Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 12;17(1):425–439. doi: 10.1016/0165-2427(87)90159-0

Development of nasal, fecal and serum isotype-specific antibodies in calves challenged with bovine coronavirus or rotavirus

LJ Saif 1
PMCID: PMC7126993  PMID: 2829415

Abstract

Unsuckled specific pathogen free calves were inoculated at 3–4 weeks of age, either intranasally (IN) or orally (O) with bovine coronavirus or O plus IN (O/IN) or O with bovine rotavirus. Shedding of virus in nasal or fecal samples, and virus-infected nasal epithelial cells were detected using immunofluorescent staining (IF), ELISA or immune electron microscopy (IEM). Isotype-specific antibody titers in sera, nasal and fecal samples were determined by ELISA. Calves inoculated with coronavirus shed virus in feces and virus was detected in nasal epithelial cells. Nasal shedding persisted longer in IN-inoculated calves than in O-inoculated calves and longer than fecal shedding in both IN and O-inoculated calves. Diarrhea occurred in all calves, but there were no signs of respiratory disease. Calves inoculated with rotavirus had similar patterns of diarrhea and fecal shedding, but generally of shorter duration than in coronavirus-inoculated calves. No nasal shedding of rotavirus was detected.

Peak IgM antibody responess, in most calves, were detected in fecal and nasal speciments at 7–10 days post-exposure (DPE), preceeding peak IgA responses which occurred at 10–14 DPE. The nasal antibody responses occurred in all virus-inoculated calves even in the absence of nasal shedding of virus in rotavirus-inoculated calves. Calves inoculated with coronavirus had higher titers of IgM and IgA antibodies in fecal and nasal samples than rotavirus-inoculated calves. In most inoculated calves, maximal titers of IgM or IgA antibodies correlated with the cessation of fecal or nasal virus shedding. A similar sequence of appearance of IgM and IgA antibodies occurred in serum, but IgA antibodies persisted for a shorter period than in fecal or nasal samples. Serum IgG1 antibody responses generally preceeded IgG2 responses and were predominant in most calves after 14–21 DPE.

