Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2016 Feb 19;47(3):243–249. doi: 10.1097/PAT.0000000000000240

Molecular diagnosis of respiratory viruses

Lucy K Somerville 1,*, V Mala Ratnamohan 1, Dominic E Dwyer 1,2,3, Jen Kok 1,2,3
PMCID: PMC7130554  PMID: 25764205

Abstract

The increasing availability of nucleic acid amplification tests since the 1980s has revolutionised our understanding of the pathogenesis, epidemiology, clinical and laboratory aspects of known and novel viral respiratory pathogens. High-throughput, multiplex polymerase chain reaction is the most commonly used qualitative detection method, but utilisation of newer techniques such as next-generation sequencing will become more common following significant cost reductions. Rapid and readily accessible isothermal amplification platforms have also allowed molecular diagnostics to be used in a ‘point-of-care’ format. This review focuses on the current applications and limitations of molecular diagnosis for respiratory viruses.

Key words: Diagnostics, molecular, PCR, respiratory viruses

References

  • 1.Centers for Medicare and Medicaid Services. Data Compendium, 2011 Edition. 4 Apr 2013, cited 11 Dec 2014. http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/DataCompendium/2011_Data_Compendium.html.
  • 2.NSW Government, Health Communicable Diseasese. Influenza Monthly Epidemiology Report, December 2013 (including a summary for the year 2013). Dec 2013, cited 31 Oct 2014. http://www.health.nsw.gov.au/Infectious/Influenza/Documents/2013/december-report.pdf.
  • 3.Newall A.T., Wood J.G., MacIntyre C.R. Influenza-related hospitalisation and deaths in Australians aged 50 years and older. Vaccine. 2008;26:2135–2141. doi: 10.1016/j.vaccine.2008.01.051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Tillett H.E., Smith J.W., Gooch C.D. Excess deaths attributable to influenza in England and Wales: age at death and certified cause. Int J Epidemiol. 1983;12:344–352. doi: 10.1093/ije/12.3.344. [DOI] [PubMed] [Google Scholar]
  • 5.MacIntyre C.R., Heywood A.E., Kovoor P., et al. Ischaemic heart disease, influenza and influenza vaccination: a prospective case control study. BMJ. 2013;99:1843–1848. doi: 10.1136/heartjnl-2013-304320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Falsey A.R., Hennessey P.A., Formica M.A., Cox C., Walsh E.E. Respiratory syncytial virus infection in the elderly and high-risk adults. N Engl J Med. 2005;352:1749–1759. doi: 10.1056/NEJMoa043951. [DOI] [PubMed] [Google Scholar]
  • 7.Jacobs S.E., Lamson D.M., St George K, Walsh T.J. Human rhinoviruses. Clin Micobiol Rev. 2013;26:135–162. doi: 10.1128/CMR.00077-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kumar S., Henrickson K.J. Update on influenza diagnostics: lessons from the novel H1N1 influenza A pandemic. Clin Microbiol Rev. 2012;25:344–361. doi: 10.1128/CMR.05016-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Franz A., Adams O., Willems R., et al. Correlation of viral load od respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection. J Clin Virol. 2010;48:239–245. doi: 10.1016/j.jcv.2010.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.To K.K., Chan K.H., Li I.W., et al. Viral load in patients infected with pandemic H1N1 2009 influenza A virus. J Med Virol. 2010;82:1–7. doi: 10.1002/jmv.21664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lee N., Chan P.K., Hui D.S., et al. Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis. 2009;200:492–500. doi: 10.1086/600383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Yu L., Wang Z., Chen Y., et al. Clinical, virological, and histopathological manifestations of fatal human infections by avian influenza A(H7N9) virus. Clin Infect Dis. 2013;57:1449–1457. doi: 10.1093/cid/cit541. [DOI] [PubMed] [Google Scholar]
