Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;50:1–86. doi: 10.1016/S0065-308X(01)50029-9

The malaria-infected red blood cell: Structural and functional changes

Brian M Cooke 1, Narla Mohandas 2, Ross L Coppel 1
PMCID: PMC7130133  PMID: 11757330

Abstract

The asexual stage of malaria parasites of the genus Plasmodium invade red blood cells of various species including humans. After parasite invasion, red blood cells progressively acquire a new set of properties and are converted into more typical, although still simpler, eukaryotic cells by the appearance of new structures in the red blood cell cytoplasm, and new proteins at the red blood cell membrane skeleton. The red blood cell undergoes striking morphological alterations and its rheological properties are considerably altered, manifesting as red blood cells with increased membrane rigidity, reduced deformability and increased adhesiveness for a number of other cells including the vascular endothelium. Elucidation of the structural changes in the red blood cell induced by parasite invasion and maturation and an understanding of the accompanying functional alterations have the ability to considerably extend our knowledge of structure-function relationships in the normal red blood cell. Furthermore, interference with these interactions may lead to previously unsuspected means of reducing parasite virulence and may lead to the development of novel antimalarial therapeutics.

References

  1. Adams J.H., Sim B.K., Dolan S.A., Fang X., Kaslow D.C., Miller L.H. Vol. 89. 1992. A family of erythrocyte binding proteins of malaria parasites; pp. 7085–7089. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams S., Turner G.D., Nash G.B., Micklem K., Newbold C.I., Craig A.G. Differential binding of clonal variants of Plasmodium falciparum to allelic forms of intracellular adhesion molecule 1 determined by flow adhesion assay. Infection and Immunity. 2000;68:264–269. doi: 10.1128/iai.68.1.264-269.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahlborg N., Berzins K., Perlmann P. Definition of the epitope recognized by the Plasmodium falciparum-reactive human monoclonal antibody 33G2. Molecular and Biochemical Parasitology. 1991;46:89–96. doi: 10.1016/0166-6851(91)90202-h. [DOI] [PubMed] [Google Scholar]
  4. Aikawa M. Variations in structure and function during the life cycle of malarial parasites. Bulletin of the World Health Organization. 1977;55:139–156. [PMC free article] [PubMed] [Google Scholar]
  5. Aikawa M., Miller L.H. Structural alteration of the erythrocyte membrane during malarial parasite invasion and intraerythrocytic development. Ciba Foundation Symposium. 1983;94:45–63. doi: 10.1002/9780470715444.ch4. [DOI] [PubMed] [Google Scholar]
  6. Aikawa M., Rabbege J., Uni S., Ristic M., Miller L.H. Structural alteration of the membrane of erythrocytes infected with Babesia bovis. American Journal of Tropical Medicine and Hygiene. 1985;34:45–49. doi: 10.4269/ajtmh.1985.34.45. [DOI] [PubMed] [Google Scholar]
  7. Aikawa M., Torii M., Sjölander A., Berzins K., Perlmann P., Miller L.H. Pf155/resa antigen is localized in dense granules of Plasmodium falciparum merozoites. Experimental Parasitology. 1990;71:326–329. doi: 10.1016/0014-4894(90)90037-d. [DOI] [PubMed] [Google Scholar]
  8. Aikawa M., Kamanura K., Shiraishi S., Matsumoto Y., Arwati H., Torii M., Ito Y., Takeuchi T., Tandler B. Membrane knobs of unfixed Plasmodium falciparum infected erythrocytes — new findings as revealed by atomic force microscopy and surface potential spectroscopy. Experimental Parasitology. 1996;84:339–343. doi: 10.1006/expr.1996.0122. [DOI] [PubMed] [Google Scholar]
  9. Aitman T.J., Cooper L.D., Norsworthy P.J., Wahid F.N., Gray J.K., Curtis B.R., McKeigue P.M., Kwiatkowski D., Greenwood B.M., Snow R.W., Hill A.V., Scott J. Malaria susceptibility and CD36 mutation. Nature. 2000;405:1015–1016. doi: 10.1038/35016636. [DOI] [PubMed] [Google Scholar]
  10. Albano F.R., Berman A., La Greca N., Hibbs A.R., Wickham M., Foley M., Tilley L. A homologue of Sar1p localises to a novel trafficking pathway in malaria-infected erythrocytes. European Journal of Cell Biology. 1999;78:453–462. doi: 10.1016/S0171-9335(99)80072-7. [DOI] [PubMed] [Google Scholar]
  11. Albano F.R., Foley M., Tilley L. Export of parasite proteins to the erythrocyte cytoplasm: secretory machinery and traffic signals. In: Bock G.R., Cardew G., editors. Transport and Trafficking in the Malaria-Infected Erythrocyte. Vol. 226. John Wiley and Sons; Chichester: 1999. pp. 157–172. (Novartis Foundation Symposium). [DOI] [PubMed] [Google Scholar]
  12. Aley S.B., Bates M.D., Tam J.P., Hollingdale M.R. Synthetic peptides from the circumsporozoite proteins of Plasmodium falciparum and Plasmodium knowlesi recognize the human hepatoma cell line HepG2-A16 in vitro. Journal of Experimental Medicine. 1986;164:1915–1922. doi: 10.1084/jem.164.6.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Allan B.B., Moyer B.D., Balch W.E. Rab1 recruitment of p115 into a cis-snare complex: programming budding COPII vesicles for fusion. Science. 2000;289:444–448. doi: 10.1126/science.289.5478.444. [DOI] [PubMed] [Google Scholar]
  14. Allred D.R. Immune evasion by Babesia bovis and Plasmodium falciparum: cliff-dwellers of the parasite world. Parasitology Today. 1995;11:100–105. doi: 10.1016/0169-4758(95)80166-9. [DOI] [PubMed] [Google Scholar]
  15. Allred D.R., Gruenberg J.E., Sherman I.W. Dynamic rearrangements of erythrocyte membrane internal architecture induced by infection with Plasmodium falciparum. Journal of Cell Science. 1986;81:1–16. doi: 10.1242/jcs.81.1.1. [DOI] [PubMed] [Google Scholar]
  16. Allred D.R., Carlton J.M., Satcher R.L., Long J.A., Brown W.C., Patterson P.E., O'Connor R.M., Stroup S.E. The ves multigene family of B. bovis encodes components of rapid antigenic variation at the infected erythrocyte surface. Molecular Cell. 2000;5:153–162. doi: 10.1016/s1097-2765(00)80411-6. [DOI] [PubMed] [Google Scholar]
  17. Al-Yaman F., Genton B., Mokela D., Raiko A., Kati S., Rogerson S., Reeder J., Alpers M. Human cerebral malaria: lack of significant association between erythrocyte rosetting and disease severity. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1995;89:55–58. doi: 10.1016/0035-9203(95)90658-4. [DOI] [PubMed] [Google Scholar]
  18. Anders R.F. Multiple cross-reactivities amongst antigens of Plasmodium falciparum impair the development of protective immunity against malaria. Parasite Immunology. 1986;8:529–539. doi: 10.1111/j.1365-3024.1986.tb00867.x. [DOI] [PubMed] [Google Scholar]
  19. Anders R.F., Smythe J.A. Polymorphic antigens in Plasmodium falciparum. Blood. 1989;74:1865–1875. [PubMed] [Google Scholar]
  20. Anders R.F., Barzaga N., Shi P.-T., Scanlon D.B., Brown L.E., Thomas L.M., Brown G.V., Stahl H.D., Coppel R.L., Kemp D.J. Repetitive sequences in malaria antigens. In: Agabian N., Goodman H., Noguiera N., editors. Molecular Strategies of Parasitic Invasion. Alan R. Liss; New York: 1987. pp. 333–342. [Google Scholar]
  21. Anders R.F., Murray L.J., Thomas L.M., Davern K.M., Brown G.V., Kemp D.J. Structure and function of candidate vaccine antigens in Plasmodium falciparum. Biochemical Society Symposia. 1987;53:103–114. [PubMed] [Google Scholar]
  22. Anders R.F., McColl D.J., Coppel R.L. Molecular variation in Plasmodium falciparum; polymorphic antigens of asexual erythrocytic stages. Acta Tropica. 1993;53:239–253. doi: 10.1016/0001-706x(93)90032-7. [DOI] [PubMed] [Google Scholar]
  23. Angus B.J., Thanikkul K., Silamut K., White N.J., Udomsangpetch R. Rosette formation in Plasmodium ovale infection. American Journal of Tropical Medicine and Hygiene. 1996;55:560–561. doi: 10.4269/ajtmh.1996.55.560. [DOI] [PubMed] [Google Scholar]
  24. Angus B.J., Chotivanich K., Udomsangpetch R., White N.J. In vivo removal of malaria parasites from red blood cells without their destruction in acute falciparum malaria. Blood. 1997;90:2037–2040. [PubMed] [Google Scholar]
  25. Ardeshir F., Flint J.E., Matsumoto Y., Aikawa M., Reese R.T., Stanley H. cDNA sequence encoding a Plasmodium falciparum protein associated with knobs and localization of the protein to electron-dense regions in membranes of infected erythrocytes. EMBO Journal. 1987;6:1421–1427. doi: 10.1002/j.1460-2075.1987.tb02383.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Areekul S., Yamarat P. Alterations in the viscosity and deformability of red cells in patients with Plasmodium falciparum. Journal of the Medical Association of Thailand. 1988;71:196–202. [PubMed] [Google Scholar]
  27. Bagge U., Branemark P.I., Karlsson R., Skalak R. Three-dimensional observations of red blood cell deformation in capillaries. Blood Cells. 1980;6:231–239. [PubMed] [Google Scholar]
  28. Barabino G.A., McIntire L.V., Eskin S.G., Sears D.A., Udden M. Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood. 1987;70:152–157. [PubMed] [Google Scholar]
  29. Barale J.C., Attal-Bonnefoy G., Brahimi K., Pereira da Silva L., Langsley G. Plasmodium falciparum asparagine and aspartate rich protein 2 is an evolutionarily conserved protein whose repeats identify a new family of parasite antigens. Molecular and Biochemical Parasitology. 1997;87:169–181. doi: 10.1016/s0166-6851(97)00065-0. [DOI] [PubMed] [Google Scholar]
  30. Barale J.C., Candelle D., Attalbonnefoy G., Dehoux P., Bonnefoy S., Ridley R., Dasilva L.P., Langsley G. Plasmodium falciparum AARP1, a giant protein containing repeated motifs rich in asparagine and aspartate residues, is associated with the infected erythrocyte membrane. Infection and Immunity. 1997;65:3003–3010. doi: 10.1128/iai.65.8.3003-3010.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Barnes D.A., Thompson J., Triglia T., Day K., Kemp D.J. Mapping the genetic locus implicated in cytoadherence of Plasmodium falciparum to melanoma cells. Molecular and Biochemical Parasitology. 1994;66:21–29. doi: 10.1016/0166-6851(94)90032-9. [DOI] [PubMed] [Google Scholar]
  32. Barnes D.A., Wollish W., Nelson R.G., Leech J.H., Petersen C. Plasmodium falciparum-d260, an intraerythrocytic parasite protein, is a member of the glutamic acid dipeptide-repeat family of proteins. Experimental Parasitology. 1995;81:79–89. doi: 10.1006/expr.1995.1095. [DOI] [PubMed] [Google Scholar]
  33. Barragan A., Fernandez V., Chen Q., von Euler A., Wahlgren M., Spillmann D. The duffy-binding-like domain 1 of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a heparan sulfate ligand that requires 12mers for binding. Blood. 2000;95:3594–3599. [PubMed] [Google Scholar]
  34. Barragan A., Kremsner P.G., Wahlgren M., Carlson J. Blood group A antigen is a coreceptor in Plasmodium falciparum rosetting. Infection and Immunity. 2000;68:2971–2975. doi: 10.1128/iai.68.5.2971-2975.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Baruch D.I., Pasloske B.L., Singh H.B., Bi X.H., Ma X.C., Feldman M., Taraschi T.F., Howard R.J. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995;82:77–87. doi: 10.1016/0092-8674(95)90054-3. [DOI] [PubMed] [Google Scholar]
  36. Baruch D.I., Gormley J.A., Ma C., Howard R.J., Pasloske B.L. Vol. 93. 1996. Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1; pp. 3497–3502. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Baruch D., Ma X., Singh H., Bi X., Pasloske B., Howard R. Identification of a region of pfemp1 that mediates adherence of Plasmodium falciparum infected erythrocytes to cd36: conserved function with variant sequence. Blood. 1997;90:3766–3775. [PubMed] [Google Scholar]
  38. Baruch D.I., Ma X.C., Pasloske B., Howard R.J., Miller L.H. CD36 peptides that block cytoadherence define the CD36 binding region for Plasmodium falciparum-infected erythrocytes. Blood. 1999;94:2121–2127. [PubMed] [Google Scholar]
  39. Beeson J.G., Rogerson S.J., Cooke B.M., Reeder J.C., Chai W., Lawson A.M., Molyneux M.E., Brown G.V. Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nature Medicine. 2000;6:86–90. doi: 10.1038/71582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Bennett B.J., Mohandas N., Coppel R.L. Defining the minimal domain of the Plasmodium falciparum protein mesa involved in the interaction with the red blood cell membrane skeletal protein 4.1. Journal of Biological Chemistry. 1997;272:15299–15306. doi: 10.1074/jbc.272.24.15299. [DOI] [PubMed] [Google Scholar]
  41. Bennett V. Proteins involved in membrane-cytoskeleton association in human erythrocytes: spectrin, ankyrin, and band 3. Methods in Enzymology. 1983;96:313–323. doi: 10.1016/s0076-6879(83)96029-9. [DOI] [PubMed] [Google Scholar]
  42. Bennett V., Stenbuck P.J. Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. Journal of Biological Chemistry. 1980;255:6424–6432. [PubMed] [Google Scholar]
  43. Benting J., Mattei D., Lingelbach K. Brefeldin a inhibits transport of the glycophorin-binding protein from Plasmodium falciparum into the host erythrocyte. Biochemical Journal. 1994;300:821–826. doi: 10.1042/bj3000821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Berendt A.R., Simmons D.L., Tansey J., Newbold C.I., Marsh K. Intracellular adhesion molecule 1 is an endothelial cell adhesion molecule for Plasmodium falciparum. Nature. 1989;341:57–59. doi: 10.1038/341057a0. [DOI] [PubMed] [Google Scholar]