References

  1. Allen W.D., Porter P. Localization of immunoglobulins in intestinal mucosa and the production of secretory antibodies in response to intraluminal administration of bacterial antigens in the preruminant calf. Clin. Exp. Immunol. 1975;21:407–418. [PMC free article] [PubMed] [Google Scholar]
  2. Bienenstock J., Befus A.D. Mucosal immunology. Immunology. 1980;41:249–270. [PMC free article] [PubMed] [Google Scholar]
  3. Bohl E.H., Saif L.J., Theil K.W., Agnes A.G., Cross R.F. Porcine pararotavirus: detection, differentiation from rotavirus, and pathogenesis in gnotobiotic pigs. J. Clin. Microbiol. 1982;15:312–319. doi: 10.1128/jcm.15.2.312-319.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bridger J.C., Woode G.N., Meyling A. Isolation of coronaviruses from neonatal calf diarrhea in Britain and Denmark. Vet. Microbiol. 1978;3:101–113. [Google Scholar]
  5. Corthier G., Vannier P. Production of coproantibodies and immune complexes in piglets infected with rotavirus. J. Inf. Dis. 1983;147:293–296. doi: 10.1093/infdis/147.2.293. [DOI] [PubMed] [Google Scholar]
  6. Crabbe P.A., Heremans J.F. Distribution in human nasopharyngeal tonsils of plasma cells containing different types of immunoglobulin polypeptide chains. Lab. Invest. 1967;16:112–123. [PubMed] [Google Scholar]
  7. Cripps A.W., Lascelles A.K. The origin of immunoglobulins in salivary secretion of sheep. Aust. J. Exp. Biol. Med. Sci. 1976;54:191–195. doi: 10.1038/icb.1976.19. [DOI] [PubMed] [Google Scholar]
  8. Doughri A.M., Storz J. Light and ultrastructural pathologic changes in intestinal coronaviral infection of newborn calves. Zbl. Vet. Med. B. 1977;24:367–385. doi: 10.1111/j.1439-0450.1977.tb01011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hieber J.P., Shelton S., Nelson J.D., Leon J., Mohs E. Comparison of human rotavirus disease in tropical and temperate settings. Am. J. Dis. Child. 1978;132:853–858. doi: 10.1001/archpedi.1978.02120340029004. [DOI] [PubMed] [Google Scholar]
  10. Howard C.J., Parsons K.R., Thomas L.H. Systemic and local immune responses of gnotobiotic calves to respiratory infection with Mycoplasma bovis. Vet. Immunol. Immunopathol. 1986;11:291–300. doi: 10.1016/0165-2427(86)90008-5. [DOI] [PubMed] [Google Scholar]
  11. Husband A.J. Mucosal immune interactions in intestine, respiratory tract and mammary gland. Prog. Vet. Micro. Immunol. 1985;1:25–57. [PubMed] [Google Scholar]
  12. Kemeny L.J., Wiltsey V.L., Riley J.L. Upper respiratory infection of lactating sows with transmissible gastroenteritis virus following contact exposure to infected piglets. Cornell Vet. 1975;65:352–362. [PubMed] [Google Scholar]
  13. Lehner T., Challacombe S.S., Caldwell J. Oral immunization with Streptococcus mutans in rhesus monkeys and the development of immune responess and dental carries. Immunology. 1980;41:857–864. [PMC free article] [PubMed] [Google Scholar]
  14. Lewis H.M., Parry J.V., Davies H.A., Parry R.P., Mott A., Dourmashkin R.R., Sanderson P.J., Tyrrell D.A.J., Valman H.B. A year's experience of the rotavirus syndrome and its association with respiratory illness. Arch. Dis. Child. 1979;54:339–346. doi: 10.1136/adc.54.5.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McIntosh K., Chao R.K., Krause H.E., Wasil R., Molega H.E., Mufson M.A. Coronavirus infection in acute lower respiratory tract disease of infants. J. Inf. Dis. 1974;130:502–507. doi: 10.1093/infdis/130.5.502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McNulty M.S., Bryson D.G., Allan G.M., Logan E.F. Coronavirus infection of the bovine respiratory tract. Vet. Microbiol. 1984;9:425–434. doi: 10.1016/0378-1135(84)90063-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mebus C.A., Star E.L., Rhodes M.B., Twichaus M.J. Pathology of neonatal calf diarrhea induced by a coronavirus-like agent. Vet. Path. 1973;10:45–64. doi: 10.1177/030098587301000105. [DOI] [PubMed] [Google Scholar]
  18. Mebus C.A., Newman L.E. Scanning electron, light and immunofluorescent microscopy of intestine of gnotobiotic calf infected with reovirus-like agent. Am. J. Vet. Res. 1977;38:553–558. [PubMed] [Google Scholar]
  19. Morgan K.L., Bourne F.J., Newby T.J., Bradley P.A. Humoral factors in the secretory immune system of ruminants. 1981;137:391–411. [PubMed] [Google Scholar]
  20. Peri B.A., Theodore C.M., Losonsky G.A., fishaut J.M., rothberg R.M., Ogra P.L. Antibody content of rabbit milk and serum following inhalation or ingestion of respiratory syncytial virus and bovine serum albumin. Clin. Exp. Immunol. 1982;48:91–101. [PMC free article] [PubMed] [Google Scholar]
