle Ages to 1945. Oxford: Oxford University Press; 1999. pp. 35–62. [Google Scholar]
  • 4.Harris S.H. Factories of Death: Japanese Biological Warfare 1932–45 and the American Cover-Up. London: Routledge; 1994. [Google Scholar]
  • 5.Williams P., Wallace D. Unit 731: The Japanese Army’s Secret of Secrets. London.: Hodder & Stoughton; 1989. [Google Scholar]
  • 6.Carus, W. S. (2000) The Rajneeshees (1984). In: Toxic Terror: Assessing Terrorist Use of Chemical and Biological Weapons, MIT Press, Cambridge, pp. 115–137.
  • 7.LeClaire R.D., Pitt M.L.M. Biological weapons defense. In: Lebeda F.J., Korch G.W., Lindler L.E., editors. Biological Weaponse Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2005. pp. 41–61. [Google Scholar]
  • 8.Burrows W. D., Renner S. E. Biological warfare agents as threats to potable water. Environ. Health Perspect. 1999;107:975–984. doi: 10.1289/ehp.99107975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Ferguson J. R. Biological weapons and U.S. law. J. Am. Med. Assoc. 1997;278:357–360. [PubMed] [Google Scholar]
  • 10.FM 8–9, (1996) NATO Handbook on the Medical Aspects of NBC Defensive Operations AMedP-6(B), Part II Biological. Department of the Army, Washington, DC, 1996.
  • 11.Missiakas D.M., Schneewind O. Bacillus anthracis and the pathogenesis of anthrax. In: Lindler L.E., Lebeda F.J., Korch G.W., editors. Biological Weaponse Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2005. pp. 79–97. [Google Scholar]
  • 12.Meselson M. The challenge of biological and chemical weapons. Bull. World Health Organ. 1999;77:102–103. [PMC free article] [PubMed] [Google Scholar]
  • 13.Edsall J. T., Meselson M. Proliferation of CB warfare. Science. 1967;156:1029–1030. doi: 10.1126/science.156.3778.1029-a. [DOI] [PubMed] [Google Scholar]
  • 14.Enserink M. This time it was real: knowledge of anthrax put to the test. Science. 2001;294:490–491. doi: 10.1126/science.294.5542.490. [DOI] [PubMed] [Google Scholar]
  • 15.Koch R. Die aetiologie der milzbrand-krankheit, begruendet auf die entwicklungsgeschichte des. Beitrã Biol Pflanzen. 1876;2:277–310. [Google Scholar]
  • 16.Zwartouw H. T., Smith H. Polyglutamic acid from Bacillus anthracis grown in vivo: structure and aggressin activity. Biochem. J. 1956;63:437–454. doi: 10.1042/bj0630437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Preisz H. Experimentelle studien ueber virulenz, empfaenglichkeit und immunitaet beim milzbrand. Zeitschr. Immunitã.-Forsch. 1991;5:341–452. [Google Scholar]
  • 18.Leppla S.H. The anthrax toxin complex. In: Alouf J., Freer J.H., editors. Sourcebook of Bacterial Protein Toxins. London: Academic Press; 1991. pp. 277–302. [Google Scholar]
  • 19.Hanna P. C., Acosta D., Collier R. J. On the role of macrophages in anthrax. Proc. Natl. Acad. Sci. U.S.A. 1993;90:10198–10201. doi: 10.1073/pnas.90.21.10198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Duesbery N.S., Webb C.P., Leppla S.H., Gordon V.M., Klimpel K.R., Copeland T.D., Ahn N.G., Oskarsson M.K., Fukusawa K., Pauli K.D.Vande Woude, G.F. Proteolytic inactivation of map-kinase-kinase by anthrax lethal factor. Science. 1998;280:734–737. doi: 10.1126/science.280.5364.734. [DOI] [PubMed] [Google Scholar]
  • 21.Vitale G., Pellizzari R., Recchi C., Napolitani G., Mock M., Montecucco C. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKKs in cultured macrophages. Biochem. Biophys. Res. Commun. 1998;248:706–711. doi: 10.1006/bbrc.1998.9040. [DOI] [PubMed] [Google Scholar]
  • 22.Park J.M., Greten F.R., Li Z.W., Karin M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science. 2002;297:2048–2051. doi: 10.1126/science.1073163. [DOI] [PubMed] [Google Scholar]
  • 23.Leppla S. H. Bacillus anthracis calmodulin-dependent adenylate cyclase: chemical and enzymatic properties and interactions with eukariotic cells. Adv. Cyc. Nuc. Prot. Phos. Res. 1984;17:189–198. [PubMed] [Google Scholar]
  • 24.Leppla S.H. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclin AMP concentrations in eukariotic cells. Proc. Natl. Acad. Sci. U.S.A. 1982;79:3162–3166. doi: 10.1073/pnas.79.10.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Green B.D., Battisti L., Koehler T.M., Thorne C.B., Ivins B.E. Demonstration of a capsule plasmid in. Bacillus anthracis, Infect. Immun. 1985;49:291–297. doi: 10.1128/iai.49.2.291-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Mikesell P., Ivins B.E., Ristroph J.D., Dreier T.M. Evidence for plasmid-mediated toxin production in. Bacillus anthracis, Infect. Immun. 1983;39:371–376. doi: 10.1128/iai.39.1.371-376.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Smith H., Keppie H.S., Stanley J.I. The chemical basis of the virulence of. Bacillus anthracis. I. Properties of bacteria grown in vivo and preparation of extracts, Br. J. Exp. Pathol. 1953;34:477–485. [PMC free article] [PubMed] [Google Scholar]
  • 28.Keppie J., Smith H., Harris-Smith P.W. The chemical basis of the virulence of. Bacillus anthracis. II. Some biological properties of bacterial products, Br. J. Exp. Pathol. 1963;34:486–496. [PMC free article] [PubMed] [Google Scholar]
  • 29.Dixon T.C., Meselson M., Guillemin J., Hanna P.C. Anthrax. N. Engl. J. Med. 1999;341:815–826. doi: 10.1056/NEJM199909093411107. [DOI] [PubMed] [Google Scholar]
  • 30.Lightfood, N. F., Scott, R. J. D., and Turnbull, P. C. B. (1989) Antimicrobial susceptibility of Bacillus anthracis. In: Proc. Int. Workshop on Anthrax, Salisbury Medical Bulletin, Winchester, UK, pp. 95–98.
  • 31.Centers for Disease Control (2001) Update: investigation of bioterrorism-related anthrax and interim guidelines for exposure management and antimicrobial therapy, October 2001, Morb. Mortal. Wkly Rep., 50, 909–919. [PubMed]
  • 32.Bradley K.A., Modridge J., Mourez M., Collier R.J., Young J.A. Identification of the cellular receptor for anthrax toxin. Nature. 2001;414:225–229. doi: 10.1038/n35101999. [DOI] [PubMed] [Google Scholar]
  • 33.Sellman B.R., Mourez M., Collier R.J. Dominant-negative mutants of a toxin subunit: an approach to therapy of anthrax. Science. 2001;292:695–697. doi: 10.1126/science.109563. [DOI] [PubMed] [Google Scholar]
  • 34.Schuch R., Nelson D., Fischetti V.A. A bacteriolytic agent that detects and kills. Bacillus anthracis, Nature. 2002;418:884–889. doi: 10.1038/nature01026. [DOI] [PubMed] [Google Scholar]
  • 35.Pittman P.R., Kim-Ahn G., Pifat D.Y., Coonan K., Gibbs P., Little S., Pace-Templeton J.G., Myers R., Parker G.W., Friedlander A.M. Anthrax vaccine: immunogenicity and safety of a dose-reduction, route-change comparison study in humans. Vaccine. 2002;20:1412–1420. doi: 10.1016/S0264-410X(01)00462-5. [DOI] [PubMed] [Google Scholar]
  • 36.Friedlander A.M. Tackling anthrax. Nature. 2001;414:160–161. doi: 10.1038/35102660. [DOI] [PubMed] [Google Scholar]
  • 37.Fenner F. Smallpox: emergence. Global spread, and eradication. Hist. Philos. Life Sci. 1993;15:397–420. [PubMed] [Google Scholar]
  • 38.Darling R.G., Burgess T.H., Lawler J.V., Endy T.P. Virologic and pathogenic aspects of the Variola virus (smallpox) as a bioweapon. In: Linder L.E., Lebeda F.J., Korch G.W., editors. Biological Weapons Defense: Infectious Diseases and Counterbioterrorism. Totowa, NJ: Humana Press, Inc; 2005. pp. 99–120. [Google Scholar]
  • 39.Tucker J.B. Historical trends related to bioterorrism: an empirical analysis. Emerg. Infect. Dis. 1999;5:498–504. doi: 10.3201/eid0504.990406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Albert M., Ostheimer K., Liewehr D., Steinberg S., Breman J. Smallpox manifestations and survival during the Boston epidemic of 1901 to 1903. Ann. Intern. Med. 2002;137:993–1000. doi: 10.7326/0003-4819-137-12-200212170-00013. [DOI] [PubMed] [Google Scholar]
  • 41.Smallpox and its eradication (1988) In: The History of Smallpox and Its Spread Around the World, World Health Organization, Geneva.
  • 42.Baxby D. The Jenner bicentenary: the introduction and early distribution of smallpox vaccine. FEMS Immunol. Med. Microbiol. 1996;16:1–10. doi: 10.1111/j.1574-695X.1996.tb00105.x. [DOI] [PubMed] [Google Scholar]
  • 43.Bucknell W.J. The case of voluntary smallpox vaccination. N. Engl. J. Med. 2002;346:1323–1325. doi: 10.1056/NEJMsb020357. [DOI] [PubMed] [Google Scholar]
  • 44.Human monkeypox in Kasai Oriental, Zaire Wkly Epidemiol. Rec. 1996;72:101–104. [PubMed] [Google Scholar]
  • 45.Centers for Disease ControlPrevention. Multistate outbreak of monkeypox – Illinois, Indiana, and Wisconsin, 2003. Morb. Mortal. Wkly Rep. 2003;52:537–540. [PubMed] [Google Scholar]
  • 46.Moss B. Poxviridae: the viruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. 4. Philadelphia: Lippincott Williams & Wilkins; 2001. pp. 2849–2883. [Google Scholar]
  • 47.Hooper J., Custer D., Thompson E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology. 2003;306:181–195. doi: 10.1016/S0042-6822(02)00038-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Esposito J., Obijeski J., Nakano J. Orthopoxvirus DNA: strain differentiation by electrophoresis of restriction endonuclease fragmented virion DNA. Virology. 1978;89:53–66. doi: 10.1016/0042-6822(78)90039-9. [DOI] [PubMed] [Google Scholar]
  • 49.Esposito J., Knight J. Orthopoxvirus DNA: a comparison of restriction profiles and maps. Virology. 1985;143:230–251. doi: 10.1016/0042-6822(85)90111-4. [DOI] [PubMed] [Google Scholar]
  • 50.Dumbell K., Harper L., Buchan A., Douglass N., Bedson H. A variant of variola virus, characterized by changes in polypeptide and endonuclease profiles. Epidemiol. Infect. 1999;122:287–290. doi: 10.1017/S0950268899002150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Smith V., Alcami A. Expression of secreted cytokine and chemokine inhibitors by ectromelia virus. J. Virol. 2000;74:8460–8471. doi: 10.1128/JVI.74.18.8460-8471.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Buller R., Palumbo G. Poxvirus pathogenesis. Microbiol. Rev. 1991;55:80–122. doi: 10.1128/mr.55.1.80-122.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Alcami A., Smith G. Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J. Virol. 1995;69:4633–4639. doi: 10.1128/jvi.69.8.4633-4639.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Ramshaw I., Ramsay A., Karupiah G., Rolph M., Mahalingam S., Ruby J. Cytokines and immunity to infection. Immunol. Rev. 1997;159:119–135. doi: 10.1111/j.1600-065X.1997.tb01011.x. [DOI] [PubMed] [Google Scholar]
  • 55.Jackson R., Ramsay A., Christensen C., Beaton S., Hall D., Ramshaw I. Expression of mouse interleukin 4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J. Virol. 2001;75:1205–1210. doi: 10.1128/JVI.75.3.1205-1210.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Mack T.M. Smallpox in Europe, 1950–1971. J. Infect. Dis. 1972;125:161–169. doi: 10.1093/infdis/125.2.161. [DOI] [PubMed] [Google Scholar]
  • 57.Fenner, F., Henderson, D. A., Arita, I., Jezek, Z., and Ladnyi, I. D. (1988) Smallpox and Its Eradication, World Health Organization, Geneva.
  • 58.Mazumder D.N., Mitra A.C., Mukherjee M.K. Clinical observations on smallpox: a study of 1233 patients admitted to the Infectious Disease Hospital, Calcutta during 1973. Bull. World Health Organ. 1975;52:301–306. [PMC free article] [PubMed] [Google Scholar]
  • 59.Sheth S.C., Maruthi V., Tibrewalla N.S., Pai P.M. Smallpox in children. A clinical study of 100 cases. Indian J. Pediatr. 1971;38:128–131. doi: 10.1007/BF02751409. [DOI] [PubMed] [Google Scholar]
  • 60.Henderson D., Inglesby T., Bartlett J., Ascher M. S., Eitzen E., Jahrling P. B., Hawer J., Layton M., McDade J., Osterholm M. T., O’Toole T., Parker G., Perl T., Russell P. K., Tonat K. Smallpox as a biological weapon: medical and public health management. J. Am. Med. Assoc. 1999;281:2127–2137. doi: 10.1001/jama.281.22.2127. [DOI] [PubMed] [Google Scholar]
  • 61.Clercq E. Cidofovir in the treatment of poxvirus infections. Antiviral Res. 2002;55(1):1–13. doi: 10.1016/S0166-3542(02)00008-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.De Clercq E., Luczak M., Shugar D., Torrence P.F., Waters J.A., Witkop B. Effect of cytosine, arabinoside, iododeoxyuridine, ethyldeoxyuridine, thiocyanatodeoxyuridine, and ribavirine on tail lesion formation in mice infected with vaccinia virus. Proc. Soc. Exp. Biol. Med. 1976;151:487–490. doi: 10.3181/00379727-151-39241. [DOI] [PubMed] [Google Scholar]
  • 63.Rao A.R., McFadzean J.A., Kamalakshi K. An isothiazole thiosemicarbazone in the treatment of. Variola major in man. A controlled clinical trial and laboratory investigations, Lancet. 1966;1:1068–1072. doi: 10.1016/s0140-6736(66)91012-9. [DOI] [PubMed] [Google Scholar]
  • 64.Rao A.R., Jacobs E.S., Kamalakshi S., Bradbuty, Swamy A. Chemoprophylaxis and chemotherapy. Variola major. II. Therapeutic assessment of CG662 and marboran in treatment of Variola major in man, Indian J. Med. Res. 1969;57:484–494. [PubMed] [Google Scholar]
  • 65.Jahrling, P. B., Zaucha, G. M., and Huggins, J. W. (2000) Countermeasures to the reemergence of smallpox virus as an agent of bioterrorism. In: Emerging Infections 4 (Scheld, W. M., Craig, W. A., and Hughes, J. M., eds.), ASM, Washington, DC.
  • 66.Georgiev, V. St. Drugs for Treating Viral Infections, U.S. Patent 6,433,016 B1, 2002.
  • 67.Georgiev, V. St. Drugs for Treating Viral Infections, U.S. Patent 6,596,771 B2, 2003.
  • 68.Georgiev, V. St. Drugs for Treating Viral Infections, U.S. Patent 6,7,192,606 B1, 2007.
  • 69.Meadows K.P., Tyring S.K., Pavia A.T., Rallis T.M. Resolution of recalcitrant molluscum contagiosum virus lesions in human immunodeficiency virus-infected patients treated with cidofovir. Arch. Dermatol. 1997;133:987–990. doi: 10.1001/archderm.133.8.987. [DOI] [PubMed] [Google Scholar]
  • 70.Davies E.G., Thrasher A., Lacey K., Harper J. Topical cidofovir for severe molluscum contagiosum. Lancet. 1999;353:2042. doi: 10.1016/S0140-6736(99)01782-1. [DOI] [PubMed] [Google Scholar]
  • 71.Buller, M., Handley, L., Parker, S. (2008) Development of prophylactics and therapeutics against smallpox and monkeypox biothreat agents. In: National Institute of Allergy and Infections Diseases, NIH, vol. 1 Fiontiers Research (Georgiev, V. St., Western, K. A., and McGowan. J. J., eds.), Humana Press, Springer, New York, pp. 145–161.
  • 72.Perry R.D., Fetherstone J.D. Yersinia pestis – etiologic agent of plague. Clin. Microbiol. Rev. 1997;10(1):35–66. doi: 10.1128/cmr.10.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Smith P.N. Pneumonic plague in mice: gross and histopathology in untreated and passively immunized animals. J. Infect. Dis. 1959;104:78–84. doi: 10.1093/infdis/104.1.78. [DOI] [PubMed] [Google Scholar]
  • 74.Chen T.H., Mayer K.F. Susceptibility of the Langur monkey (Semnopithesus entellus) to experimental plague: pathology and immunity. J. Infect. Dis. 1965;115:456–464. doi: 10.1093/infdis/115.5.456. [DOI] [PubMed] [Google Scholar]
  • 75.Smith, J. H. (1976) Plague. In: Pathology of Tropical and Extraordinary Diseases. An Atlas, vol. 1 (Binford, C. H. and Connor, D. H., eds.), Armed Forces Institute of Pathology, Washington, DC, pp. 130–134.