  45. Berendt A.R., McDowall A., Craig A.G., Bates P.A., Sternberg M.J.E., Marsh K., Newbold C.I., Hogg N. The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from the LFA-1 binding site. Cell. 1992;68:71–81. doi: 10.1016/0092-8674(92)90207-s. [DOI] [PubMed] [Google Scholar]
  46. Berzins K., Perlmann H., Wåhlin B., Carlsson J., Wahlgren M., Udomsangpetch R., Björkman A., Patarroyo M.E., Perlmann P. Vol. 83. 1986. Rabbit and human antibodies to a repeated amino acid sequence of a Plasmodium falciparum antigen, Pf 155, react with the native protein and inhibit merozoite invasion; pp. 1065–1069. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Bianco A.E., Crewther P.E., Coppel R.L., Stahl H.D., Kemp D.J., Anders R.F., Brown G.V. Patterns of antigen expression in asexual blood stages and gametocytes of Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene. 1988;38:258–267. doi: 10.4269/ajtmh.1988.38.258. [DOI] [PubMed] [Google Scholar]
  48. Bischoff E., Guillotte M., Mercereau-Puijalon O., Bonnefoy S. A member of the Plasmodium falciparum Pf60 multigene family codes for a nuclear protein expressed by readthrough of an internal stop codon. Molecular Microbiology. 2000;35:1005–1016. doi: 10.1046/j.1365-2958.2000.01788.x. [DOI] [PubMed] [Google Scholar]
  49. Blisnick T., Morales-Betoulle M.E., Barale J-C., Uzureau P., Berry L., Desroses S., Fujioka H., Mattei D., Braun-Breton C. Pfsbp1, a Maurer's cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Molecular and Biochemical Parasitology. 2000;111:107–121. doi: 10.1016/s0166-6851(00)00301-7. [DOI] [PubMed] [Google Scholar]
  50. Bock G., Cardew G., editors. Transport and Trafficking in the Malaria-Infected Erythrocyte. Vol. 226. John Wiley and Sons; Chichester: 1999. (Novartis Foundation Symposium). [Google Scholar]
  51. Bonnefoy S., Bischoff E., Guillotte M., Mercereau Puijalon O. Evidence for distinct prototype sequences within the Plasmodium falciparum Pf60 multigene family. Molecular and Biochemical Parasitology. 1997;87:1–11. doi: 10.1016/s0166-6851(97)00033-9. [DOI] [PubMed] [Google Scholar]
  52. Bork P., Sander C., Valencia A., Bukau B. A module of the DnaJ heat shock proteins found in malaria parasites. Trends in Biochemical Sciences. 1992;17:129. doi: 10.1016/0968-0004(92)90319-5. [DOI] [PubMed] [Google Scholar]
  53. Bouharoun-Tayoun H., Attanath P., Sabchareon A., Chongsuphajaisiddhi T., Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. Journal of Experimental Medicine. 1990;172:1633–1641. doi: 10.1084/jem.172.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Bourke P.F., Holt D.C., Sutherland C.J., Currie B., Kemp D.J. Positional cloning of a sequence from the breakpoint of chromosome 9 commonly associated with the loss of cytoadherence. Annals of Tropical Medicine and Parasitology. 1996;90:353–357. doi: 10.1080/00034983.1996.11813063. [DOI] [PubMed] [Google Scholar]
  55. Bowman S., Lawson D., Basham D., Brown D., Chillingworth T., Churcher C.M., Craig A., Davies R.M., Devlin K., Feltwell T., Gentles S., Gwilliam R., Hamlin N., Harris D., Holroyd S., Hornsby T., Horrocks P., Jagels K., Jassal B., Kyes S., McLean J., Moule S., Mungall K., Murphy L., Oliver K., Quail M.A., Rajandream M.-A., Rutter S., Skelton J., Squares R., Squares S., Sulston J.E., Whitehead S., Woodward J.R., Newbold C., Barrell B.G. The complete nucleotide sequence of chromosome 3 of Plasmodium falciparum. Nature. 1999;400:532–538. doi: 10.1038/22964. [DOI] [PubMed] [Google Scholar]
  56. Bozdech Z., Van Wye J., Haldar K., Schurr E. The human malaria parasite Plasmodium falciparum exports the ATP-binding cassette protein PfGCN20 to membrane structures in the host red blood cell. Molecular and Biochemical Parasitology. 1998;97:81–95. doi: 10.1016/s0166-6851(98)00135-2. [DOI] [PubMed] [Google Scholar]
  57. Braun-Breton C., Langsley G., Mattei D., Scherf A. Intra- and extracellular routing in P. falciparum. Blood Cells. 1990;16:396–400. [PubMed] [Google Scholar]
  58. Brown G.V., Culvenor J.G., Crewther P.E., Bianco A.E., Coppel R.L., Saint R.B., Stahl H.D., Kemp D.J., Anders R.F. Localization of the ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum in merozoites and ringinfected erythrocytes. Journal of Experimental Medicine. 1985;162:774–779. doi: 10.1084/jem.162.2.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Brown K.N., Brown I.N. Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi. Nature. 1965;208:1286–1288. doi: 10.1038/2081286a0. [DOI] [PubMed] [Google Scholar]
  60. Brugnara C. Erythrocyte membrane transport physiology. Current Opinion in Hematology. 1997;4:122–127. doi: 10.1097/00062752-199704020-00008. [DOI] [PubMed] [Google Scholar]
  61. Buffet P.A., Gamain B., Scheidig C., Baruch D., Smith J.D., Hernandez-Rivas R., Pouvelle B., Oishi S., Fujii N., Fusai T., Parzy D., Miller L.H., Gysin J., Scherf A. Vol. 96. 1999. Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection; pp. 12743–12748. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Bull B., Stuart J., Juhan-Vague I. Normal and pathological determinants of erythrocyte deformability. In: Chayen J., Bitensky L., editors. Investigative Microtechniques in Medicine and Biology. Marcel Dekker; New York: 1984. pp. 257–295. [Google Scholar]
  63. Callow L.L., Johnston L.A.Y. Babesia spp. in the brains of clinically normal cattle and their detection by a brain smear technique. Australian Veterinary Journal. 1963;39:25–31. [Google Scholar]
  64. Callow L.L., McGavin M.D. Cerebral babesiosis due to Babesia argentina. Australian Veterinary Journal. 1963;39:15–21. [Google Scholar]
  65. Cappai R., Kaslow D.C., Peterson M.G., Cowman A.F., Anders R.F., Kemp D.J. Cloning and analysis of the RESA-2 gene — a DNA homologue of the ring-infected erythrocyte surface antigen gene of Plasmodium falciparum. Molecular and Biochemical Parasitology. 1992;54:213–222. doi: 10.1016/0166-6851(92)90113-x. [DOI] [PubMed] [Google Scholar]
  66. Carlson J., Wählgren M. Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like interactions. Journal of Experimental Medicine. 1992;176:1311–1317. doi: 10.1084/jem.176.5.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Carlson J., Helmby H., Hill A.V.S., Brewster D., Greenwood B.M., Wählgren M. Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet. 1990;336:1457–1460. doi: 10.1016/0140-6736(90)93174-n. [DOI] [PubMed] [Google Scholar]
  68. Carlson J., Holmquist G., Taylor D.W., Perlmann P., Wählgren M. Vol. 87. 1990. Antibodies to a histidine-rich protein (PfHRP1) disrupt spontaneously formed Plasmodium falciparum erythrocyte rosettes; pp. 2511–2515. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Carlson J., Nash G.B., Gabutti V., Alyaman F., Wahlgren M. Natural protection against severe Plasmodium falciparum malaria due to impaired rosette formation. Blood. 1994;84:3909–3914. [PubMed] [Google Scholar]
  70. Cerami C., Kwakye B.F., Nussenzweig V. Binding of malarial circumsporozoite protein to sulfatides [Gal(3-SO4)beta 1-Cer] and cholesterol-3-sulfate and its dependence on disulfide bond formation between cysteines in region II. Molecular and Biochemical Parasitology. 1992;54:1–12. doi: 10.1016/0166-6851(92)90089-3. [DOI] [PubMed] [Google Scholar]
  71. Chaiyaroj S.C., Coppel R.L., Magown C., Brown G. A Plasmodium falciparum isolate with a chromosome 9 deletion expresses a trypsin-resistant cytoadherence molecule. Molecular and Biochemical Parasitology. 1994;67:21–30. doi: 10.1016/0166-6851(94)90092-2. [DOI] [PubMed] [Google Scholar]
  72. Chaiyaroj S.C., Coppel R.L., Novakovic S., Brown G.V. Vol. 91. 1994. Multiple ligands for cytoadherence can be present simultaneously on the surface of Plasmodium falciparum-infected erythrocytes; pp. 10805–10808. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Chan M.T., Catry E., Weill D., Marcel G.A., George C. Assessment of erythrocyte deformability by constant flow filtration technique: analysis of factors influencing the initial pressure. Biorheology. 1984;1(supplement 1):267–270. doi: 10.3233/bir-1984-23s146. [DOI] [PubMed] [Google Scholar]
  74. Chasis J., Mohandas N. Erythrocyte membrane deformability and stability: two distinct membrane properties which are independently regulated by skeletal protein associations. Journal of Cell Biology. 1986;103:343–350. doi: 10.1083/jcb.103.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Chen Q., Barragan A., Fernandez V., Sundstrom A., Schlichtherle M., Sahlen A., Carlson J., Datta S., Wahlgren M. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. Journal of Experimental Medicine. 1998;187:15–23. doi: 10.1084/jem.187.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Chen Q., Fernandez V., Sundstrom A., Schlichtherle M., Datta S., Hagblom P., Wahlgren M. Developmental selection of var gene expression inPlasmodium falciparum. Nature. 1998;394:392–395. doi: 10.1038/28660. [DOI] [PubMed] [Google Scholar]
  77. Chen Q., Heddini A., Barragan A., Fernandez V., Pearce S.F.A., Wahlgren M. The semiconserved head structure of Plasmodium falciparum erythrocyte membrane protein 1 mediates binding to multiple independent host receptors. Journal of Experimental Medicine. 2000;192:1–10. doi: 10.1084/jem.192.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Chen S. Blood rheology and its relation to flow resistance and transcapillary exchange with special reference to shock. Advances in Microcirculation. 1969;2:89–103. [Google Scholar]
  79. Cheng Q., Cloonan N., Fischer K., Thompson J., Waine G., Lanzer M., Saul A. Stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Molecular and Biochemical Parasitology. 1998;97:161–176. doi: 10.1016/s0166-6851(98)00144-3. [DOI] [PubMed] [Google Scholar]
  80. Chien S., Usami S., Bertles J.F. Abnormal rheology of oxygenated blood in sickle cell anemia. Journal of Clinical Investigation. 1970;49:623–634. doi: 10.1172/JCI106273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Chien S., King R.G., Kaperonis A.A., Usami S. Viscoelastic properties of sickle cells and hemoglobin. Blood Cells. 1982;8:53–64. [PubMed] [Google Scholar]
  82. Chien S., Schmalzer E.A., Lee M.M., Impelluso T., Skalak R. Role of white blood cells in filtration of blood cell suspensions. Biorheology. 1983;20:11–27. doi: 10.3233/bir-1983-20102. [DOI] [PubMed] [Google Scholar]
  83. Chishti A.H., Andrabi K.I., Derick L.H., Palek J., Liu S.C. Isolation of skeleton-associated knobs from human red blood cells infected with malaria parasite Plasmodium falciparum. Molecular and Biochemical Parasitology. 1992;52:283–288. doi: 10.1016/0166-6851(92)90062-o. [DOI] [PubMed] [Google Scholar]
  84. Chishti A.H., Maalouf G.J., Marfatia S., Palek J., Wang W., Fisher D., Liu S.C. Phosphorylation of protein 4.1 in Plasmodium falciparum-infected human red blood cells. Blood. 1994;83:3339–3345. [PubMed] [Google Scholar]
  85. Chotivanich K., Udomsangpetch R., Dondorp A., Williams T., Angus B., Simpson J.A., Pukrittayakamee S., Looareesuwan S., Newbold C.I., White N.J. The mechanisms of parasite clearance after antimalarial treatment of Plasmodium falciparum malaria. Journal of Infectious Diseases. 2000;182:629–633. doi: 10.1086/315718. [DOI] [PubMed] [Google Scholar]
  86. Chotivanich K.T., Dondorp A.M., White N.J., Peters K., Vreeken J., Kager P.A., Udomsangpetch R. The resistance to physiological shear stresses of the erythrocytic rosettes formed by cells infected with Plasmodium falciparum. Annals of Tropical Medicine and Parasitology. 2000;94:219–226. doi: 10.1080/00034980050006384. [DOI] [PubMed] [Google Scholar]
  87. Clark I.A., Cowden W.B., Rockett K.A. The pathogenesis of human cerebral malaria. Parasitology Today. 1994;10:417–418. doi: 10.1016/0169-4758(94)90170-8. [DOI] [PubMed] [Google Scholar]
  88. Clark I.A., al Yaman F.M., Jacobson L.S. The biological basis of malarial disease. International Journal for Parasitology. 1997;27:1237–1249. doi: 10.1016/s0020-7519(97)00121-5. [DOI] [PubMed] [Google Scholar]
  89. Clough B., Atilola F., Pasvol G. The role of rosetting in the multiplication of Plasmodium falciparum: rosette formation neither enhances nor targets parasite invasion into uninfected red blood cells. British Journal of Haematology. 1998;100:99–104. doi: 10.1046/j.1365-2141.1998.00534.x. [DOI] [PubMed] [Google Scholar]
  90. Collins W.E., Anders R.F., Pappaioanou M., Campbell G.H., Brown G.B., Kemp D.J., Coppel R.L., Skinner J.C., Andrysiak P.M., Favaloro J.M., Corcoran L.M., Broderson J.R., Mitchell G.F., Campbell C.C. Immunization of Aotus monkeys with recombinant proteins of an erythrocyte surface antigen of Plasmodium falciparum. Nature. 1986;323:259–262. doi: 10.1038/323259a0. [DOI] [PubMed] [Google Scholar]
  91. Commins M.A., Goodger B.V., Waltisbuhl D.J., Wright I.G. Babesia bovis: studies of parameters influencing microvascular stasis of infected erythrocytes. Research in Veterinary Science. 1988;44:226–228. [PubMed] [Google Scholar]
  92. Cooke B.M., Coppel R.L. Cytoadhesion and falciparum malaria: going with the flow. Parasitology Today. 1995;11:282–287. doi: 10.1016/0169-4758(95)80040-9. [DOI] [PubMed] [Google Scholar]
  93. Cooke B.M., Morris-Jones S., Greenwood B.M., Nash G.B. Adhesion of parasitized red blood cells to cultured endothelial cells: a flow-based study of isolates from Gambian children with falciparum malaria. Parasitology. 1993;107:359–368. doi: 10.1017/s0031182000067706. [DOI] [PubMed] [Google Scholar]