  • 13.Lassaunière R., Kresfelder T., Venter M. A novel multiplex real-time RT-PCR assay with FRET hybridization probes for the detection and quantitation of 13 respiratory viruses. J Virol Methods. 2010;165:254–260. doi: 10.1016/j.jviromet.2010.02.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Memish Z.A., Al-Tawfiq J.A., Makhdoom H.Q., et al. Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome. J Infect. 2014;210:1590–1594. doi: 10.1093/infdis/jiu292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Rhedin S., Lindstrand A., Rotzén-Östlund M., et al. Clinical utility of PCR for common viruses in acute respiratory illness. Pediatrics. 2014;133:e538–e545. doi: 10.1542/peds.2013-3042. [DOI] [PubMed] [Google Scholar]
  • 16.Rath B., von Kleist M., Tief F., et al. Virus load kinetics and resistance development during oseltamivir treatment in infants and children infected with influenza A(H1N1) 2009 and influenza B viruses. Pediatr Infect Dis J. 2012;31:899–905. doi: 10.1097/INF.0b013e31825c7304. [DOI] [PubMed] [Google Scholar]
  • 17.Hayden F.G. Advances in antivirals for non-influenza respiratory virus infections. Influenza Other Respir Viruses. 2013;7(Suppl 3):36–43. doi: 10.1111/irv.12173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Tramontana A.R., George B., Hurt A.C., et al. Oseltamivir resistance in adult oncology and hematology patients infected with pandemic (H1N1) 2009 virus, Australia. Emerg Infect Dis. 2010;16:1068–1075. doi: 10.3201/eid1607.091691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Hurt A.C., Ernest J., Deng Y.M., et al. Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antiviral Res. 2009;83:90–93. doi: 10.1016/j.antiviral.2009.03.003. [DOI] [PubMed] [Google Scholar]
  • 20.Hurt A.C., Chotpitayasunondh T., Cox N.J., et al. Antiviral resistance during the 2009 influenza A H1N1 pandemic: public health, laboratory, and clinical perspectives. Lancet Infect Dis. 2012;12:240–248. doi: 10.1016/S1473-3099(11)70318-8. [DOI] [PubMed] [Google Scholar]
  • 21.Steain M.C., Dwyer D.E., Hurt A.C., et al. Detection of influenza A H1N1 and H3N2 mutations conferring resistance to oseltamivir directly on clinical specimens using rolling circle amplification. Antiviral Res. 2009;84:242–248. doi: 10.1016/j.antiviral.2009.09.010. [DOI] [PubMed] [Google Scholar]
  • 22.Deng Y.M., Caldwell N., Barr I.G. Rapid detection and subtyping of human influenza Aviruses and reassortants by pyrosequencing. PLoS One. 2011;6:e23400. doi: 10.1371/journal.pone.0023400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Smith G.J., Bahl J., Vijaykrishna D., et al. Dating the emergence of pandemic influenza viruses. Proc Natl Acad Sci USA. 2009;106:11709–11712. doi: 10.1073/pnas.0904991106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.O’Sullivan M. Infectious Diseases Informatics. Springer; New York: 2010. Chapter 17, Microbial genotyping systems for infection control. [Google Scholar]
  • 25.Zhou F., Wang Q., Sintchenko V., et al. Use of the 5’ untranslated region and VP1 region to examine the molecular diversity in enterovirus B species. J Med Microbiol. 2014;63:1339–1355. doi: 10.1099/jmm.0.074682-0. [DOI] [PubMed] [Google Scholar]
  • 26.Wang B., Taylor J., Ratnamohan M., et al. Frequency of oseltamivir resistance in Sydney, during the Newcastle outbreak of community transmitted oseltamivir-resistant influenza A(H1N1)pdm09 virus, Australia, June to August 2011. Euro Surveill. 2012;17:20210. doi: 10.2807/ese.17.27.20210-en. [DOI] [PubMed] [Google Scholar]