  • 76.Davies K.J., Fritz D.L., Pitt M.L., Welkos S.L., Worsham P.L., Friedlander A.M. Pathology of experimental pneumonic plague produced by fraction 1-positive and fraction 1-negative Yersinia pestis in African green monkeys (Cercopithecus aetiops) Arch. Pathol. Lab. Med. 1996;120:156–163. [PubMed] [Google Scholar]
  • 77.Adamovitz J.J., Andrews G.P. Plague vaccines. Retrospective analysis and future developments. In: Lindler L.E., Lebeda F.J., Korch G.W., editors. Biological Weapons Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2005. pp. 121–153. [Google Scholar]
  • 78.Butler T. The Black Death past and present. 1. Plague in the 1980s. Trans. R. Soc. Trop. Med. 1989;83:458–460. doi: 10.1016/0035-9203(89)90246-0. [DOI] [PubMed] [Google Scholar]
  • 79.Crook L.D., Tempest B. Plague: a clinical review of 27 cases. Arch. Intern. Med. 1992;152:1253–1256. doi: 10.1001/archinte.152.6.1253. [DOI] [PubMed] [Google Scholar]
  • 80.Butler T. Plague and other Yersinia infections. In: Greenough W.B., Marigan T.C., editors. Current Topics in Infectious Disease. New York: Plenum Press; 1985. pp. 73–108. [Google Scholar]
  • 81.Doll J.M., Zeitz P.S., Ettestad P., Bucholtz A.L., Davis T., Gage K. Cat-transmitted fatal pneumonic plague in a person who traveled from Colorado to Arizona. Am. J. Trop. Med. Hyg. 1994;51:109–114. doi: 10.4269/ajtmh.1994.51.109. [DOI] [PubMed] [Google Scholar]
  • 82.Ransom J.P., Krueger A.P. Chronic pneumonic plague in Macacca mulatta. Am. J. Trop. Med. Hyg. 1954;3:1040–1054. doi: 10.4269/ajtmh.1954.3.1040. [DOI] [PubMed] [Google Scholar]
  • 83.Marshall J.D., Quy D.V., Gibson F.L. Asymptomatic pharyngeal plague in Vietnamese. Am. J. Trop. Med. 1967;16:175–177. doi: 10.4269/ajtmh.1967.16.175. [DOI] [PubMed] [Google Scholar]
  • 84.Haffkine W.M. Remarks on the plague prophylactic fluid. Br. Med. J. 1897;1:1461. doi: 10.1136/bmj.1.1902.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Taylor J. Haffkine’s plague vaccine. Indian Med. Res. Memoirs. 1933;27:3–125. [Google Scholar]
  • 86.Grasset E. Plague immunization with live vaccine in South Africa. Trans. R. Soc. Trop. Med. Hyg. 1942;35:203–211. doi: 10.1016/S0035-9203(42)90058-0. [DOI] [Google Scholar]
  • 87.Grasset E. Control of plague by means of live avirulent plague vaccine in Southern Africa (1941–44) Trans. R. Soc. Trop. Med. Hyg. 1946;40:275–294. doi: 10.1016/0035-9203(46)90069-7. [DOI] [PubMed] [Google Scholar]
  • 88.Meyer K. F., Cavanaugh D. C., Bartelloni P. J., Marshall J. D. Plague immunization I. Past and present trends. J. Infect. Dis. 1974;129(Suppl.):S13–S17. doi: 10.1093/infdis/129.supplement_1.s13. [DOI] [PubMed] [Google Scholar]
  • 89.Chen T.H., Elberg S.S., Eisler D.M. Immunity in plague: protection of the vervet. Cercopithecus aethiops) against pneumonic plague by the oral administration of live attenuated Yersinia pestis, J. Infect. Dis. 1977;135:289–293. doi: 10.1093/infdis/135.2.289. [DOI] [PubMed] [Google Scholar]
  • 90.Alexandrov N.L., Gefen N.E., Gapochko K.G., Grain N.S., Sergeyev V.M., Lasareva E.S. Aerosol immunization with dry living vaccines and toxoids. Report VI. A study of postvaccinal reaction and immunological efficacy of aerosol immunization with pulverized vaccines (brucellosis, tularemia, anthrax and plague) in man. J. Microbiol. Epidemiol. Immunobiol. 1961;32:1245–1252. [PubMed] [Google Scholar]
  • 91.Anisimov A.P., Nikiforov A.K., Yeremin S.A., Drozdov I.G. Design of the strain Yersinia pestis with improved level of protection. Bull. Exp. Biol. Med. 1995;120:532–534. doi: 10.1007/BF02445490. [DOI] [PubMed] [Google Scholar]
  • 92.Meyer, K. F., Hightower, J. A., and McCrumb, F. R. (1974) Plague immunization. VI. Vaccination with the fraction 1 antigen of Yersinia pestis, J. Infect. Dis., 129(Suppl.), S41–S45. [DOI] [PubMed]
  • 93.Du Y., Rosqvist R., Forsberg A. Role of fraction 1 antigen of. Yersinia pestis in inhibition of phagocytosis, Infect. Immun. 2002;70:1453–1460. doi: 10.1128/IAI.70.3.1453-1460.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Marshall J. D., Bartelloni P. J., Cavanaugh D. C., Kadull P. J., Meyer K. F. Plague immunization II. Relation of adverse clinical reactions to multiple immunizations with killed vaccine. J. Infect. Dis. 1974;129(Suppl.):S19–S25. doi: 10.1093/infdis/129.supplement_1.s19. [DOI] [PubMed] [Google Scholar]
  • 95.Ben-Efraim S., Aronson M., Bichowsky-Slomnicki L. New antigenic component of Pasteurella pestis formed under specific conditions of pH and temperature. J. Bacteriol. 1961;81:704–714. doi: 10.1128/jb.81.5.704-714.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Lindler L.E., Tall B.D. Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol. Microbiol. 1993;8:311–324. doi: 10.1111/j.1365-2958.1993.tb01575.x. [DOI] [PubMed] [Google Scholar]
  • 97.Lindner L.E., Klempner M.S., Straley S.C. Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect. Immun. 1990;58:2569–2577. doi: 10.1128/iai.58.8.2569-2577.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Lahteenmaki K., Kukkonen M., Korhonen T.K. The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett. 2001;504:69–72. doi: 10.1016/S0014-5793(01)02775-2. [DOI] [PubMed] [Google Scholar]
  • 99.Lahteenmaki K., Kuusela P., Kornhonen T.K. Bacterial plasminogen activators and receptors. FEMS Microbiol. Rev. 2001;25:531–552. doi: 10.1111/j.1574-6976.2001.tb00590.x. [DOI] [PubMed] [Google Scholar]
  • 100.Burrows T.W. Virulence of Pasteurella pestis. Nature. 1957;179:1246–1247. doi: 10.1038/1791246a0. [DOI] [PubMed] [Google Scholar]
  • 101.Price S.B., Cowan C., Perry R.D., Straley S.C. The Yersinia pestis V antigen is a regulatory protein necessary for Ca2+-dependent growth and maximal expression of low-Ca2+ response virulence genes. J. Bacteriol. 1991;173:2649–2657. doi: 10.1128/jb.173.8.2649-2657.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Nakajima R., Brubacker R.R. Association between virulence of Yersinia pestis and suppression of gamma interferon and tumor necrosis factor alpha. Infect. Immun. 1993;61:23–31. doi: 10.1128/iai.61.1.23-31.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Sing A., Roggenkamp A., Geiger A.M., Heeseman J. Yersinia enterocolitica evasion of the host innate immune response by V antigen-induced IL-10 production of macrophages is abrogated in IL-10-deficient mice. J. Immunol. 2002;168:1315–1321. doi: 10.4049/jimmunol.168.3.1315. [DOI] [PubMed] [Google Scholar]
  • 104.Sing A., Rost D., Tvardovskaia N., Roggenkamp A., Wiedemann A., Kirschning C.J., Aepfelbacher M., Heeseman J. Yersinia V antigen exploits Toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J. Exp. Med. 2002;196:1017–1024. doi: 10.1084/jem.20020908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Lawton W.D., Fukui G.M., Surgalla M.J. Studies on antigens of Pasteurella pestis and Pasteurella pseudotuberculosis. J. Immunol. 1960;84:475–479. [PubMed] [Google Scholar]
  • 106.Orth K. Functions of the. Yersinia effector YopJ, Curr. Opin. Microbiol. 2002;5(1):38–43. doi: 10.1016/S1369-5274(02)00283-7. [DOI] [PubMed] [Google Scholar]
  • 107.Mazza G., Karu A.E., Kingsbury D.T. Immune responses to plasmid- and chromosome-encoded Yersinia antigens. Infect. Immun. 1985;48:676–685. doi: 10.1128/iai.48.3.676-685.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Heath D.G., Anderson G.W., Jr, Welkos S.L., Andrews G.P., Friedlander A.M., Mauro J.M. A recombinant capsular F1-V antigen fusion protein vaccine protects against experimental bubonic and pneumonic plague. In: Brown F., Burton D., Doherty P., Mekelanos J., Norrby E., editors. Vaccines 97. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1997. pp. 197–200. [Google Scholar]
  • 109.Anderson G.W., Jr, Heath D.G., Bolt C.R., Welkos S.L., Friedlander A.M. Short- and long-term efficacy of single-dose subunit vaccines against Yersinia pestis in mice. Am. J. Trop. Med.. Hyg.. 1998;58:793–799. doi: 10.4269/ajtmh.1998.58.793. [DOI] [PubMed] [Google Scholar]
  • 110.Persson C., Nordfelth R., Holmstrom A., Hakansson S., Rosqvist R., Wolf-Watz H. Cell-surface bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell. Mol. Microbiol. 1995;18:135–150. doi: 10.1111/j.1365-2958.1995.mmi_18010135.x. [DOI] [PubMed] [Google Scholar]
  • 111.Hoover D.L., Borschel R.H. Medical protection against brucellosis. In: Lindner L.E., Lebeda F.J., Korch G.W., editors. Biological Weapons Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2005. pp. 155–184. [Google Scholar]
  • 112.Pappas G., Akritidis N., Bosilkovski M., Tsianos E. Brucellosis. N. Engl. J. Med. 2005;352(22):2325–2336. doi: 10.1056/NEJMra050570. [DOI] [PubMed] [Google Scholar]
  • 113.Cloeckaert A., Vizcaino N., Paquet J.Y., Bowden R.A., Elzer P.H. Major outer membrane proteins of Brucella spp.: past, present and future. Vet. Microbiol. 2002;90:229–247. doi: 10.1016/S0378-1135(02)00211-0. [DOI] [PubMed] [Google Scholar]
  • 114.DelVecchio V.G., Kapatral V., Redkar R.J., Patra G., Mujer C., Los T., Ivanova N., Anderson I., Bhattacharyya A., Lykidis A., Reznik G., Jablonski L., Larsen N., D’Souza M., Bernal A., Mazur M., Goltsman E., Selkov E., Elzer P.H., Hagius S., O’Callaghan D., Letesson J.-J., Haselkorn R., Kyprides N., Overbeek R. The genome sequence of the facultative intracellular pathogen Bricella melitensis. Proc. Natl. Acad. Sci. U.S.A. 2002;99:443–448. doi: 10.1073/pnas.221575398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Sanchez D.O., Zandomeni R.O., Cravero S., Verdún R.E., Pierrou E., Faccio P., Diaz G., Lanzavecchia S., Agüero F., Frasch A.C.C., Andersson S.G.E., Rossetti O.L., Grau O., Ugalde R.A. Gene discovery through genomic sequencing of Brucella abortus. Infect. Immun. 2001;69:865–868. doi: 10.1128/IAI.69.2.865-868.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Paulsen I.T., Seshadri R., Nelson K.E., Eisen J.A., Heidelberg J.F., Read T.D., Dodson R.J., Umayam L., Brinkac L.M., Beanan M.J., Daugherty S.C., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R., Nelson W.C., Ayodeji B., Kraul M., Shetty J., Malek J., Van Aken S.E., Riedmuller S., Tettelin H., Gill S.R., White O., Salzberg S.L., Hoover D.L., Lindler L.E., Halling S.M., Boyle S.M., Fraser C.M. The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc. Natl. Acad. Sci. U.S.A. 2002;99:13148–13153. doi: 10.1073/pnas.192319099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Fernandez-Prada C.M., Nikolich M., Vemulapalli R., Sriranganathan N., Boyle S.M., Schurig G.G., Hadfield T.L., Hoover D.L. Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect. Immun. 2001;69(7):4407–4416. doi: 10.1128/IAI.69.7.4407-4416.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Salmeron I., Rodriguez-Zapata M., Salmeron O., Manzano L., Vaquer S., Alvarez-Mon M. Impaired activity of natural killer cells in patients with active brucellosis. Clin. Infect. Dis. 1992;15:746–770. doi: 10.1093/clind/15.5.764. [DOI] [PubMed] [Google Scholar]
  • 119.Rodriguez-Zapata M., Reyes E., Sanchez L., Espinosa A., Solera J., Alvarez-Mon M. Defective reactive oxygen metabolite generation by macrophages from acute brucellosis patients. Infection. 1997;25:187–188. doi: 10.1007/BF02113611. [DOI] [PubMed] [Google Scholar]
  • 120.Ko J., Gendron-Fitzpatrick, A.Splitter G.A. Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis. J. Immunol. 2002;168:2433–2440. doi: 10.4049/jimmunol.168.5.2433. [DOI] [PubMed] [Google Scholar]
  • 121.Yingst S., Hoover D.L. T cell immunity to brucellosis. Crit. Rev. Microbiol. 2003;29:313–331. doi: 10.1080/713608012. [DOI] [PubMed] [Google Scholar]
  • 122.Zhan Y., Cheers C. Endogenous gamma interferon mediates resistance to Brucella abortus infection. Infect. Immun. 1993;61:4899–4901. doi: 10.1128/iai.61.11.4899-4901.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Anderson T.D., Cheville N.F., Meador V.P. Pathogenesis of placentitis in the goat inoculated with Brucella abortus. II. Ultrastructural studies, Vet. Pathol. 1986;23(3):227–239. doi: 10.3109/01913128609032221. [DOI] [PubMed] [Google Scholar]
  • 124.Spink W.W. Clinical aspects of human brucellosis. In: Larson C.H., Soule M.H., editors. Brucellosis. Baltimore: Waverly; 1950. pp. 1–8. [Google Scholar]
  • 125.Solera J., Lozano E., Martinez-Alfaro E., Espinosa A., Castillejos M.L., Abad L. Brucellar spondylitis: review of 35 cases and literature survey. Clin. Infect. Dis. 1999;29:1440–1449. doi: 10.1086/313524. [DOI] [PubMed] [Google Scholar]
  • 126.Khan M.Y., Mah M.W., Memish Z.A. Brucellosis in pregnant women. Clin. Infect. Dis. 2001;32:1172–1177. doi: 10.1086/319758. [DOI] [PubMed] [Google Scholar]
  • 127.Shakir R.A., Al-Din A.S., Araj G.F., Lulu A.R., Mousa A.R., Saadah M.A. Clinical categories of neurobrucellosis: a report on 19 cases. Brain. 1987;110:213–223. doi: 10.1093/brain/110.1.213. [DOI] [PubMed] [Google Scholar]
  • 128.Schurig G.G., Sriranganathan N., Corbel M.J. Brucellosis vaccines: past, present and future. Vet. Microbiol. 2002;90:479–496. doi: 10.1016/S0378-1135(02)00255-9. [DOI] [PubMed] [Google Scholar]
  • 129.Ko J., Spliter G.A. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin. Microbiol. Rev. 2003;16:65–78. doi: 10.1128/CMR.16.1.65-78.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Waag D.M., Thompson H.A. Pathogenesis of and immunity to Coxiella burnetii. In: Lindner L.E., Lebeda F.J., Korch G.W., editors. Bilogical Weapons Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2005. pp. 185–207. [Google Scholar]
  • 131.Byrne, W. P. (1997) Q fever. In: Medical Aspects of Chemical and Biological Warfare (Zajtchuk, R. and Belamy, R. F., eds.), Office of the Surgeon General, U.S. Department of the Army, pp. 523–537.
