Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 May 12;181(2):671–686. doi: 10.1016/0042-6822(91)90901-M

A prominent antigenic surface polypeptide involved in the biogenesis and function of the vaccinia virus envelope

James Gordon 1,2, Anjani Mohandas 1, Sharon Wilton 1, Samuel Dales 1
PMCID: PMC7130692  PMID: 1707568

Abstract

Polypeptides of the vaccinia virus envelope exposed on the surface were identified by means of sulfo-N-hydroxysuccinimidobiotin as a surface tag. Among surface expressed polypeptides is the 35-kDa antigen, previously designated Ag35. Both monoclonal (mAb) and monospecific affinity pure antibodies directed against Ag35 neutralized vaccinia infectiousness, indicating that this prominent surface antigen has a function during early virus-host cell interactions. The binding of several monoclonal antibodies to various regions of Ag35 was tested by reacting CNBr fragments, derived from the polypeptide, employing Western blotting. All mAbs tested reacted with the same region of Ag35. Estimation of the molecular weights (MW), based on migration of the CNBr peptides in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed that those partial digestion products which contained a proline-rich 99 amino acid limit digest fragment were present at a position approximately 12.5 kDa larger than that predicted from the DNA sequence. By contrast, partial and limit digest products lacking the proline-rich fragment migrated to the MW position expected from the length of the DNA sequence. This observation demonstrates that departure from a predicted 22.3 kDa to an anomalous MW of Ag35 is conferred by the proline-rich peptide. The surface location of Ag35 was confirmed by immune electron microscopy. In a competition test the binding specificity of mAb and affinity-purified antibodies at the surface of virions could be demonstrated. Evidence for an association of Ag35 with the virus envelope at various stages during biogenesis of vaccinia was obtained by immune electron microscopy of whole mounts and thin sections. Presence of Ag35 as an early component of immature and mature virions, probably residing in the bilayer membrane structure was detected. A distinction can, therefore, be made between Ag35 and several other vaccinia envelope polypeptides which are synthesized as late functions and added during late stages of envelope assembly.

Footnotes

Supported by the Medical Research Council of Canada.