  • 27.Cheng A.C., Holmes M., Kotsimbos T., et al. Influenza vaccine effectiveness against hospitalisation with confirmed influenza in the 2010-11 seasons: A test-negative observational study. PLoS One. 2013;8:e68760. doi: 10.1371/journal.pone.0068760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Holmes E.C., Ghedin E., Miller N., et al. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol. 2005;3:e300. doi: 10.1371/journal.pbio.0030300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Oguma R., Saito R., Masaki H., et al. Molecular characteristics of outbreaks of nosocomial infection with influenza A/H3N2 virus variants. Infect Control Hosp Epidemiol. 2011;32:267–275. doi: 10.1086/658671. [DOI] [PubMed] [Google Scholar]
  • 30.Vijaykrishna D., Holmes E.C., Joseph U., et al. The contrasting phylodynamics of human influenza B viruses. eLife. 2015;4 doi: 10.7554/eLife.05055. (Epub ahead of print). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Branche A.R., Walsh E.E., Formica M.A., Falsey A.R. Detection of respiratory viruses in sputum from adults by use of automated multiplex PCR. J Clin Microbiol. 2014;52:3590–3596. doi: 10.1128/JCM.01523-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Blyth C.C., Iredell J.R., Dwyer D.E. Rapid-test sensitivity for novel swine-origin influenza A(H1N1) virus in humans. N Engl J Med. 2009;361:2493. doi: 10.1056/NEJMc0909049. [DOI] [PubMed] [Google Scholar]
  • 33.Fiore A.E., Fry A., Shay D., et al. Antiviral agents for the treatment and chemoprophylaxis of influenza-recommendations of the Advisory Committee on Immunization Practices (ACIP) MMWR Recomm Rep. 2011;60:1–24. [PubMed] [Google Scholar]
  • 34.He Z., Zhuang H., Zhao C., Dong Q., Peng G., Dwyer D.E. Using patient-collected clinical samples and sera to detect and quantify the severe acute respiratory syndrome coronavirus (SARS-CoV) Virol J. 2007;4:32. doi: 10.1186/1743-422X-4-32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Leung W.K., To K.K., Chan P.K., et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003;125:1011–1017. doi: 10.1016/j.gastro.2003.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Peiris J.S., Yu W.C., Leung C.W., et al. Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet. 2004;363:617–619. doi: 10.1016/S0140-6736(04)15595-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Waghmare A., Campbell A.P., Xie H., et al. Respiratory syncytial virus lower respiratory tract disease in hematopoietic cell transplant recipients: viral RNA detection in blood, antiviral treatment, and clinical outcomes. Clin Infect Dis. 2013;57:1731–1741. doi: 10.1093/cid/cit639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Ko S.Y., Jang J.W., Song D.J., Lim C.S., Kim W.J. Evaluation of the Simplexa Flu A/B and RSV test for the rapid detection of influenza viruses. J Med Virol. 2013;85:2160–2164. doi: 10.1002/jmv.23712. [DOI] [PubMed] [Google Scholar]
  • 39.Selvaraju S.B., Tierney D., Leber A.L., et al. Influenza and respiratory syncytial virus detection in clinical specimens without nucleic acid extraction using FOCUS direct disc assay is substantially equivalent to the traditional methods and the FOCUS nucleic acid extraction-dependent RT-PCR assay. Diagn Microbiol Infect Dis. 2014;78:232–236. doi: 10.1016/j.diagmicrobio.2013.11.016. [DOI] [PubMed] [Google Scholar]
  • 40.Anderson T.P., Werno A.M., Barratt K., Mahagamasekera P., Murdoch D.R., Jennings L.C. Comparison of four multiplex PCR assays for the detection of viral pathogens in respiratory specimens. J Virol Methods. 2013;191:118–121. doi: 10.1016/j.jviromet.2013.04.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Pillet S., Lardeux M., Dina J., et al. Comparative evaluation of six commercialized multiplex PCR kits for the diagnosis of respiratory infections. PLoS One. 2013;8:e72174. doi: 10.1371/journal.pone.0072174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Quan P., Briese T., Palacios G., Lipkin W.I. Rapid sequence-based diagnosis of viral infection. Antiviral Res. 2008;79:1–5. doi: 10.1016/j.antiviral.2008.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Mahony J.B. Nucleic acid amplification-based diagnosis of respiratory virus infections. Expert Rev Anti Infect Ther. 2010;8:1273–1292. doi: 10.1586/eri.10.121. [DOI] [PubMed] [Google Scholar]