  • 132.Weisburg W.G., Dobson M.E., Samuel J.E., Dasch G.A., Mallavia L.P., Baca O., Mandelco L., Sechrest J.E., Weiss E., Woese C.R. Phylogenetic diversity of the Rickettsiae. J. Bacteriol. 1989;171:4202–4206. doi: 10.1128/jb.171.8.4202-4206.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Tzianabos T., Moss C.W., McDade J.E. Fatty acid composition of rickettsiae. J. Clin. Microbiol. 1981;13:603–605. doi: 10.1128/jcm.13.3.603-605.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Samuel J.E., Frazier M.E., Mallavia L.P. Correlation of plasmid type and disease caused by Coxiella burnetii. Infect. Immun. 1985;49:775–777. doi: 10.1128/iai.49.3.775-779.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Waag D.M., Williams J.C. Immune modulation by Coxiella burnetii: characterization of a Phase I immunosuppressive complex expressed among strains. Immunopharmacol. Immunotoxicol. 1988;10:231–260. doi: 10.3109/08923978809014335. [DOI] [PubMed] [Google Scholar]
  • 136.Tigertt W.D., Benenson A.S. Studies on Q fever in man. Trans. Assoc. Am. Phys. 1956;69:98–104. [PubMed] [Google Scholar]
  • 137.Waag D., Chulay J., Marrie T., England M., Williams J. Validation of an enzyme immunoassay for serodiagnosis of acute Q fever. Eur. J. Clin. Microbiol. Infect. Dis. 1995;14(5):421–427. doi: 10.1007/BF02114898. [DOI] [PubMed] [Google Scholar]
  • 138.Fournier P.-E., Marrie T.J., Raoult D. Minireview: diagnosis of Q fever. J. Clin. Microbiol. 1998;36:1823–1834. doi: 10.1128/jcm.36.7.1823-1834.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Sobradillo V., Zalacain R., Capelastegui A., Uresandi F., Corral J. Antibiotic treatment in pneumonia due to Q fever. Thorax. 1992;47:276–278. doi: 10.1136/thx.47.4.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Smadel J.E., Snyder M.J., Robbins F.C. Vaccination against Q fever. Am. J. Hyg. 1948;47:71–78. doi: 10.1093/oxfordjournals.aje.a119187. [DOI] [PubMed] [Google Scholar]
  • 141.Johnson J.W., McLeod C.G., Stookey J.L., Higbee G.A., Pedersen C.E., Jr Lesions in guinea pigs infected with Coxiella burnetii strain M-44. J. Infect. Dis. 1977;135:995–998. doi: 10.1093/infdis/135.6.995. [DOI] [PubMed] [Google Scholar]
  • 142.Ackland J.R., Worswick D.A., Marmion B.P. Vaccine prophylaxis of Q fever. A follow-up study of the efficacy of Q-Vax (CSL) 1985–1990. Med. J. Aust. 1994;160:704–708. [PubMed] [Google Scholar]
  • 143.Waag D.M., DeShazer D. Glanders. In: Lindler L.E., Lebeda F.J., Korch G.W., editors. Biological Weapons Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2005. pp. 209–237. [Google Scholar]
  • 144.Miller W.R., Pannell L., Cravitz L., Tanner W.A., Rosebury T. Studies on certain biological characteristics of Malleomyces mallei and Malleomyces pseudomallei. II. Virulence and infectivity for animals. J. Bacteriol. 1948;55:127–135. [PMC free article] [PubMed] [Google Scholar]
  • 145.Centers for Disease Control Biological and chemical terrorism: strategic plan for preparedness and response. Morb. Mortal. Wkly Rep. 2000;49(RR-4):1–14. [PubMed] [Google Scholar]
  • 146.Yabuuchi E., Kosako Y., Oyaizy H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to a new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb.nov. Microbiol. Immunol. 1992;36:1251–1275. doi: 10.1111/j.1348-0421.1992.tb02129.x. [DOI] [PubMed] [Google Scholar]
  • 147.Nierman W.C., DeShazer D., Kim H.S., Tettelin H., Nelson K.E., Feldblyum T., Ulrich R.L., Ronning C.M., Brinkac L.M., Daugherty S.C., Davidsen T.D., Deboy R.T., Dimitrov G., Dodson R.J., Durkin A.S., Gwinn M.L., Haft D.H., Khouri H., Kolonay J.F., Madupu R., Mohammoud Y., Nelson W.C., Radune D., Romero C.M., Sarria S., Selengut J., Shamblin C., Sullivan S.A., White O., Yu Y., Zafar N., Zhou L., Fraser C.M. Structural flexibility in the Burkholderia mallei genome. Proc. Natl. Acad. Sci. U.S.A. 2004;101(39):14246–14251. doi: 10.1073/pnas.0403306101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.DeShazer D., Waag D.M., Fritz D.L., Woods D.E. Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. Microb. Pathogen. 2001;30:253–269. doi: 10.1006/mpat.2000.0430. [DOI] [PubMed] [Google Scholar]
  • 149.Ulrich R.L., DeShazer D. Type III secretion: a virulence factor delivery system essential for the pathogenicity of Burkholderia mallei. Infect. Immun. 2004;72:1150–1154. doi: 10.1128/IAI.72.2.1150-1154.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Finley B.B., Falkow S. Common themes in microbial pathogenesis revisited. Microbiol. Mol. Biol. Rev. 1997;61:136–169. doi: 10.1128/mmbr.61.2.136-169.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Henderson I.R., Nataro J.P. Virulence functions of autotransporter proteins. Infect. Immun. 2001;69:1231–1243. doi: 10.1128/IAI.69.3.1231-1243.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Zhu, J., Miller, M. B., Vance, R. E., Dziejman, M., Bassler, B. l., and Mekelanos, J. J., Quorum-sensing regulators control virulence gene expression in Vibrio cholerae, Proc. Natl. Acad. Sci. U.S.A., 99, 3129–3134. [DOI] [PMC free article] [PubMed]
  • 153.Reckseidler S.L., DeShazer D., Sokol P.A., Woods D.E. Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect. Immun. 2001;69:34–44. doi: 10.1128/IAI.69.1.34-44.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Khrapova N.P., Tikhonov N.G., Prokhvatilova Y.V. Detection of glycoprotein of Bukholderia pseudomallei. Emerg. Infect. Dis. 1998;4:336–337. doi: 10.3201/eid0402.980229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154a.Samygin V.M., Khrapova N.P., Spiridonov V.A., Stepin A.A. Antigen 8 biosynthesis during cultivation of Burkholderia pseudomallei and B. mallei. Zh. Mikrobiol. Epidemiol. Immunobiol. 2001;4:50–52. [PubMed] [Google Scholar]
  • 155.Piven N.N., Smirnova V.L., Viktorov D.V., Kovalenko A.A., Farber S.M., Iarulin R.G., Podzolkova G.G. Immunogenicity and heterogenicity of Pseudomona pseudomallei surface antigen 8. Zh. Mikrobiol. (Moscow) 1996;4:75–78. [PubMed] [Google Scholar]
  • 156.DeShazer D., Brett P.J., Woods D.E. The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol. Microbiol. 1998;30:1081–1100. doi: 10.1046/j.1365-2958.1998.01139.x. [DOI] [PubMed] [Google Scholar]
  • 157.Burtnick M.N., Brett P.J., Woods D.E. Molecular and physical characterization of Burkholderia mallei O antigens. J. Bacteriol. 2002;184:849–852. doi: 10.1128/JB.184.3.849-852.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Pitt T.L., Aucken H., Dance D.A. Homogeneity of lipopolysaccharide antigens of Pseudomonas pseudomallei. J. Infect. 1992;25:139–146. doi: 10.1016/0163-4453(92)93920-L. [DOI] [PubMed] [Google Scholar]
  • 159.Knirel Y.A., Paramonov N.A., Shashkov A.S., Kochetkov N.K., Yarullin R.G., Farber S.M., Efremenko V.I. Structure of the polysaccharide chains of Pseudomonas pseudomallei lipopolysaccharides. Carbohydr. Res. 1992;233:185–193. doi: 10.1016/S0008-6215(00)90930-3. [DOI] [PubMed] [Google Scholar]
  • 160.Perry M.B., MacLean L.L., Schollaardt T., Bryan L.E., Ho M. Structural characterization of the polysaccharide O antigens of Burkholderia pseudomallei. Infect. Immun. 1995;63:3348–3352. doi: 10.1128/iai.63.9.3348-3352.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Day W.A.J., Fernandez R.E., Maurelli A.T. Pathoadaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect. Immun. 2001;69:7471–7480. doi: 10.1128/IAI.69.12.7471-7480.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Holden M.T.G., Titball R.W., Peacock S.J., Cerdeño-Tárraga A.M., Atkins T., Crossman L.C., Pitt T., Churcher C., Mungall K., Bentley S.D., Sebaihia M., Thomson N.R., Bason N., Beacham I.R., Brooks K., Brown K.A., Brown N.F., Challis G.L., Cherevach I., Chillingworth T., Cronin A., Crossett B., Davis P., DeShazar D., Feltwell T., Fraser A., Hance Z., Hauser H., Holroyd S., Jagels K., Keith K.E., Maddison M., Moule S., Price C., Quail M.A., Rabbinowitsch E., Rutherford K., Sanders M., Simmonds M., Songsivilai S., Stevens K., Tumapa S., Vesaratchavest M., Whitehead S., Yeats C., Barrell B.G., Oyston P.C.F., Parkhill J. Genomic plasticity of the causative agent of melioidosis Burkholderia pseudomallei. Proc. Natl. Acad. Sci. U.S.A. 2004;101(39):14240–14245. doi: 10.1073/pnas.0403302101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Ochman H., Lawrence J.G., Groisman E.A. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304. doi: 10.1038/35012500. [DOI] [PubMed] [Google Scholar]
  • 164.Mira A., Ochman H., Moran N.A. Deletional bias and the evolution of bacterial genomes. Trends Genet. 2001;17:589–596. doi: 10.1016/S0168-9525(01)02447-7. [DOI] [PubMed] [Google Scholar]
  • 165.Steinmetz I., Rohde M., Brenneke B. Purification and characterization of an exopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. Infect. Immun. 1995;63:3959–3965. doi: 10.1128/iai.63.10.3959-3965.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Nimtz M., Wray V., Domke T., Brenneke B., Haussler S., Steinmetz I. Structure of an acidic exopolysaccharide of Burkholderia pseudomallei. Eur. J. Biochem. 1997;250:608–616. doi: 10.1111/j.1432-1033.1997.0608a.x. [DOI] [PubMed] [Google Scholar]
  • 167.Srinivasan A., Kraus C.N., De Shazer D., Becker P.M., Dick J.D., Soacek L., Bartlett J.G., Byrne W.R., Thomas D.L. Glanders in a military research microbiologist. N. Engl. J. Med. 2001;345(4):256–258. doi: 10.1056/NEJM200107263450404. [DOI] [PubMed] [Google Scholar]
  • 168.Neubauer H., Meyer H., Finke E.J. Human glanders. Int. Rev. Armed Forces Med. Serv. 1997;70:258–265. [Google Scholar]
  • 169.Thibault F.M., Hernandez E., Vidal D.R., Girardet M., Cavallo J.-D. Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. J. Antimicrob. Chemother. 2004;54:1134–1138. doi: 10.1093/jac/dkh471. [DOI] [PubMed] [Google Scholar]
  • 170.Heine H.S., England M.J., Waag D.M., Byrne R. In vitro antibiotic susceptibilities of Burkholderia mallei (causative agent of glanders) determined by broth microdilution and E-test Antimicrob. Agents Chemother. 2001;45(7):2119–2121. doi: 10.1128/AAC.45.7.2119-2121.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Dance D., Wuthiekanun V., Chaowagul W., White N.J. The antimicrobial susceptibility of Pseudomonas pseudomallei. Emergence of resistance in vitro and during treatment. J. Antimicrob. Chemother. 1989;24:295–309. doi: 10.1093/jac/24.3.295. [DOI] [PubMed] [Google Scholar]
  • 172.Centers for Disease Control Laboratory-acquired human glanders – Maryland. Morb. Mortal. Wkly Rep. 2000;49(RR-24):532–535. [PubMed] [Google Scholar]
  • 173.Chetchotisakd P., Porramatikul S., Mootsikapun P., Anunnatsiri S., Thinkhamrop E. Randomized, double-blind, controlled study of cefoperazone-sulbactam plus cotrimazole for the treatment of severe melioidosis. Clin. Infect. Dis. 2001;33:29–34. doi: 10.1086/320878. [DOI] [PubMed] [Google Scholar]
  • 174.The European Agency for the Evaluation of Medicinal Products (2002) EMEA/CPMP Guidance document on use of medicinal products for treatment and prophylaxis of biological agents that might be used as weapons of bioterrorism. 10. Glanders and melioidosis, European Agency for the Evaluation of Medicinal Products, London.
  • 175.Mohler J.R., Eichhorn A. Immunization test with glanders vaccine. J. Comp. Pathol. 1914;27:183–185. [Google Scholar]
  • 176.White N.J. Melioidosis. Lancet. 2003;361(9370):1715–1722. doi: 10.1016/S0140-6736(03)13374-0. [DOI] [PubMed] [Google Scholar]
  • 177.Dance D.A.B., White N.J. Melioidosis. In: Cox F.E.G., editor. The Wellcome Trust Illustrated History of Tropical Diseases. London: The Wellcome Trust; 1996. pp. 72–81. [Google Scholar]
  • 178.Visca P., Cazzola G., Petrucca A., Braggion C. Travel-associated Burkholderia pseudomallei infection (melioidosis) in a patient with cystic fibrosis: a case report. Clin. Infect. Dis. 2001;32:E15–E16. doi: 10.1086/317528. [DOI] [PubMed] [Google Scholar]
  • 179.Holland D.J., Wesley A., Drinkovic D., Currie B.J. Cystic fibrosis and Burkholderia pseudomallei infection: an emerging problem. Clin. Infect. Dis. 2002;35:138–140. doi: 10.1086/344447. [DOI] [PubMed] [Google Scholar]
  • 180.Woods D.E., DeShazer D., Moore R.A., Brett P.J., Burtnick M.N., Reckseidler S.L., Senkiw M.D. Current studies on the pathogenesis of melioidosis. Microbes Infect. 1999;1(2):157–162. doi: 10.1016/S1286-4579(99)80007-0. [DOI] [PubMed] [Google Scholar]
  • 181.Sexton M.M., Jones A.L., Chaowagul W., Woods D.E. Purification and characterization of protease from Pseudomonas pseudomallei. Can. J. Microbiol. 1994;40:903–910. doi: 10.1139/m94-145. [DOI] [PubMed] [Google Scholar]
  • 182.Haussler S., Nimtz M., Domke T., Wray V., Steinmetz I. Purification and characterization of a cytotoxic exolipid of Pseudomonas pseudomallei. Infect. Immun. 1996;66:1588–1593. doi: 10.1128/iai.66.4.1588-1593.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Egan A.M., Gordon D.L. Burkholderia pseudomallei activates complement and is ingested but not killed by polymorphonuclear leukocytes. Infect. Immun. 1996;64:4952–4959. doi: 10.1128/iai.64.12.4952-4959.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Wong K.T., Puthucheary S.D., Vadivelu J. The histopathology of human melioidosis. Histopathology. 1995;26:51–55. doi: 10.1111/j.1365-2559.1995.tb00620.x. [DOI] [PubMed] [Google Scholar]
  • 185.Kespichayawattana W., Rattanachetkul S., Wanun T., Utaisincharoen P., Sirisinha S. Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect. Immun. 2000;68:5377–5384. doi: 10.1128/IAI.68.9.5377-5384.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Stevens M.P., Wood M.W., Taylor L.A., Monaghan P., Hawes P., Jones P.W., Wallis T.S., Galyov E.E. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol. Microbiol. 2002;46:649–659. doi: 10.1046/j.1365-2958.2002.03190.x. [DOI] [PubMed] [Google Scholar]
  • 187.Walsh A.L., Smith M.D., Wuthiekanun V., Suputtamongkol S., Chaowagul W., Dance D.A., Angus B., White N.J. Prognostic significance of quantitative bacteremia in septicemic melioidosis. Clin. Infect. Dis. 1995;21(6):1498–1500. doi: 10.1093/clinids/21.6.1498. [DOI] [PubMed] [Google Scholar]
  • 188.Steinmetz I., Rohde M., Brenneke B. Purification and characterization of an exopolysaccharide of Burkholderia (Pseudomonas) pseudomallei. Infect. Immun. 1995;63:3959–3965. doi: 10.1128/iai.63.10.3959-3965.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Reckseidler S.L., De Shazer D., Sokol P.A., Woods D.E. Detection of bacterial virulence genes by subtractive hybridization: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect. Immun. 2001;69:34–44. doi: 10.1128/IAI.69.1.34-44.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Haussler S., Rohde M., Steinmetz I. Highly resistant Burkholderia pseudomallei small colony variants isolated in vitro and in experimental melioidosis. Med. Microbiol. Immunol. (Berl) 1999;188:91–97. doi: 10.1007/s004300050110. [DOI] [PubMed] [Google Scholar]
  • 191.Jones S.M., Ellis J.F., Russell P., Griffin K.F., Oyston P.C. Passive protection against Burkholderia pseudomallei infection in mice by monoclonal antibodies against capsular polysaccharide, lipopolysaccharide or proteins. J. Med. Microbiol. 2002;51:1055–1062. doi: 10.1099/0022-1317-51-12-1055. [DOI] [PubMed] [Google Scholar]
  • 192.Nuntayanuwat S., Dharakul T., Chaowagul W., Songsivilai S. Polymorphism in the promoter region of tumor necrosis factor-alpha gene is associated with severe melioidosis. Hum. Immunol. 1999;60:979–983. doi: 10.1016/S0198-8859(99)00073-7. [DOI] [PubMed] [Google Scholar]
  • 193.Dharakul T., Vejbaesya S., Chaowagul W., Luangtrakool P., Stephens H.A., Songsivilai S. HLA-DR and -DQ associations with melioidosis. Hum. Immunol. 1998;59:580–586. doi: 10.1016/S0198-8859(98)00052-4. [DOI] [PubMed] [Google Scholar]
  • 193a.Viriyasithavat P., Chaowagul W., Dance D.A., White N.J. Corneal ulcer caused by Pseudomonas pseudomallei: report of three cases. Rev. Infect. Dis. 1991;13(3):335–337. doi: 10.1093/clinids/13.2.335. [DOI] [PubMed] [Google Scholar]
  • 194.White N.J., Dance D.A., Chaowagul W., Wattanagoon Y., Wuthiekanun V., Pitakwatchara N. Halving of mortality of severe melioidosis by ceftazidime. Lancet. 1989;2:697–701. doi: 10.1016/S0140-6736(89)90768-X. [DOI] [PubMed] [Google Scholar]
  • 195.Sookpranee M., Boonma P., Susaengrat W., Bhuripanyo K., Punyagupta S. Multicenter prospective randomized trial comparing ceftazidime plus co-trimozaxole with chloramphenicol plus doxycycline and co-trimoxazole for treatment of severe melioidosis. Antimicrob. Agents Chemother. 1992;36:158–162. doi: 10.1128/aac.36.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Smith M.D., Wuthiekanun V., Walsh A.L., White N.J. Susceptibility of Pseudomonas pseudomallei to some newer β-lactam antibiotics and antibiotic combination using time-kill studies. J. Antimicrob. Chemother. 1994;33:145–149. doi: 10.1093/jac/33.1.145. [DOI] [PubMed] [Google Scholar]
  • 197.Simpson A.J.H., Suputtamongkol Y., Smith M.D., Angus B.J., Rajanuwong A., Wuthiekanun V., Howe P.A., Walsh A.L., Chaowagul W., White N.J. Comparison of imipenem and ceftazidime as therapy for severe melioidosis. Clin. Infect. Dis. 1999;29(2):381–387. doi: 10.1086/520219. [DOI] [PubMed] [Google Scholar]
  • 198.Dance D.A.B., Davis T.M.E., Wattanagoon Y., Chaowagul W., Saiphan P., Looareesuwan S., Wuthiekanun V., White N.J. Acute suppurative parotitis caused by Pseudomonas pseudomallei in children. J. Infect. Dis. 1989;159(4):654–660. doi: 10.1093/infdis/159.4.654. [DOI] [PubMed] [Google Scholar]
  • 199.Currie B.J., Fisher D.A., Howard D.M., Burrow J.N.C., Lo D., Selva-nayagam S., Anstey N.M., Huffman S.E., Snelling P.L., Marks P.J., Stephens D.P., Lum G.D., Jacups S.P., Krause V.L. Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature. Clin. Infect. Dis. 2000;31:981–986. doi: 10.1086/318116. [DOI] [PubMed] [Google Scholar]
  • 200.Woods M.L., 2nd, Currie B.J., Howard D.M., Tierney A., Watson A., Anstey N.M., Philpott J., Asche V., Withnall K. Neurological melioidosis: seven cases from the Northern territory of Australia. Clin. Infect. Dis. 1992;15(1):163–169. doi: 10.1093/clinids/15.1.163. [DOI] [PubMed] [Google Scholar]
  • 201.Currie B., Fisher D. A., Howard D. M., Burrow J. N. Neurological melioidosis. Acta Trop. 2000;74(2–3):145–151. doi: 10.1016/s0001-706x(99)00064-9. [DOI] [PubMed] [Google Scholar]
  • 202.World Health Organization (1976) Ebola haemorrhagic fever in Zaire, Bull. World Health Organization, 56, 271–293. [PMC free article] [PubMed]
  • 203.Bowen E.T.W., Platt G.S., Lloyd G., Baskerville A., Harris W.J., Vella E.C. Viral haemorrhagic fever in southern Sudan and northern Zaire: preliminary studies on the aetiologic agent. Lancet. 1977;1:571–573. doi: 10.1016/S0140-6736(77)92001-3. [DOI] [PubMed] [Google Scholar]
  • 204.Baron R.C., McCormick J.B., Zubeir O.A. Ebola virus disease in southern Sudan: hospital dissemination and intrafamilial spread Bull. World Health Organization. 1983;62:997–1003. [PMC free article] [PubMed] [Google Scholar]
  • 205.Sanchez A., Ksiazek T.G., Rollin P.E., Peters C.J., Nichol S.T., Khan A.S., Mahy B.W.J. Reemergence of Ebola virus in Africa. Emerg. Infect. Dis. 1995;1(3):96–97. doi: 10.3201/eid0103.950307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Centers for Disease Control and Prevention (1995) Outbreak of Ebola viral hemorrhagic fever – Zaire, Morb. Mortal. Wkly Rep., 44, 381–382. [PubMed]
  • 207.Centers for Disease Control and Prevention Update: outbreak of ebola viral hemorrhagic fever – Zaire. Morb. Mortal. Wkly Rep. 1995;44:399. [PubMed] [Google Scholar]
  • 208.Formenty P., Boesch C., Wyers M., Steiner C., Donati F., Dind F., Walker F., Le Guenno B. Ebola virus outbreak among wild chimpanzees living in a rain forest of Côte d’Ivoire. J. Infect. Dis. 1999;179:S120–S126. doi: 10.1086/514296. [DOI] [PubMed] [Google Scholar]
  • 209.Le Guenno B., Formenty P., Wyers M., Gounon P., Walker F., Boesch C. Isolation and partial characterization of a new strain of Ebola virus. Lancet. 1995;345(8960):1271–1274. doi: 10.1016/S0140-6736(95)90925-7. [DOI] [PubMed] [Google Scholar]
  • 210.Jahrling R.B., Geisbert T.W., Jaax N.K., Hanes M.A., Ksiazek T.G., Peters C.J. Experimental infection of cynomolgus macaques with Ebola-Reston filoviruses from the 1989–1990 U.S. epizootic. Arch. Virol. Suppl. 1996;11:115–134. doi: 10.1007/978-3-7091-7482-1_11. [DOI] [PubMed] [Google Scholar]
  • 211.World Health Organization Viral haemorrhagic fever in imported monkeys. Wkly Epidemiol. Rec. 1992;67:142–143. [PubMed] [Google Scholar]
  • 212.Francesconi P., Yoti Z., Declich S., Onek P.A., Fabiani M., Olango J., Andreghetti R., Rollin P.E., Opira C., Greco D., Salmaso S. Ebola hemorrhagic fever transmission and risk factors of contact, Uganda. Emerg. Infect. Dis. 2003;9(11):1430–1437. doi: 10.3201/eid0911.030339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Sanchez A., Kiley M.P., Holloway B.P., Auperin D.D. Sequence analysis of the Ebola genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res. 1993;29:215–240. doi: 10.1016/0168-1702(93)90063-S. [DOI] [PubMed] [Google Scholar]
  • 214.Yaddanapudi K., Palacios G., Towner J.S., Chen I., Sariol C.A., Nichol S.T., Lipkin W.I. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 2006;20:2519–2530. doi: 10.1096/fj.06-6151com. [DOI] [PubMed] [Google Scholar]
  • 215.Baize S., Leroy E.M., Georges-Courbot M.C., Capron M., Lansoud-Soukate J., Debre P., Fisher-Hoch S.P., McCormick J.B., Georges A.J. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat. Med. 1999;5:423–426. doi: 10.1038/7422. [DOI] [PubMed] [Google Scholar]
  • 216.Leroy E.M., Baize S., Volchkov V.E., Fisher-Hoch S.P., Georges-Courbot M.C., Lansoud-Soukate J., Capron M., Debre P., McCormick J.B., Georges A.J. Human asymptomatic Ebola infection and strong inflammatory response. Lancet. 2000;355:2210–2215. doi: 10.1016/S0140-6736(00)02405-3. [DOI] [PubMed] [Google Scholar]
  • 217.Villinger F., Rollin P. E., Brar S. S., Chikkala N. F., Winter J., Sundstrom J. B., Zaki S. R., Swanepoel R., Ansari A. A., Peters C. J. Markedly elevated levels of interferon (IFN)-gamma, INF-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J. Infect. Dis. 1999;179(Suppl.):S188–S191. doi: 10.1086/514283. [DOI] [PubMed] [Google Scholar]
  • 218.Yang Z.Y., Duckers H.J., Sullivan N.J., Sanchez A., Nabel E.G., Nabel G.J. Identification of the Ebola virus glycoprotein as the main determinant of vascular cell cytotoxicity and injury. Nat. Med. 2000;6:886–889. doi: 10.1038/78645. [DOI] [PubMed] [Google Scholar]
  • 219.Volchkov V.E., Volchkova V.A., Muhlberger E., Kolesnikova L.V., Weik M., Dolnik O., Klenk H.D. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science. 2001;291:1965–1969. doi: 10.1126/science.1057269. [DOI] [PubMed] [Google Scholar]
  • 220.Feldman H., Volchkov V.E., Volchkova V.A., Stroher U., Klenk H.D. Biosynthesis and role of filoviral glucoproteins. J. Gen. Virol. 2001;82:2839–2848. doi: 10.1099/0022-1317-82-12-2839. [DOI] [PubMed] [Google Scholar]
  • 221.Yaddanapudi K., Palacios G., Towner J.S., Chen I., Sariol C.A., Nichol S.T., Lipkin W.I. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 2006;20:2519–2530. doi: 10.1096/fj.06-6151com. [DOI] [PubMed] [Google Scholar]
  • 222.Denner J., Norley S., Kurth R. The immunosuppressive peptide of HIV-1: functional domains and immune response in AIDS patients. AIDS. 1994;8:1063–1072. doi: 10.1097/00002030-199408000-00005. [DOI] [PubMed] [Google Scholar]
  • 223.Haraguchi S., Good R.A., Day N.K. Immunosuppressive retroviral peptides: cAMP and cytokine patterns. Immunol. Today. 1995;16:595–603. doi: 10.1016/0167-5699(95)80083-2. [DOI] [PubMed] [Google Scholar]
  • 224.Cianciolo G.J., Copeland T.D., Oroszlan S., Snyderman R. Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science. 1985;230:453–455. doi: 10.1126/science.2996136. [DOI] [PubMed] [Google Scholar]
  • 225.Haraguchi S., Good R.A., James-Yarish M., Cianciolo G.J., Day N.K. Induction of intracellular cAMP by a synthetic retroviral envelope peptide: a possible mechanism of immunopathogenesis in retroviral infections. Proc. Natl. Acad. Sci. U.S.A. 1995;92:5568–5571. doi: 10.1073/pnas.92.12.5568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Haraguchi S., Good R.A., James-Yarish M., Cianciolo G.J., Day N.K. Differential modulation of Th1- and Th2-related cytokine mRNA expression by a synthetic peptide homologous to a conserved domain within retroviral envelope protein. Proc. Natl. Acad. Sci. U.S.A. 1995;92:3611–3615. doi: 10.1073/pnas.92.8.3611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Gottlieb R.A., Kleinerman A.S., O’Brien C.A., Tsujimoto S., Cianciolo G.J., Lennarz W.J. Inhibition of protein kinase G by a peptide conjugate homologous to a domain of the retroviral protein p15E. J. Immunol. 1990;145:2566–2570. [PubMed] [Google Scholar]
  • 228.Kadota J., Cianciolo G.J., Snyderman R. A synthetic peptide homologous to retroviral transmembrane envelope proteins depresses protein kinase C mediated lymphocytic prolifereation and directly inactivated protein kinase C: a potential mechanism for immunosuppression. Microbiol. Immunol. 1991;35:443–459. doi: 10.1111/j.1348-0421.1991.tb01575.x. [DOI] [PubMed] [Google Scholar]
  • 229.Feldman, H. and Klenk, H.-D. Filoviruses. In: Medmicro Chapter 72 (http://www.gsbs.utmb.edu/microbook/ch072.htm).
  • 230.Sullivan N.J., Sanchez A., Rollin P.E., Yang Z.Y., Nabel G.J. Development of preventive vaccine for Ebola virus infection in primates. Nature. 2000;408(6812):605–609. doi: 10.1038/35046108. [DOI] [PubMed] [Google Scholar]
  • 231.Kudoyarova-Zubavichene N.M., Sergeyev N.N., Chepurnov A.A., Netesov S.V. Preparation and use of hyperimmune serum for prophylaxis and therapy of Ebola virus infection. J. Infect. Dis. 1999;179:S218–S223. doi: 10.1086/514294. [DOI] [PubMed] [Google Scholar]
  • 232.Jahrling P.B., Geisbert T.W., Geisbert J.B., Swearengen J.R., Bray M., Jaax N.K., Huggins J.W., LeDuc J.W., Peters C.J. Evaluation of immune globulin and recombinant interferon-for treatment of experimental Ebola virus infections. J. Infect. Dis. 1999;179:S224–S234. doi: 10.1086/514310. [DOI] [PubMed] [Google Scholar]
  • 233.Burton D.R., Parren P.W.H.I. Fighting the Ebola virus. Nature. 2000;408:527–528. doi: 10.1038/35046176. [DOI] [PubMed] [Google Scholar]
  • 234.Hevey M., Negley D., Pushko P., Smith J., Schmaljohn A. Marburg virus vaccines based upon alphavirus replicons protect guinea pigs and nonhuman primates. Virology. 1998;251(1):28–37. doi: 10.1006/viro.1998.9367. [DOI] [PubMed] [Google Scholar]
  • 235.Elliott R.M., Bouloy M., Calisher C.H., Goldbach R., Moyer J.T., Nichol S.T., Pettersson R., Plyusnin A., Schmaljohn C.S. Family Bunyaviridae. In: van Regenmortel M.H.V., Fauquet C.M., Bishop D.H.L., Carstens E.B., Estes M.K., Lemon S.M., Maniloff J., Mayo M.A., McGeoch D.J., Pringle C.R., Wickner R.B., editors. Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press; 2000. pp. 599–621. [Google Scholar]
  • 236.Elliott R.M. Molecular biology of Bunyaviridae. J. Gen. Virol. 1990;71:501–522. doi: 10.1099/0022-1317-71-3-501. [DOI] [PubMed] [Google Scholar]
  • 237.Bowen M.D., Trappier S.G., Sanchez A.J., Meyer R.F., Goldsmith C.S., Zaki S.R., Dunster L.M., Peters C.J., Ksiazek T.G., Nichol S.T. A reassortant Bunyavirus isolated from hemorrhagic fever cases in Kenya and Somalia. Virology. 2001;291:185–190. doi: 10.1006/viro.2001.1201. [DOI] [PubMed] [Google Scholar]
  • 238.Gerrard S.R., Li L., Barrett A.D., Nichol S.T. Ngari virus is a Bunyamwera virus reassortant that can be associated with large outbreaks of hemorrhagic fever in Africa. Virology. 2004;78:8922–8926. doi: 10.1128/JVI.78.16.8922-8926.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Flick R., Whitehouse C.A. Crimean-Congo hemorrhagic fever. Curr. Mol. Med. 2005;5:753–760. doi: 10.2174/156652405774962335. [DOI] [PubMed] [Google Scholar]
  • 240.Clerx-van Haaster C.M., Clerx J.P.M., Ushijima H., Akashi H., Fuller F., Bishop D.H.L. The 3′ terminal RNA sequences of Bunyaviruses and Nairoviruses (Bunyaviridae): evidence of end sequence generic differences within the virus family. J. Gen. Virol. 1982;61:289–292. doi: 10.1099/0022-1317-61-2-289. [DOI] [PubMed] [Google Scholar]
  • 241.Flick R., Elgh F., Pettersson R.F. Mutational analysis of the Uukuniemi virus (Bunyaviridae family) promoter reveals two elements of functional importance. J. Virol. 2002;76(21):10849–10860. doi: 10.1128/JVI.76.21.10849-10860.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Bishop, D. H. L., Calisher, C., Casals, J., Chumakov, M. P., Gaidamovich, S. Y., Hannoun, C., Lvov, D. K., Marshall, I. D., Oker-Blom, N. M., Peterrsson, R. F., Porterfield, J. S., Russell, P. K., Shope, R. E., and Westaway, E. G. (1980), Bunyaviridae, Intervirology, 14, 125–143. [DOI] [PubMed]
  • 243.Kinsella E., Martin S.G., Grolla A., Czub M., Feldmann H., Flick R. Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology. 2002;321(1):23–28. doi: 10.1016/j.virol.2003.09.046. [DOI] [PubMed] [Google Scholar]
  • 244.Honig J.E., Osborne J.C., Nichol S.T. Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology. 2004;321:29–35. doi: 10.1016/j.virol.2003.09.042. [DOI] [PubMed] [Google Scholar]
  • 245.Sanchez A.J., Vincent M.J., Nichol S.T. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J. Virol. 2002;76:7263–7275. doi: 10.1128/JVI.76.14.7263-7275.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Baskerville A., Fisher-Hoch S.P., Neild G.H., Dowsett A.B. Ultrastructural pathology of experimental Ebola haemorrhagic fever virus infection. J. Pathol. 1985;147(3):199–209. doi: 10.1002/path.1711470308. [DOI] [PubMed] [Google Scholar]
  • 247.Vincent M.J., Sanchez A.J., Erickson B.R., Basak A., Chretien M., Seidah N.G., Nichol S.T. Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J. Virol. 2003;77(16):8640–8649. doi: 10.1128/JVI.77.16.8640-8649.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Haferkamp S., Fernando L., Schwartz T.F., Feldmann H., Flick R. Intracellular localization of Crimean-Congo hemorrhagic fever (CCHF) virus glycoproteins. Virol. J. 2005;2:42. doi: 10.1186/1743-422X-2-42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.Walpita P., Flick R. Reverse genetics of negative-stranded RNA viruses: a global perspective. FEMS Microbiol. Lett. 2005;266(1):9–18. doi: 10.1016/j.femsle.2005.01.046. [DOI] [PubMed] [Google Scholar]
  • 250.Lawson N.D., Stillman E.A., Whitt M.A., Rose J.K. Recombinant vesicular stomatitis viruses from DNA. Proc. Natl. Acad. Sci. U.S.A. 1995;92:4477–4481. doi: 10.1073/pnas.92.10.4477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Whelan S.P.J., Ball L.A., Barr J.N., Wertz G.T.W. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc. Natl. Acad. Sci. U.S.A. 1995;92:8388–8392. doi: 10.1073/pnas.92.18.8388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.He B., Paterson R.G., Ward C.D., Lamb R.A. Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology. 1997;237(2):249–260. doi: 10.1006/viro.1997.8801. [DOI] [PubMed] [Google Scholar]
  • 253.Barron M.D., Barrett T. Rescue of rinderpest virus from cloned cDNA. J. Virol. 1997;71(2):1265–1271. doi: 10.1128/jvi.71.2.1265-1271.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Neumann G., Feldmann H., Watanabe S., Lukashevich I., Kawaoka Y. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J. Virol. 2002;76(1):406–410. doi: 10.1128/JVI.76.1.406-410.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Neumann G., Watanabe T., Ito H., Watanabe S., Goto H., Gao P., Hughes M., Perez D.R., Donis R., Hoffmann E., Hobom G., Kawaoka Y. Generation of influenza A viruses entirely from cloned cDNAs. Proc. Natl. Acad. Sci. U.S.A. 1999;96(16):9345–9350. doi: 10.1073/pnas.96.16.9345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Flick R., Flick K., Feldmann H., Elgh F. Reverse genetics for Crimean-Congo hemorrhagic fever virus. J. Virol. 2003;77(10):5997–6006. doi: 10.1128/JVI.77.10.5997-6006.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Zobel A., Neumann G., Hobom G. RNA polymerase I catalyzed transcription of insert viral cDNA. Nucleic Acids Res. 1993;21(16):3607–3614. doi: 10.1093/nar/21.16.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Neumann G., Zobel A., Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology. 1994;202(1):477–479. doi: 10.1006/viro.1994.1365. [DOI] [PubMed] [Google Scholar]
  • 259.Talmon Y., Prasad B.V.V., Clerx J.P.M., Wang G.-J., Chiu W., Hewlett M.J. Electron microscopy of vitrified-hydrated La Cross virus. J. Virol. 1987;61:2319–2321. doi: 10.1128/jvi.61.7.2319-2321.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Eliott L.H., Kiley M.P., McCormick J.B. Hantaan virus: identification of virion proteins. J. Gen. Virol. 1984;65:1285–1293. doi: 10.1099/0022-1317-65-8-1285. [DOI] [PubMed] [Google Scholar]
  • 261.Beaty B.J., Rozhon E.J., Gensemer P., Bishop D.H.L. Formation of reassortant bunyaviruses in dually infected mosquitoes. Virology. 1981;111:662–665. doi: 10.1016/0042-6822(81)90367-6. [DOI] [PubMed] [Google Scholar]
  • 262.Beaty B.J., Miller B.R., Shope R.E., Rozhon E.J., Bishop D.H.L. Molecular basis of bunyavirus per os infection of mosquitoes: role of middle-sized RNA segment. Proc. Natl. Acad. Sci. U.S.A. 1982;79:1295–1297. doi: 10.1073/pnas.79.4.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 263.Beaty B.J., Sundin D.R., Chandler L.J., Bishop D.H.L. Evolution of bunyaviruses by genome reassortment in dually infected mosquitoes Aedes triseriatus. Science. 1985;230:548–550. doi: 10.1126/science.4048949. [DOI] [PubMed] [Google Scholar]
  • 264.Klimas R.A., Thompson W.A., Calisher C.H., Clark G.G., Grimstad P.R., Bishop D.H.L. Genotypic varieties of La Cross virus isolated from different geographic regions of the continental United States and evidence of naturally occurring intertypic recombinant La Cross virus. Am. J. Epidemiol. 1981;114:112–131. doi: 10.1093/oxfordjournals.aje.a113158. [DOI] [PubMed] [Google Scholar]
  • 264a.Ushijima H., Clerx-van Haaster C.M., Bishop D.H.L. Analyses of Patois group bunyaviruses: evidence for naturally occurring recombinant bunyaviruses and existence of immune precipitable and nonprecipitable nonvirion proteins induced in bunyavirus-infected cells. Virology. 1981;110:318–332. doi: 10.1016/0042-6822(81)90063-5. [DOI] [PubMed] [Google Scholar]
  • 264b.Sall A.A., de Zanotto P.M., Sene O.K., Zeller H.G., Digoutte J.P., Thiongane Y., Bouloy M. Genetic reassortment of Rift Valley fever virus in nature. J. Virol. 1999;73(10):8196–8200. doi: 10.1128/jvi.73.10.8196-8200.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 264c.Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J. Med. Entomol. 1979;15(4):307–417. doi: 10.1093/jmedent/15.4.307. [DOI] [PubMed] [Google Scholar]
  • 264d.Leshchinskaya, E. V. (1965) Clinical picture of Crimean haemorrhagic fever in Russia, Trudy Inst. Polio Virusn. Entsefalitov Akad. Med. Nauk SSSR, 7, 226–236. (in English: NAMRU3-1856).
  • 265.Woodall J.P., Williams M.C., Simpson D.I. Congo virus: a hitherto underdescribed virus occurring in Africa. II. Identification studies. East Afr. Med. J. 1967;44(2):93–98. [PubMed] [Google Scholar]
  • 266.Casals J. Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc. Soc. Exp. Biol. Med. 1969;131(1):233–236. doi: 10.3181/00379727-131-33847. [DOI] [PubMed] [Google Scholar]
  • 267.Begum F., Wisseman C.L., Jr, Casals J. Tick-borne viruses of West Pakistan. IV. Viruses similar to, or identical with, Crimean Hemorrhagic fever (Congo-Semunya), Wad medani, and Pak Argas 461 isolated from ticks of the Changa Manga Forest, Lahore District, and Hunza, Gilgit Agency, W. Pakistan. Am. J. Epidemiol. 1970;92(3):197–202. doi: 10.1093/oxfordjournals.aje.a121199. [DOI] [PubMed] [Google Scholar]
  • 268.Schwartz T.F., Nitschko H., Jager G., Nsanze H., Longson M., Pugh R.N., Abraham A.K. Crimean-Congo haemorrhagic fever in Oman. Lancet. 1995;4(8984):1230. doi: 10.1016/S0140-6736(95)92936-3. [DOI] [PubMed] [Google Scholar]
  • 269.Whitehouse C.A. Crimean-Congo hemorrhagic fever. Antiviral Res. 2004;64:145–160. doi: 10.1016/j.antiviral.2004.08.001. [DOI] [PubMed] [Google Scholar]
  • 270.Swanepoel R., Gill D.E., Shepherd A.J., Leman P.A., Mynhardt J.H., Harvey S. The clinical pathology of Crimean-Congo hemorrhagic fever. Rev. Infect. Dis. 1989;11:S794–S800. doi: 10.1093/clinids/11.supplement_4.s794. [DOI] [PubMed] [Google Scholar]
  • 271.Saijo M., Tang Q., Shimayi B., Han L., Zhang Y., Asiguma M., Tianshu D., Maeda A., Kurane I., Morikawa S. Recombinant nucleoprotein-based serological diagnosis of Crimean-Congo hemorrhagic fever virus infections. J. Med. Virol. 2005;75(2):295–299. doi: 10.1002/jmv.20270. [DOI] [PubMed] [Google Scholar]
  • 272.Saijo M., Tang Q., Shimayi B., Han L., Zhang Y., Asiguma M., Tianshu D., Maeda A., Kurane I., Morikawa S. Antigen-capture enzyme-linked immunosorbent assay for the diagnosis of Crimean-Cong hemorrhagic fever using a novel monoclonal antibody. J. Med. Virol. 2005;77(1):83–88. doi: 10.1002/jmv.20417. [DOI] [PubMed] [Google Scholar]
  • 273.Paragas J., Whitehouse C.A., Endy T.P., Bray M. A simple assay for determining antiviral activity against Crimean-Congo hemorrhagic fever virus. Antiviral Res. 2004;62(1):21–25. doi: 10.1016/j.antiviral.2003.11.006. [DOI] [PubMed] [Google Scholar]
  • 274.Tignor G.H., Hanham C.A. Ribavirin efficacy in an in vivo model of Crimean-Congo hemorrhagic fever virus (CCHF) infection. Antiviral Res. 1993;22(4):309–325. doi: 10.1016/0166-3542(93)90040-P. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 275.Mardani M., Keshtkar M., Holakouie Naieni K., Zeinali M. The efficacy of oral ribavirin in the treatment of Crimean-Congo hemorrhagic fever in Iran. Clin. Infect. Dis. 2003;36:1613–1618. doi: 10.1086/375058. [DOI] [PubMed] [Google Scholar]
  • 276.Papa A., Bozovi B., Pavlidou V., Papadimitriou E., Pelemis M., Antoniadis A. Genetic detection and isolation of Crimean-Congo hemorrhagic fever virus, Kosovo, Yugoslavia. Emerg. Infect. Dis. 2002;8(8):852–854. doi: 10.3201/eid0808.010448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Tang Q., Saijo M., Zhang Y., Asiguma M., Tianshu D., Han L., Shimayi B., Maeda A., Kurane I., Morikawa S. A patient with Crimean-Congo hemorrhagic fever serologically diagnosed by recombinant nucleoprotein-based antibody detection systems. Clin. Diagn. Lab. Immunol. 2003;10(3):489–491. doi: 10.1128/CDLI.10.3.489-491.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278.Fisher-Hoch S.P., Khan J.A., Rehman S., Mirza S., Khurshid M., McCormick J.B. Crimean-Congo-haemorrhagic fever treated with oral ribavirin. Lancet. 1995;346(8973):472–475. doi: 10.1016/S0140-6736(95)91323-8. [DOI] [PubMed] [Google Scholar]
  • 279.Centers for Disease Control (1988) Management of patients with suspected viral hemorrhagic fever, Morb. Mortal. Wkly Rep., 37(Suppl. 3) 1–16.
  • 280.Vassilenko S.M., Vassilev T.L., Bozadjiev L.G., Bineva I.L., Kazarov G.Z. Specific intravenous immunoglobulin for Crimean-Congo haemorrhagic fever. Lancet. 1990;335(8692):791–792. doi: 10.1016/0140-6736(90)90906-L. [DOI] [PubMed] [Google Scholar]
  • 281.Vassilev T., Valchev V., Kazarov G., Razsukanova L., Vitanov T. A reference preparation for human immunoglobulin against Crimean/Congo hemorrhagic fever. Biologicals. 1991;19(1):57. doi: 10.1016/1045-1056(91)90026-G. [DOI] [PubMed] [Google Scholar]
  • 282.Papa A., Christova I., Papadimitriou E., Antoniadis A. Crimean-Congo hemorrhagic fever in Bulgaria. Emerg. Infect. Dis. 2004;10(8):1465–1467. doi: 10.3201/eid1008.040162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Kovacheva T., Velcheva D., Katzarov G. Studies on the morbidity of Congo-Crimean hemorrhagic fever before and after specific immunoprophylaxis [in Bulgarian] Infectology. 1997;34:34–35. [Google Scholar]
  • 284.Flick R., Bouloy M. Rift Valley virus. Curr. Mol. Med. 2005;5:827–834. doi: 10.2174/156652405774962263. [DOI] [PubMed] [Google Scholar]
  • 285.Gerdes G.H. Rift Valley fever. Rev. Sci. Tech. Off. Int. Epiz. 2004;23:613–623. doi: 10.20506/rst.23.2.1500. [DOI] [PubMed] [Google Scholar]
  • 286.Bird B.H., Albario C.G., Nichol S.T. Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease. Virology. 2007;362(1):10–15. doi: 10.1016/j.virol.2007.01.046. [DOI] [PubMed] [Google Scholar]
  • 287.Ikegami T., Peters C.J., Makino S. Rift Valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J. Virol. 2005;79(9):5606–5615. doi: 10.1128/JVI.79.9.5606-5615.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 288.Neumann G., Zobel A., Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology. 1994;202:477–479. doi: 10.1006/viro.1994.1365. [DOI] [PubMed] [Google Scholar]
  • 289.Zobel A., Neumann G., Hobom G. RNA polymerase I catalyzed transcription of insert viral cDNA. Nucleic Acids Res. 1993;21(16):3607–3614. doi: 10.1093/nar/21.16.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Gauliard N., Billecocq A., Flick R., Bouloy M. Rift Valley fever virus noncoding regions of L, M and S segments regulate RNA synthesis. Virology. 2006;351(1):170–179. doi: 10.1016/j.virol.2006.03.018. [DOI] [PubMed] [Google Scholar]
  • 291.Billecock A., Spiegel M., Vialat P., Kohl A., Weber F., Bouloy M., Haller O. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J. Virol. 2004;78(18):9798–9806. doi: 10.1128/JVI.78.18.9798-9806.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 292.Haller O., Kochs G., Weber F. The interferon response circuit: induction and suppression by pathogenic viruses. Virology. 2006;344:119–130. doi: 10.1016/j.virol.2005.09.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 293.Marie I., Durbin J.E., Levy D.E. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 1998;17(22):6660–6669. doi: 10.1093/emboj/17.22.6660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 294.Samuel C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001;14(4):778–809. doi: 10.1128/CMR.14.4.778-809.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 295.de Veer M.J., Holko M., Frevel M., Walker E., Der S., Paranjape J.M., Silverman R.H., Williams B.R. Functional classification of interferon-stimulated genes identified using microarray. J. Leukocyte Biol. 2001;69(6):912–920. [PubMed] [Google Scholar]
  • 296.Geisbert T. W., Jahrling P. B. Exotic emerging viral disease: progress and challenges. Nat. Med. 2004;10(12 Suppl.):S110–S121. doi: 10.1038/nm1142. [DOI] [PubMed] [Google Scholar]
  • 297.Collett M.S. Messenger RNA of the M segment of RNA of Rift Valley fever virus. Virology. 1986;151(1):151–156. doi: 10.1016/0042-6822(86)90114-5. [DOI] [PubMed] [Google Scholar]
  • 298.Bridgen A., Elliott R.M. Rescue by a segmented negative-strand virus entirely from cloned complentary DNAs. Proc. Natl. Acad. Sci. U.S.A. 1996;93:15400–15404. doi: 10.1073/pnas.93.26.15400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299.Le May N., Dubaele S., De Proietti Santis L., Billecock A., Bouloy M., Egly J.-M. TFIIF transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell. 2004;116:541–550. doi: 10.1016/S0092-8674(04)00132-1. [DOI] [PubMed] [Google Scholar]
  • 300.Peters C.J., Reynolds J.A., Slone T.W., Jones D.E., Stephen E.L. Prophylaxis of Rift Valley fever with antiviral drugs, immune serum, an interferon inducer, and a macrophage activator. Antiviral Res. 2001;6(5):285–297. doi: 10.1016/0166-3542(86)90024-0. [DOI] [PubMed] [Google Scholar]
  • 301.Khaiboullina S.F., Morzunov S.P., Jeor S.C.St. Hantaviruses: molecular biology, evolution and pathogenesis. Curr. Mol. Med. 2005;5:773–790. doi: 10.2174/156652405774962317. [DOI] [PubMed] [Google Scholar]
  • 302.Schmaljohn C.S. Bunyaviridae: the viruses and their replication. In: Fields B.N., Knipe D.M., Howley P.M., editors. Fields Virology. Philadelphia: Lippincott-Raven; 1996. pp. 1447–1471. [Google Scholar]
  • 303.LeDuc J.W., Childs J.E., Glass G.E. The hantaviruses, etiologic agents of hemorrhagic fever with renal syndrome: a possible cause of hypertension and chronic renal disease in the United States. Annu. Rev. Publ. Health. 1992;13:79–98. doi: 10.1146/annurev.pu.13.050192.000455. [DOI] [PubMed] [Google Scholar]
  • 304.Peters C.J., Simpson G.L., Levy H. Spectrum of hantavirus infection: hemorrhagic fever with renal syndrome and hantavirus pulmonaty syndrome. Annu. Rev. Med. 1999;50:531–545. doi: 10.1146/annurev.med.50.1.531. [DOI] [PubMed] [Google Scholar]
  • 305.Plyusnin A., Vapalahti O., Vaheri A. Hantaviruses: genome structure, expression and evolution. J. Gen. Virol. 1996;77:2677–2687. doi: 10.1099/0022-1317-77-11-2677. [DOI] [PubMed] [Google Scholar]
  • 306.Alfadhli A., Steel E., Finlay L., Bächinger H.P., Barklis E. Hantavirus nucleocapsid protein coiled-coil domains. J. Biol. Chem. 2002;277(30):27103–27108. doi: 10.1074/jbc.M203395200. [DOI] [PubMed] [Google Scholar]
  • 307.Pensiero M.N., Hay J. The Hantaan virus M-segment glycoproteins G1 and G2 can be expressed independently. J. Virol. 1992;66:1907–1914. doi: 10.1128/jvi.66.4.1907-1914.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 308.Deyde V.M., Rizvanov A.A., Chase J., Otteson E.W., Jeor S.C.St. Hantaan virus replication: effects of monensin, tunicamycin and endoglycosidases on the structural glycoproteins. Virology. 2005;331:307–315. doi: 10.1016/j.virol.2004.11.003. [DOI] [PubMed] [Google Scholar]
  • 309.Schmaljohn C. S., Hasty S. E., Rasmussen L., Dalrymple J. M. Interaction and trafficking of Andes and Sin Nombre hantavirus glycoproteins G1 and G2. J. Gen. Virol. 1986;67(Pt. 4):707–717. doi: 10.1099/0022-1317-67-4-707. [DOI] [PubMed] [Google Scholar]
  • 310.Tsai T.F., Tang Y.W., Hu S.L., Ye K.L., Chen G.L., Xu Z.Y. Hemagglutination-inhibiting antibody in hemorrhagic fever with renal syndrome. J. Infect. Dis. 1984;150:895–898. doi: 10.1093/infdis/150.6.895. [DOI] [PubMed] [Google Scholar]
  • 311.Arikawa J., Takashima I., Hashimoto N. Cell fusion by hemorrhagic fever with renal syndrome (HFRS) viruses and its application for titration of virus infectivity and neutralizing antibody. Arch. Virol. 1985;86:303–313. doi: 10.1007/BF01309834. [DOI] [PubMed] [Google Scholar]
  • 312.Okuno Y., Yamanishi K., Takahashi Y., Tanishita O., Nagai T., Dantas J.R., Jr, Okamoto Y., Tadano M., Takahashi M. Haemagglutination-inhibition test for hemorrhagic fever with renal syndrome using virus antibody prepared from infected tissue culture fluid. J. Gen. Virol. 1986;67(1):149–156. doi: 10.1099/0022-1317-67-1-149. [DOI] [PubMed] [Google Scholar]
  • 313.Gavrilovskaya I.N., Brown E.J., Ginsberg M.H., Mackow E.R. Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by β3 integrins. J. Virol. 1999;73(5):3951–3959. doi: 10.1128/jvi.73.5.3951-3959.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 314.Kolakofsky D., Hacker D. Bunyavirus RNA synthesis: transcription and replication. Curr. Top. Microbiol. Immunol. 1991;169:143–159. doi: 10.1007/978-3-642-76018-1_5. [DOI] [PubMed] [Google Scholar]
  • 315.Peng G., Hongo S., Kimura H., Muraki Y., Sugawara K., Kitame F., Numazaki Y., Suzuki H., Nakamura K. Frequent occurence of genetic reassortment between influenza C virus strains in nature. J. Gen. Virol. 1996;77(Pt. 7):1489–1492. doi: 10.1099/0022-1317-77-7-1489. [DOI] [PubMed] [Google Scholar]
  • 316.Li D., Schmaljohn A.L., Anderson K., Schmaljohn C.S. Complete nucleotide sequence of the M and S segments of two hantavirus isolates from California: evidence for reassortment in nature among viruses related to hantavirus pulmonary syndrome. Virology. 1995;206:973–983. doi: 10.1006/viro.1995.1020. [DOI] [PubMed] [Google Scholar]
  • 317.Webster R.G., Laver W.G. Antigenic variation in influenza virus. Biology and chemistry. Prog. Med. Virol. 1971;13:271–338. [PubMed] [Google Scholar]
  • 318.Beaty B.J., Sundin D.R., Chandler L.J., Bishop D.H. Evolution of bunyaviruses by genome reassortment in dually infected mosquitoes (Aedes triseriatus) Science. 1985;230:548–550. doi: 10.1126/science.4048949. [DOI] [PubMed] [Google Scholar]
  • 319.Urquidi V., Bishop D.H. Non-random reassortment between the tripartite RNA genomes of La Crosse and snowshoe hare viruses. J. Gen. Virol. 1992;73(9):2255–2265. doi: 10.1099/0022-1317-73-9-2255. [DOI] [PubMed] [Google Scholar]
  • 320.Sall A.A., Zanotto P.M., Sene O.K., Zeller H.G., Digoutte J.P., Thiongane Y., Bouloy M. Genetic reassortment of Rift Valley fever virus in nature. J. Virol. 1999;73:8196–8200. doi: 10.1128/jvi.73.10.8196-8200.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 321.Khaiboullina S.F., Rizvanov A.A., Otteson E., Miyazato A., Maciejewski J., Jeor J.S.St. Regulation of cellular gene expression in endothelial cells by Sin Nombre and prospect hill viruses. Viral Immunol. 2004;17:234–251. doi: 10.1089/0882824041310504. [DOI] [PubMed] [Google Scholar]
  • 322.Geimonen E., Neff S., Raymond T., Kocer S.S., Gavrilovskaya I.N., Mackow E.R. Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses. Proc. Natl. Acad. Sci. U.S.A. 2002;99:13837–13842. doi: 10.1073/pnas.192298899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 323.Gavrilovskaia I.N., Podgorodnichenko V.K., Apekina N.S., Gorbachkova E.A., Bogdanova S.B. Determination of specific immune complexes and dynamics of their circulation in patients with hemorrhagic fever with renal syndrome. Mikrobiol. Zh. 1987;49:71–76. [PubMed] [Google Scholar]
  • 324.Penttinen K., Lahdevirta J., Kekomaki R., Ziola B., Salmi A., Hautanen A., Lindstrom P., Vaheri A., Brummer-Korvenkontio M., Wager O. Circulating immune complexes, immunoconglutinins, and rheumatoid factors in nephropathia epidemica. J. Infect. Dis. 1981;143(1):15–21. doi: 10.1093/infdis/143.1.15. [DOI] [PubMed] [Google Scholar]
  • 325.Jokinen E.J., Lahdevirta J., Collan Y. Nephropathia epidemica: immunohistochemical study of pathogenesis. Clin. Nephrol. 1978;9:1–5. [PubMed] [Google Scholar]
  • 326.Lahdevirta J. Nephropathia epidemica in Finland. A clinical histological and epidemiological study. Ann. Clin. Res. 1971;3:1–54. [PubMed] [Google Scholar]
  • 327.Ferrer J.F., Jonsson C.B., Esteban E., Galligan D., Basombrio M.A., Peralta-Ramos M., Bharadwaj M., Torrez-Martinez N., Callahan J., Segovia A., Hjelle B. High prevalence of hantavirus infection in Indian communities of Paraguyan and Argentinean Gran Chaco. Am. J. Trop. Med.. Hyg.. 1998;59:438–444. doi: 10.4269/ajtmh.1998.59.438. [DOI] [PubMed] [Google Scholar]
  • 328.Lundkvist A., Horling J., Niklasson B. The humoral response to Puumala virus infection (nephropathia epidemica) investigated by viral protein specific immunoassays. Arch. Virol. 1993;130:121–130. doi: 10.1007/BF01319001. [DOI] [PubMed] [Google Scholar]
  • 329.Ulrich R., Lundkvist A., Meisel H., Koletzki D., Sjolander K.B., Gelderblom H.R., Borisova G., Schnitzler P., Darai G., Kruger D.H. Chimaeric HBV core particles carrying a defined segment of Puumala hantavirus nucleocapsid protein evoke protective immunity in an animal model. Vaccine. 1998;16:272–280. doi: 10.1016/S0264-410X(97)00172-2. [DOI] [PubMed] [Google Scholar]
  • 330.Alexeyev O.A., Ahlm C., Billheden J., Settergren B., Wadell G., Juto P. Elevated levels of total and Puumala virus-specific immunoglobulin E in the Scandinavian type of hemorrhagic fever with renal syndrome. Clin. Diagn. Lab. Immunol. 1994;1:269–272. doi: 10.1128/cdli.1.3.269-272.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 331.Araki K., Yoshimatsu K., Lee B.H., Kariwa H., Takashima I., Arikawa J. Hantavirus-specific CD8(+)-T-cell responses in newborn mice persistently infected with Hantaan virus. J. Virol. 2003;77:8408–8417. doi: 10.1128/JVI.77.15.8408-8417.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 332.Ennis F.A., Cruz J., Spiropoulou C.F., Waite D., Peters C.J., Nichol S.T., Kariwa H., Koster F.T. Hantavirus pulmonary syndrome: CD8+ and CD4+ cytotoxic T lymphocytes to epitopes on Sin Nombre virus nucleocapsid protein isolated during acute illness. Virology. 1997;238:380–390. doi: 10.1006/viro.1997.8827. [DOI] [PubMed] [Google Scholar]
  • 333.Kagi D., Vignaux F., Ledermann B., Burki K., Depraetere V., Nagata S., Hengartner H., Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. 1994;265:528–530. doi: 10.1126/science.7518614. [DOI] [PubMed] [Google Scholar]
  • 334.Ishak K.G. Light microscopic morphology of viral hepatitis. Am. J. Clin. Pathol. 1976;65:787–827. [PubMed] [Google Scholar]
  • 335.Lowin B., Hahne M., Mattmann C., Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature. 1994;370:650–652. doi: 10.1038/370650a0. [DOI] [PubMed] [Google Scholar]
  • 336.Belz G.T., Xie W., Doherty P.C. Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J. Immunol. 2001;166:4627–4633. doi: 10.4049/jimmunol.166.7.4627. [DOI] [PubMed] [Google Scholar]
  • 337.Kakimi K., Lane T.E., Wieland S., Asensio V.C., Campbell I.L., Chisari F.V., Guidotti L.G. Blocking CRG2/IP10 and Mig activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus (HBV)-specific CTLs. J. Exp. Med. 2001;194:1755–1766. doi: 10.1084/jem.194.12.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 338.Zaki S.R., Greer P.W., Coffield L.M., Goldsmith C.S., Nolte K.B., Foucar K., Feddersen R.M., Zumwalt R.E., Miller G.L., Khan A.S., et al. Hantavirus pulmonary syndrome. Pathogenesis of an emerging infectious disease. Am. J. Pathol. 1995;146:552–579. [PMC free article] [PubMed] [Google Scholar]
  • 339.Lee H.W., Lee P.W. Korean hemorrhagic fever. Demonstration of causative antigen and antibodies. Kor. J. Med. 1976;19:371–383. [Google Scholar]
  • 340.Lee H.W., Lee P.W. Korean hemorrhagic fever. Isolation of the etiologic agent. J. Kor. Soc. Virol. 1977;7:1–9. [Google Scholar]