  94. Cooke B.M., Berendt A.R., Craig A.G., MacGregor J., Newbold C.I., Nash G.B. Rolling and stationary cytoadhesion of red blood cells parasitised by Plasmodium falciparum: separate roles for ICAM-1, CD36 and thrombospondin. British Journal of Haematology. 1994;87:162–170. doi: 10.1111/j.1365-2141.1994.tb04887.x. [DOI] [PubMed] [Google Scholar]
  95. Cooke B.M., Morris-Jones S., Greenwood B.M., Nash G.B. Mechanisms of cytoadhesion of flowing, parasitized red blood cells from Gambian children with falciparum malaria. American Journal of Tropical Medicine and Hygiene. 1995;53:29–35. [PubMed] [Google Scholar]
  96. Cooke B.M., Rogerson S.J., Brown G.V., Coppel R.L. Adhesion of malariainfected red blood cells to chondroitin sulfate A under flow conditions. Blood. 1996;88:4040–4044. [PubMed] [Google Scholar]
  97. Cooke B.M., Nicoll C.L., Baruch D.I., Coppel R.L. A recombinant peptide based on PfEMP-1 blocks and reverses adhesion of malaria-infected red blood cells to CD36 under flow. Molecular Microbiology. 1998;30:83–90. doi: 10.1046/j.1365-2958.1998.01040.x. [DOI] [PubMed] [Google Scholar]
  98. Coppel R.L. Repeat structures in a Plasmodium falciparum protein (MESA) that binds human erythrocyte protein 4.1. Molecular and Biochemical Parasitology. 1992;50:335–347. doi: 10.1016/0166-6851(92)90231-8. [DOI] [PubMed] [Google Scholar]
  99. Coppel R.L., Brown G.V., Mitchell G.F., Anders R.F., Kemp D.J. Identification of a cDNA clone encoding a mature blood stage antigen of Plasmodium falciparum by immunization of mice with bacterial lysates. EMBO Journal. 1984;3:403–407. doi: 10.1002/j.1460-2075.1984.tb01820.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Coppel R.L., Cowman A.F., Anders R.F., Bianco A.E., Saint R.B., Lingelbach K.R., Kemp D.J., Brown G.V. Immune sera recognize on erythrocytes Plasmodium falciparum antigen composed of repeated amino acid sequences. Nature. 1984;310:789–791. doi: 10.1038/310789a0. [DOI] [PubMed] [Google Scholar]
  101. Coppel R.L., Favaloro J.M., Crewther P.E., Burkot T.R., Bianco A.E., Stahl H.D., Kemp D.J., Anders R.F., Brown G.V. Vol. 82. 1985. A blood stage antigen of Plasmodium falciparum shares determinants with the sporozoite coat protein; pp. 5121–5125. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Coppel R.L., Culvenor J.G., Bianco A.E., Crewther P.E., Stahl H.D., Brown G.V., Anders R.F., Kemp D.J. Variable antigen associated with the surface of erythrocytes infected with mature stages of Plasmodium falciparum. Molecular and Biochemical Parasitology. 1986;20:265–277. doi: 10.1016/0166-6851(86)90107-6. [DOI] [PubMed] [Google Scholar]
  103. Coppel R.L., Lustigman S., Murray L., Anders R.F. MESA is a Plasmodium falciparum phosphoprotein associated with the erythrocyte membrane skeleton. Molecular and Biochemical Parasitology. 1988;31:223–231. doi: 10.1016/0166-6851(88)90152-1. [DOI] [PubMed] [Google Scholar]
  104. Coppel R.L., Davern K.M., McConville M.J. Immunochemistry of parasite antigens. In: van Oss C.J., van Regenmortel M.H.V., editors. Immunochemistry. Marcel Dekker; New York: 1994. pp. 475–532. [Google Scholar]
  105. Coppel R.L., Brown G.V., Nussenzweig V. Adhesive proteins of the malaria parasite. Current Opinion in Microbiology. 1998;1:472–481. doi: 10.1016/s1369-5274(98)80068-4. [DOI] [PubMed] [Google Scholar]
  106. Coppel R.L., Cooke B.M., Magowan C., Mohandas N. Malaria and the erythrocyte. Current Opinion in Hematology. 1998;5:132–138. doi: 10.1097/00062752-199803000-00008. [DOI] [PubMed] [Google Scholar]
  107. Corcoran L.M., Forsyth K.P., Bianco A.E., Brown G.V., Kemp D.J. Chromosome size polymorphisms in Plasmodium falciparum can involve deletions and are frequent in natural parasite populations. Cell. 1987;44:87–95. doi: 10.1016/0092-8674(86)90487-3. [DOI] [PubMed] [Google Scholar]
  108. Cowman A.F., Coppel R.L., Saint R.B., Favaloro J., Crewther P.E., Stahl H.D., Bianco A.E., Brown G.V., Anders R.F., Kemp D.J. The ring-infected erythrocyte surface antigen (RESA) polypeptide of Plasmodium falciparum contains two separate blocks of tandem repeats endoding antigenic epitopes that are naturally immunogenic in man. Molecular Biology and Medicine. 1984;2:207–221. [PubMed] [Google Scholar]
  109. Crabb B.S., Cowman A.F. Vol. 93. 1996. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum; pp. 7289–7294. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Crabb B., Cooke B.M., Reeder J.C., Waller R.F., Caruana S.R., Davern K.M., Wickham M.E., Brown G.V., Coppel R.L., Cowman A.F. Targeted gene disruption shows that knobs enable malaria-infected red blood cells to cytoadhere under physiological shear stress. Cell. 1997;89:287–296. doi: 10.1016/s0092-8674(00)80207-x. [DOI] [PubMed] [Google Scholar]
  111. Crabb B.S., Triglia T., Waterkeyn J.G., Cowman A.F. Stable transgene expression in Plasmodium falciparum. Molecular and Biochemical Parasitology. 1997;90:131–144. doi: 10.1016/s0166-6851(97)00143-6. [DOI] [PubMed] [Google Scholar]
  112. Craig A., Fernandez-Reyes D., Mesri M., McDowall A., Altieri D.C., Hogg N., Newbold C. A functional analysis of a natural variant of intercellular adhesion molecule-1 (ICAM-1Kilifi) Human Molecular Genetics. 2000;9:525–530. doi: 10.1093/hmg/9.4.525. [DOI] [PubMed] [Google Scholar]
  113. Crandall I., Collins W.E., Gysin J., Sherman I.W. Vol. 90. 1993. Synthetic peptides based on motifs present in human band 3 protein inhibit cytoadherence/sequestration of the malaria parasite Plasmodium falciparum; pp. 4703–4707. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Crandall I., Land K.M., Sherman I.W. Plasmodium falciparum: Pfalhesin and CD36 form an adhesin/receptor pair that is responsible for the pH dependent portion of cytoadherence/sequestration. Experimental Parasitology. 1994;78:203–209. doi: 10.1006/expr.1994.1020. [DOI] [PubMed] [Google Scholar]
  115. Cranston H.A., Boylan C.W., Carroll G.L., Sutera S.P., Williamson J.R. Plasmodium falciparum maturation abolishes physiologic red blood cell deformability. Science. 1984;223:400–403. doi: 10.1126/science.6362007. [DOI] [PubMed] [Google Scholar]
  116. Culvenor J.G., Langford C.J., Crewther P.E., Saint R.B., Coppel R.L., Kemp D.J., Anders R.F., Brown G.V. Plasmodium falciparum: identification and localization of a knob protein antigen expressed by a cDNA clone. Experimental Parasitology. 1987;63:58–67. doi: 10.1016/0014-4894(87)90078-6. [DOI] [PubMed] [Google Scholar]
  117. Culvenor J.G., Day K.P., Anders R.F. Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infection and Immunity. 1991;59:1183–1187. doi: 10.1128/iai.59.3.1183-1187.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Das A., Elmendorf H.G., Li W.I., Haldar K. Biosynthesis, export and processing of a 45 kDa protein detected in membrane clefts of erythrocytes infected with Plasmodium falciparum. Biochemical Journal. 1994;302:487–496. doi: 10.1042/bj3020487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Da Silva E., Foley M., Dluzewski A.R., Murray L.J., Anders R.F., Tilley L. The Plasmodium falciparum protein RESA interacts with the erythrocyte cytoskeleton and modifies erythrocyte thermal stability. Molecular and Biochemical Parasitology. 1994;66:59–69. doi: 10.1016/0166-6851(94)90036-1. [DOI] [PubMed] [Google Scholar]
  120. David P.H., Handunnetti S.M., Leech J.H., Gamage P., Mendis K.N. Rosetting: a new cytoadherence property of malaria-infected erythrocytes. American Journal of Tropical Medicine and Hygiene. 1988;38:289–297. doi: 10.4269/ajtmh.1988.38.289. [DOI] [PubMed] [Google Scholar]
  121. Day K.P., Karamalis F., Thompson J., Barnes D.A., Peterson C., Brown H., Brown G.V., Kemp D.J. Vol. 90. 1993. Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0·3-megabase region of chromosome 9; pp. 8292–8296. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Dean N., Pelham H. Recycling of proteins from the Golgi compartment to the ER in yeast. Journal of Cell Biology. 1990;111:369–377. doi: 10.1083/jcb.111.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Decastro F.A., Ward G.E., Jambou R., Attal G., Mayau V., Jaureguiberry G., Braunbreton C., Chakrabarti D., Langsley G. Identification of a family of RAB G-proteins in Plasmodium falciparum and a detailed characterisation of PfRab6. Molecular and Biochemical Parasitology. 1996;80:77–88. doi: 10.1016/0166-6851(96)02670-9. [DOI] [PubMed] [Google Scholar]
  124. Deitsch K.W., Wellems T.E. Membrane modifications in erythrocytes parasitized by Plasmodium falciparum. Molecular and Biochemical Parasitology. 1996;76:1–10. doi: 10.1016/0166-6851(95)02575-8. [DOI] [PubMed] [Google Scholar]
  125. Dondorp A.M., Angus B.J., Hardeman M.R., Chotivanich K.T., Silamut K., Ruangveerayuth R., Kager P.A., White N.J., Vreeken J. Prognostic significance of reduced red blood cell deformability in severe falciparum malaria. American Journal of Tropical Medicine and Hygiene. 1997;57:507–511. doi: 10.4269/ajtmh.1997.57.507. [DOI] [PubMed] [Google Scholar]
  126. Dondorp A.M., Kager P.A., Vreeken J., White N.J. Abnormal blood flow and red blood cell deformability in severe malaria. Parasitology Today. 2000;16:228–232. doi: 10.1016/s0169-4758(00)01666-5. [DOI] [PubMed] [Google Scholar]
  127. Eda S., Lawler J., Sherman I.W. Plasmodium falciparum-infected erythrocyte adhesion to the type 3 repeat domain of thrombospondin-1 is mediated by a modified band 3 protein. Molecular and Biochemical Parasitology. 1999;100:195–205. doi: 10.1016/s0166-6851(99)00058-4. [DOI] [PubMed] [Google Scholar]
  128. Eisen D., Billman-Jacobe H., Marshall V.F., Fryauff D., Coppel R.L. Temporal variation of the merozoite surface protein-2 gene of Plasmodium falciparum. Infection and Immunity. 1998;66:239–246. doi: 10.1128/iai.66.1.239-246.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Elmendorf H.G., Haldar K. Secretory transport in Plasmodium. Parasitology Today. 1993;9:98–102. doi: 10.1016/0169-4758(93)90216-3. [DOI] [PubMed] [Google Scholar]
  130. Elmendorf H.G., Haldar K. Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes. Journal of Cell Biology. 1994;124:449–462. doi: 10.1083/jcb.124.4.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Etzion Z., Perkins M.E. Localization of a parasite encoded protein to erythrocyte cytoplasmic vesicles of Plasmodium falciparum-infected cells. European Journal of Cell Biology. 1989;48:174–179. [PubMed] [Google Scholar]
  132. Evans E. Structure and deformation properties of red blood cells: concepts and quantitative methods. Methods in Enzymology. 1989;173:3–35. doi: 10.1016/s0076-6879(89)73003-2. [DOI] [PubMed] [Google Scholar]
  133. Evans E., Hochmuth R. A solid-liquid composite model of the red blood cell membrane. Journal of Membrane Biology. 1977;30:351–362. doi: 10.1007/BF01869676. [DOI] [PubMed] [Google Scholar]
  134. Everitt J.I., Shadduck J.A., Steinkamp C., Clabaugh W. Experimental Babesia bovis infection in Holstein calves. Veterinary Pathology. 1986;23:556–562. doi: 10.1177/030098588602300503. [DOI] [PubMed] [Google Scholar]
  135. Facer C.A. Erythrocytes carrying mutations in spectrin and protein 4.1 show differing sensitivities to invasion by Plasmodium falciparum. Parasitology Research. 1995;81:52–57. doi: 10.1007/BF00932417. [DOI] [PubMed] [Google Scholar]
  136. Favaloro J.M., Coppel R.L., Corcoran L.M., Foote S.J., Brown G.V., Anders R.F., Kemp D.J. Structure of the RESA gene of Plasmodium falciparum. Nucleic Acids Research. 1986;14:8265–8277. doi: 10.1093/nar/14.21.8265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Fernandez V., Hommel M., Chen Q., Hagblom P., Wahlgren M. Small. clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. Journal of Experimental Medicine. 1999;190:1393–1404. doi: 10.1084/jem.190.10.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Fernandez-Reyes D., Craig A.G., Kyes S.A., Peshu N., Snow R.W., Berendt A.R., Marsh K., Newbold C.I. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Human Molecular Genetics. 1997;6:1357–1360. doi: 10.1093/hmg/6.8.1357. [DOI] [PubMed] [Google Scholar]
  139. Fischer K., Horrocks P., Preuss M., Wiesner J., Wunsch S., Camargo A.A., Lanzer M. Expression of var genes located within polymorphic subtelomeric domains of Plasmodium falciparum chromosomes. Molecular and Cellular Biology. 1997;17:3679–3686. doi: 10.1128/mcb.17.7.3679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Fischer T.M., Stohr-Lissen M., Schmid-Schonbein H. The red blood cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science. 1978;202:894–896. doi: 10.1126/science.715448. [DOI] [PubMed] [Google Scholar]
  141. Foley M., Tilley L. Home improvements: malaria and the red blood cell. Parasitology Today. 1995;11:436–439. doi: 10.1016/0169-4758(95)80032-8. [DOI] [PubMed] [Google Scholar]
  142. Foley M., Murray L.J., Anders R.F. The ring-infected erythrocyte surface antigen protein of Plasmodium falciparum is phosphorylated upon association with the host cell membrane. Molecular and Biochemical Parasitology. 1990;38:69–76. doi: 10.1016/0166-6851(90)90206-2. [DOI] [PubMed] [Google Scholar]
  143. Foley M., Tilley L., Sawyer W.H., Anders R.F. The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane. Molecular and Biochemical Parasitology. 1991;46:137–148. doi: 10.1016/0166-6851(91)90207-m. [DOI] [PubMed] [Google Scholar]