  • 44.Szewczuk E., Thapa K., Anninos T., et al. Rapid semi-automated quantitative multiplex tandem PCR (MT-PCR) assays for the differential diagnosis of influenza-like illness. BMC Infect Dis. 2010;10:113. doi: 10.1186/1471-2334-10-113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Babady N.E. The FilmArray® respiratory panel: an automated, broadly multiplexed molecular test for the rapid and accurate detection of respiratory pathogens. Expert Rev Mol Diagn. 2013;13:779–788. doi: 10.1586/14737159.2013.848794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Blyth C.C., Webb S.A., Kok J., et al. The impact of bacterial and viral co-infection in severe influenza. Influenza Other Respir Viruses. 2013;7:168–176. doi: 10.1111/j.1750-2659.2012.00360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Vallières E., Renaud C. Clinical and economical impact of multiplex respiratory virus assays. Diagn Microbiol Infect Dis. 2013;76:255–261. doi: 10.1016/j.diagmicrobio.2013.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Kalthoff D., Beer M., Hoffmann B. High resolution melting analysis: rapid and precise characterisation of recombinant influenza A genomes. Virol J. 2013;10:284. doi: 10.1186/1743-422X-10-284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Varillas D., Bermejo-Martin J.F., Almansa R., et al. A new method for detection of pandemic influenza virus using high resolution melting analysis of the neuraminidase gene. J Virol Methods. 2011;17:284–286. doi: 10.1016/j.jviromet.2010.10.003. [DOI] [PubMed] [Google Scholar]
  • 50.Tong S.Y., Dakh F., Hurt A.C., et al. Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting. PLoS One. 2011;6:e21446. doi: 10.1371/journal.pone.0021446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Tong S.Y., Giffard P.M. Microbiological applications of high-resolution melting analysis. J Clin Microbiol. 2012;50:3418–3421. doi: 10.1128/JCM.01709-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Nie S., Roth R.B., Stiles J., et al. Evaluation of Alere i Influenza A and B for rapid detection of influenza viruses A and B. J Clin Microbiol. 2014;52:3339–3344. doi: 10.1128/JCM.01132-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Bell J., Bonner A., Cohen D.M., et al. Multicenter clinical evaluation of the novel AlereTM i Influenza A and B isothermal nucleic acid amplification test. J Clin Virol. 2014;61:81–86. doi: 10.1016/j.jcv.2014.06.001. [DOI] [PubMed] [Google Scholar]
  • 54.Bell J.J., Selvarangan R. Evaulation of the Alere i Influeza A and B nucleic acid amplification test by the use of respiratory specimens collected in viral transport medium. J Clin Microbiol. 2014;2014:3992–3995. doi: 10.1128/JCM.01639-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Mahony J., Chong S., Bulir D., Ruyter A., Mwawasi K., Waltho D. Development of a sensitive loop-mediated isothermal amplification assay that provides specimen-to-result diagnosis of respiratory syncytial virus infection in 30 minutes. J Clin Microbiol. 2013;51:2696–2701. doi: 10.1128/JCM.00662-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Song Q., Zhu R., Sun Y., et al. Identification of human metapneumovirus genotypes A and B from clinical specimens by reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2014;196:133–138. doi: 10.1016/j.jviromet.2013.10.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Pyrc K., Milewska A., Potempa J. Development of loop-mediated isothermal amplification assay for detection of human coronavirus-NL63. J Virol Methods. 