  • 341.Glass G.E., Watson A.J., LeDuc J.W., Childs J.E. Domestic cases of hemorrhagic fever with renal syndrome in the United States. Nephron. 1994;68:48–51. doi: 10.1159/000188086. [DOI] [PubMed] [Google Scholar]
  • 341a.Bugert J.J., Welzel T.M., Zeiler M., Darai G. Hantavirus infection-haemorrhagic fever in the Baikans-potential nephrological hazards in the Kosovo war. Nephrol. Dial. Transplant. 1999;14:1843–1844. doi: 10.1093/ndt/14.8.1843. [DOI] [PubMed] [Google Scholar]
  • 341b.Sibold C., Ulrich R., Labuda M., et al. Dobrava hantavirus causes hemorrhagic fever with renal syndrome in central Europe and carried by two different Apodemus mice species. J. Med. Virol. 2001;63(2):158–167. doi: 10.1002/1096-9071(20000201)63:2<158::AID-JMV1011>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  • 342.Huggins J.W., Hsiang C.M., Cosgriff T.M., et al. Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J. Infect. Dis. 1991;164:1119–1127. doi: 10.1093/infdis/164.6.1119. [DOI] [PubMed] [Google Scholar]
  • 343.Lee H.W., van der Groen G. Hemorrhagic fever with renal syndrome. Prog. Med. Virol. 1989;36:62–102. [PubMed] [Google Scholar]
  • 344.Vaheri A. The Fifth International Conference on hemorrhagic fever with renal syndrome, hantavirus pulmonary syndrome, and hantaviruses. Emerg. Infect. Dis. 2002;8(1):109. [Google Scholar]
  • 344a.Hooper J.W., Custer D.M., Thompson E., Schmaljohn C.S. DNA vaccination with the Hantaan virus M gene protects hamsters against three of four HFRS hantaviruses and elicits a high-titer neutralizing antibody response in rhesus monkeys. J. Virol. 2001;18(8469):8477. doi: 10.1128/JVI.75.18.8469-8477.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 345.Lee H. W., Ahn C. N., Song J. W., Baek L. J., Seo T. J., Park S. C. Field trial of an inactivated vaccine against hemorrhagic fever with renal syndrome. Arch. Virol. 1990;1(Suppl. 1):35–47. [Google Scholar]
  • 346.Yamanishi K., Tanishita O., Tamura M., Asada H., Kondo K., et al. Development of inactivated vaccine against virus causing haemorrhagic fever with renal syndrome. Vaccine. 1988;6:278–282. doi: 10.1016/0264-410X(88)90224-1. [DOI] [PubMed] [Google Scholar]
  • 347.Khan A.S., Spiropoulou C.S., Morzunov S., et al. A fatal illness associated with a new hantavirus in Louisiana. J. Med. Virol. 1995;46:281–286. doi: 10.1002/jmv.1890460320. [DOI] [PubMed] [Google Scholar]
  • 348.Khan A.S., Gaviria M., Rollin P.E., et al. Hantavirus pulmonary syndrome in Florida: association with the newly identified Black Creek Canal virus. Am. J. Med. 1966;100:46–48. doi: 10.1016/S0002-9343(96)90010-8. [DOI] [PubMed] [Google Scholar]
  • 349.Hjelle B., Goade D., Torrez-Martinez N., et al. Hantavirus pulmonary syndrome, renal insufficiency, and myositis associated with infection by bayou hantavirus. Clin. Infect. Dis. 1996;23(3):495–500. doi: 10.1093/clinids/23.3.495. [DOI] [PubMed] [Google Scholar]
  • 350.Torrez-Martinez N., Bharadwaj M., Goade D., et al. Virus-associated hantavirus pulmonary syndrome in eastern Texas: identification of the rice rat, Orysomys palustris, as reservoir host. Emerg. Infect. Dis. 1998;4(1):105–111. doi: 10.3201/eid0401.980115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 351.Peters C.J., Khan A.S. Hantavirus pulmonary syndrome: the new American hemorrhagic fever. Clin. Infect. Dis. 2002;34:1224–1231. doi: 10.1086/339864. [DOI] [PubMed] [Google Scholar]
  • 352.Wells R.M., Sosa E.S., Yadon Z.E., et al. An unusual hantavirus outbreak in southern Argentina: person-to-person transmission? Emerg. Infect. Dis. 1997;3:171–174. doi: 10.3201/eid0302.970210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 353.Padula P.J., Edelstein A., Miguel S.D., et al. Hantavirus pulmonary syndrome outbreak in Argentina: molecular evidence for person-to-person transmission of Andes virus. Virology. 1998;241(2):323–330. doi: 10.1006/viro.1997.8976. [DOI] [PubMed] [Google Scholar]
  • 354.Charrel R.N.de Lamballerie, X. Arenaviruses other than Lassa virus. Antiviral Res. 2003;57:89–100. doi: 10.1016/S0166-3542(02)00202-4. [DOI] [PubMed] [Google Scholar]
  • 355.Peters C.J., Kuehne R.W., Mercado R.R., Le Bow R.H., Spertzel R.O., Webb P.A. Hemorrhagic fever in Cochabamba, Bolivia, 1971. Am. J. Epidemiol. 1974;99:425–433. doi: 10.1093/oxfordjournals.aje.a121631. [DOI] [PubMed] [Google Scholar]
  • 356.de Manzione N., Salas R.A., Paredes H., Godoy O., Rojas L., Araoz F., Fulhorst C.F., Ksiazek T.G., Mills J.N., Ellis B.A., Peters C.J., Tesh R.B. Venezuelan hemorrhagic fever: clinical and epidemiological studies of 165 cases. Clin. Infect. Dis. 1998;26:308–313. doi: 10.1086/516299. [DOI] [PubMed] [Google Scholar]
  • 357.Buchmeier M., Adam E., Rawls W.E. Serological evidence of infection by Pichinde virus among laboratory workers. Infect. Immun. 1974;9:821–823. doi: 10.1128/iai.9.5.821-823.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 358.Peters C.J., Buchmeier M., Rollin P.E., Ksiazek T.G. Arenaviruses. In: Fields B.N., Knipe D.M., Howley P.M., Chanock R.M., Melnick J.L., Monath T.P., Roizman R., Straus S.E., editors. Fields Virology. 3. Philadelphia: Lippincott-Raven Publishers; 1996. pp. 1521–1551. [Google Scholar]
  • 359.Peters C.J., Jahrling P.B., Khan A.S. Patients infected with high-hazard viruses: scientific basis for infection control. Arch. Virol. 1996;11:141–168. doi: 10.1007/978-3-7091-7482-1_13. [DOI] [PubMed] [Google Scholar]
  • 360.Centers for Disease Control Fatal illnesses associated with a New World arenavirus – California, 1999–2000. Morb. Mortal. Wkly Rep. 1990;49:709–711. [PubMed] [Google Scholar]
  • 361.Cao W., Henry M.D., Borrow P., Yamada H., Elder J.H., Ravkov E.V., Nichol S.T., Compans R.W., Campbell K.P., Oldstone M.B.A. Identification of \upalpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa virus. Science. 1998;282:2079–2081. doi: 10.1126/science.282.5396.2079. [DOI] [PubMed] [Google Scholar]
  • 362.Radoshitzky S.R., Abraham J., Spiropoulou C.F., Kuhn J.H., Nguyen D., Li W., Nagel J., Schmidt P.J., Nunberg J.H., Andrews N.C., Farzan M., Choe H. Transferrin receptor 1 is the cellular receptor for New World haemorrhagic fever arenaviruses. Nature. 2007;446:92–96. doi: 10.1038/nature05539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 363.Castilla V., Mersich S.E. Low-pH-induced fusion of Vero cells infected with Junin virus. Arch. Virol. 1996;141:1307–1317. doi: 10.1007/BF01718832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 364.Oldstone M. B. Arenaviruses. II. The molecular pathogenesis of arenavirus infections. Introduction. Curr. Top. Microbiol. Immunol. 2002;263:V–XII. [PubMed] [Google Scholar]
  • 365.Daniels T.T., Delgado T., Rodriguez J.A., Helguera G., Penichet M.L. The transferring receptor, part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin. Immunol. 2006;121:144–158. doi: 10.1016/j.clim.2006.06.010. [DOI] [PubMed] [Google Scholar]
  • 366.Soda R., Tavassoli M. Liver endothelium and not hepatocytes or Kupfer cells have transferring receptors. Blood. 1984;63:270–276. [PubMed] [Google Scholar]
  • 367.Jefferies W.A., Brandon M.R., Hunt S.V., Williams A.F., Gatter K.G., Mason D.Y. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312:162–163. doi: 10.1038/312162a0. [DOI] [PubMed] [Google Scholar]
  • 368.Peters C.J., Zaki S.R. Role of the endothelium in viral hemorrhagic fever. Crit. Care Med. 2002;30:5268–5273. doi: 10.1097/00003246-200205001-00016. [DOI] [PubMed] [Google Scholar]
  • 369.Lawrence C.M., Ray S., Babyonyshev M., Galluser R., Borhani D.W., Harrison S.C. Crystal structure of the ectodomain of human transferring factor. Science. 1999;286:779–782. doi: 10.1126/science.286.5440.779. [DOI] [PubMed] [Google Scholar]
  • 370.Cheng Y., Zak O., Aisen P., Harrison S.C., Walz T. Structure of the human transferring receptor-transferrin complex. Cell. 2004;116:565–576. doi: 10.1016/S0092-8674(04)00130-8. [DOI] [PubMed] [Google Scholar]
  • 371.Harrison L.H., Halsey N.A., McKee K.T., Jr, Peters C.J., Barrera Oro J.G., Briggiler A.M., Feuillade M.R., Maiztegui J.I. Clinical case definition for Argentine hemorrhagic fever. Clin. Infect. Dis. 1999;28:1091–1094. doi: 10.1086/514749. [DOI] [PubMed] [Google Scholar]
  • 372.Vainrub B., Salas R. Latin American hemorrhagic fever. Infect. Dis. Clin. North Am. 1994;8:47–59. [PubMed] [Google Scholar]
  • 373.Johnson K.M., Halstead S.B., Cohen S.N. Hemorrhagic fevers of Southeast Asia and South America: a comparative appraisal. Prog. Med. Virol. 1967;9:105–158. [PubMed] [Google Scholar]
  • 374.Enria D.A., Brigiller A.M., Fernandez N.J., Levis S.C., Maiztegui J.I. Importance of dose of neutralizing antibodies in treatment of Argentine hemorrhagic fever with immune plasma. Lancet. 1984;2:255–256. doi: 10.1016/S0140-6736(84)90299-X. [DOI] [PubMed] [Google Scholar]
  • 375.Maizfegui J.I., Fernandez N.J., de Damilano A.J. Efficacy of immune plasma in treatment of Argentine haemorrhagic fever and association between treatment and a late neurological syndrome. Lancet. 1979;2:1216–1217. doi: 10.1016/S0140-6736(79)92335-3. [DOI] [PubMed] [Google Scholar]
  • 376.Streeter D.G., Witkowski J.T., Khare G.P., Sidwell R.W., Bauer R.J., Robins R.K., Simon L.N. Mechanism of action of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad spectrum antiviral agent. Proc. Natl. Acad. Sci. U.S.A. 1973;70:1174–1178. doi: 10.1073/pnas.70.4.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 377.Ericksson B., Helgestrand E., Johansson N.G., Larsson A., Misiorny A., Noren J.O., Philipson L., Stenberg G., Stridt S., Oberg B. Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate. Antimicrob. Agents Chemother. 1977;11:946–951. doi: 10.1128/aac.11.6.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 378.Johnson K.M., Ksiazek T.G., Rollin P.E., Mills J.N., Villagra M.R., Montenegro M.J., Costales M.A., Peredes L.C., Peters C.J. Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. Clin. Infect. Dis. 1997;24:718–722. doi: 10.1086/513658. [DOI] [PubMed] [Google Scholar]
  • 379.Barry M., Russi M., Armstrong L., Geller D., Tesh R., Dembry L., Gonzalez J.P., Khan A.S., Peters C.J. Brief report: treatment of a laboratory-acquired Sabia virus infection. N. Engl. J. Med. 1995;333:294–296. doi: 10.1056/NEJM199508033330505. [DOI] [PubMed] [Google Scholar]
  • 380.Carballal G., Calello M.A., Laguens R.P., Weissenbacher M.C. Tacaribe virus: a new alternative for Argentine hemorrhagic fever vaccine. J. Med. Virol. 1987;23:257–263. doi: 10.1002/jmv.1890230308. [DOI] [PubMed] [Google Scholar]
  • 381.Carballal G., Oubina J.R., Molinas F.C., Nagle C., de la Vega M.T., Videla C., Elsner B. Intracerebral infection of Cebus paella with the XJ-Clone 3 strain of Junin virus. J. Med. Virol. 1987;21:257–268. doi: 10.1002/jmv.1890210309. [DOI] [PubMed] [Google Scholar]
  • 382.Barrera Oro J.G., McKee K.T., Jr Toward a vaccine against Argentine hemorrhagic fever. Bull. Pan Am. Health Organ. 1991;25:118–126. [PubMed] [Google Scholar]
  • 383.McKee K.T., Jr, Huggins J.W., Trahan C.J., Mahlandt B.G. Ribavirin prophylaxis and therapy for experimental Argentine hemorrhagic fever. Antimicrob. Agents Chemother. 1988;32:1304–1309. doi: 10.1128/aac.32.9.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 384.Peters C.J., Jahrling P.B., Liu C.T., Kenyon R.H., McKee K.T., Jr, Barrera Oro J.G. Experimental studies of arenaviral hemorrhagic fevers. Curr. Top. Microbiol Immunol. 1987;134:5–68. doi: 10.1007/978-3-642-71726-0_2. [DOI] [PubMed] [Google Scholar]
  • 385.Maiztegui J.I., McKee K.T., Jr, Barrera Oro J.G., Harrison L.H., Gibbs P.H., Feuillade M.R., Enria D.A., Briggiler A.M., Levis S.C., Ambrosio A.M., Halsey N.A., Peters C.J. Protective efficacy of a live attenuated vaccine against Argentine hemorrhagic fever. AHF Study Group. J. Infect. Dis. 1998;177:277–283. doi: 10.1086/514211. [DOI] [PubMed] [Google Scholar]
  • 386.Ambrosio A.M., Riere L.M., del Carmen Saavedras M., Sabattini M.S. Immune response to vaccination against Argentine hemorrhagic fever an area where different arenaviruses coexist. Viral Immunol. 2006;19(2):196–201. doi: 10.1089/vim.2006.19.196. [DOI] [PubMed] [Google Scholar]
  • 387.Sanchez A., Pifat D.Y., Kenyon R.H., Peters C.J., McCormick J.B., Kiley M.P. Junin virus monoclonal antibodies: characterization and cross-reactivity with other arenaviruses. J. Gen. Virol. 1989;70:1125–1132. doi: 10.1099/0022-1317-70-5-1125. [DOI] [PubMed] [Google Scholar]
  • 388.Kunz S., Rojek J.M., Perez M., Spiropoulou C.F., Oldstone M.B. Characterization of the interaction of Lassa fever virus with its cellular receptor alpha-dystroglycan. J. Virol. 2005;79(10):5979–5987. doi: 10.1128/JVI.79.10.5979-5987.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 389.Fisher S.A., Graham M.B., Kuehnert M.J., Kotton C.N., Srinivasan A., Marty F.M., Comer J.A., Guarner J., Paddock C.D., Demeo D.L., Shieh W.-J., Erickson B.R., Bandy U., Demaria A., Davis J.P., Delmonico F.L., Pavlin B., Likos A., Vincent M.J., Sealy T.K., Goldsmith C.S., Jernigan D.B., Rollin P.E., Packard M.M., Patel M., Rowland C., Helfand R.F., Nichol S.T., Fishman J.A., Ksizek T., Zaki S.R. the LCMV in Transplant Recipients Investigation Team. Transmission of lymphocytic choriomeningitis virus by organ transplantation. N. Engl. J. Med. 2006;354(21):2235–2249. doi: 10.1056/NEJMoa053240. [DOI] [PubMed] [Google Scholar]
  • 390.Barton L.L., Hyndman N.J. Lymphocytic choriomeningitis virus: reemerging central nervous system pathogen. Pediatrics. 2000;105(3):E35. doi: 10.1542/peds.105.3.e35. [DOI] [PubMed] [Google Scholar]
  • 391.Childs J.E., Glass G.E., Ksiazek T.G., Rossi C.A., Barrera Oro J.G., LeDuc J.W. Human-rodent contact and infection with lymphocytic choriomeningitis and Seoul viruses in an inner-city population. Am. J. Trop. Med.. Hyg.. 1991;44:117–121. doi: 10.4269/ajtmh.1991.44.117. [DOI] [PubMed] [Google Scholar]
  • 392.Stephensen C.B., Blount S.R., Lanford R.E., Holmes K.V., Montali R.J., Fleenor M.E., Shaw J.F. Prevalence of serum antibodies against lymphocytic choriomeningitis virus in selected populations from two US cities. J. Med. Virol. 1992;38:27–31. doi: 10.1002/jmv.1890380107. [DOI] [PubMed] [Google Scholar]
  • 392a.Casals, J. (1977) Serologic reactions with arenaviruses, Medicina (Buenos Aires), 37 (suppl. 3), 59–68.
  • 393.Filomatori C.V., Lodeiro M.F., Alvarez D.E., Samsa M.M., Pietrasanta L., Gamarnik A.V. A 5 ′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev. 2006;20:2238–2249. doi: 10.1101/gad.1444206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 394.Theiler M., Smith H.H. Use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 1937;65:787–800. doi: 10.1084/jem.65.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 395.World Health Organization (1945) Standards for the manufacture and control of yellow fever vaccine. United Nations Relief and Rehabilitation Administration, WHO Epidemiological Information Bulletin, 1, 365.
  • 396.Monath T.P., Kinney R.M., Schlesinger J.J., Brandriss M.W., Brès P. Ontogeny of yellow fever 17D vaccine: RNA oligonucleotide fingerprint and monoclonal antibody analyses of vaccines produced worldwide. J. Gen. Virol. 1983;64:627–637. doi: 10.1099/0022-1317-64-3-627. [DOI] [PubMed] [Google Scholar]
  • 397.Martin M., Tsai T.F., Cropp B., Chang G.J., Holmes D.A., Tseng J., Shieh W., Zaki S.R., Al-Sanouri I., Cutrona A.F., Ray G., Weld L.H., Cetron M.S. Fever and multisystem organ failure associated with 17D-204 yellow fever: a report of four cases. Lancet. 2001;358:98–104. doi: 10.1016/S0140-6736(01)05327-2. [DOI] [PubMed] [Google Scholar]
  • 398.Chan R.C., Penney D.J., Little D., Carter I.W., Roberts J.A., Rowlinson W.D. Hepatitis and death following vaccination with 17D-204 yellow fever vaccine. Lancet. 2001;358:121–123. doi: 10.1016/S0140-6736(01)05341-7. [DOI] [PubMed] [Google Scholar]
  • 399.Vasconcelos P.F., Luna E.J., Galler R., Silva L., Coimbra T., Barros V., Monath T., Rodigues S., Laval C., Costa Z. Serious adverse events associated with yellow fever 17D vaccine in Brazil: a report of two cases. Lancet. 2001;358:91–97. doi: 10.1016/S0140-6736(01)05326-0. [DOI] [PubMed] [Google Scholar]
  • 400.Centers for Disease Control Adverse events associated with 17-derived yellow fever vaccination – United States, 2001–2002. Morb. Mortal. Wkly Rep. 2002;51(44):989–993. [PubMed] [Google Scholar]
  • 401.Centers for Disease Control (2002) Yellow fever vaccine: recommendation of the Advisory Committee on Immunization Practices (ACIP), Morb. Mortal. Wkly Rep., 51(RR-17), 51. [PubMed]
  • 402.Sabin A.B., Schlesinger R.W. Production of immunity to dengue with virus modified by propagation in mice. Science. 1945;101:640–642. doi: 10.1126/science.101.2634.640. [DOI] [PubMed] [Google Scholar]
  • 403.Gubler D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998;11(3):480–496. doi: 10.1128/cmr.11.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 404.Halstead S.B. Dengue hemorrhagic fever – public health problem and a field of research Bull. World Health Organization. 1980;58:1–21. [PMC free article] [PubMed] [Google Scholar]
  • 405.Gubler D.J. Dengue. In: Monath T.P., editor. Epidemiology of Arthropod-Borne Viral Disease. Boca Raton, FL: CRC Press; 1988. pp. 223–260. [Google Scholar]
  • 406.Gubler D.J. The global pandemic of dengue/dengue hemorrhagic fever: current status and prospect for the future. Ann. Acad. Med. Singapore. 1998;27(2):227–234. [PubMed] [Google Scholar]
  • 407.Gubler D.J. Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In: Gubler D.J., Kuno G., editors. Dengue and Dengue Hemorrhagic Fever. London: CAB International; 1997. pp. 1–22. [Google Scholar]
  • 408.Pinheiro F.P., Corber S.J. Global situation of dengue and dengue hemorrhagic fever, and its emergence in the Americas. World Health Stat. Q. 1997;50:161–169. [PubMed] [Google Scholar]
  • 409.Centers for Disease Control and Prevention Imported dengue – United States, 1993 and 1994. Morb. Mortal. Wkly Rep. 1995;44:353–356. [PubMed] [Google Scholar]
  • 410.Gubler D.J. Arboviruses as imported disease agents: the need for increased awareness. Arch. Virol. 1996;11:21–32. doi: 10.1007/978-3-7091-7482-1_3. [DOI] [PubMed] [Google Scholar]
  • 411.Westaway E.G., Blok J. Taxonomy and evolutionary relationships of flaviruses. In: Gubler D.J., Kuno G., editors. Dengue and Dengue Hemorrhagic Fever. London: CAB International; 1997. pp. 147–173. [Google Scholar]
  • 412.Rico-Hesse R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology. 1990;174:479–493. doi: 10.1016/0042-6822(90)90102-W. [DOI] [PubMed] [Google Scholar]
  • 413.Gubler D.J., Rosen L. A simple technique for demonstrating transmission of dengue viruses by mosquitoes without the use of vertebrate hosts. Am. J. Trop. Med.. Hyg.. 1976;25:146–150. doi: 10.4269/ajtmh.1976.25.146. [DOI] [PubMed] [Google Scholar]
  • 414.Barnes W.J.S., Rosen L. Fatal hemorrhagic disease and shock associated with primary dengue infection on a Pacific island. Am. J. Trop. Med.. Hyg.. 1974;23:495–506. doi: 10.4269/ajtmh.1974.23.495. [DOI] [PubMed] [Google Scholar]
  • 415.Halstead S.B. Observations related to pathogenesis of dengue hemorrhagic fever. VI. Hypotheses and discussion. Yale J. Biol. Med. 1970;42:350–362. [PMC free article] [PubMed] [Google Scholar]
  • 416.Halstead S.B. Pathogenesis of dengue: challenged to molecular biology. Science. 1988;239:476–481. doi: 10.1126/science.3277268. [DOI] [PubMed] [Google Scholar]
  • 417.Mongkolsapaya J., Dejnirattsai W., Xu X., Vasanawathana S., Tangthawornchaikul N., Chairunsri A., Sawasdivorn S., Duangchinda T., Dong T., Rowland-Jones S., Yenchitsomanus P., McMichael A., Malasit P., Screaton G. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 2003;9:921–927. doi: 10.1038/nm887. [DOI] [PubMed] [Google Scholar]
  • 418.Waterman S.H., Gubler D.J. Dengue fever. Clin. Dermatol. 1989;7:117–122. doi: 10.1016/0738-081X(89)90034-5. [DOI] [PubMed] [Google Scholar]
  • 419.Dietz V., Gubler D.J., Ortiz S., Kuno G., Casta-Velez A., Sather G.E., Gomez I., Vergne E. The 1986 dengue and dengue hemorrhagic fever epidemic in Puerto Rico: epidemiologic and clinical observation. P. R. Health Sci. J. 1996;15:201–210. [PubMed] [Google Scholar]
  • 420.Innis B.L. Dengue and dengue hemorrhagic fever. In: Porterfield J.S., editor. Exotic Viral Infections – 1995. London: Chapman & Hall; 1995. pp. 103–146. [Google Scholar]
  • 421.Halstead S.B., O’Rourke E.J. Antibody-enhanced dengue virus infection in primate leukocytes. Nature. 1977;265:739–741. doi: 10.1038/265739a0. [DOI] [PubMed] [Google Scholar]
  • 422.Halstead S.B., O’Rourke E.J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp. Med. 1977;146:210–217. doi: 10.1084/jem.146.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 423.Morens D.M., Venkateshan C.N., Halstead S.B. Dengue 4 virus monoclonal antibodies identify epitopes that mediate immune enhancement of dengue 2 viruses. J. Gen. Virol. 1987;68:91–98. doi: 10.1099/0022-1317-68-1-91. [DOI] [PubMed] [Google Scholar]
  • 424.Gubler D.J., Reed D., Rosen L., Hitchcock J.C.J. Epidemiologic, clinical and virulogic observations on dengue in the Kingdom of Tonga. Am. J. Trop. Med.. Hyg.. 1978;27:581–589. doi: 10.4269/ajtmh.1978.27.581. [DOI] [PubMed] [Google Scholar]
  • 425.Rosen L. The Emperor’s new clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am. J. Trop. Med.. Hyg.. 1977;26:337–343. doi: 10.4269/ajtmh.1977.26.337. [DOI] [PubMed] [Google Scholar]
  • 426.Pang T., Cardosa M.J., Guzman M.G. Of cascade and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS) Immunol. Cell Biol. 2007;85:43–45. doi: 10.1038/sj.icb.7100008. [DOI] [PubMed] [Google Scholar]
  • 427.Busygin F.F. Omsk hemorrhagic fever – current status of the problem, (in Russian) Vopr. Virusol. 2000;45(3):4–9. [PubMed] [Google Scholar]
  • 428.Gritsun T.S., Lashkevich V.A., Gould E.A. Nucleotide and amino acid sequence of the envelope glycoprotein of Omsk haemorrhagic fever virus: comparison with other flaviviruses. J. Gen. Virol. 1993;74:287–291. doi: 10.1099/0022-1317-74-2-287. [DOI] [PubMed] [Google Scholar]
  • 429.Holzmann H., Heinz F.X., Mandl C.W., Guirakhoo F., Kunz C. A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J. Virol. 1990;64:5156–5159. doi: 10.1128/jvi.64.10.5156-5159.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 430.Cecilia D., Gould E.A. Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology. 1991;181:70–77. doi: 10.1016/0042-6822(91)90471-M. [DOI] [PubMed] [Google Scholar]
  • 431.Rice C.M., Lenches E.M., Eddy S.R., Shin S.J., Sheets R.L., Strauss J.H. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science. 1985;229:726–733. doi: 10.1126/science.4023707. [DOI] [PubMed] [Google Scholar]
  • 432.Work T.H., Trapido H. Kyasanur Forest disease, a new virus disease in India. Ind. J. Med. Sci. 1957;11:341–345. [PubMed] [Google Scholar]
  • 433.Work, T. H. and Trepido, H. (1957) Kyasanur Forest disease: a new infection of man and monkeys in tropical India by a virus of the Russian spring-summer complex, Proceedings IXth Pacific Science Congress, Bangkok, vol. 17, 80–84 (Public Health and Medical Sciences).
  • 434.D’Lima L.V., Pavri K.M. Studies on antigenicity of six Kyasanur Forest disease virus strains isolated from various sources. Ind. J. Med. Res. 1969;57:1832–1839. [PubMed] [Google Scholar]
  • 435.Danes L. Contribution to the antigenic relationship between tick-borne encephalitis and Kyasanur Forest disease viruses. In: Libikova H., editor. CSAV Symposium on the Biology of Viruses of the Tick-borne Encephalitis Complex. Prague: Czechoslovak Academy of Sciences; 1962. p. 81. [Google Scholar]
  • 436.Shah K.V., Buescher E. Discussion. In: Libikova H., editor. CSAV Symposium on the Biology of Viruses of the Tick-Borne Encephalitis Complex. Prague: Czechoslovak Academy of Sciences; 1962. p. 85. [Google Scholar]
  • 437.Venugopal K., Gritsun T., Lashkevich V.A., Gould E.A. Analysis of the structural protein gene sequence shows Kyasanur Forest disease virus as a distinct member in the tick-borne encephalitis virus serocomplex. J. Gen. Virol. 1994;75:227–232. doi: 10.1099/0022-1317-75-1-227. [DOI] [PubMed] [Google Scholar]
  • 438.Adhikari Prabha M.R., Prabhu M.G., Raghuveer C.V., Bai M., Mala M.A. Clinical study of 100 cases of Kyasanur Forest disease with clinico-pathological correlation. Ind. J. Med. Sci. 1993;47(5):124–130. [PubMed] [Google Scholar]
  • 439.Millard C.B. Medical defense against protein toxin weapons. In: Lindler L.E., Lebeda F.J., Korch G.W., editors. Biological Weapons Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2004. pp. 255–283. [Google Scholar]
  • 440.Franz D.R. Defense against toxin weapons. In: Sidell F.R., Takafuji E.T., Franz D.R., editors. Medical Aspects of Chemical and Biological Warfare. Washington, DC: Office of the Surgeon General, Department of the Army; 1997. pp. 603–620. [Google Scholar]
  • 441.Simpson L.L. The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol. Rev. 1981;33(3):155–188. [PubMed] [Google Scholar]
  • 442.Hathaway C.L. Toxigenic clostridia. Clin. Microbiol. Rev. 1990;3(1):66–98. doi: 10.1128/cmr.3.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 443.Umland T.C., Wingert L.M., Swaminathan S., Furey W.F., Schmidt J.J., Sax M. Structure of receptor binding fragment HC of tetanus neurotoxin. Nat. Struct. Biol. 1997;4(10):788–792. doi: 10.1038/nsb1097-788. [DOI] [PubMed] [Google Scholar]
  • 444.Lacy D.B., Tepp W., Cohen A.C., DasGupta B.R., Stevens R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1988;5(10):898–902. doi: 10.1038/2338. [DOI] [PubMed] [Google Scholar]
  • 445.Lacy D.B., Stevens R.C. Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol. 1999;291(5):1091–1104. doi: 10.1006/jmbi.1999.2945. [DOI] [PubMed] [Google Scholar]
  • 446.Eswaramoorthy, S., Kumaran, D., and Swaminathan, S. (2001) Crystallographic evidence for doxorubicin binding to the receptor-binding site of Clostridium botulinum neurotoxin B, Acta Crystallogr. D Biol. Crystallogr., 57(Part 11), 1743–1746. [DOI] [PubMed]
  • 447.Hanson P.I., Heuser J.E., Jahn R. Neurotransmitter release – four years of SNARE complexes. Curr. Opin. Neurobiol. 1997;7(3):310–315. doi: 10.1016/S0959-4388(97)80057-8. [DOI] [PubMed] [Google Scholar]
  • 448.Rizo J. SNARE function revisited. Nat. Struct. Biol. 2003;10(6):417–419. doi: 10.1038/nsb0603-417. [DOI] [PubMed] [Google Scholar]
  • 449.Shapiro R.L., Hathway C., Swerdlow D.L. Botulism in the United States: a clinical and epidemiological review. Ann. Intern. Med. 1998;129(3):221–228. doi: 10.7326/0003-4819-129-3-199808010-00011. [DOI] [PubMed] [Google Scholar]
  • 450.for the Working Group on Civilian Biodefense Botulinum toxin as a biological weapon. Medical and public health management. J. Am. Med. Assoc. 2001;8(8):1059–1070. doi: 10.1001/jama.285.8.1059. [DOI] [PubMed] [Google Scholar]
  • 451.Simpson L.L. Fragment C of tetanus toxin antagonizes the neuromuscular blocking properties of native tetanus toxin. J. Pharmacol. Exp. Ther. 1984;228(3):600–604. [PubMed] [Google Scholar]
  • 452.Simpson L.L. Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res. 1984;305(1):177–180. doi: 10.1016/0006-8993(84)91136-3. [DOI] [PubMed] [Google Scholar]
  • 453.Dertzbaugh M.T., West M.W. Mapping of protective and cross-reactive domains of the type A neurotoxin of Clostridium botulinum. Vaccine. 1996;14(16):1538–1544. doi: 10.1016/S0264-410X(96)00094-1. [DOI] [PubMed] [Google Scholar]
  • 454.Middlebrook J.L. Protection strategies against botulinum toxin. Adv. Exp. Med. Biol. 1995;383:93–98. doi: 10.1007/978-1-4615-1891-4_11. [DOI] [PubMed] [Google Scholar]
  • 455.Potter K.L., Bevins M.A., Vassilieva E.V., Chiruvolu V.R., Smith T., Smith L.A., Meagher M.M. Production and purification of the heavy-chain fragment C of the botulinum neurotoxin, serotype B, expressed in the methylotrophic yeast. Pichia pastoris, Protein Expr. Purif. 1998;13(3):357–365. doi: 10.1006/prep.1998.0910. [DOI] [PubMed] [Google Scholar]
  • 456.Byrne M.P., Smith T.J., Montgomery V.A., Smith L.A. Purification, potency, and efficacy of the botulinum neurotoxin type A binding domain from Pichia pastoris as a recombinant vaccine candidate. Infect. Immun. 1998;66(10):4817–4822. doi: 10.1128/iai.66.10.4817-4822.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 457.Byrne M.P., Titball R.W., Holey J., Smith L.A. Fermentation, purification, and efficacy of a recombinant vaccine candidate against botulinum neurotoxin type B from. Pichia pastoris, Protein Expr. Purif. 2000;18(3):327–337. doi: 10.1006/prep.2000.1200. [DOI] [PubMed] [Google Scholar]
  • 458.Potter K.J., Zhang W., Smith L.A., Meagher M.M. Production and purification of the heavy chain fragment C of botulinum neurotoxin, serotype A, expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 2000;19(3):393–402. doi: 10.1006/prep.2000.1256. [DOI] [PubMed] [Google Scholar]
  • 459.Woodward L.A., Arimitsu H., Hirst R., Oguma K. Expression of HC subunits from Clostridium botulinum types C and D and their evaluation as candidate vaccine antigens in mice. Infect. Immun. 2003;71(5):2941–2944. doi: 10.1128/IAI.71.5.2941-2944.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 460.Lee J.S., Pushko P., Parker M.D., Dertzbaugh M.T., Smith L.A., Smith J.F. Candidate vaccine against botulinum neurotoxin serotype A derived from a Venezuelan equine encephalitis virus vector system. Infect. Immun. 2001;69(9):5709–5715. doi: 10.1128/IAI.69.9.5709-5715.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 461.Park J.B., Simpson L.L. Inhalational poisoning by botulinum toxin and inhalation vaccination with its heavy-chain component. Infect. Immun. 2003;71(3):1147–1154. doi: 10.1128/IAI.71.3.1147-1154.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 462.Bennett A.M., Perkins S.D., Holley J.L. DNA vaccination protects against botulinum neurotoxin type F. Vaccine. 2003;21(23):3110–3117. doi: 10.1016/S0264-410X(03)00260-3. [DOI] [PubMed] [Google Scholar]
  • 463.Foynes S., Holley J. L., Garmory H. S., Titball R. W., Fairweather N. F. Vaccination against type F botulinum toxin using attenuated. Vaccine. 2003;21(11–12):1052–1059. doi: 10.1016/s0264-410x(02)00622-9. [DOI] [PubMed] [Google Scholar]
  • 464.Kiyatkin N., Maksymowych A.B., Simpson L.L. Induction of an immune response by oral administration of recombinant botulinum toxin. Infect. Immun. 1997;65(11):4586–4591. doi: 10.1128/iai.65.11.4586-4591.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 465.Simpson L. L., Maksymowych A. B., Kiyatkin N. Botulinum toxin as a carrier for oral vaccine. Cell Mol. Life Sci. 1999;56(1–2):47–61. doi: 10.1007/s000180050005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 466.for the Working Group on Civilian Biodefense Botulinum toxin as a biological weapon. Medical and public health management. J. Am. Med. Assoc. 2001;8(8):1059–1070. doi: 10.1001/jama.285.8.1059. [DOI] [PubMed] [Google Scholar]
  • 467.Ulrich R.G., Bavari S., Olson M.A. Bacterial superantigens in human disease: structure, function and diversity. Trends Microbiol. 1995;3(12):463–468. doi: 10.1016/S0966-842X(00)89011-3. [DOI] [PubMed] [Google Scholar]
  • 468.Swaminathan S., Yang D.S., Furey W., Abrams L., Pletcher J., Sax M. Crystallization and preliminary X-ray study of staphylococcal enterotoxin B. J. Mol. Biol. 1988;199(2):397. doi: 10.1016/0022-2836(88)90326-9. [DOI] [PubMed] [Google Scholar]
  • 469.Swaminathan S., Furey W., Pletcher J., Sax M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature. 1992;359(6398):801–806. doi: 10.1038/359801a0. [DOI] [PubMed] [Google Scholar]
  • 470.Swaminathan S., Furey W., Pletcher J., Sax M. Residues defining the V beta specificity in staphylococcal enterotoxins. Nat. Struct. Biol. 1995;2(8):680–686. doi: 10.1038/nsb0895-680. [DOI] [PubMed] [Google Scholar]
  • 471.Schantz E.J., Roessler W.G., Wagman J., Spero L., Dunnery D.A., Bergdoll M.S. Purification of staphylococcal enterotoxin B. Biochemistry. 1965;4:1011–1016. doi: 10.1021/bi00882a005. [DOI] [PubMed] [Google Scholar]
  • 472.Ulrich R.G., Olson M.A., Bavari S. Development of engineered vaccines effective against structurally related bacterial superantigens. Vaccine. 1998;16(19):1857–1864. doi: 10.1016/S0264-410X(98)00176-5. [DOI] [PubMed] [Google Scholar]
  • 473.Ulrich R.G., Bavari S., Olson M.A. Staphylococcal enterotoxins A and B share a common structural motif for binding class II major histocompatibility complex molecules. Nat. Struct. Biol. 1995;2(7):554–560. doi: 10.1038/nsb0795-554. [DOI] [PubMed] [Google Scholar]
  • 474.Leder L., Llera A., Lavoie P.M., Lebedeva M.I., Li H., Sékaly R.-P., Bohach G.A., Gahr P.J., Schlievert P.M., Kajalainen K., Mariuzza R.A. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. J. Exp. Med. 1998;187(6):823–833. doi: 10.1084/jem.187.6.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 475.LeClaire R.D., Pitt M.L.M. Biological weapons defense. In: Lindler L.E., Lebeda F.J., Korch G.W., editors. Biological Weapons Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2004. pp. 41–61. [Google Scholar]
  • 476.Rood J.I., McClane B.A., Songer J.G., Titball R.W. The Clostridia Molecular Biology and Pathogenesis of the Clostridia. London: Academic Press; 1997. [Google Scholar]
  • 477.Baldwin L., Henderson A., Wright M., Whitby M. Spontaneous Clostridium perfringens lung abscess unresponsive to penicillin, Anaesth. Intensive Care. 1993;21:117–119. doi: 10.1177/0310057X9302100131. [DOI] [PubMed] [Google Scholar]
  • 478.Kwan W.C., Lam S.C., Chow A.W., Lepawski M., Glanzberg M.M. Empiema caused by Clostridium perfringens. Can. Med. Assoc. J. 1983;128:1420–1422. [PMC free article] [PubMed] [Google Scholar]
  • 479.Crompton R., Gall D. Georgi Markov – death in a pellet. Med. Leg. 1980;48(2):51–62. doi: 10.1177/002581728004800203. [DOI] [PubMed] [Google Scholar]
  • 480.Franz D.R., Jaax N.K. Ricin toxin. In: Sidell F.R., Takafuji E.T., Franz D.R., editors. Medical Aspects of Chemical and Biological Warfare. Washington, DC: Office of the Surgeon General, Department of the Army; 1997. pp. 631–642. [Google Scholar]
  • 481.Stillmark R. The histological changes produced by ricin and abrin intoxications. J. Exp. Med. 1897;2:197–316. doi: 10.1084/jem.2.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 482.Ucken F., Frankel A. The current status of immunotoxins: an overview of experimental and clinical studies as presented at the 3rd International Symposium on Immunotoxins. Leukemia. 1993;7:341–348. [PubMed] [Google Scholar]
  • 483.Vitetta E., Thorpe P., Uhr J. Immunotoxins: magic bullets or misguided missiles? Trends Pharmacol Sci. 1993;14(5):148–154. doi: 10.1016/0165-6147(93)90199-T. [DOI] [PubMed] [Google Scholar]
  • 484.Vitetta E., Krolick K., Muneo M., Cushley W., Uhr J. Immunotoxins: a new approach to cancer therapy. Science. 1983;219:644–649. doi: 10.1126/science.6218613. [DOI] [PubMed] [Google Scholar]
  • 485.Thorpe P.E., Mason D.W., Brown A.N. Selective killing of malignant cells in leukemic rat bone marrow using an antibody-ricin conjugate. Nature. 1982;297:594–596. doi: 10.1038/297594a0. [DOI] [PubMed] [Google Scholar]
  • 486.Knight B. Ricin – a potent homicidal poison. Br. Med. J. 1979;278:350–351. [PMC free article] [PubMed] [Google Scholar]
  • 487.Rutenber E., Katzin B.J., Ernest S., Collins E.J., Mlsna D., Ready M.P., Robertus J.D. The crystallographic refinement of ricin at 2.5Å resolution. Proteins. 1991;10:240–250. doi: 10.1002/prot.340100308. [DOI] [PubMed] [Google Scholar]
  • 488.Audi J., Belson M., Patel M., Schier J., Osterloh J. Ricin poisoning. A comprehensive review. J. Am. Med. Assoc. 2005;294:2342–2351. doi: 10.1001/jama.294.18.2342. [DOI] [PubMed] [Google Scholar]
  • 489.Cope, A. C. (1946) Chapter 12: Ricin in Summary Technical Report of Division 9 on chemical warfare and related problems. Parts I–II. National Defense Research Committee, Office of Scientific Research and Development, Washington, DC, pp. 179–203.
  • 490.Griffiths G.D., Rice P., Allenby A.C., Upshall D.G. The inhalation toxicology of the castor bean toxin, ricin, and protection by vaccination. J. Defense Sci. 1996;1(2):227–235. [Google Scholar]
  • 491.Griffiths G. D., Phillips G. J., Bailey S. C. Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. Vaccine. 1999;17(20–21):2562–2568. doi: 10.1016/s0264-410x(99)00054-7. [DOI] [PubMed] [Google Scholar]
  • 492.Smallshaw J.E., Firan A., Fulmer J.R., Ruback S.L., Ghettie V., Vitetta E.S. A novel recombinant vaccine which protects mice against ricin intoxication. Vaccine. 2002;20:3422–3427. doi: 10.1016/S0264-410X(02)00312-2. [DOI] [PubMed] [Google Scholar]
  • 493.Soler-Rodriguez A.M., Uhr J.W., Richardson J., Vitetta E.S. The toxicity of chemically deglycosylated ricin A-chain in mice. Int. J. Immunopharmacol. 1992;14(2):281–291. doi: 10.1016/0192-0561(92)90041-I. [DOI] [PubMed] [Google Scholar]
  • 494.Lord J.M., Gould J., Griffiths D., O’Hare M., Prior B., Richardson P.T., Robertson L.M. Ricin: cytotoxicity, biosynthesis and use in immunoconjugates. Prog. Med. Chem. 1987;24:1–28. doi: 10.1016/S0079-6468(08)70418-1. [DOI] [PubMed] [Google Scholar]
  • 495.Lemley, P. V. and Creasia, D. A. (1995) Vaccine against ricin toxin, U.S. Patent 5453271.
  • 496.Aboud-Pirak E., Olson M. A., Carra J. H., Roxas-Duncan V., Wannemacher R. W., Smith L. A., Millard C. B., et al. Finding a new vaccine in the ricin protein fold. Protein Eng. Des. Sel. 1993;17(4):391–397. doi: 10.1093/protein/gzh043. [DOI] [PubMed] [Google Scholar]
  • 497.Griffiths G.D., Bailey S.C., Hambrook J.L., Keyte M.P. Local and systemic responses against ricin toxin promoted by toxoid or peptide vaccines alone or in liposomal formulations. Vaccine. 1998;16(5):530–535. doi: 10.1016/S0264-410X(97)80007-2. [DOI] [PubMed] [Google Scholar]
  • 498.Olson M.A. Ricin A-chain structural determinant for binding substrate analogues: a molecular dynamics simulation analysis. Proteins. 1997;27(1):80–95. doi: 10.1002/(SICI)1097-0134(199701)27:1<80::AID-PROT9>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  • 499.Olson M. A., Cuff L. Free energy determinants of binding the rRNA substrate and small ligands to ricin A-chain. Byophys. J. 1999;76(1 Part 1):28–39. doi: 10.1016/S0006-3495(99)77175-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 500.Olson M.A. Electrostatic effects on the free-energy balance in folding a ribosome-inactivating protein. Biophys. Chem. 2001;91(3):219–229. doi: 10.1016/S0301-4622(01)00172-7. [DOI] [PubMed] [Google Scholar]
  • 501.Sharon N., Lis H.Z. Cell-agglutinating and sugar-specific proteins. Science. 1972;177:949–959. doi: 10.1126/science.177.4053.949. [DOI] [PubMed] [Google Scholar]
  • 502.Olsnes S., Pihl A. Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J. Biol. Chem. 1976;251:3977–3984. [PubMed] [Google Scholar]
  • 503.Chen Y.L., Chow L.P., Tsugita A., Lin J.Y. The complete primary structure of abrin-a B chain. FEBS J. 1992;309:115–118. doi: 10.1016/0014-5793(92)81076-X. [DOI] [PubMed] [Google Scholar]
  • 504.Kimura M., Sumizawa T., Funatsu G. The complete amino acid sequences of the B-chains of abrin-a and abrin-b, toxic proteins from the seeds of Abrus precatorius. Biosci. Biotechnol. Biochem. 1993;57:166–169. doi: 10.1271/bbb.57.166. [DOI] [PubMed] [Google Scholar]
  • 505.LeClaire R.D., Pitt M.L.M. Biological weapons defense. In: Lindler L.E., Lebeda F.J., Korch G.W., editors. Biological Weapons Defense: Infectious Diseases and Counterterrorism. Totowa, NJ: Humana Press; 2004. pp. 41–61. [Google Scholar]
  • 506.Wannamacher R.W., Wiener S.L. Trichothecene mycotoxins. In: Zatjchuk R., editor. Textbook of Military Medicine: Medical Aspects of Chemical and Biological Warfare. Washington, DC: Borden Institute; 1997. p. 658. [Google Scholar]
  • 507.Rood J.I., McClane B.A., Songer J.G., Titball R.W. The Clostridia. Molecular Biology and Pathogenesis of the Clostridia. London.: Academic Press; 1997. [Google Scholar]
  • 508.Peters C.J., Dalrymple J.M. Alphaviruses. In: Fields B.N., Knipe D.M., Chanock R.M., Hirsch M.S., Melnick J.L., Monath T.P., Roizman B., editors. Fields Virology. 2. New York: Raven Press; 1990. pp. 713–761. [Google Scholar]
  • 509.Pialoux G., Gaüzère B.A., Jauréguiberry S., Strobel M. Chikungunya, an epidemic arvovirosis. Lancet Infect. Dis. 2007;7(5):319–327. doi: 10.1016/S1473-3099(07)70107-X. [DOI] [PubMed] [Google Scholar]
  • 510.Khan A.H., Morita K., del Carmen Parquet M., Hasabe F., Mathenge E.G.M., Igarashi A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol. 2002;83:3075–3084. doi: 10.1099/0022-1317-83-12-3075. [DOI] [PubMed] [Google Scholar]
  • 511.Schuffenecker I., Iteman I., Michault A., Murri S., Vaney M.C., Lavenir R., Pardigon N., Reynes J.-M., Pettinelli F., Biscornet L., Diancourt L., Michel S., Duquerroy S., Guidon G., Frenkiel M.-P., Bréhin A.-C., Cubito N., Desprès, Kunst F., Rey F.A., Zeller H., Brisse S. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3(7):e263. doi: 10.1371/journal.pmed.0030263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 512.Charrel R.N., de Lamballerie X., Raoult D. Chikungunya outbreaks – the globalization of vector-borne diseases. N. Engl. J. Med. 2007;356:769–771. doi: 10.1056/NEJMp078013. [DOI] [PubMed] [Google Scholar]
  • 513.Brisse S., Iteman I., Schuffenecker I. Chikungunya outbreaks. N. Engl. J. Med. 2007;356(25):2650–2652. doi: 10.1056/NEJMc070758. [DOI] [PubMed] [Google Scholar]
  • 514.Simon F., Parola P., Grandadam M., Fourcade S., Oliver M., Brouqui P., Hance P., Kraemer P., Mohamed A.A., de Lamballerie X., Charrel R., Tolou H. Chikungunya infection: an emerging rheumatism among travelers returned from Indian Ocean islands. Report of 47 cases, Medicine. Baltimore. 2007;86(3):123–137. doi: 10.1097/MD/0b013e31806010a5. [DOI] [PubMed] [Google Scholar]
  • 515.Mavalankar D., Shastri P., Raman P. Chikungunya epidemic in India: a major public-health disaster. Lancet Infect. Dis. 2007;7(5):306–307. doi: 10.1016/S1473-3099(07)70091-9. [DOI] [PubMed] [Google Scholar]
  • 516.Saxena, S. K., Singh, M., Mishra, N., and Lakshmi, V. (2006) Resurgence of chikungunya virus in India: an emerging threat, Euro Surveill., 11(8), E060810.2. [DOI] [PubMed]
  • 517.Higgs S. The 2005–2006 chikungunya epidemic in the Indian ocean. Vector Borne Zoonotic Dis. 2006;6:115–116. doi: 10.1089/vbz.2006.6.115. [DOI] [PubMed] [Google Scholar]
  • 518.Josseran L., Paquet C., Zehgnoun A., Caillere N., Le Tertre A., Solet J.-L., Ledrance M. Chikungunya disease outbreak, Reunion Island. Emerg. Infect. Dis. 2006;12:1994–1995. doi: 10.3201/eid1212.060710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 519.Yergolkar P.N., Tandale B.V., Arankalle V.A., Sathe P.S., Sudeep A.B., Gandhe S.S., Gokhle M.D., Jacob G.P., Hundekar S.L., Mishra A.C. Chikungunya outbreaks caused by African genotype, India. Emerg. Infect. Dis. 2006;12:1580–1583. doi: 10.3201/eid1210.060529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 520.Powers A.M., Brault A.C., Tesh R.B., Weaver S.C. Re-emergence of chikungunya and o’nyong-nyong viruses: evidence for distinct geographical lineages and distinct evolutionary relationships. J. Gen. Virol. 2000;81:177–191. doi: 10.1099/0022-1317-81-2-471. [DOI] [PubMed] [Google Scholar]
  • 521.Haddow A.J., Davies C.W., Walker A.J. O’nyong-nyong fever: an epidemic virus disease in East Africa. Trans. R. Soc. Trop. Med. Hyg. 1960;54:517–522. doi: 10.1016/0035-9203(60)90025-0. [DOI] [PubMed] [Google Scholar]
  • 522.Shore H. O’nyong-nyong fever: an epidemic virus disease in East Africa. III. Some clinical and epidemiological observations in the northern province of Uganda. Trans. R. Soc. Trop. Med. Hyg. 1961;55:361–373. doi: 10.1016/0035-9203(61)90106-7. [DOI] [Google Scholar]
  • 523.Johnson B.K., Gichogo A., Gitau G., Patel N., Ademba G., Kurui R. Recovery of O’nyong-nyong virus from Anopheles funestis in western Kenya. Trans. R. Soc. Trop. Med. 1981;75:239–241. doi: 10.1016/0035-9203(81)90325-4. [DOI] [PubMed] [Google Scholar]
  • 524.Yang G., Pevear D.C., Davies M.H., Collett M.S., Bailey T., Rippen S., Barone L., Burns C., Rhodes G., Tohan S., Huggins J.W., Baker R.O., Buller R.L., Touchette E., Waller K., Schriewer J., Neyts J., DeClercq E., Jones K., Hruby D., Jordan R. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge. J. Virol. 2005;79(20):13139–13149. doi: 10.1128/JVI.79.20.13139-13149.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 525.Prichard M.N., Keith K.A., Quenelle D.C., Kern E.R. Activity and mechanism of action of N-methanocarbathymidine agains herpesvirus and orthopoxvirus infection. Antimicrob Agents Chemother. 2006;50(4):1336–1341. doi: 10.1128/AAC.50.4.1336-1341.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 526.Kuhn J.H., Radoshitzky S.R., Guth A.C., Warfield K.L., Li W., Vincent M.J., Towner J.S., Nichol S.T., Bavari S., Choe H., Aman M.J., Farzan M. Conserved receptor-binding domains of Lake Victoria Margburg virus and Zaire Ebola virus bind a common receptor. J. Biol. Chem. 2006;281(23):15951–15958. doi: 10.1074/jbc.M601796200. [DOI] [PubMed] [Google Scholar]
  • 527.Dong M., Yeh F., Tepp W.T., Dean C., Johnson E.A., Janz R.Chapman E.R. SV2 is the protein receptor for botulinum neurotoxin A. Science. 2006;312(5773):595–596. doi: 10.1126/science.1123654. [DOI] [PubMed] [Google Scholar]
  • 528.Bolken T.C., Laquerre S., Zhang Y., Bailey T.R., Pevear D.C., Kickner S.S., Sperzel L.E., Jones K.F., Warren T.K., Lund S.A., Kirkwood-Watts D.L., King D.S., Shurtleff A.C., Guttiere M.C., Deng Y., Bleam M., Hruby D.E. Identification and characterization of potent small molecule inhibitor of hemorrhagic fever, New World arenaviruses. Antiviral Res. 2006;69(2):86–97. doi: 10.1016/j.antiviral.2005.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 529.Puig-Basagoiti F., Deas T.S., Ren P., Tilgner M., Ferguson D.M., Shi P.-Y. High-throughput assays using a luciferase-expressing replicon, virus-like particles, and full-length virus for West Nile discovery. Antimicrob. Agents Chemother. 2005;49:4980–4988. doi: 10.1128/AAC.49.12.4980-4988.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 530.Puig-Basagoiti F., Tilgner M., Forshey B.M., Philpott S.M., Espina N.G., Wentworth D.E., Goebel S.J., Masters P.S., Falgout B., Ren P., Ferguson D.M., Shi P.-Y. Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob. Agents Chemother. 2006;50:1320–1329. doi: 10.1128/AAC.50.4.1320-1329.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 531.Goodell J.R., Puig-Basagoiti F., Forshey B.M., Shi P.-Y., Ferguson D.M. Identification of compounds with anti-West Nile virus activity. J. Med. Chem. 2006;49:2127–2137. doi: 10.1021/jm051229y. [DOI] [PubMed] [Google Scholar]
  • 532.Gu B., Ouzunov S., Wang L., Mason P., Bourne N., Cuconati A., Block T.M. Discovery of small molecule inhibitors of West Nile virus using a high-throughput sub-genomic replicon screen. Antiviral Res. 2006;70(2):39–50. doi: 10.1016/j.antiviral.2006.01.005. [DOI] [PubMed] [Google Scholar]
  • 533.Li G., Chen N., Feng Z., Buller R.M.L., Osborn J., Harms T., Damon I., Upton C., Esteban D.J. Genomic sequence and analysis of a vaccinia virus isolate from a patient with a smallpox vaccine-related complication. Virol. J. 2006;3:88–97. doi: 10.1186/1743-422X-3-88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 534.Artenstein A.W., Johnson C., Marbury T.C., Morrison D., Blum P.S., Kemp T., Nichols R., Balser J.P., Currie M., Monath T.P. A novel, cell culture-derived smallpox vaccine in vaccinia-naïve adults. Vaccine. 2005;23(25):3301–3309. doi: 10.1016/j.vaccine.2005.01.079. [DOI] [PubMed] [Google Scholar]
  • 535.Vollmar J., Arndtz N., Eckl K.M., Thomsen T., Petzold B., Mateo L., Schlereth B., Handley A., King L., Hulsemann V., Tzatzaris M., Merkl K., Wulff N., Chaplin P. Safety and immugenicity of IMVAMUNE, a promising candidate as a third generation smallpox vaccine. Vaccine. 2006;24(12):2065–2070. doi: 10.1016/j.vaccine.2005.11.022. [DOI] [PubMed] [Google Scholar]
  • 536.Stittelaar K.J., van Amerongen G., Kondova I., Kuiken T., van Lavieren R.F., Pistoor F.H.M., Niesters H.G.M., van Doornum G., van der Zeijst B.A.M., Mateo L., Chaplin P.J., Osterhaus A.D.M.E. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. J. Virol. 2005;79(12):7845–7851. doi: 10.1128/JVI.79.12.7845-7851.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 537.Deziel M.R., Heine H., Louie A., Kao M., Byrne W.R., Basset J., Miller L., Bush K., Kelly M., Drusano G.L. Effective antimicrobial regimens for use in humans for therapy of Bacillus anthracis infections and postexposure prophylaxis. Antimicrob. Agents Chemother. 2005;49(12):5099–5106. doi: 10.1128/AAC.49.12.5099-5106.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 538.Crane J.K., Choudhari S.S., Naeher T.M., Duffey M.E. Mutual enhancement of virulence by enterotoxigenic and enteropathogenic. Escherichia coli, Infect. Immun. 2006;74(3):1505–1515. doi: 10.1128/IAI.74.3.1505-1515.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 539.Lu X., Wang M., Qi J., Wang H., Li X., Gupta D., Dziarski D. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J. Biol. Chem. 2006;281(9):5895–5907. doi: 10.1074/jbc.M511631200. [DOI] [PubMed] [Google Scholar]
  • 540.Tabeta K., Hoebe K., Janssen E.M., Du X., Georgel P., Crozat K., Mudd S., Mann N., Sovath S., Goode J., Shamel L., Herskovits A.A., Portnoy D.A., Cooke M., Tarantino L.M., Wiltshire T., Steinberg B.E., Grinstein S., Beutler B. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7, and 9. Nat. Immunol. 2006;7:156–164. doi: 10.1038/ni1297. [DOI] [PubMed] [Google Scholar]
  • 541.Gilchrist M., Thorsson V., Li V., Rust A.G., Korb M., Kennedy K., Hai T., Bolouri H., Aderem A. ystems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature. 2006;441:173–178. doi: 10.1038/nature04768. [DOI] [PubMed] [Google Scholar]
  • 542.Howell M.D., Gallo R.L., Boguniewicz M., Jones J.F., Wong C., Streib J.E., Leung D.Y. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity. 2006;24:341–348. doi: 10.1016/j.immuni.2006.02.006. [DOI] [PubMed] [Google Scholar]
  • 543.Sullivan N.J., Geisbert T.W., Geisbert J.B., Shedlock D.J., Xu L., Lamoreaux L., Custers J.H., Popernack P.M., Yang Z.Y., Pau M.G., Roederer M., Koup R.A., Goudsmit J., Jahrling P.B., Nabel G.J. Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs. PLoS Med. 2006;3(6):e177. doi: 10.1371/journal.pmed.0030177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 544.Epstein S. L., Kong W. P., Misplon J. A., Lo C. Y., Tumpey T. M., Xu L., Nabel G. J. Protection against multiple influenza a subtypes by vaccination with highly conserved nucleoprotein. Vaccine. 2005;23(46–47):5404–5410. doi: 10.1016/j.vaccine.2005.04.047. [DOI] [PubMed] [Google Scholar]

Articles from National Institute of Allergy and Infectious Diseases, NIH are provided here courtesy of Nature Publishing Group

RESOURCES