  144. Foley M., Corcoran L., Tilley L., Anders R. Plasmodium falciparum: mapping the membrane-binding domain in the ring-infected erythrocyte surface antigen. Experimental Parasitology. 1994;79:340–350. doi: 10.1006/expr.1994.1096. [DOI] [PubMed] [Google Scholar]
  145. Foote S.J., Kemp D.J. Chromosomes of malarial parasites. Trends in Genetics. 1989;5:337–342. doi: 10.1016/0168-9525(89)90139-x. [DOI] [PubMed] [Google Scholar]
  146. Francis R.B. Large-vessel occlusion in sickle cell disease: pathogenesis, clinical consequences, and therapeutic implications. Medical Hypotheses. 1991;35:88–95. doi: 10.1016/0306-9877(91)90029-x. [DOI] [PubMed] [Google Scholar]
  147. Francis R.B., Jr., Johnson C.S. Vascular occlusion in sickle cell disease: current concepts and unanswered questions. Blood. 1991;77:1405–1414. [PubMed] [Google Scholar]
  148. Fried M., Duffy P.E. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science. 1996;272:1502–1504. doi: 10.1126/science.272.5267.1502. [DOI] [PubMed] [Google Scholar]
  149. Fried M., Nosten F., Brockman A., Brabin B.J., Duffy P.E. Maternal antibodies block malaria. Nature. 1998;395:851–852. doi: 10.1038/27570. [DOI] [PubMed] [Google Scholar]
  150. Gaehtgens P., Duhrssen C., Albrecht K.H. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells. 1980;6:799–817. [PubMed] [Google Scholar]
  151. Gardiner D.L., Holt D.C., Thomas E.A., Kemp D.J., Trenholme K.R. Inhibition of Plasmodium falciparum clag9 gene function by antisense RNA. Molecular and Biochemical Parasitology. 2000;110:33–41. doi: 10.1016/s0166-6851(00)00254-1. [DOI] [PubMed] [Google Scholar]
  152. Gardner J.P., Pinches R.A., Roberts D.J., Newbold C.I. Vol. 93. 1996. Variant antigens and endothelial receptor adhesion in Plasmodium falciparum; pp. 3503–3508. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Gardner K., Bennett G.V. Recently identified erythrocyte membrane-skeletal proteins and interactions. Implications for structure and function. In: Agre P., Parker J.C., editors. Red Blood Cell Membranes: Structure, Function, Clinical Implications. Marcel Dekker; New York: 1989. pp. 1–29. [Google Scholar]
  154. Gardner M.J., Tettelin H., Carucci D.J., Cummings L.M., Aravind L., Koonin E.V., Shallom S., Mason T., Yu K., Fujii C., Pederson J., Shen K., Jing J., Aston C., Lai Z., Schwartz D.C., Pertea M., Salzberg S., Zhou L., Sutton G.G., Clayton R., White O., Smith H.O., Fraser C.M., Adams M.D., Venter J.C., Hoffman S.L. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science. 1998;282:1126–1132. doi: 10.1126/science.282.5391.1126. [DOI] [PubMed] [Google Scholar]
  155. Genton B., Al-Yaman F., Anders R., Saul A., Brown G., Pye D., Irving D.O., Briggs W.R., Mai A., Ginny M., Adiguma T., Rare L., Giddy A., Reber-Liske R., Stuerchler D., Alpers M.P. Safety and immunogenicity of a three-component blood-stage malaria vaccine in adults living in an endemic area of Papua New Guinea. Vaccine. 2000;18:2504–2511. doi: 10.1016/s0264-410x(00)00036-0. [DOI] [PubMed] [Google Scholar]
  156. Ginsburg H. How Plasmodium secures nutrients: new targets for drugs. Parasitology Today. 1994;10:102–103. doi: 10.1016/0169-4758(94)90008-6. [DOI] [PubMed] [Google Scholar]
  157. Ginsburg H. Transport pathways in the malaria-infected erythrocyte — characterization and their use as potential targets for chemotherapy. Memórias do Instituto Oswaldo Cruz. 1994;89:99–109. doi: 10.1590/s0074-02761994000600022. [DOI] [PubMed] [Google Scholar]
  158. Green M.A., Noguchi C.T., Keidan A.J., Marwah S.S., Stuart J. Polymerization of sickle cell hemoglobin at arterial oxygen saturation impairs erythrocyte deformability. Journal of Clinical Investigation. 1988;81:1669–1674. doi: 10.1172/JCI113504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Gritzmacher C.A., Reese R.T. Reversal of knob formation on Plasmodium falciparum-infected erythrocytes. Science. 1984;226:65–67. doi: 10.1126/science.6382613. [DOI] [PubMed] [Google Scholar]
  160. Gruenberg J., Sherman I.W. Vol. 80. 1983. Isolation and characterization of the plasma membrane of human erythrocytes infected with the malarial parasite Plasmodium falciparum; pp. 1087–1091. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Gruenberg J., Allred D., Sherman I. Scanning electron microscope-analysis of the protrusions (knobs) present on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Cell Biology. 1983;97:795–802. doi: 10.1083/jcb.97.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Günther K., Tummler M., Arnold H.H., Ridley R., Goman M., Scaife J.G., Lingelbach K. An exported protein of Plasmodium falciparum is synthesized as an integral membrane protein. Molecular and Biochemical Parasitology. 1991;46:149–157. doi: 10.1016/0166-6851(91)90208-n. [DOI] [PubMed] [Google Scholar]
  163. Hadley T.J., Leech J.H., Green T.J., Daniel W.A., Wahlgren M., Miller L.H., Howard R.J. A comparison of knobby (k+) and knobless (k−) parasites from two strains of Plasmodium falciparum. Molecular and Biochemical Parasitology. 1983;9:271–278. doi: 10.1016/0166-6851(83)90102-0. [DOI] [PubMed] [Google Scholar]
  164. Haldar K. Ducts, channels and transporters in Plasmodium-infected erythrocytes. Parasitology Today. 1994;10:393–395. doi: 10.1016/0169-4758(94)90230-5. [DOI] [PubMed] [Google Scholar]
  165. Haldar K. Intracellular trafficking in Plasmodium-infected erythrocytes. Current Opinion in Microbiology. 1998;1:466–471. doi: 10.1016/s1369-5274(98)80067-2. [DOI] [PubMed] [Google Scholar]
  166. Haldar K., Henderson C.L., Cross G.A. Vol. 83. 1986. Identification of the parasite transferrin receptor of Plasmodium falciparum-infected erythrocytes and its acylation via 1,2-diacyl-sn-glycerol; pp. 8565–8569. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Handunnetti S.M., Pasloske B.L., van Schravendijk M.R., Aguiar J.C., Taraschi T.F., Gormley J.A., Howard R.J. The characterization of two monoclonal antibodies which react with high molecular weight antigens of asexual Plasmodium falciparum. Molecular and Biochemical Parasitology. 1992;54:231–246. doi: 10.1016/0166-6851(92)90115-z. [DOI] [PubMed] [Google Scholar]
  168. Handunnetti S.M., van Schravendijk M.R., Hasler T., Barnwell J.W., Greenwalt D.E., Howard R.J. Involvement of CD36 on erythrocytes as a rosetting receptor for Plasmodium falciparum-infected erythrocytes. Blood. 1992;80:2097–2104. [PubMed] [Google Scholar]
  169. Hasler T., Handunnetti S.M., Aguiar J.C., Van S.M., Greenwood B.M., Lallinger G., Cegielski P., Howard R.J. In vitro rosetting, cytoadherence, and microagglutination properties of Plasmodium falciparum-infected erythrocytes from Gambian and Tanzanian patients. Blood. 1990;76:1845–1852. [PubMed] [Google Scholar]
  170. Haynes J. Erythrocytes and malaria. Current Opinion in Hematology. 1993;1:79–89. [Google Scholar]
  171. Helmby H., Cavelier L., Pettersson U., Wahlgren M. Rosetting Plasmodium falciparum-infected erythrocytes express unique strain-specific antigens on their surface. Infection and Immunity. 1993;61:284–288. doi: 10.1128/iai.61.1.284-288.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Hernandez-Rivas R., Mattei D., Sterkers Y., Peterson D.S., Wellems T.E., Scherf A. Expressed var genes are found in Plasmodium falciparum subtelomeric regions. Molecular and Cellular Biology. 1997;17:604–611. doi: 10.1128/mcb.17.2.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Herrera S., Rudin W., Herrera M., Clavijo P., Mancilla L., De P.C., Matile H., Certa U. A conserved region of the MSP-1 surface protein of Plasmodium falciparum contains a recognition sequence for erythrocyte spectrin. EMBO Journal. 1993;12:1607–1614. doi: 10.1002/j.1460-2075.1993.tb05805.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Hinterberg K., Mattei D., Wellems T.E., Scherf A. Interchromosomal exchange of a large subtelomeric segment in a Plasmodium falciparum cross. EMBO Journal. 1994;13:4174–4180. doi: 10.1002/j.1460-2075.1994.tb06735.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Hinterberg K., Scherf A., Gysin J., Toyoshima T., Aikawa M., Mazie J.C., Dasilva L.P., Mattei D. Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer's clefts. Experimental Parasitology. 1994;79:279–291. doi: 10.1006/expr.1994.1091. [DOI] [PubMed] [Google Scholar]
  176. Hirawake H., Kita K., Sharma Y.D. Variations in the C-terminal repeats of the knob-associated histidine-rich protein of Plasmodium falciparum. Biochimica et Biophysica Acta. 1997;1360:105–108. doi: 10.1016/s0925-4439(97)00007-0. [DOI] [PubMed] [Google Scholar]
  177. Ho M., Singh B., Looareesuwan S., Davis T., Bunnag D., White N.J. Clinical correlates of in vitro Plasmodium falciparum cytoadherence. Infection and Immunity. 1991;59:873–878. doi: 10.1128/iai.59.3.873-878.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Holt D.C., Gardiner D.L., Thomas E.A., Mayo M., Bourke R.E., Sutherland C.J., Carter R., Myers G., Kemp D.J., Trenholme K.R. The cytoadherence linked asexual gene family of Plasmodium falciparum: are there roles other than cytoadherence? International Journal for Parasitology. 1999;29:939–944. doi: 10.1016/s0020-7519(99)00046-6. [DOI] [PubMed] [Google Scholar]
  179. Hommel M., David P.H., Oligino L.D. Surface alterations of erythrocytes in Plasmodium falciparum malaria. Journal of Experimental Medicine. 1983;157:1137–1148. doi: 10.1084/jem.157.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Hood A.T., Fabry M.E., Costantini F., Nagel R.L., Shear H.L. Protection from lethal malaria in transgenic mice expressing sickle hemoglobin. Blood. 1996;87:1600–1603. [PubMed] [Google Scholar]
  181. Hope I.A., Mackay M., Hyde J.E., Goman M., Scaife J. The gene for an exported antigen of the malaria parasite Plasmodium falciparum cloned and expressed in Escherichia coli. Nucleic Acids Research. 1985;13:369–379. doi: 10.1093/nar/13.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Howard R.F., Schmidt C.M. The secretory pathway of Plasmodium falciparum regulates transport of P82/RAP-1 to the rhoptries. Molecular and Biochemical Parasitology. 1995;74:43–54. doi: 10.1016/0166-6851(95)02481-6. [DOI] [PubMed] [Google Scholar]
  183. Howard R.F., Stanley H.A., Reese R.T. Characterization of a high-molecular-weight phosphoprotein synthesized by the human malarial parasite Plasmodium falciparum. Gene. 1988;64:65–75. doi: 10.1016/0378-1119(88)90481-7. [DOI] [PubMed] [Google Scholar]
  184. Howard R.F., Narum D.L., Blackman M., Thurman J. Analysis of the processing of Plasmodium falciparum rhoptry-associated protein 1 and localization of Pr86 to schizont rhoptries and p67 to free merozoites. Molecular and Biochemical Parasitology. 1998;92:111–122. doi: 10.1016/s0166-6851(97)00238-7. [DOI] [PubMed] [Google Scholar]
  185. Howard R.J. Malarial proteins at the membrane of Plasmodium falciparum-infected erythrocytes and their involvement in cytoadherence to endothelial cells. Progress in Allergy. 1988;41:98–147. doi: 10.1159/000415221. [DOI] [PubMed] [Google Scholar]
  186. Howard R.J., Barnwell J.W., Kao V. Vol. 80. 1983. antigenic variation of Plasmodium knowlesi malaria: identification of the variant antigen on infected erythrocytes; pp. 4129–4133. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Howard R.J., Uni S., Aikawa M., Aley S.B., Leech J.H., Lew A.M., Wellems T.E., Rener J., Taylor D.W. Secretion of a malarial histidine-rich protein (PfHRPII) from Plasmodium falciparum-infected erythrocytes. Journal of Cell Biology. 1986;103:1269–1277. doi: 10.1083/jcb.103.4.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Howard R.J., Lyon J.A., Uni S., Saul A.J., Aley S.B., Klotz F., Panton L.J., Sherwood J.A., Marsh K., aikawa M., Rock E.P. Transport of an Mr approximately 300,000 Plasmodium falciparum protein (PfEMP2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. Journal of Cell Biology. 1987;104:1269–1280. doi: 10.1083/jcb.104.5.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Howard R.J., Barnwell J.W., Rock E.P., Neequaye J., Ofori A.D., Maloy W.L., Lyon J.A., Saul A. Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. Molecular and Biochemical Parasitology. 1988;27:207–224. doi: 10.1016/0166-6851(88)90040-0. [DOI] [PubMed] [Google Scholar]
  190. Hoyte H.M.D. Differential diagnosis of Babesia argentina and Babesia bigemina infections in cattle using thin blood smears and brain smears. Australian Veterinary Journal. 1971;47:248–250. doi: 10.1111/j.1751-0813.1971.tb02143.x. [DOI] [PubMed] [Google Scholar]
  191. Hughes M.K., Hughes A.L. Natural selection on Plasmodium surface proteins. Molecular and Biochemical Parasitology. 1995;71:99–113. doi: 10.1016/0166-6851(95)00037-2. [DOI] [PubMed] [Google Scholar]
  192. Hui G.S., Siddiqui W.A. Characterization of a Plasmodium falciparum polypeptide associated with membrane vesicles in the infected erythrocytes. Molecular and Biochemical Parasitology. 1988;29:283–293. doi: 10.1016/0166-6851(88)90083-7. [DOI] [PubMed] [Google Scholar]
  193. Hunt N.H., Stocker R. Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells. 1990;16:499–526. [PubMed] [Google Scholar]
  194. Joiner C.H. Cation transport and volume regulation in sickle red blood cells. American Journal of Physiology. 1993;264:C251–C270. doi: 10.1152/ajpcell.1993.264.2.C251. [DOI] [PubMed] [Google Scholar]
  195. Joshi P., Alam A., Chandra R., Puri S.K., Gupta C.M. Possible basis for membrane changes in nonparasitized erythrocytes of malaria-infected animals. Biochimica et Biophysica Acta. 1986;862:220–222. doi: 10.1016/0005-2736(86)90486-4. [DOI] [PubMed] [Google Scholar]
  196. Kant R., Sharma Y. Allelic forms of the knob associated histidine-rich protein gene of Plasmodium falciparum. FEBS Letters. 1996;380:147–151. doi: 10.1016/0014-5793(96)00024-5. [DOI] [PubMed] [Google Scholar]
  197. Kara U.A., Stenzel D.J., Ingram L.T., Kidson C. The parasitophorous vacuole membrane of Plasmodium falciparum: demonstration of vesicle formation using an immunoprobe. European Journal of Cell Biology. 1988;46:9–17. [PubMed] [Google Scholar]
  198. Kara U., Murray B., Pam C., Lahnstein J., Gould H., Kidson C., Saul A. Chemical characterization of the parasitophorous vacuole membrane antigen QF116 from Plasmodium falciparum. Molecular and Biochemical Parasitology. 1990;38:19–23. doi: 10.1016/0166-6851(90)90200-6. [DOI] [PubMed] [Google Scholar]
  199. Kaul D.K., Roth E.J., Nagel R.L., Howard R.J., Handunnetti S.M. Rosetting of Plasmodium falciparum-infected red blood cells with uninfected red blood cells enhances microvascular obstruction under flow conditions. Blood. 1991;78:812–819. [PubMed] [Google Scholar]
  200. Kawai S., Kano S., Suzuki M. Rosette formation by Plasmodium coatneyi-infected erythrocytes of the Japanese macaque (Macaca fuscata) American Journal of Tropical Medicine and Hygiene. 1995;53:295–299. doi: 10.4269/ajtmh.1995.53.295. [DOI] [PubMed] [Google Scholar]
  201. Kilejian A. Vol. 76. 1979. Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum; pp. 4650–4653. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Kilejian A., Olson J. Proteins and glycoproteins from human erythrocytes infected with Plasmodium falciparum. Bulletin of the World Health Organization. 1979;57:101–107. [PMC free article] [PubMed] [Google Scholar]
  203. Kilejian A., Sharma Y.D., Karoui H., Naslund L. Vol. 83. 1986. Histidine-rich domain of the knob protein of the human malaria parasite Plasmodium falciparum; pp. 7938–7941. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Kilejian A., Rashid M.A., Aikawa M., Aji T., Yang Y.F. Selective association of a fragment of the knob protein with spectrin, actin and the red blood cell membrane. Molecular and Biochemical Parasitology. 1991;44:175–182. doi: 10.1016/0166-6851(91)90003-o. [DOI] [PubMed] [Google Scholar]
  205. Knapp B., Hundt E., Kupper H.A. A new blood stage antigen of Plasmodium falciparum transported to the erythrocyte surface. Molecular and Biochemical Parasitology. 1989;37:47–56. doi: 10.1016/0166-6851(89)90101-1. [DOI] [PubMed] [Google Scholar]
  206. Knapp B., Nau U., Hundt E., Küpper H.A. A new blood stage antigen of Plasmodium falciparum highly homologous to the serine-stretch protein SERP. Molecular and Biochemical Parasitology. 1991;44:1–14. doi: 10.1016/0166-6851(91)90215-r. [DOI] [PubMed] [Google Scholar]
  207. Kochan J., Perkins M., Ravetch J.V. A tandemly repeated sequence determines the binding domain for an erythrocyte receptor binding protein of P. falciparum. Cell. 1986;44:689–696. doi: 10.1016/0092-8674(86)90834-2. [DOI] [PubMed] [Google Scholar]
  208. Konigk E., Mirtsch S. Plasmodium chabaudi-infection of mice: specific activities of erythrocyte membrane-associated enzymes and patterns of proteins and glycoproteins of erythrocyte membrane preparations. Tropenmedizin and Parasitologie. 1977;28:17–22. [PubMed] [Google Scholar]
  209. Korsgren C., Cohen C.M. Associations of human erythrocyte band 4.2. Binding to ankyrin and to the cytoplasmic domain of band 3. Journal of Biological Chemistry. 1988;263:10212–10218. [PubMed] [Google Scholar]
  210. Kun J., Hesselbach J., Schreiber M., Scherf A., Gysin J., Mattei D., Pereira da Silva L., Muller-Hill B. Cloning and expression of genomic DNA sequences coding for putative erythrocyte membrane-associated antigens of Plasmodium falciparum. Research in Immunology. 1991;142:199–210. doi: 10.1016/0923-2494(91)90059-r. [DOI] [PubMed] [Google Scholar]
  211. Kun J.F.J., Leet M., Anthony R.L., Kun J.E., Anders R.F. Plasmodium falciparum: a region of polymorphism in the 3′ end of the gene for the ring-infected erythrocyte surface antigen. Experimental Parasitology. 1994;78:418–421. doi: 10.1006/expr.1994.1046. [DOI] [PubMed] [Google Scholar]
  212. Kun J.F.J., Hibbs A.R., Saul A., McColl D.J., Coppel R.L., Anders R.F. A putative Plasmodium falciparum exported serine/threonine protein kinase. Molecular and Biochemical Parasitology. 1997;85:41–51. doi: 10.1016/s0166-6851(96)02805-8. [DOI] [PubMed] [Google Scholar]
  213. Kun J.F.J., Waller K., Coppel R.L. Plasmodium falciparum: structural and functional domains of the mature-parasite-infected erythrocyte surface antigen. Experimental Parasitology. 1999;91:258–267. doi: 10.1006/expr.1998.4374. [DOI] [PubMed] [Google Scholar]
  214. Kyes S.A., Rowe J.A., Kriek N., Newbold C.I. Vol. 96. 1999. Rifins: a second family of clonally variant proteins expressed on the surface of red blood cells infected with Plasmodium falciparum; pp. 9333–9338. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. La Greca N., Hibbs A.R., Riffkin C., Foley M., Tifley L. Identification of an endoplasmic reticulum-resident calcium-binding protein with multiple EF-hand motifs in asexual stages of Plasmodium falciparum. Molecular and Biochemical Parasitology. 1997;89:283–293. doi: 10.1016/s0166-6851(97)00134-5. [DOI] [PubMed] [Google Scholar]
  216. Langreth S.G., Peterson E. Pathogenicity, stability, and immunogenicity of a knobless clone of Plasmodium falciparum in Colombian owl monkeys. Infection and Immunity. 1985;47:760–766. doi: 10.1128/iai.47.3.760-766.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Langreth S.G., Reese R.T. Antigenicity of the infected-erythrocyte and merozoite surfaces in falciparum malaria. Journal of Experimental Medicine. 1979;150:1241–1254. doi: 10.1084/jem.150.5.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Lee M.X., Ambrus J.L., DeSouza J.M., Lee R.V. Diminished red blood cell deformability in uncomplicated human malaria. A preliminary report. Journal of Medicine. 1982;13:479–485. [PubMed] [Google Scholar]
  219. Leech J.H., Barnwell J.W., Aikawa M., Miller L.H., Howard R.J. Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton. Journal of Cell Biology. 1984;98:1256–1264. doi: 10.1083/jcb.98.4.1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Oeech J.H., Barnwell J.W., Miller L.H., Howard R.J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. Journal of Experimental Medicine. 1984;159:1567–1575. doi: 10.1084/jem.159.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Ling E., Danilov Y.N., Cohen C.M. Modulation of red blood cell band 4.1 function by cAMP-dependent kinase and protein kinase C phosphorylation. Journal of Biological Chemistry. 1988;263:2209–2216. [PubMed] [Google Scholar]
  222. Lingappa V., Chaidez J., Yost C., Hedgpeth J. Vol. 81. 1984. Determinants for protein localization: beta-lactamase signal sequence directs globin across microsomal membranes; pp. 456–460. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Looareesuwan S., Davis T., Pukrittayakamee S., Supanaranond W., Desakorn V., Silamut K., Krishna S., Boonamrung S., White N.J. Erythrocyte survival in severe falciparum malaria. Acta Tropica. 1991;48:372–373. doi: 10.1016/0001-706x(91)90014-b. [DOI] [PubMed] [Google Scholar]
  224. Lowe B.S., Mosobo M., Bull P.C. All four species of human malaria parasites form rosettes. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1998;92:526. doi: 10.1016/s0035-9203(98)90901-4. [DOI] [PubMed] [Google Scholar]
  225. Lucas J.Z., Sherman I.W. Plasmodium falciparum: thrombospondin mediates parasitized erythrocyte band 3-related adhesin binding. Experimental Parasitology. 1998;89:78–85. doi: 10.1006/expr.1998.4257. [DOI] [PubMed] [Google Scholar]
  226. Lustigman S., Anders R.F., Brown G.V., Coppel R.L. The mature-parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum associates with the erythrocyte membrane skeletal protein, band 4.1. Molecular and Biochemical Parasitology. 1990;38:261–270. doi: 10.1016/0166-6851(90)90029-l. [DOI] [PubMed] [Google Scholar]
  227. Luzzi G., Merry A., Newbold C., Marsh K., Pasvol G., Weatherall D. Surface antigen expression on Plasmodium falciparum-infected erythrocytes is modified in alpha- and beta-thalassemia. Journal of Experimental Medicine. 1991;173:785–791. doi: 10.1084/jem.173.4.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Luzzi G.A., Merry A.H., Newbold C.I., Marsh K., Pasvol G. Protection by alpha-thalassaemia against Plasmodium falciparum malaria: modified surface antigen expression rather than impaired growth or cytoadherence. Immunology Letters. 1991;30:233–240. doi: 10.1016/0165-2478(91)90031-5. [DOI] [PubMed] [Google Scholar]
  229. MacPherson G.G., Warrell M.J., White N.J., Looareesuwan S., Warrell D.A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. American Journal of Pathology. 1985;119:385–401. [PMC free article] [PubMed] [Google Scholar]
  230. Magowan C., Wollish W., Anderson L., Leech J. Cytoadherence by Plasmodium falciparum-infected erythrocytes is correlated with the expression of a family of variable proteins on infected erythrocytes. Journal of Experimental Medicine. 1988;168:1307–1320. doi: 10.1084/jem.168.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Magowan C., Coppel R.L., Lau A., Moronne M.M., Tchernia G. Mohandas N. Role of the Plasmodium falciparum mature-parasite infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytesBlood. 1995;86:3196–3204. [PubMed] [Google Scholar]
  232. Magowan C., Liang J., Yeung J., Takakuwa Y., Coppel R.L., Mohandas N. Plasmodium falciparum: influence of malarial and host erythrocyte skeletal protein interactions on phosphorylation in infected erythrocytes. Experimental Parasitology. 1998;89:40–49. doi: 10.1006/expr.1998.4261. [DOI] [PubMed] [Google Scholar]
  233. Magowan C., Nunomora W., Waller K.L., Yeung J., Liang J., Van Dort H., Low P.S., Coppel R.L., Mohandas N. Plasmodium falciparum histidine-rich protein 1 associates with the band 3 binding domain of ankyrin in the infected red blood cell membrane. Biochimica et Biophysica Acta. 2000;1502:461–470. doi: 10.1016/s0925-4439(00)00069-7. [DOI] [PubMed] [Google Scholar]
  234. Manno S., Takakuwa Y., Nagao K., Mohandas N. Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. Journal of Biological Chemistry. 1995;270:5659–5665. doi: 10.1074/jbc.270.10.5659. [DOI] [PubMed] [Google Scholar]
  235. Mattei D., Scherf A. The Pf332 gene of Plasmodium falciparum codes for a giant protein that is translocated from the parasite to the membrane of infected erythrocytes. Gene. 1992;110:71–79. doi: 10.1016/0378-1119(92)90446-v. [DOI] [PubMed] [Google Scholar]
  236. Mattei D., Berzins K., Wahlgren M., Udomsangpetch R., Perlmann P., Griesser H.W., Scherf A., Muller-Hill B., Bonnefoy S., Guillotte M., Langsley G., Pereira Da Silva L., Mercereau-Puijalon O. Cross-reactive antigenic determinants present on different Plasmodium falciparum blood-stage antigens. Parasite Immunology. 1989;11:15–29. doi: 10.1111/j.1365-3024.1989.tb00645.x. [DOI] [PubMed] [Google Scholar]
  237. Mattei D., Hinterberg K., Scherf A. PF111-and Pf332: two giant proteins synthesized in erythrocytes infected wiith Plasmodium falciparum. Parasitology Today. 1992;8:426–428. doi: 10.1016/0169-4758(92)90197-a. [DOI] [PubMed] [Google Scholar]
  238. Mattei D., Berry L., Couffin S., Richard O. The transport of the histidine-rich protein I from Plasmodium falciparum is insensitive to brefeldin A. In: Bock G.R., Cardew G., editors. Transport and Trafficking in the Malaria-Infected Erythrocyte. Vol. 226. John Wiley and Sons; Chichester: 1999. pp. 215–226. (Novartis Foundation Symposium). [DOI] [PubMed] [Google Scholar]
  239. Maubert B., Fievet N., Tami G., Boudin C., Deloron P. Cytoadherence of Plasmodium falciparum-infected erythrocytes in the human placenta. Parasite Immunology. 2000;22:191–199. doi: 10.1046/j.1365-3024.2000.00292.x. [DOI] [PubMed] [Google Scholar]
  240. McCormick C., Craig A., Roberts D., Newbold C., Berendt A. Intercellular adhesion molecule-1 and CD36 synergise to mediate adherence of Plasmodium falciparum-infected erythrocytes to human microvascular endothelial cells. Journal of Clinical Investigation. 1997;100:2521–2529. doi: 10.1172/JCI119794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. McGoron A.J., Joiner C.H., Palascak M.B., Claussen W.J., Franco R.S. Dehydration of mature and immature sickle red blood cells during fast oxygenation/deoxygenation cycles: role of KCl cotransport and extracellular calcium. Blood. 2000;95:2164–2168. [PubMed] [Google Scholar]
  242. Menendez C., Fleming A.F., Alonso P.L. Malaria-related anaemia. Parasitology Today. 2000;16:469–476. doi: 10.1016/s0169-4758(00)01774-9. [DOI] [PubMed] [Google Scholar]
  243. Miller L.H., Usami S., Chien S. Alteration in the rheologic properties of Plasmodium knowlesi-infected red blood cells. A possible mechanism for capillary obstruction. Journal of Clinical Investigation. 1971;50:1451–1455. doi: 10.1172/JCI106629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Miller L.H., Chien S., Usami S. Decreased deformability of Plasmodium coatneyi-infected red blood cells and its possible relation to cerebral malaria. American Journal of Tropical Medicine and Hygiene. 1972;21:133–136. doi: 10.4269/ajtmh.1972.21.133. [DOI] [PubMed] [Google Scholar]
  245. Mohandas N. Molecular basis for red blood cell membrane viscoelastic properties. Biochemical Society Transactions. 1992;20:776–782. doi: 10.1042/bst0200776. [DOI] [PubMed] [Google Scholar]
  246. Mohandas N., Chasis J.A. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Seminars in Hematology. 1993;30:171–192. [PubMed] [Google Scholar]
  247. Mohandas N., Evans E. Mechanical properties of the red blood cell membrane in relation to molecular structure and genetic defects. Annual Review of Biophysics and Biomolecular Structure. 1994;23:787–818. doi: 10.1146/annurev.bb.23.060194.004035. [DOI] [PubMed] [Google Scholar]
  248. Mohandas N., Lie-Injo L.E., Friedman M., Mak J.W. Rigid membranes of Malayan ovalocytes: a likely genetic barrier against malaria. Blood. 1984;63:1385–1392. [PubMed] [Google Scholar]
  249. Mohandas N., Winardi R., Knowles D., Leung A., Parra M., George E., Conboy J., Chasis J. Molecular basis for membrane rigidity of hereditary ovalocytosis. A novel mechanism involving the cytoplasmic domain of band 3. Journal of Clinical Investigation. 1992;89:686–692. doi: 10.1172/JCI115636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Morris C.L., Rucknagel D.L., Joiner C.H. Deoxygenation-induced changes in sickle cell-sickle cell adhesion. Blood. 1993;81:3138–3145. [PubMed] [Google Scholar]
  251. Muller H.M., Reckman I., Hollingdale M.R., Bujard H., Robson K.J., Crisanti A. Thrombospondin related anonymous protein (TRAP) of Plasmodium falciparum binds specifically to sulfated glycoconjugates and to HepG2 hepatoma cells suggesting a role for this molecule in sporozoite invasion of hepatocytes. EMBO Journal. 1993;12:2881–2889. doi: 10.1002/j.1460-2075.1993.tb05950.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Murray M.C., Perkins M.E. Phosphorylation of erythrocyte membrane and cytoskeleton proteins in cells infected with Plasmodium falciparum. Molecular and Biochemical Parasitology. 1989;34:229–236. doi: 10.1016/0166-6851(89)90051-0. [DOI] [PubMed] [Google Scholar]
  253. Nagao E., Kaneko O., Dvorak J.A. Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy. Journal of Structural Biology. 2000;130:34–44. doi: 10.1006/jsbi.2000.4236. [DOI] [PubMed] [Google Scholar]
  254. Nagel R.L., Roth E.F., Jr. Malaria and red blood cell genetic defects. Blood. 1989;74:1213–1221. [PubMed] [Google Scholar]
  255. Nakamura K., Hasler T., Morehead K., Howard R.J., Aikawa M. Plasmodium falciparum-infected erythrocyte receptor(s) for CD36 and thrombospondin are restricted to knobs on the erythrocyte surface. Journal of Histochemistry and Cytochemistry. 1992;40:1419–1422. doi: 10.1177/40.9.1380530. [DOI] [PubMed] [Google Scholar]
  256. Nash G.B., Johnson C.S., Meiselman H.J. Mechanical properties of oxygenated red blood cells in sickle cell (HbSS) disease. Blood. 1984;63:73–82. [PubMed] [Google Scholar]
  257. Nash G.B., Johnson C.S., Meiselman H.J. Influence of oxygen tension on the viscoelastic behavior of red blood cells in sickle cell disease. Blood. 1986;67:110–118. [PubMed] [Google Scholar]
  258. Nash G.B., O'Brien E., Gordon S.E., Dormandy J.A. Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum. Blood. 1989;74:855–861. [PubMed] [Google Scholar]
  259. Nash G.B., Cooke B.M., Carlson J., Wahlgren M. Rheological properties of rosettes formed by red blood cells parasitized by Plasmodium falciparum. British Journal of Haematology. 1992;82:757–763. doi: 10.1111/j.1365-2141.1992.tb06955.x. [DOI] [PubMed] [Google Scholar]
  260. Nash G.B., Cooke B.M., Marsh K., Berendt A., Newbold C., Stuart J. Rheological analysis of the adhesive interactions of red blood cells parasitized by Plasmodium falciparum. Blood. 1992;79:798–807. [PubMed] [Google Scholar]
  261. Naumann K.M., Jones G.L., Saul A., Smith R. A Plasmodium falciparum exo-antigen alters erythrocyte membrane deformability. FEBS Letters. 1991;292:95–97. doi: 10.1016/0014-5793(91)80842-q. [DOI] [PubMed] [Google Scholar]
  262. Newbold C.I. Antigenic variation in Plasmodium falciparum: mechanisms and consequences. Current Opinion in Microbiology. 1999;2:420–425. doi: 10.1016/S1369-5274(99)80074-5. [DOI] [PubMed] [Google Scholar]
  263. Newbold C., Craig A., Kyes S., Berendt A., Snow R., Peshu N., Marsh K. PfEMPI, polymorphism and pathogenesis. Annals of Tropical Medicine and Parasitology. 1997;91:551–557. doi: 10.1080/00034989760923. [DOI] [PubMed] [Google Scholar]
  264. Newbold C., Warn P., Black G., Berendt A., Craig A., Snow B., Msobo M., Peshu N., Marsh K. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. American Journal of Tropical Medicine and Hygiene. 19976;57:389–398. doi: 10.4269/ajtmh.1997.57.389. [DOI] [PubMed] [Google Scholar]
  265. Newbold C., Craig A., Kyes S., Rowe A., Fernandez-Reyes D., Fagan T. Cytoadherence, pathogenesis and the infected red blood cell surface in Plasmodium falciparum. International Journal for Parasitology. 1999;29:927–937. doi: 10.1016/s0020-7519(99)00049-1. [DOI] [PubMed] [Google Scholar]
  266. Nunomura W., Takakuwa Y., Parra M., Conboy J., Mohandas N. Regulation of protein 4.1 R, p55 and glycophorin C ternary complex in human erythrocyte membrane. Journal of Biological Chemistry. 2000;275:24540–24546. doi: 10.1074/jbc.M002492200. [DOI] [PubMed] [Google Scholar]
  267. Ockenhouse C.F., Ho M., Tandon N.N., Van Seventer G., Shaw S., White N.J., Jamieson G.A., Chulay J.D., Webster H.K. Molecular basis of sequestration in severe and uncomplicated Plasmodium falciparum malaria: differential adhesion of infected erythrocytes to CD36 and ICAM-1. Journal of Infectious Diseases. 1991;164:163–169. doi: 10.1093/infdis/164.1.163. [DOI] [PubMed] [Google Scholar]
  268. Ockenhouse C.F., Klotz F.W., Tandon N.N., Jamieson G.A. Vol. 88. 1991. Sequestrin, a CD36 recognition protein on Plasmodium falciparum malaria-infected erythrocytes identified by anti-idiotype antibodies; pp. 3175–3179. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Ockenhouse C.F., Tegoshi T., Maeno Y., Benjamin C., Ho M., Kan K.E., Thway Y., Win K., Aikawa M., Lobb R.R. Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. Journal of Experimental Medicine. 1992;176:1183–1189. doi: 10.1084/jem.176.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. O'Connor R.M., Lane T.J., Stroup S.E., Allred D.R. Characterization of a variant erythrocyte surface antigen (VESA1) expressed by Babesia bovis during antigenic variation. Molecular and Biochemical Parasitology. 1997;89:259–270. doi: 10.1016/s0166-6851(97)00125-4. [DOI] [PubMed] [Google Scholar]
  271. O'Connor R.M., Long J.A., Allred D.R. Cytoadherence of Babesia bovis-infected erythrocytes to bovine brain capillary endothelial cells provides an in vitro model for sequestration. Infection and Immunity. 1999;67:3921–3928. doi: 10.1128/iai.67.8.3921-3928.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Oh S., Chishti A., Palek J., Liu S. Erythrocyte membrane alterations in Plasmodium falciparum malaria sequestration. Current Opinion in Hematology. 1997;4:148–154. doi: 10.1097/00062752-199704020-00012. [DOI] [PubMed] [Google Scholar]
  273. Oh S.S., Voigt S., Fisher D., Yi S.J., LeRoy P.J., Derick L.H., Liu S., Chishti A.H. Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Molecular and Biochemical Parasitology. 2000;108:237–247. doi: 10.1016/s0166-6851(00)00227-9. [DOI] [PubMed] [Google Scholar]
  274. Oquendo P., Hundt E., Lawler J., Seed B. CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell. 1989;58:95–101. doi: 10.1016/0092-8674(89)90406-6. [DOI] [PubMed] [Google Scholar]
  275. Pasloske B.L., Baruch D.I., Van S.M., Handunnetti S.M., Aikawa M., Fujioka H., Taraschi T.F., Gormley J.A., Howard R.J. Cloning and characterization of a Plasmodium falciparum gene encoding a novel high-molecular weight host membrane-associated protein, PfEMP3. Molecular and Biochemical Parasitology. 1993;59:59–72. doi: 10.1016/0166-6851(93)90007-k. [DOI] [PubMed] [Google Scholar]
  276. Pasloske B.L., Baruch D.I., Ma C., Taraschi T.F., Gormley J.A., Howard R.J. PfEMP3 and HRPI: co-expressed genes localized to chromosome 2 of Plasmodium falciparum. Gene. 1994;144:131–136. doi: 10.1016/0378-1119(94)90217-8. [DOI] [PubMed] [Google Scholar]
  277. Paulitschke M., Nash G.B. Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum. Journal of Laboratory and Clinical Medicine. 1993;122:581–589. [PubMed] [Google Scholar]
  278. Perlmann H., Berzins K., Wahlgren M., Carlsson J., Björkman A., Patarroyo M.E., Perlmann P. Antibodies in malarial sera to parasite antigens in the membrane of erythrocytes infected with early asexual stages of Plasmodium falciparum. Journal of Experimental Medicine. 1984;159:1686–1704. doi: 10.1084/jem.159.6.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Petersen C., Nelson R., Magowan C., Wollish W., Jensen J., Leech J. The mature erythrocyte surface antigen of Plasmodium falciparum is not required for knobs or cytoadherence. Molecular and Biochemical Parasitology. 1989;36:61–65. doi: 10.1016/0166-6851(89)90200-4. [DOI] [PubMed] [Google Scholar]
  280. Peterson M.G., Crewther P.E., Thompson J.K., Corcoran L.M., Coppel R.L., Brown G.V., Anders R.F., Kemp D.J. A second antigenic heat shock protein of Plasmodium falciparum. DNA. 1988;7:71–78. doi: 10.1089/dna.1988.7.71. [DOI] [PubMed] [Google Scholar]
  281. Pfeffer S.R., Rothman J.E. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annual Review of Biochemistry. 1987;56:829–852. doi: 10.1146/annurev.bi.56.070187.004145. [DOI] [PubMed] [Google Scholar]
  282. Podgorski A., Elbaum D. Properties of red blood cell membrane proteins: mechanism of spectrin and band 4.1 interaction. Biochemistry. 1985;24:7871–7876. doi: 10.1021/bi00348a004. [DOI] [PubMed] [Google Scholar]
  283. Pologe L.G., Ravetch J.V. A chromosomal rearrangement in a P. falciparum histidine-rich protein gene is associated with the knobless phenotype. Nature. 1986;322:474–477. doi: 10.1038/322474a0. [DOI] [PubMed] [Google Scholar]
  284. Pologe L.G., Pavlovec A., Shio H., Ravetch J.V. Vol. 84. 1987. Primary structure and subcellular localization of the knob-associated histidine-rich protein of Plasmodium falciparum; pp. 7139–7143. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Pongponram E., Riganti M., Punpoowong B., Aikawa M. Microvascular sequestration of parasitized erythrocytes in human falciparum malaria: a pathological study. American Journal of Tropical Medicine and Hygiene. 1991;44:168–175. doi: 10.4269/ajtmh.1991.44.168. [DOI] [PubMed] [Google Scholar]
  286. Pouvelle B., Spiegel R., Hsiao L., Howard R.J., Morris R.L., Thomas A.P., Taraschi T.F. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature. 1991;353:73–75. doi: 10.1038/353073a0. [DOI] [PubMed] [Google Scholar]
  287. Pouvelle B., Gormley J.A., Taraschi T.F. Characterization of trafficking pathways and membrane genesis in malaria-infected erythrocytes. Molecular and Biochemical Parasitology. 1994;66:83–96. doi: 10.1016/0166-6851(94)90038-8. [DOI] [PubMed] [Google Scholar]
  288. Pouvelle B., Buffet P.A., Lepolard C., Scherf A., Gysin J. Cytoadhesion of Plasmodium falciparum ring-stage-infected erythrocytes. Nature Medicine. 2000;6:1264–1268. doi: 10.1038/81374. [DOI] [PubMed] [Google Scholar]
  289. Rabilloud T., Blisnick T., Heller M., Luche S., Aebersold R., Lunardi J., Braun-Breton C. Analysis of membrane proteins by two-dimensional electrophoresis: comparison of the proteins extracted from normal or Plasmodium falciparum-infected erythrocyte ghosts. Electrophoresis. 1999;20:3603–3610. doi: 10.1002/(SICI)1522-2683(19991201)20:18<3603::AID-ELPS3603>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  290. Ramsey E.M., Donner M.W. Saunders; Philadelphia: 1980. (Placental Vasculature and Circulation: Anatomy, Physiology, Radiology, Clinical Aspects: Atlas and Textbook). [Google Scholar]
  291. Raventos-Suarez C., Kaul D.K., Macaluso F., Nagel R.L. Vol. 82. 1985. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes; pp. 3829–3833. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Ravetch J.V., Kochan J., Perkins M. Isolation of the gene for a glycophorin-binding protein implicated in erythrocyte invasion by a malaria parasite. Science. 1985;227:1593–1597. doi: 10.1126/science.3883491. [DOI] [PubMed] [Google Scholar]
  293. Read D.G., Bushell G.R., Kidson C. The effect of Plasmodium falciparum exo-antigens on the morphology of uninfected erythrocytes. Parasitology. 1990;100:185–190. doi: 10.1017/s0031182000061187. [DOI] [PubMed] [Google Scholar]
  294. Reeder J.C., Cowman A.F., Davern K.M., Beeson J.G., Thompson J.K., Rogerson S.J., Brown G.V. Vol. 96. 1999. The adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1; pp. 5198–5202. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Ringwald P., Peyron F., Lepers J.P., Rabarison P., Rakotomalala C., Razanamparany M., Rabodonirina M., Roux J., Lebras J. Parasite virulence factors during falciparum malaria: rosetting, cytoadherence, and modulation of cytoadherence by cytokines. Infection and Immunity. 1993;61:5198–5204. doi: 10.1128/iai.61.12.5198-5204.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Roberts D.D., Sherwood J.A., Spitalnik S.L., Panton L.J., Howard R.J., Dixit V.M., Frazier W.A., Miller L.H., Ginsburg V. Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature. 1985;318:64–66. doi: 10.1038/318064a0. [DOI] [PubMed] [Google Scholar]
  297. Roberts D.J., Craig A.G., Berendt A.R., Pinches R., Nash G., Marsh K., Newbold C.I. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature. 1992;357:689–692. doi: 10.1038/357689a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Roberts D.J., Pain A., Kai O., Kortok M., Marsh K. Autoagglutination of malaria-infected red blood cells and malaria severity. Lancet. 2000;355:1427–1428. doi: 10.1016/S0140-6736(00)02143-7. [DOI] [PubMed] [Google Scholar]
  299. Rodriguez M.H., Jungery M. A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor. Nature. 1986;324:388–391. doi: 10.1038/324388a0. [DOI] [PubMed] [Google Scholar]
  300. Rogerson S.J., Reeder J.C., Alyaman F., Brown G.V. Sulfated glycoconjugates as disrupters of Plasmodium falciparum erythrocyte rosettes. American Journal of Tropical Medicine and Hygiene. 1994;51:198–203. doi: 10.4269/ajtmh.1994.51.198. [DOI] [PubMed] [Google Scholar]
  301. Rogerson S.J., Chaiyaroj S.C., Ng K., Reeder J.C., Brown G.V. Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum infected erythrocytes. Journal of Experimental Medicine. 1995;182:15–20. doi: 10.1084/jem.182.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Rogerson S.J., Novakovic S., Cooke B.M., Brown G.V. Plasmodium falciparum-infected erythrocytes adhere to the proteoglycan thrombomodulin in static and flow-based systems. Experimental Parasitology. 1997;86:8–18. doi: 10.1006/expr.1996.4142. [DOI] [PubMed] [Google Scholar]
  303. Rothman J.E. Mechanisms of intracellular protein transport. Nature. 1994;372:55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  304. Rothman J.E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992;355:409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
  305. Rowe A., Obeiro J., Newbold C.I., Marsh K. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infection and Immunity. 1995;63:2323–2326. doi: 10.1128/iai.63.6.2323-2326.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Rowe J.A., Moulds J.M., Newbold C.I., Miller L.H. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement receptor 1. Nature. 1997;388:292–295. doi: 10.1038/40888. [DOI] [PubMed] [Google Scholar]
  307. Rowe J.A., Rogerson S.J., Raza A., Moulds J.M., Kazatchkine M.D., Marsh K., Newbold C.I., Atkinson J.P., Miller L.H. Mapping of the region of complement receptor (CR) 1 required for Plasmodium falciparum rosetting and demonstration of the importance of CR1 in rosetting in field isolates. Journal of Immunology. 2000;165:6341–6346. doi: 10.4049/jimmunol.165.11.6341. [DOI] [PubMed] [Google Scholar]
  308. Rowland P.G., Nash G.B., Cooke B.M., Stuart J. Comparative study of the adhesion of sickle cells and malaria-parasitized red blood cells to cultured endothelium. Journal of Laboratory and Clinical Medicine. 1993;121:706–713. [PubMed] [Google Scholar]
  309. Ruangjirachuporn W., Udomsangpetch R., Carlsson J., Drenckhahn D., Perlmann P., Berzins K. Plasmodium falciparum: analysis of the interaction of antigen Pf155/RESA with the erythrocyte membrane. Experimental Parasitology. 1991;73:62–72. doi: 10.1016/0014-4894(91)90008-k. [DOI] [PubMed] [Google Scholar]
  310. Rubio J.P., Thompson J.K., Cowman A.F. The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. EMBO Journal. 1996;15:4069–4077. [PMC free article] [PubMed] [Google Scholar]
  311. Salmon M.G., De Souza J.B., Butcher G.A., Playfair J.H. Premature removal of uninfected erythrocytes during malarial infection of normal and immunodeficient mice. Clinical and Experimental Immunology. 1997;108:471–476. doi: 10.1046/j.1365-2249.1997.3991297.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Saul A., Lawrence G., Smillie A., Rzepczyk C., Reed C., Taylor D., Anderson K., Stowers A., Kemp R., Allworth A., Anders R., Brown G., Pye D., Schoofs P., Irving D., Dyer S., Woodrow G., Briggs W., Reber R., Sturchler D. Human phase I vaccine trials of 3 recombinant asexual stage malaria antigens with montanide ISA720 adjuvant. Vaccine. 1999;17:3145–3159. doi: 10.1016/s0264-410x(99)00175-9. [DOI] [PubMed] [Google Scholar]
  313. Schetters T.P.M., Eling W.M.C. Can Babesia infections be used as a model for cerebral malaria? Parasitology Today. 1999;15:492–497. doi: 10.1016/s0169-4758(99)01566-5. [DOI] [PubMed] [Google Scholar]
  314. Schrével J., Deguercy A., Mayer R., Monsigny M. Proteases in malaria-infected red blood cells. Blood Cells. 1990;16:563–584. [PubMed] [Google Scholar]
  315. Schulman S., Roth E.F.J., Cheng B., Rybicki A.C., Sussman I.I., Wong M., Wang W., Ranney H.M., Nagel R.L., Schwartz R.S. Vol. 87. 1990. Growth of Plasmodium falciparum in human erythrocytes containing abnormal membrane proteins; pp. 7339–7343. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  316. Secomb T.W., Skalak R. A two-dimensional model for capillary flow of an asymmetric cell. Microvascular Research. 1982;24:194–203. doi: 10.1016/0026-2862(82)90056-5. [DOI] [PubMed] [Google Scholar]
  317. Sharma Y.D., Kilejian A. Structure of the knob protein (kp) gene of Plasmodium falciparum. Molecular and Biochemical Parasitology. 1987;26:11–16. doi: 10.1016/0166-6851(87)90124-1. [DOI] [PubMed] [Google Scholar]
  318. Shear H.L. Transgenic and mutant animal models to study mechanisms of protection of red blood cell genetic defects against malaria. Experientia. 1993;49:37–42. doi: 10.1007/BF01928786. [DOI] [PubMed] [Google Scholar]
  319. Shear H.L., Roth E.J., Fabry M.E., Costantini F.D., Pachnis A., Hood A., Nagel R.L. Transgenic mice expressing human sickle hemoglobin are partially resistant to rodent malaria. Blood. 1993;81:222–226. [PubMed] [Google Scholar]
  320. Shear H.L., Grinberg L., Gilman J., Fabry M.E., Stamatoyannopoulos G., Goldberg D.E., Nagel R.L. Transgenic mice expressing human fetal globin are protected from malaria by a novel mechanism. Blood. 1998;92:2520–2526. [PubMed] [Google Scholar]
  321. Sherman I.W. Membrane structure and function of malaria parasites and the infected erythrocyte. Parasitology. 1985;91:609–645. doi: 10.1017/s0031182000062843. [DOI] [PubMed] [Google Scholar]
  322. Sherman I.W., Greenan J.R. Plasmodium falciparum: regional differences in lectin and cationized ferritin binding to the surface of the malaria-infected human erythrocyte. Parasitology. 1986;93:17–32. doi: 10.1017/s0031182000049799. [DOI] [PubMed] [Google Scholar]
  323. Sherman I.W., Jones L.A. Plasmodium lophurae: membrane proteins of erythrocyte-free plasmodia and malaria-infected red blood cells. Journal of Protozoology. 1979;26:489–501. doi: 10.1111/j.1550-7408.1979.tb04659.x. [DOI] [PubMed] [Google Scholar]
  324. Sherwood J.A., Roberts D.D., Marsh K., Harvey E.B., Spitalnik S.L., Miller L.H., Howard R.J. Thrombospondin binding by parasitized erythrocyte isolates in falciparum malaria. American Journal of Tropical Medicine and Hygiene. 1987;36:228–233. doi: 10.4269/ajtmh.1987.36.228. [DOI] [PubMed] [Google Scholar]
  325. Shirley M.W., Biggs B.A., Forsyth K.P., Brown H.J., Thompson J.K., Brown G.V., Kemp D.J. Chromosome 9 from independent clones and isolates of Plasmodium falciparum undergoes subtelomeric deletions with similar breakpoints in vitro. Molecular and Biochemical Parasitology. 1990;40:137–145. doi: 10.1016/0166-6851(90)90087-3. [DOI] [PubMed] [Google Scholar]
  326. Siano J.P., Grady K.K., Millet P., Wick T.M. Short report. Plasmodium falciparum: cytoadherence to αVβ3 on human microvascular endothelial cells. American Journal of Tropical Medicine and Hygiene. 1998;59:77–99. doi: 10.4269/ajtmh.1998.59.77. [DOI] [PubMed] [Google Scholar]
  327. Silamut K., Phu N.H., Whitty C., Turner G.D., Louwrier K., Mai N.T., Simpson J.A., Hien T.T., White N.J. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. American Journal of Pathology. 1999;155:395–410. doi: 10.1016/S0002-9440(10)65136-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Sim B.K.L., Chitnis C.E., Wasnioska K., Hadley T.J., Miller L.H. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science. 1994;264:1941–1944. doi: 10.1126/science.8009226. [DOI] [PubMed] [Google Scholar]
  329. Simmons D., Woollett G., Bergin C.M., Kay D., Scaife J. A malaria protein exported into a new compartment within the host erythrocyte. EMBO Journal. 1987;6:485–491. doi: 10.1002/j.1460-2075.1987.tb04779.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  330. Smith J.D., Chitnis C.E., Craig A.G., Roberts D.J., Hudson-Taylor D.E., Peterson D.S., Pinches R., Newbold C.I., Miller L.H. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–110. doi: 10.1016/0092-8674(95)90056-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  331. Smith J.D., Craig A.G., Kriek N., Hudson-Taylor D., Kyes S., Fagen T., Pinches R., Baruch D.I., Newbold C.I., Miller L.H. Vol. 97. 2000. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria; pp. 1766–1771. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  332. Stahl H.D., Crewther P.E., Anders R.F., Brown G.V., Coppel R.L., Bianco A.E., Mitchell G.F., Kemp D.J. Vol. 82. 1985. Interspersed blocks of repetitive and charged amino acids in a dominant immunogen of Plasmodium falciparum; pp. 543–547. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  333. Stahl H.D., Kemp D.J., Crewther P.E., Scanlon D.B., Woodrow G., Brown G.V., Bianco A.E., Anders R.F., Coppel R.L. Sequence of a cDNA encoding a small polymorphic histidine- and alanine-rich protein from Plasmodium falciparum. Nucleic Acids Research. 1985;13:7837–7846. doi: 10.1093/nar/13.21.7837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  334. Stahl H.D., Bianco A.E., Crewther P.E., Anders R.E., Kyne A.P., Coppel R.L., Mitchell G.F., Kemp D.J., Brown G.V. Sorting large numbers of clones expressing Plasmodium falciparum antigens in Escherichia coli by differential antibody screening. Molecular Biology and Medicine. 1986;3:351–368. [PubMed] [Google Scholar]
  335. Stahl H.D., Crewther P.E., Anders R.F., Kemp D.J. Structure of the fira gene of Plasmodium falciparum. Molecular Biology and Medicine. 1987;4:199–211. [PubMed] [Google Scholar]
  336. Stanley H.A., Reese R.T. Vol. 83. 1986. Plasmodium falciparum polypeptides associated with the infected erythrocyte plasma membrane; pp. 6093–6097. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  337. Stuart J. Erythrocyte rheology. Journal of Clinical Pathology. 1985;38:965–977. doi: 10.1136/jcp.38.9.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Stuart J., Bull B., Juhan-Vague I. Microrheological techniques for the measurement of erythrocyte deformability. In: Chayen J., Bitensky L., editors. Investigative Microtechniques in Medicine and Biology. Marcel Dekker; New York: 1984. pp. 297–326. [Google Scholar]
  339. Su X.Z., Heatwole V.M., Wertheimer S.P., Guinet F., Herrfeldt J.A., Peterson D.S., Ravetch J.A., Wellems T.E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995;82:89–100. doi: 10.1016/0092-8674(95)90055-1. [DOI] [PubMed] [Google Scholar]
  340. Swift A., Machamer C. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. Journal of Cell Biology. 1991;115:19–30. doi: 10.1083/jcb.115.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Tanabe K. Ion metabolism in malaria-infected erythrocytes. Blood Cells. 1990;16:437–449. [PubMed] [Google Scholar]
  342. Tanabe K. Plasmodium and the infected erythrocyte: glucose transport in malaria infected erythrocytes. Parasitology Today. 1990;6:225–229. doi: 10.1016/0169-4758(90)90199-e. [DOI] [PubMed] [Google Scholar]
  343. Taylor D.W., Parra M., Chapman G.B., Steams M.E., Rener J., Aikawa M., Uni S., Aley S.B., Panton L.J., Howard R.J. Localization of Plasmodium falciparum histidine-rich protein 1 in the erythrocyte skeleton under knobs. Molecular and Biochemical Parasitology. 1987;25:165–174. doi: 10.1016/0166-6851(87)90005-3. [DOI] [PubMed] [Google Scholar]
  344. Taylor D.W., Parra M., Steams M.E. Plasmodium falciparum: fine structural changes in the cytoskeletons of infected erythrocytes. Experimental Parasitology. 1987;64:178–187. doi: 10.1016/0014-4894(87)90141-x. [DOI] [PubMed] [Google Scholar]
  345. Thevenin B.J., Low P.S. Kinetics and regulation of the ankyrin-band 3 interaction of the human red blood cell membrane. Journal of Biological Chemistry. 1990;265:16166–16172. [PubMed] [Google Scholar]
  346. Thevenin B.J.M., Crandall I., Ballas S.K., Sherman I.W., Shohet S.B. Band 3 peptides block the adherence of sickle cells to endothelial cells in vitro. Blood. 1997;90:4172–4179. [PubMed] [Google Scholar]
  347. Thompson J.K., Rubio J.P., Caruana S., Brockman A., Wickham M.E., Cowman A.F. The chromosomal organization of the Plasmodium falciparum var gene family is conserved. Molecular and Biochemical Parasitology. 1997;87:49–60. doi: 10.1016/s0166-6851(97)00041-8. [DOI] [PubMed] [Google Scholar]
  348. Trager W., Rudzinska M.A., Bradbury P.C. The fine structure of Plasmodium falciparum and its host erythrocytes in natural malarial infections in man. Bulletin of the World Health Organization. 1966;35:883–885. [PMC free article] [PubMed] [Google Scholar]
  349. Trelka D.P., Schneider T.G., Reeder J.C., Taraschi T.F. Evidence for vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Molecular and Biochemical Parasitology. 2000;106:131–145. doi: 10.1016/s0166-6851(99)00207-8. [DOI] [PubMed] [Google Scholar]