  21. Reynolds D.J., Debney T.G., Hall G.A., Thomas L.H., Parsons K.R. Studies on the relationship between coronaviruses from the intestinal and respiratory tracts of calves. Arch. Virol. 1985;85:71–83. doi: 10.1007/BF01317007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Riepenhoff-Talty M., Bogger-Goren S., Li P., Carmody P.J., Barrett H.J., Ogra P.L. Development of serum and intestinal antibody response to rotavirus after naturally acquired rotavirus infection in man. J. Med. Virol. 1981;8:215–222. doi: 10.1002/jmv.1890080309. [DOI] [PubMed] [Google Scholar]
  23. Saif L.J., Bohl E.H., Kohler E.M., Hughes J.H. Immune electron microscopy of transmissible gastroenteritis virus and rotavirus (reovirus-like agent) of swine. Am. J. Vet. Res. 1977;38:13–20. [PubMed] [Google Scholar]
  24. Saif L.J., Redman D.R., Smith K.L., Thiel K.W. Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from immunized or nonimmunized cows. Infect. Immun. 1983;41:1118–1131. doi: 10.1128/iai.41.3.1118-1131.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saif L.J., Smith K.L., Landmeier B.J., Bohl E.H., Theil K.W., Todhunter D.A. Immune response of pregnant cows to bovine rotavirus immunization. Am. J. Vet. Res. 1984;45:49–58. [PubMed] [Google Scholar]
  26. Saif L.J., Smith K.L. Enteric viral infections of calves and passive immunity. J. Dairy Sci. 1985;68:206–228. doi: 10.3168/jds.S0022-0302(85)80813-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saif L.J., Redman D.R., Moorhead P.D., Theil K.W. Experimentally induced coronavirus infections in calves: viral replication in the respiratory and intestinal tracts. Am. J. Vet. Res. 1986;47:1426–1432. [PubMed] [Google Scholar]
  28. Saif L.J., Weilnau P., Miller K., Stitzlein L. Isotypes of intestinal and systemic antibodies in colostrum fed and colostrum deprived calves challenged with rotavirus. In: Mestecky J., McGhee J.R., bienenstock J., Ogra P.L., editors. Mucosal Immunology. Plenum Press; NY: 1987. [PubMed] [Google Scholar]
  29. Scicchitano R., Husband A.J., Cripps A.W. Immunoglobulin-containing cells and the origin of immunoglobulins in the respiratory tract of sheep. Immunology. 1984;52:529–537. [PMC free article] [PubMed] [Google Scholar]
  30. Scicchitano R., Husband A.J., Clancy R.L. Contribution of intraperitoneal immunization to the local immune response in the respiratory tract of sheep. Immunology. 1984;53:375–384. [PMC free article] [PubMed] [Google Scholar]
  31. Sheridan J.F., Gydelloth R.S., Vonderfecht S.L., Aurelian L. Virus-specific immunity in neonatal and adult mouse rotavirus infection. Infect. Immun. 1983;39:917–927. doi: 10.1128/iai.39.2.917-927.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sonza S., Holmes I.A. Coproantibody response to rotavirus infection. Med. J. Aust. 1980;2:496–499. doi: 10.5694/j.1326-5377.1980.tb100710.x. [DOI] [PubMed] [Google Scholar]
  33. Stals F., Walther F.J., Bruggeman C.A. Faecal and pharyngeal shedding of rotavirus and rotavirus IgA in children with diarrhoea. J. Med. Virol. 1984;14:333–339. doi: 10.1002/jmv.1890140406. [DOI] [PubMed] [Google Scholar]
  34. Tallett S., Mackenzie C., Middleton P., Kerzner B., Hamilton R. Clinical, laboratory and epidemiologic features of a viral gastroenteritis in infants and children. Pediatrics. 1977;60:217–222. [PubMed] [Google Scholar]
  35. Theil K.W., Bohl E.H., Cross R.F., Kohler E.M., Agnes A.G. Pathogenesis of porcine rotaviral infection in experimentally inoculated gnotobiotic pigs. Am. J. Vet. Res. 1978;39:213–220. [PubMed] [Google Scholar]
  36. Thomas L.H., Gourlay R.N., Stott E.J., Howard C.J., Bridger J.C. A search for new microorganisms in calf pneumonia by the inoculation of gnotobiotic calves. Res. Vet. Sci. 1982;33:170–182. doi: 10.1016/S0034-5288(18)32331-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Van Zaane D., Ijzerman J., De Leeuw W. Intestinal antibody response after vaccination and infection with rotavirus of calves fed colostrum with or without rotavirus antibody. Vet. Immunol. Immunopathol. 1986;11:45–63. doi: 10.1016/0165-2427(86)90087-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vonderfecht S.L., Osburn B. Immunity to rotavirus in conventional neonatal calves. J. Clin. Micro. 1982;16:935–942. doi: 10.1128/jcm.16.5.935-942.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Waldman R.H., Stone J., Lazzell V., Bergmann K.C., Khakoo R., Jacknowitz A., Howard S., Rose C. Oral route as method for immunity against mucosal pathogens. Ann. NY Acad. Sci. 1983;409:510–516. doi: 10.1111/j.1749-6632.1983.tb26895.x. [DOI] [PubMed] [Google Scholar]

Articles from Veterinary Immunology and Immunopathology are provided here courtesy of Elsevier

RESOURCES