2011;175:133–136. doi: 10.1016/j.jviromet.2011.04.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Liu J., Nian Q.G., Li J., et al. Development of reverse-transcription loop-mediated isothermal amplification assay for rapid detection of novel avian influenza A (H7N9) virus. BMC Microbiol. 2014;14:271. doi: 10.1186/s12866-014-0271-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Shirato K., Yano T., Senba S., et al. Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP) Virol J. 2014;11:139. doi: 10.1186/1743-422X-11-139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Hazelton B., Gray T., Ho J., Ratnamohan V.M., Dwyer D.E., Kok J., et al. Detection of influenza A and B with the AlereTM i Influenza A and B: a novel isothermal nucleic acid amplification assay. Influenza Other Respir Viruses. 2015 doi: 10.1111/irv.12303. (in press) [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Wu L.T., Curran M.D., Ellis J.S., et al. Nucleic acid dipstick test for molecular diagnosis of pandemic H1N1. J Clin Microbiol. 2010;48:3608–3613. doi: 10.1128/JCM.00981-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Dineva M.D., Candotti D., Fletcher-Brown F., Allain J., Lee H. Simultaneous visual detection of multiple viral amplicons by dipstick assay. J Clin Microbiol. 2005;43:4015–4021. doi: 10.1128/JCM.43.8.4015-4021.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Wu L.T., Thomas I., Curran M.D., et al. Duplex molecular assay intended for point-of-care diagnosis of influenza A/B virus infection. J Clin Microbiol. 2013;51:3031–3038. doi: 10.1128/JCM.00740-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Lau L.T., Feng X.Y., Lam T.Y., Hui H.K., Yu A.C. Development of multiplex nucleic acid sequence-based amplification for detection of human respiratory tract viruses. J Virol. 2010;168:251–254. doi: 10.1016/j.jviromet.2010.04.027. [DOI] [PubMed] [Google Scholar]
  • 65.Wang B., Potter S.J., Lin Y., et al. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol. 2005;43:2339–2344. doi: 10.1128/JCM.43.5.2339-2344.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Wang B., Dwyer D.E., Blyth C.C., et al. Detection of the rapid emergence of the H275Y mutation associated with oseltamivir resistance in severe pandemic influenza virus A/H1N1 09 infections. Antiviral Res. 2010;87:16–21. doi: 10.1016/j.antiviral.2010.04.002. [DOI] [PubMed] [Google Scholar]
  • 67.Hofstadler S.A., Sampath R., Blyn L.B., et al. TIGER: the universal biosensor. Int J Mass Spectrom. 2005;242:23–41. [Google Scholar]
  • 68.Deyde V.M., Sampath R., Gubareva L. RT-PCR/electrospray ionization mass spectrometry approach in detection and characterisation of influenza viruses. Exp Rev Mol Diagn. 2011;11:41–52. doi: 10.1586/erm.10.107. [DOI] [PubMed] [Google Scholar]
  • 69.Liu J., Lim S.L., Ruan Y., et al. SARS transmission pattern in Singapore reassessed by viral sequence variation analysis. PLoS Med. 2005;2:e43. doi: 10.1371/journal.pmed.0020043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Ratnamohan V.M., Taylor J., Zeng F., et al. Pandemic clinical case definitions are non-specific: multiple respiratory viruses circulating in the early phases of the 2009 influenza pandemic in New South Wales, Australia. Virol J. 2014;11:113. doi: 10.1186/1743-422X-11-113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Lynfield R., Davey R., Dwyer D.E., et al. Outcomes of influenza A(H1N1)pdm09 virus infection: results from two international cohort studies. PLoS One. 2014;9:e101785. doi: 10.1371/journal.pone.0101785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Dugas A.F., Coleman S., Gaydos C.A., Rothman R.E., Frick K.D. Costutility of rapid polymerase chain reaction-based influenza testing for high-risk emergency department patients. Ann Emerg Med. 2013;62:80–88. doi: 10.1016/j.annemergmed.2013.01.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.García-García M.L., Calvo C., Pozo F., Villadangos P.A., Pérex-Breña P., Casas I. Spectrum of respiratory viruses in children with community-acquired pneumonia. Pediatr Infect Dis. 2012;31:808–813. doi: 10.1097/INF.0b013e3182568c67. [DOI] [PubMed] [Google Scholar]
  • 74.Oosterheert J.J., van Loom A.M., Schuurman R., et al. Impact of rapid detection of viral and atypical bacterial pathogens by real-time polymerase chain reaction for patients with lower respiratory tract infection. Clin Infect Dis. 2005;41:1438–1444. doi: 10.1086/497134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Blaschke A.J., Shapiro D.J., Pavia A.T., et al. A national study of the impact of rapid influenza testing on clinical care in the emergency department. J Pediatric Infect Dis Soc. 2014;3:112–118. doi: 10.1093/jpids/pit071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Corman V.M., Eckerle I., Bleicker T., et al. Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Emerg Infect Dis. 2012;17:20285. doi: 10.2807/ese.17.39.20285-en. [DOI] [PubMed] [Google Scholar]
  • 77.Agnihothram S., Gopal R., Yount B.L., Jr., et al. Evaluation of serologic and antigenic relationships between Middle Eastern Respiratory Syndrome Coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis. 2014;209:995–1006. doi: 10.1093/infdis/jit609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Kok J., Dwyer D.E. How common was 2009 pandemic influenza A H1N1? Lancet Infect Dis. 2011;11:423–424. doi: 10.1016/S1473-3099(11)70120-7. [DOI] [PubMed] [Google Scholar]
  • 79.Playford E.G., Dwyer D.E. Laboratory diagnosis of influenza virus infection. Pathology. 2002;34:115–125. doi: 10.1080/003130201201117909. [DOI] [PubMed] [Google Scholar]
  • 80.He Z., Dong Q., Zhuang H., Song S., Peng G., Guangxiang L., Dwyer D.E. Kinetics of severe acute respiratory syndrome (SARS) coronavirus-specific antibodies in 271 laboratory confirmed cases of SARS. Clin Diagn Lab Immunol. 2004;11:792–794. doi: 10.1128/CDLI.11.4.792-794.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Kok J., Tudo K., Blyth C.C., Foo H., Hueston L., Dwyer D.E. Pandemic (H1N1) 2009 influenza seroconversion rates in HIV-infected individuals. J Acquir Immune Defic Syndr. 2011;56:91–94. doi: 10.1097/QAI.0b013e318204a1c3. [DOI] [PubMed] [Google Scholar]
  • 82.Iwasenko J.M., Cretikos M., Paterson D.L., et al. Enhanced diagnosis of pandemic (H1N1) 2009 influenza infection using molecular and serological testing in intensive care unit patients with suspected influenza. Clin Infect Dis. 2010;51:70–72. doi: 10.1086/653610. [DOI] [PubMed] [Google Scholar]
  • 83.Trauer J.M., Bandaranayake D., Booy R., et al. Seroepidemiologic effects of influenza A(H1N1)pdm09 in Australia, New Zealand, and Singapore. Emerg Infect Dis. 2013;19:92–101. doi: 10.3201/eid1901.111643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kok J., Dwyer D.E. The infection attack rate and severity of 2009 pandemic H1N1 influenza in Hong Kong: accuracy amidst ambiguity. Clin Infect Dis. 2011;53:100–101. doi: 10.1093/cid/cir281. [DOI] [PubMed] [Google Scholar]
  • 85.Kim H., Oh S., Yun K.A., Sung H., Kim M., et al. Comparison of Anyplex II RV16 with the xTAG Respiratory Viral Panel and Seeplex RV15 for detection of respiratory viruses. J Clin Microbiol. 2013;51:1137–1141. doi: 10.1128/JCM.02958-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Alby K., Popowitch E.B., Miller M.B. Comparative evaluation of the Nanosphere Verigene RV+ assay and the Simplexa Flu A/B & RSV kit for detection of influenza and respiratory syncytial virus. J Clin Microbiol. 2012;51:352–353. doi: 10.1128/JCM.02504-12. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Pathology are provided here courtesy of Elsevier

RESOURCES