  350. Trenholme K.R., Gardiner D.L., Holt D.C., Thomas E.A., Cowman A.F., Kemp D.J. Vol. 97. 2000. Clag9: a cytoadherence gene in Plasmodium falciparum essential for binding of parasitized erythrocytes to CD36; pp. 4029–4033. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  351. Treutiger C.J., Hedlund I., Helmby H., Carlson J., Jepson A., Twumasi P., Kwiatkowski D., Greenwood B.M., Wählgren M. Rosette formation in Plasmodium falciparum isolates and anti-rosette activity of sera from Gambians with cerebral or uncomplicated malaria. American Journal of Tropical Medicine and Hygiene. 1992;46:503–510. doi: 10.4269/ajtmh.1992.46.503. [DOI] [PubMed] [Google Scholar]
  352. Treutiger C., Heddini A., Fernandez V., Mulle W., Wählgren M. PECAM1/CD31, an endothelial receptor for binding Plasmodium falciparum-infected erythrocytes. Nature Medicine. 1997;3:1405–1408. doi: 10.1038/nm1297-1405. [DOI] [PubMed] [Google Scholar]
  353. Triglia T., Stahl H.D., Crewther P.E., Scanlon D., Brown G.V., Anders R.F., Kemp D.J. The complete sequence of the gene for the knob-associated histidine-rich protein from Plasmodium falciparum. EMBO Journal. 1987;6:1413–1419. doi: 10.1002/j.1460-2075.1987.tb02382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  354. Triglia T., Stahl H.D., Crewther P.E., Silva A., Anders R.F., Kemp D.J. Structure of a Plasmodium falciparum gene that encodes a glutamic acid-rich protein (garp) Molecular and Biochemical Parasitology. 1988;31:199–201. doi: 10.1016/0166-6851(88)90170-3. [DOI] [PubMed] [Google Scholar]
  355. Turner G.D.H., Morrison H., Jones M., Davis T.M.E., Looareesuwan S., Buley I.D., Gatter K.C., Newbold C.I., Pukritayakamee S., Nagachinta B., White N.J., Berendt A.R. An immunohistochemical study of the pathology of fatal malaria — evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. American Journal of Pathology. 1994;145:1057–1069. [PMC free article] [PubMed] [Google Scholar]
  356. Tyler J., Reinhardt B., Branton D. Associations of erythrocyte membrane proteins. Binding of purified bands 2.1 and 4.1 to spectrin. Journal of Biological Chemistry. 1980;255:7034–7039. [PubMed] [Google Scholar]
  357. Udomsangpetch R., Lundgren K., Berzins K., Wåhlin B., Perlmann H., Troye-Blomberg M., Carlsson J., Wahlgren M., Perlmann P., Björkman A. Human monoclonal antibodies to Pf155, a major antigen of malaria parasite Plasmodium falciparum. Science. 1986;231:57–59. doi: 10.1126/science.3510452. [DOI] [PubMed] [Google Scholar]
  358. Udomsangpetch R., Aikawa M., Berzins K., Wahlgren M., Perlmann P. Cytoadherence of knobless Plasmodium falciparum-infected erythrocytes and its inhibition by a human monoclonal antibody. Nature. 1989;338:763–765. doi: 10.1038/338763a0. [DOI] [PubMed] [Google Scholar]
  359. Udomsangpetch R., Carlson J., Wåhlin B., Holmquist G., Ozaki L.S., Scherf A., Mattei D., Mercereau-Puijalon O., Uni S., Aikawa M., Berzins K., Perlmann P. Reactivity of the human monoclonal antibody 33G2 with repeated sequences of three distinct Plasmodium falciparum antigens. Journal of Immunology. 1989;142:3620–3626. [PubMed] [Google Scholar]
  360. Udomsangpetch R., Wåhlin B., Carlson J., Berzins K., Torii M., Aikawa M., Perlmann P., Wahlgren M. Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. Journal of Experimental Medicine. 1989;169:1835–1840. doi: 10.1084/jem.169.5.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  361. Udomsangpetch R., Brown A.E., Dahlem S.C., Webster H.K. Rosette formation by Plasmodium coatneyi-infected red blood cells. American Journal of Tropical Medicine and Hygiene. 1991;44:399–401. doi: 10.4269/ajtmh.1991.44.399. [DOI] [PubMed] [Google Scholar]
  362. Udomsangpetch R., Thanikkul K., Pukrittayakamee S., White N.J. Rosette formation by Plasmodium vivax. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1995;89:635–637. doi: 10.1016/0035-9203(95)90422-0. [DOI] [PubMed] [Google Scholar]
  363. Udomsangpetch R., Chivapat S., Viriyavejakul P., Riganti M., Wilairatana P., Pongponratin E., Looareesuwan S. Involvement of cytokines in the histopathology of cerebral malaria. American Journal of Tropical Medicine and Hygiene. 1997;57:501–506. doi: 10.4269/ajtmh.1997.57.501. [DOI] [PubMed] [Google Scholar]
  364. Urban B.C., Ferguson D.J., Pain A., Willcox N., Plebanski M., Austyn J.M., Roberts D.J. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature. 1999;400:73–77. doi: 10.1038/21900. [DOI] [PubMed] [Google Scholar]
  365. Van Dijk M.R., Waters A.P., Janse C.J. Stable transfection of malaria parasite blood stages. Science. 1995;268:1358–1362. doi: 10.1126/science.7761856. [DOI] [PubMed] [Google Scholar]
  366. Van Schravendijk M.R., Wilson R.J., Newbold C.I. Possible pitfalls in the identification of glycophorin-binding proteins of Plasmodium falciparum. Journal of Experimental Medicine. 1987;166:376–390. doi: 10.1084/jem.166.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  367. Van Schravendijk M., Rock E.P., Marsh K., Ito Y., Aikawa M., Neequaye J., Ofori A.D., Rodriguez R., Patarroyo M.E., Howard R.J. Characterization and localization of Plasmodium falciparum surface antigens on infected erythrocytes from west African patients. Blood. 1991;78:226–236. [PubMed] [Google Scholar]
  368. Van Schravendijk M., Pasloske B., Baruch D., Handunnetti S., Howard R. Immunochemical characterization and differentiation of two approximately 300-kD erythrocyte membrane-associated proteins of Plasmodium falciparum, PfEMP1 and PfEMP3. American Journal of Tropical Medicine and Hygiene. 1993;49:552–565. doi: 10.4269/ajtmh.1993.49.552. [DOI] [PubMed] [Google Scholar]
  369. Van Wye J., Ghori N., Webster P., Mitschler R.R., Elmendorf H.G., Haldar K. Identification and localization of Rab6, separation of Rab6 from Erd2 and implications for an ‘unstacked’ Golgi, in Plasmodium falciparum. Molecular and Biochemical Parasitology. 1996;83:107–120. doi: 10.1016/s0166-6851(96)02759-4. [DOI] [PubMed] [Google Scholar]
  370. Vazeux G., Le Scanf C., Fandeur T. The RESA-2 gene of Plasmodium falciparum is transcribed in several independent isolates. Infection and Immunity. 1993;61:4469–4472. doi: 10.1128/iai.61.10.4469-4472.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  371. Vernot-Hernandez J.P., Heidrich H.-G. Time-course of synthesis, transport and incorporation of a protein identified in purified membranes of host erythrocytes infected with a knob-forming strain of Plasmodium falciparum. Molecular and Biochemical Parasitology. 1984;12:337–350. doi: 10.1016/0166-6851(84)90090-2. [DOI] [PubMed] [Google Scholar]
  372. Vernot-Hernandez J.P., Heidrich H.-G. The relationship to knobs of the 92,000 D protein specific for knobby strains of Plasmodium falciparum. Zeitschrift für Parasitenkunde. 1985;71:41–51. doi: 10.1007/BF00932917. [DOI] [PubMed] [Google Scholar]
  373. Voigt S., Hanspal M., LeRoy P.J., Zhao P.S., Oh S.S., Chishti A.H., Liu S.C. The cytoadherence ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) binds to the P. falciparum knob-associated histidine-rich protein (KAHRP) by electrostatic interactions. Molecular and Biochemical Parasitology. 2000;110:423–428. doi: 10.1016/s0166-6851(00)00281-4. [DOI] [PubMed] [Google Scholar]
  374. Wahlgren M., Fernandez V., Scholander C., Carlson J. Rosetting. Parasitology Today. 1994;10:73–79. doi: 10.1016/0169-4758(94)90400-6. [DOI] [PubMed] [Google Scholar]
  375. Wåhlin B., Wahlgren M., Perlmann H., Berzins K., Björkman A., Patarroyo M.E., Perlmann P. Vol. 81. 1984. Human antibodies to a Mrr 155,000 Plasmodium falciparum antigen efficiently inhibit merozoite invasion; pp. 7912–7916. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  376. Wåhlin B., Sjolander A., Ahlborg N., Udomsangpetch R., Scherf A., Mattei D., Berzins K., Perlmann P. Involvement of Pf155-RESA and cross-reactive antigens in Plasmodium falciparum merozoite invasion in vitro. Infection and Immunity. 1992;60:443–449. doi: 10.1128/iai.60.2.443-449.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  377. Waitumbi J.N., Opollo M.O., Muga R.O., Misore A.O., Stoute J.A. Red cell surface changes and erythrophagocytosis in children with severe Plasmodium falciparum anemia. Blood. 2000;95:1481–1486. [PubMed] [Google Scholar]
  378. Waller K.L., Cooke B.M., Nunomura W., Mohandas N., Coppel R.L. Mapping the binding domains involved in the interaction between the Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1) Journal of Biological Chemistry. 1999;274:23808–23813. doi: 10.1074/jbc.274.34.23808. [DOI] [PubMed] [Google Scholar]
  379. Waller R.E., Reed M.B., Cowman A.F., McFadden G.I. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO Journal. 2000;19:1794–1802. doi: 10.1093/emboj/19.8.1794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  380. Waterkeyn J.G., Wickham M.E., Davern K.M., Cooke B.M., Coppel R.L., Reeder J.C., Culvenor J.G., Waller R.F., Cowman A.F. Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO Journal. 2000;19:2813–2823. doi: 10.1093/emboj/19.12.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  381. Waters M., Pfeffer S. Membrane tethering in intracellular transport. Current Opinion in Cell Biology. 1999;11:453–459. doi: 10.1016/s0955-0674(99)80065-9. [DOI] [PubMed] [Google Scholar]
  382. Weber J.L. Interspersed repetitive DNA from Plasmodium falciparum. Molecular and Biochemical Parasitology. 1988;29:117–124. doi: 10.1016/0166-6851(88)90066-7. [DOI] [PubMed] [Google Scholar]
  383. Weidekamm E., Wallach D.F., Lin P.S., Hendricks J. Erythrocyte membrane alterations due to infection with Plasmodium berghei. Biochimica et Biophysica Acta. 1973;323:539–546. doi: 10.1016/0005-2736(73)90162-4. [DOI] [PubMed] [Google Scholar]
  384. Weisz O., Machamer C., Hubbard A. Rat liver dipeptidylpeptidase IV contains competing apical and basolateral targeting information. Journal of Biological Chemistry. 1992;267:22282–22288. [PubMed] [Google Scholar]
  385. Wellems T.E., Howard R.J. Vol. 83. 1986. Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum; pp. 6065–6069. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  386. Wellems T.E., Walliker D., Smith C.L., do Rosario V.E., Maloy W.L., Howard R.J., Carter R., McCutchan T.F. A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell. 1987;49:633–642. doi: 10.1016/0092-8674(87)90539-3. [DOI] [PubMed] [Google Scholar]
  387. Wickramasinghe S.N., Abdalla S.H. Blood and bone marrow changes in malaria. Baillierèe̊'s Best Practice and Research. Clinical Haematology. 2000;13:277–299. doi: 10.1053/beha.1999.0072. [DOI] [PubMed] [Google Scholar]
  388. Wickramasinghe S.N., Phillips R.E., Looareesuwan S., Warrell D.A., Hughes M. The bone marrow in human cerebral malaria: parasite sequestration within sinusoids. British Journal of Haematology. 1987;66:295–306. doi: 10.1111/j.1365-2141.1987.tb06913.x. [DOI] [PubMed] [Google Scholar]
  389. Winograd E., Sherman I.W. Characterization of a modified red cell membrane protein expressed on erythrocytes infected with the human malaria parasite Plasmodium falciparum: possible role as a cytoadherent mediating protein. Journal of Cell Biology. 1989;108:23–30. doi: 10.1083/jcb.108.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  390. Winograd E., Greenan J.R., Sherman I.W. Vol. 84. 1987. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum; pp. 1931–1935. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  391. Wiser M.F., Lanners H.N., Bafford R.A., Favaloro J.M. Vol. 94. 1997. A novel alternate secretory pathway for the export of Plasmodium proteins into the host erythrocyte; pp. 9108–9113. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  392. Wright I.G. An electron microscope study of intravascular agglutination in the cerebral cortex due to Babesia argentina infections. International Journal for Parasitology. 1972;2:209–215. doi: 10.1016/0020-7519(72)90008-2. [DOI] [PubMed] [Google Scholar]
  393. Wright I.G., Goodger B.V., Clark I.A. Immunopathophysiology of Babesia bovis and Plasmodium falciparum infections. Parasitology Today. 1988;4:214–218. doi: 10.1016/0169-4758(88)90161-5. [DOI] [PubMed] [Google Scholar]
  394. Wu Y.M., Sifri C.D., Lei H.H., Su X.Z., Wellems T.E. Vol. 92. 1995. Transfection of Plasmodium falciparum within human red blood cells; pp. 973–977. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  395. Wu Y.M., Kirkman L.A., Wellems T.E. Vol. 93. 1996. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine; pp. 1130–1134. (Proceedings of the National Academy of Sciences of the USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  396. Yayon A., Cabantchik Z.I., Ginsburg H. Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO Journal. 1984;3:2695–2700. doi: 10.1002/j.1460-2075.1984.tb02195.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  397. Yuan J., Bunyaratvej A., Fucharoen S., Fung C., Shinar E., Schrier S.L. The instability of the membrane skeleton in thalassemic red blood cells. Blood. 1995;86:3945–3950. [PubMed] [Google Scholar]
  398. Yuthavong Y., Limpaiboon T. The relationship of phosphorylation of membrane proteins with the osmotic fragility and filterability of Plasmodium berghei-infected mouse erythrocytes. Biochimica et Biophysica Acta. 1987;929:278–287. doi: 10.1016/0167-4889(87)90254-0. [DOI] [PubMed] [Google Scholar]

Articles from Advances in Parasitology are provided here courtesy of Elsevier

RESOURCES