References

  1. Anderson R., Dales S. Biogenesis of poxviruses: glycolipid metabolism in vaccinia-infected cells. Virology. 1978;84:108–117. doi: 10.1016/0042-6822(78)90222-2. [DOI] [PubMed] [Google Scholar]
  2. Ball E.H., Kovala T. Mapping of caldesmon: Relationship between the high and low molecular weight forms. Biochemistry. 1988;27:6093–6098. doi: 10.1021/bi00416a039. [DOI] [PubMed] [Google Scholar]
  3. Batteiger B., Newhall W.J.V., Jones R.B. The use of Tween-20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J. Immunol. Methods. 1982;55:297–307. doi: 10.1016/0022-1759(82)90089-8. [DOI] [PubMed] [Google Scholar]
  4. Chou P.Y., Fassman G.D. Prediction of protein conformation. Biochemistry. 1974;13:222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  5. Chou P.Y., Fassman G.D. Prediction of secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  6. Dales S. The structure and replication of poxviruses as exemplified by vaccinia. In: Haguenau F., Dalton A., editors. Academic Press; New York: 1973. pp. 109–129. (Ultrastructure of Animal Viruses and Bacteriophage: An Atlas). [Google Scholar]
  7. Dales S., Fujinami R.S., Oldstone M.B.A. Infection with vaccinia favors the selection of hybridomas synthesizing autoantibodies against intermediate filaments one of them cross-reacting with the virus hemagglutinin. J. Immunol. 1983;131:1546–1553. [PubMed] [Google Scholar]
  8. Dales S., Milovanovitch V., Pogo B.G.T., Weintraub S.B., Huima T., Wilton S., McFadden G. Biogenesis of vaccinia: Isolation of conditional lethal mutants and electron microscopic characterization of their phenotypically expressed defects. Virology. 1978;84:403–428. doi: 10.1016/0042-6822(78)90258-1. [DOI] [PubMed] [Google Scholar]
  9. Dales S., Mosbach E.H. Vaccinia as a model for membrane biogenesis. Virology. 1968;35:564–583. doi: 10.1016/0042-6822(68)90286-9. [DOI] [PubMed] [Google Scholar]
  10. Dales S., Pogo B.G.T. Biology of poxviruses. In: Kingsbury D.W., zur Hansen H., editors. Vol. 18. Springer-Verlag; New York: 1981. (Virology Monographs). [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acid Res. 1984;12:387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Essani K., Dugre R., Dales S. Biogenesis of vaccinia: Involvement of spicules of the envelope during virion assembly examined by means of conditional lethal mutants and serology. Virology. 1982;118:279–292. doi: 10.1016/0042-6822(82)90347-6. [DOI] [PubMed] [Google Scholar]
  13. Fenner F., Wittek R., Dumbell K.R. Academic Press; N.Y: 1989. The Orthopoxviruses. [Google Scholar]
  14. Garnier J., Osguthorpe D.J., Robson B. Analysis of the accuracy and implications of a simple method for predicting the secondary structure of globular proteins. J. Mol. Biol. 1978;120:97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  15. Garnier J., Robson B. The GOR method for predicting secondary structures in proteins. In: Fassman G.D., editor. Prediction of Protein Structure and the Principles of Protein Conformation. Plenum; New York: 1989. pp. 417–465. [Google Scholar]
  16. Garon C.F., Moss B. Glycoprotein synthesis in cell infected with vaccinia virus II. A glycoprotein component of the virion. Virology. 1971;46:233–246. doi: 10.1016/0042-6822(71)90026-2. [DOI] [PubMed] [Google Scholar]
  17. Goodloe-Holland C.M., Luna J.L. Purification and characterization of Dictyostelium discoideum plasma membranes. In: Spudich J.A., editor. Vol. 28. Academic Press; San Diego: 1987. pp. 103–128. (Methods in Cell Biology). [DOI] [PubMed] [Google Scholar]
  18. Gordon J., Kovala T., Dales S. Molecular characterization of a prominent antigen of the vaccinia virus envelope. Virology. 1986;167:361–369. [PubMed] [Google Scholar]
  19. Holowczak J.H. Glycopeptides of vaccinia virus. I. Preliminary characterization and hexosamine content. Virology. 1970;42:87–99. doi: 10.1016/0042-6822(70)90241-2. [DOI] [PubMed] [Google Scholar]
  20. Ingalls H.M., Goodloe-Holland C.M., Luna E.J. Vol. 83. 1986. Junctional plasma membrane domains isolated from aggregating Dictyostelium discoideum amebae; pp. 4779–4783. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kohler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (London) 1975;256:495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–684. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  24. Maa J.S., Rodriguez J.F., Esteban M. Structural and functional characterization of a cell surface binding protein of vaccinia virus. J. Biol. Chem. 1990;265:1569–1577. [PubMed] [Google Scholar]
  25. Mackett M., Smith G.L. Vaccinia virus expression vectors. J. Gen. Virol. 1986;67:2067–2082. doi: 10.1099/0022-1317-67-10-2067. [DOI] [PubMed] [Google Scholar]
  26. Mendz G.L., Brown L.R., Martenson R.E. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles. Biochemistry. 1990;29:2304–2311. doi: 10.1021/bi00461a014. [DOI] [PubMed] [Google Scholar]
  27. Moss B., Flexner C. Vaccinia virus expression vectors. Annu. Rev. Immunol. 1987;5:305–324. doi: 10.1146/annurev.iy.05.040187.001513. [DOI] [PubMed] [Google Scholar]
  28. Niles E.G., Seto J. Vaccinia virus gene D8 encodes a virion transmembrane protein. J. Virol. 1988;62:3772–3778. doi: 10.1128/jvi.62.10.3772-3778.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Panicali D.L., Davis S.W., Weinberg R.L., Paoletti E. Vol. 80. 1983. Construction of live vaccines by using genetically engineered poxviruses: Biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin; pp. 5364–5368. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Piccini A., Paoletti E. Vaccinia: Virus vector vaccine. Adv. Virus. Res. 1988;34:43–64. doi: 10.1016/s0065-3527(08)60515-1. [DOI] [PubMed] [Google Scholar]
  31. Pogo B.G.T., Dales S. Vol. 63. 1968. Two deoxyribonuclease activities within purified vaccinia virions; pp. 820–827. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pogo B.G.T., Dales S. Biogenesis of vaccinia: Separation of early stages from maturation by means of hydroxyurea. Virology. 1971;43:144–151. doi: 10.1016/0042-6822(71)90232-7. [DOI] [PubMed] [Google Scholar]
  33. Rodriguez J.F., Esteban M. Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. J. Virol. 1987;61:3550–3554. doi: 10.1128/jvi.61.11.3550-3554.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rodriguez J.F., Janeczko R., Esteban M. Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus. J. Virol. 1985;56:482–488. doi: 10.1128/jvi.56.2.482-488.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rodriguez J.F., Paez E., Esteban M. A 14000-Mr envelope protein of vaccinia virus is involved in cell fusion and forms covalently linked trimers. J. Virol. 1987;61:395–404. doi: 10.1128/jvi.61.2.395-404.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rosel J.L., Earl P.L., Weir J.P., Moss B. Conserved TAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the Hindlll H genome fragment. J. Virol. 1986;60:436–449. doi: 10.1128/jvi.60.2.436-449.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sarov I., Joklik W.K. Studies on the nature and location of the capsid polypeptides of vaccinia virions. Virology. 1972;50:579–592. doi: 10.1016/0042-6822(72)90409-6. [DOI] [PubMed] [Google Scholar]
  38. Sarov I., Joklik W.K. Isolation and characterization of intermediates in vaccinia virus morphogenesis. Virology. 1973;52:223–233. doi: 10.1016/0042-6822(73)90411-x. [DOI] [PubMed] [Google Scholar]
  39. Smith G.L., Mackett M., Moss B. Infectious vaccinia virus recombinants that express hepatitis B surface antigen. Nature (London) 1983;302:490–495. doi: 10.1038/302490a0. [DOI] [PubMed] [Google Scholar]
  40. Stern W., Dales S. Biogenesis of vaccinia: Concerning the origin of envelope phospholipids. Virology. 1974;62:293–306. doi: 10.1016/0042-6822(74)90393-6. [DOI] [PubMed] [Google Scholar]
  41. Stern W., Dales S. Biogenesis of vaccinia: Isolation and characterization of a surface component that elicits antibody supressing infectivity and cell-cell fusion. Virology. 1976;75:323–341. doi: 10.1016/0042-6822(76)90022-2. [DOI] [PubMed] [Google Scholar]
  42. Stern W., Dales S. Biogenesis of vaccinia: Relationship of the envelope to virus assembly. Virology. 1976;75:242–255. doi: 10.1016/0042-6822(76)90023-4. [DOI] [PubMed] [Google Scholar]
  43. Towbin H.T., Stachelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Von Heijne G. Transcending the impenetrable: How proteins come to terms with membranes. Biochim. Biophys. Acta. 1988;947:307–333. doi: 10.1016/0304-4157(88)90013-5. [DOI] [PubMed] [Google Scholar]
  45. Wilton S., Gordon J., Dales S. Identification of antigenic determinants by polyclonal and hybridoma antibodies induced during the course of infection by vaccinia virus. Virology. 1986;148:84–96. doi: 10.1016/0042-6822(86)90405-8. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES