Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2003 Mar 18;54(1):15–36. doi: 10.1016/0306-4522(93)90380-X

Molecular profile of reactive astrocytes—Implications for their role in neurologic disease

M Eddleston 1, L Mucke 1,*
PMCID: PMC7130906  PMID: 8515840

Abstract

The central nervous system responds to diverse neurologic injuries with a vigorous activation of astrocytes. While this phenomenon is found in many different species, its function is obscure. Understanding the molecular profile characteristic of reactive astrocytes should help define their function. The purpose of this review is to provide a summary of molecules whose levels of expression differentiate activated from resting astrocytes and to use the molecular profile of reactive astrocytes as the basis for speculations on the functions of these cells. At present, reactive astrocytosis is defined primarily as an increase in the number and size of cells expressing glial fibrillary acidic protein. In vivo, this increase in glial fibrillary acidic protein-positive cells reflects predominantly phenotypic changes of resident astroglia rather than migration or proliferation of such cells. Upon activation, astrocytes upmodulate the expression of a large number of molecules. From this molecular profile it becomes apparent that reactive astrocytes may benefit the injured nervous system by participating in diverse biological processes. For example, upregulation of proteases and protease inhibitors could help remodel the extracellular matrix, regulate the concentration of different proteins in the neuropil and clear up debris from degenerating cells. Cytokines are key mediators of immunity and inflammation and could play a critical role in the regulation of the blood-central nervous system interface. Neurotrophic factors, transporter molecules and enzymes involved in the metabolism of excitotoxic amino acids or in the antioxidant pathway may help protect neurons and other brain cells by controlling neurotoxin levels and contributing to homeostasis within the central nervous system. Therefore, an impairment of astroglial performance has the potential to exacerbate neuronal dysfunction. Based on the synopsis of studies presented, a number of issues become apparent that deserve a more extensive analysis. Among them are the relative contribution of microglia and astrocytes to early wound repair, the characterization of astroglial subpopulations, the specificity of the astroglial response in different diseases as well as the analysis of reactive astrocytes with techniques that can resolve fast physiologic processes. Differences between reactive astrocytes in vivo and primary astrocytes in culture are discussed and underline the need for the development and exploitation of models that will allow the analysis of reactive astrocytes in the intact organism.

References

  • 1.Abd-el-Basset E.M., Kalnins V.I., Ahmed I., Fedoroff S. A 48 kilodalton intermediate filament associated protein (IFAP) in reactive-like astrocytes induced by dibutyryl cyclic AMP in culture and in reactive astrocytes in situ. J. Neuropath. exp. Neurol. 1989;48:245–254. doi: 10.1097/00005072-198905000-00002. [DOI] [PubMed] [Google Scholar]
  • 2.Aguayo A., David S., Richardson P., Bray G. Axonal elongation in peripheral and central nervous system transplants. Adv. cell Neurobiol. 1982;3:215–234. [Google Scholar]
  • 3.Aloisi F., Borsellino G., Samoggia P., Test U., Chelucci C., Russo G., Peschle C., Levi G. Astrocyte cultures from human embryonic brain: characterization and modulation of surface molecules by inflammatory cytokines. J. Neurosci. Res. 1992;32:494–506. doi: 10.1002/jnr.490320405. [DOI] [PubMed] [Google Scholar]
  • 4.Aloisi F., Care A., Borsellino G., Gallo P., Rosa S., Bassani A., Cabibbo A., Testa U., Levi G., Peschle C. Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 β and tumour necrosis factor. J. Immun. 1992;149:2358–2366. [PubMed] [Google Scholar]
  • 5.Andersson P.-B., Perry V.H., Gordon S. The acute inflammatory response to lipopolysaccharide in C'NS parenchyma differs from that in other body tissues. Neuroscience. 1992;48:169–186. doi: 10.1016/0306-4522(92)90347-5. [DOI] [PubMed] [Google Scholar]
  • 6.Araujo D.M., Cotman C.W. Basic FGF in astroglial, microglial, and neuronal cultures: characterization of binding sites and modulation of release by lymphokines and trophic factors. J. Neurosci. 1992;12:1668–1678. doi: 10.1523/JNEUROSCI.12-05-01668.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Araujo D.M., Cotman C.W. Beta-amyloid stimulates glial cells in vitro to product growth factors that accumulate in senile plaques in Alzheimer's disease. Brain. Res. 1992;569:141–145. doi: 10.1016/0006-8993(92)90380-r. [DOI] [PubMed] [Google Scholar]
  • 8.Ard M.D., Bunge R.P. Heparan sulfate proteoglycan and laminin immunoreactivity on cultured astrocytes: relationship to differentiation and neurite growth. J. Neurosci. 1988;8:2844–2858. doi: 10.1523/JNEUROSCI.08-08-02844.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Arenander A.T., de Vellis J., Herschman H.R. Induction of c-fos and TIS genes in cultured rat astrocytes by neurotransmitters. J. Neurosci. Res. 1989;24:107–114. doi: 10.1002/jnr.490240115. [DOI] [PubMed] [Google Scholar]
  • 10.Arenander A.T., Lim R.W., Varnum B.C., Cole R., de Vellis J., Herschman H.R. TIS gene expression in cultured rat astrocytes: induction by mitogens and stellation agents. J. Neurosci. Res. 1989;23:247–256. doi: 10.1002/jnr.490230302. [DOI] [PubMed] [Google Scholar]
  • 11.Arenander A.T., Lim R.W., Varnum B.C., Cole R., de Vellis J., Herschman H.R. TIS gene expression in cultured rat astrocytes: multiple pathways of induction by mitogens. J. Neurosci. Res. 1989;23:257–265. doi: 10.1002/jnr.490230303. [DOI] [PubMed] [Google Scholar]
  • 12.Asch A.S., Leung L.K., Shapiro J., Nachman R.L. 4th edn. Vol. 83. 1986. Human brain glial cells synthesize thrombospondin; pp. 2904–2908. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bach M.A., Shen-Orr Z., Lowe W.L., Jr, Roberts C.T., Jr, LeRoith D. Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Brain Res. molec. Brain Res. 1991;10:43–48. doi: 10.1016/0169-328x(91)90054-2. [DOI] [PubMed] [Google Scholar]
  • 14.Bakhit C., Armanini M., Bennett G.L., Wong W.L., Hansen S.E., Taylor R. Increase in glia-derived nerve growth following destruction of hippocampal neurons. Brain Res. 1991;560:76–83. doi: 10.1016/0006-8993(91)91217-o. [DOI] [PubMed] [Google Scholar]
  • 15.Banda M.J., Rice A.G., Griffin G.L., Senior R.M. The inhibitory complex of human alpha 1-proteinase inhibitor and human leukocyte elastase is a neutrophil chemoattractant. J. exp. Med. 1988;167:1608–1615. doi: 10.1084/jem.167.5.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Banker G.A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science. 1980;209:809–910. doi: 10.1126/science.7403847. [DOI] [PubMed] [Google Scholar]
  • 17.Barbin G., Katz D.M., Chamak B., Glowinski J., Prochiantz A. Brain astrocytes express region-specific surface glycoproteins in culture. Glia. 1988;1:96–103. doi: 10.1002/glia.440010111. [DOI] [PubMed] [Google Scholar]
  • 18.Baron-Van Evercooren A., Olichon-Berthe C., Kowalski A., Visciano G., Van Obberghen E. Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J. Neurosci. Res. 1991;28:244–253. doi: 10.1002/jnr.490280212. [DOI] [PubMed] [Google Scholar]
  • 19.Barres B.A. New roles for glia. J. Neurosci. 1991;11:3685–3694. doi: 10.1523/JNEUROSCI.11-12-03685.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Beach T.G., Walker R., McGeer E.G. Patterns of gliosis in Alzheimer's disease and aging cerebrum. Glia. 1989;2:420–436. doi: 10.1002/glia.440020605. [DOI] [PubMed] [Google Scholar]
  • 21.Benveniste E.N., Sparacio S.M., Bethea J.R. Tumor necrosis factor-alpha enhances interferon-gamma-mediated class II antigen expression on astrocytes. J. Neuroimmunol. 1989;25:209–219. doi: 10.1016/0165-5728(89)90139-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Benveniste E.N., Sparacio S.M., Norris J.G., Grenett H.E., Fuller G.M. Induction and regulation of interleukin-6 gene expression in rat astrocytes. J. Neuroimmunol. 1990;30:201–212. doi: 10.1016/0165-5728(90)90104-u. [DOI] [PubMed] [Google Scholar]
  • 23.Bernstein J.J., Getz R., Jefferson M., Kellemen M. Astrocytes secrete basal lamina after hemisection of rat spinal cord. Brain. Res. 1985;327:135–141. doi: 10.1016/0006-8993(85)91507-0. [DOI] [PubMed] [Google Scholar]
  • 24.Bernton E.W., Bryant H.U., Decoster M.A., Orenstein J.M., Ribas J.L., Meltzer M.S., Gendelman H.E. No direct neuronotoxicity by HIV-1 virions or culture fluids from HIV-1-infected T cells or monocytes. AIDS Res. Hum. Retroviruses. 1992;8:495–503. doi: 10.1089/aid.1992.8.495. [DOI] [PubMed] [Google Scholar]
  • 25.Betz A.L., Goldstein G.W., Katzman R. Blood-brain-cerebrospinal fluid barriers. In: Siegel G., Agranoff B., Albers R.W., Molinoff P., editors. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects. 4th edn. Raven Press; New York: 1989. pp. 591–606. [Google Scholar]
  • 26.Bevan S. Ion channels and neurotransmitter receptors in glia. Sem. Neurosci. 1990;2:467–481. [Google Scholar]
  • 27.Bignami A., Dahl D. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J. comp. Neurol. 1974;153:27–38. doi: 10.1002/cne.901530104. [DOI] [PubMed] [Google Scholar]
  • 28.Bignami A., Dahl D. The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates. Neuropath. appl. Neurobiol. 1976;2:99–100. [Google Scholar]
  • 29.Bignami A., Eng L.F., Dahl D., Uyeda C.T. Localization of glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain. Res. 1972;43:429–435. doi: 10.1016/0006-8993(72)90398-8. [DOI] [PubMed] [Google Scholar]
  • 30.Billiau A., Heremans H., Vandekerckhove F., Dijkmans R., Sobis H., Meulepas E., Carton H. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immun. 1988;140:1506–1510. [PubMed] [Google Scholar]
  • 31.Birecree E., Whetsell W.O., Jr, Stoscheck C., King L.E., Jr, Nanney L.B. Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer's disease. J. Neuropath. exp. Neurol. 1988;47:549–560. doi: 10.1097/00005072-198809000-00006. [DOI] [PubMed] [Google Scholar]
  • 32.Black J.A., Waxman S.G. The perinodal astrocyte. Glia. 1988;1:169–183. doi: 10.1002/glia.440010302. [DOI] [PubMed] [Google Scholar]
  • 33.Bondy C.A. Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J. Neurosci. 1991;11:3442–3455. doi: 10.1523/JNEUROSCI.11-11-03442.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Boyles J.K., Notterpek L.M., Anderson L.J. Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. J. biol. Chem. 1990;265:17,805–17,815. [PubMed] [Google Scholar]
  • 35.Boyles J.K., Pitas R.E., Wilson E., Mahley R.W., Taylor J.M. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J. clin. Invest. 1985;76:1501–1513. doi: 10.1172/JCI112130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Brennemann D.E., Neale E.A., Foster G.A., d'Autremont S.W., Westbrook G.L. Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J. Cell Biol. 1987;104:1603–1610. doi: 10.1083/jcb.104.6.1603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Brenneman D.E., Westbrook G.L., Fitzgerald S.P., Ennist D.L., Elkins K.L., Ruff M.R., Pert C.B. Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature. 1988;335:639–642. doi: 10.1038/335639a0. [DOI] [PubMed] [Google Scholar]
  • 38.Calvo J.L., Carbonell A.L., Boya J. Co-expression of glial fibrillary acidic protein and vimentin in reactive astrocytes following brain injury in rats. Brain Res. 1991;566:333–336. doi: 10.1016/0006-8993(91)91720-l. [DOI] [PubMed] [Google Scholar]
  • 39.Camenga D.L., Johnson K.P., Alter M., Engelhardt C.D., Fishman P.S., Greenstein J.I., Haley A.S., Hirsch R.L., Kleiner J.E., Kofie V.Y. Systemic recombinant alpha-2 interferon therapy in relapsing multiple sclerosis. Archs Neurol. 1986;43:1239–1246. doi: 10.1001/archneur.1986.00520120023011. [DOI] [PubMed] [Google Scholar]
  • 40.Cammer W., Downing M. Localization of the multifunctional protein CAD in astrocytes of rodent brain. J. Histochem. Cytochem. 1991;39:695–700. doi: 10.1177/39.5.1673139. [DOI] [PubMed] [Google Scholar]
  • 41.Cammer W., Tansey F.A. The astrocyte as a locus of carbonic anhydrase in the brains of normal and dysmyelinating mutant mice. J. comp. Neurol. 1988;275:65–75. doi: 10.1002/cne.902750106. [DOI] [PubMed] [Google Scholar]
  • 42.Cammer W., Tansey F.A., Brosnan C.F. Gliosis in the spinal cords of rats with experimental allergic encephalomyelitis: immunostaining of carbonic anhydrase and vimentin in reactive astrocytes. Glia. 1989;2:223–230. doi: 10.1002/glia.440020403. [DOI] [PubMed] [Google Scholar]
  • 43.Cammer W., Tansey F.A., Brosnan C.F. Reactive gliosis in the brains of Lewis rats with experimental allergic encephalomyelitis. J. Neuroimmunol. 1990;27:111–120. doi: 10.1016/0165-5728(90)90060-z. [DOI] [PubMed] [Google Scholar]
  • 44.Cammer W., Zhang H. Comparison of immunocytochemical staining of astrocytes, oligodendrocytes, and myelinated fibers in the brains of carbonic anhydrase II-deficient mice and normal littermates. J. Neuroimmunol. 1991;34:81–86. doi: 10.1016/0165-5728(91)90102-d. [DOI] [PubMed] [Google Scholar]
  • 45.Campbell I.L., Oldstone M.B.A., Mucke L. Neurologic disease induced in transgenic mice by the astrocyte-specific expression of interleukin-6. Soc. Neurosci. Abstr. 1992;18:206.5. [Google Scholar]
  • Cannella B., Cross A.H., Raine C.S. Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J. exp. Med. 1990;172:1521–1524. doi: 10.1084/jem.172.5.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Caroni P., Becker M. The downregulation of growth-associated proteins in motorneurons at the onset of synapse elimination is controlled by muscle activity and IGF 1. J. Neurosci. 1992;12:3849–3861. doi: 10.1523/JNEUROSCI.12-10-03849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Carroll W.M., Jennings A.R., Mastaglia F.L. Reactive glial cells in CNS demyelination contain both GC and GFAP. Brain Res. 1987;411:364–369. doi: 10.1016/0006-8993(87)91088-2. [DOI] [PubMed] [Google Scholar]
  • Carson M.J., Behringer R.R., Brinster R.L., McMorris F.A. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron. 1993 doi: 10.1016/0896-6273(93)90173-o. (in press). [DOI] [PubMed] [Google Scholar]
  • 48.Cheng B., Mattson M.P. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilising calcium homeostasis. Neuron. 1991;7:1031–1041. doi: 10.1016/0896-6273(91)90347-3. [DOI] [PubMed] [Google Scholar]
  • 49.Cheng-Mayer C., Rutka J.T., Rosenblum M.L., McHugh T., Stites D.P., Levy J. 2nd ed. Vol. 84. 1987. Human immunodeficiency virus can productively infect cultured human glial cells; pp. 3526–3530. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Chiu F.C., Sacchi R.S., Claudio L., Kobayashi S., Suzuki K. Coexpression of glial fibrillary acidic protein and vimentin in the central and peripheral nervous systems of the twitcher mutant. Glia. 1988;1:105–112. doi: 10.1002/glia.440010202. [DOI] [PubMed] [Google Scholar]
  • 51.Choi B.H., Suzuki M., Kim T., Wagner S.L., Cunningham D.D. Protease Nexin-I. Localization in the human brain suggests a protective role against extravasated serine proteases. Am. J. Path. 1990;137:741–747. [PMC free article] [PubMed] [Google Scholar]
  • 52.Choi D.W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1:623–734. doi: 10.1016/0896-6273(88)90162-6. [DOI] [PubMed] [Google Scholar]
  • 53.Chung I.Y., Benveniste E.N. Tumor necrosis factor-alpha production by astrocytes. Induction by lipopolysaccharide, IFN-gamma, and IL-1beta. J. Immun. 1990;144:2999–3007. [PubMed] [Google Scholar]
  • 54.Clark E.A., Leach K.L., Trojanowski J.Q., Lee V.M. Characterization and differential distribution of the three major human protein kinase C isozymes (PKC alpha, PKC beta, and PKC gamma) of the central nervous system in normal and Alzheimer's disease brains. Lab. Invest. 1991;64:35–44. [PubMed] [Google Scholar]
  • 55.Connor J.R., Menzies S.L., St.Martin S.M., Mufson E.J. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. J. Neurosci. Res. 1992;31:72–83. doi: 10.1002/jnr.490310111. [DOI] [PubMed] [Google Scholar]
  • 56.Corvalan V., Cole R., de Vellis J., Hagiwara S. 2nd ed. Vol. 87. 1990. Neuronal modulation of calcium channel activity in cultured rat astrocytes; pp. 4345–4348. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Cray C., Keane R., Malek T.R., Levy R.B. Regulation and selective expression of Ly-6A/E, a lymphocyte activation molecule, in the central nervous system. Brain Res. molec. Brain Res. 1990;8:9–15. doi: 10.1016/0169-328x(90)90003-v. [DOI] [PubMed] [Google Scholar]
  • 58.da Cunha A., Jefferson J.A., Jackson R.W., Vitkovic L. Glial cell-specific mechanisms of TGF-β1 induction by IL-1 in cerebral cortex. J. Neuroimmunol. 1992;42:71–86. doi: 10.1016/0165-5728(93)90214-j. [DOI] [PubMed] [Google Scholar]
  • 59.de Cunha A., Vitkovic L. Transforming growth factor-beta 1 (TGF-beta 1) expression and regulation in rat cortical astrocytes. J. Neuroimmunol. 1992;36:157–169. doi: 10.1016/0165-5728(92)90047-o. [DOI] [PubMed] [Google Scholar]
  • 60.Dahl D., Bignami A. Heterogeneity of the glial fibrillary acidic protein in gliosed human brain. J. neurol. Sci. 1974;23:551–563. doi: 10.1016/0022-510x(74)90027-6. [DOI] [PubMed] [Google Scholar]
  • 61.Dahl D., Bignami A., Weber K., Osborn M. Filament proteins in rat optic nerves undergoing Wallerian degeneration: localization of vimentin, the fibroblastic 100-A filament protein, in normal and reactive astrocytes. Expl Neurol. 1981;73:496–506. doi: 10.1016/0014-4886(81)90283-1. [DOI] [PubMed] [Google Scholar]
  • 62.Dani J.W., Chernjavsky A., Smith S.J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron. 1992;8:429–440. doi: 10.1016/0896-6273(92)90271-e. [DOI] [PubMed] [Google Scholar]
  • 63.David S., Bouchard C., Tsatas O., Giftochristos N. Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system. Neuron. 1990;5:463–469. doi: 10.1016/0896-6273(90)90085-t. [DOI] [PubMed] [Google Scholar]
  • 64.Day J.R., Laping N.J., McNeill T.H., Schreiber S.S., Pasinetti G., Finch C.E. Castration enhances expression of glial fibrillary acidic protein and sulfated glycoprotein-2 in the intact and lesion-altered hippocampus of the adult male rat. Molec. Endocr. 1990;4:1995–2002. doi: 10.1210/mend-4-12-1995. [DOI] [PubMed] [Google Scholar]
  • 65.De La Monte S.M., Ho D.D., Schooley R.T., Hirsch M.S., Richardson E.P., Jr Subacute encephalomyelitis of AIDS and its relation to HTLV-III infection. Neurology. 1987;37:562–569. doi: 10.1212/wnl.37.4.562. [DOI] [PubMed] [Google Scholar]
  • 66.Delacourte A. General and dramatic glial reaction in Alzheimer brains. Neurology. 1990;40:33–37. doi: 10.1212/wnl.40.1.33. [DOI] [PubMed] [Google Scholar]
  • 67.Denis-Donini A., Glowinski J., Prochiantz A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurons. Nature. 1984;307:641–643. doi: 10.1038/307641a0. [DOI] [PubMed] [Google Scholar]
  • 68.Dickson D.W., Mattiace L.A. Astrocytes and microglia in human brain share an epitope recognized by a B-lymphocyte-specific monoclonal antibody (LN-1) Am. J. Path. 1989;135:135–147. [PMC free article] [PubMed] [Google Scholar]
  • 69.Diedrich J.F., Bendheim P.E., Kim Y.S., Carp R.I., Haase A.T. 2nd ed. Vol. 88. 1991. Scrapie-associated prion protein accumulates in astrocytes during scrapie infection; pp. 375–379. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Diedrich J.F., Minnigan H., Carp R.I., Whitaker J.N., Race R., Frey W., Haase A.T. Neuropathological changes in scrapie and Alzheimer's disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J. Virol. 1991;65:4759–4768. doi: 10.1128/jvi.65.9.4759-4768.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Dwyer B.E., Nishimura R.N., de Vellis J., Clegg K.B. Regulation of heat shock protein synthesis in rat astrocytes. J. Neurosci. Res. 1991;28:352–358. doi: 10.1002/jnr.490280306. [DOI] [PubMed] [Google Scholar]
  • 72.Dwyer B.E., Nishimura R.N., de Vellis J., Yoshida T. Heme oxygenase is a heat shock protein and PEST protein in rat astroglial cells. Glia. 1992;5:300–305. doi: 10.1002/glia.440050407. [DOI] [PubMed] [Google Scholar]
  • Eddleston M, de la Torre J.C., Oldstone M.B.A., Loskutoff D.J., Edgington T.S., Mackman N. Astrocytes are the primary source of tissue factor in the murine central nervous system—a role for astrocytes in cerebral hemostasis. J. clin. Invest. 1993 doi: 10.1172/JCI116573. (in press). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Ehrenreich H., Anderson R.W., Ogino Y., Rieckmann P., Costa T., Wood G.P., Coligan J.E., Kehrl J.H., Fauci A.S. Selective autoregulation of endothelins in primary astrocyte cultures: endothelin receptor-mediated potentiation of endothelin-1 secretion. New Biol. 1991;3:135–141. [PubMed] [Google Scholar]
  • Ehrenreich H., Costa T., Clouse K.A., Pluta R.M., Ogino Y., Coligan J.E., Burd P.R. Thrombin is a regulator of astrocytic endothelin-1. Brain Res. 1993;600:201–207. doi: 10.1016/0006-8993(93)91374-2. [DOI] [PubMed] [Google Scholar]
  • 74.Ewing J.F., Haber S.N., Maines M.D. Normal and heat-induced patterns of expression of heme oxygenase-1 (HSP32) in rat brain: hyperthermia causes rapid induction of mRNA and protein. J. Neurochem. 1992;58:1140–1149. doi: 10.1111/j.1471-4159.1992.tb09373.x. [DOI] [PubMed] [Google Scholar]
  • 75.Fedoroff S., Vernadakis A. 2nd ed. 1–3. Academic Press; Orlando: 1986. (Astrocytes). [Google Scholar]
  • 76.Fedoroff S., White R., Neal J., Subrahmanyan L., Karnins V.I. Astrocyte lineage. II. Mouse fibrous astrocytes and reactive astrocytes in cultures have vimentin- and GFP-containing intermediate filaments. Devl Brain. Res. 1983;7:303–315. doi: 10.1016/0165-3806(83)90187-6. [DOI] [PubMed] [Google Scholar]
  • 77.Fierz W., Endler B., Reske K., Wekerle H., Fontana A. Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression on astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immun. 1985;134:3785–3793. [PubMed] [Google Scholar]
  • 78.Fierz W., Fontana A. The role of astrocytes in the interaction between the immune and nervous system. In: Fedoroff S., Vernadakis A., editors. Astrocytes. Cell Biology and Pathology of Astrocytes. Academic Press; Orlando: 1986. pp. 203–229. [Google Scholar]
  • 79.Flott B., Seifert W. Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia. 1991;4:293–304. doi: 10.1002/glia.440040307. [DOI] [PubMed] [Google Scholar]
  • 80.Fontana A., Erb P., Pircher H., Zinkernagel R., Weber E., Fierz W. Astrocytes as antigen-presenting cells. Part II: unlike H-2K-dependent cytotoxic T cells, H-21a-restricted T cells are only stimulated in the presence of interferon gamma. J. Neuroimmunol. 1986;12:15–28. doi: 10.1016/0165-5728(86)90093-7. [DOI] [PubMed] [Google Scholar]
  • 81.Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature. 1984;307:273–276. doi: 10.1038/307273a0. [DOI] [PubMed] [Google Scholar]
  • 82.Fontana A., Kristensen F., Dubs R., Gemsa D., Weber E. Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J. Immun. 1982;129:2413–2419. [PubMed] [Google Scholar]
  • 83.Frank E., Pulver M., de Tribolet N. Expression of class II major histocompatibility antigens on reactive astrocytes and endothelial cells within the gliosis surrounding metastases and abscesses. J. Neuroimmunol. 1986;12:29–36. doi: 10.1016/0165-5728(86)90094-9. [DOI] [PubMed] [Google Scholar]
  • 84.Frei K., Malipiero U.V, Leist T.P., Zinkernagel R.M., Schwab M.E., Fontana A. On the cellular source and function of interleukin-6 produced in the central nervous system in viral diseases. Eur. J. Immun. 1989;19:689–694. doi: 10.1002/eji.1830190418. [DOI] [PubMed] [Google Scholar]
  • 85.Frohman E.M., Frohman T.C., Dustin M.L., Vayuvegula B., Choi B., Gupta A., van den Noort S., Gupta S. The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-gamma, tumor necrosis factor alpha, lymphotoxin, and interleukin-1: relevance to intracerebral antigen presentation. J. Neuroimmunol. 1989;23:117–124. doi: 10.1016/0165-5728(89)90030-1. [DOI] [PubMed] [Google Scholar]
  • 86.Frohman E.M., van den Noort S., Gupta S. Astrocytes and intracerebral immune responses. J. clin. Immun. 1989;9:1–9. doi: 10.1007/BF00917121. [DOI] [PubMed] [Google Scholar]
  • 87.Gadient R.A., Cron K.C., Otten U. Interleukin-1 beta and tumor necrosis factor-alpha synergistically stimulate nerve growth factor (NGF) release from cultured rat astrocytes. Neurosci. Lett. 1990;117:335–340. doi: 10.1016/0304-3940(90)90687-5. [DOI] [PubMed] [Google Scholar]
  • 88.Gajdusek D.C. Subacute spongiform encephalopathies: transmissible cerebral amyloidoses caused by unconventional agents. In: Fields B.N., Knipe D.M., editors. Virology. 2nd ed. Raven Press; New York: 1990. pp. 2289–2324. [Google Scholar]
  • 89.Gebicke-Haerter P.J., Bauer J., Schobert A., Northoff H. Lipopolysaccharide-free conditions in primary astrocyte cultures allow growth and isolation of microglial cells. J. Neurosci. 1989;9:183–194. doi: 10.1523/JNEUROSCI.09-01-00183.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Geisert E.E., Jr, Johnson H.G., Binder L.I. 3rd edn. Vol. 87. 1990. Expression of microtubule-associated protein 2 by reactive astrocytes; pp. 3967–3971. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Giftochristos N., David S. Laminin and heparan sulphate proteoglycan in the lesioned adult mammalian central nervous system and their possible relationship to axonal sprouting. J. Neurocytol. 1988;17:385–397. doi: 10.1007/BF01187860. [DOI] [PubMed] [Google Scholar]
  • 92.Girgrah N., Letarte M., Becker L.E., Cruz T.F., Theriault E., Moscarello M.A. Localization of the CD44 glycoprotein to fibrous astrocytes in normal white matter and to reactive astrocytes in active lesions in multiple sclerosis. J. Neuropath. exp. Neurol. 1991;50:779–792. doi: 10.1097/00005072-199111000-00009. [DOI] [PubMed] [Google Scholar]
  • 93.Giulian D. Ameboid microglia as effectors of inflammation in the central nervous system. J. Neurosci. Res. 1987;18:155–171. doi: 10.1002/jnr.490180123. [DOI] [PubMed] [Google Scholar]
  • 94.Gluckman P., Klempt N., Guan J., Mallard C., Sirimanne E., Dragunow M.K., Singh K., Williams C., Nikolics K. A role for IGF-1 in the rescue of CNS neurons following hypoxic-ischemic injury. Biochem. biophys. Res. Commun. 1992;182:593–599. doi: 10.1016/0006-291x(92)91774-k. [DOI] [PubMed] [Google Scholar]
  • 95.Gocht A., Lohler J. Changes in glial cell markers in recent and old demyelinated lesions in central pontine myelinolysis. Acta neuropath., (Berlin) 1990;80:46–58. doi: 10.1007/BF00294221. [DOI] [PubMed] [Google Scholar]
  • 96.Goldman J.E., Chiu F.-C. Dibutyryl cyclic AMP causes intermediate filament accumulation and actin reorganisation in astrocytes. Brain Res. 1984;306:85–95. doi: 10.1016/0006-8993(84)90358-5. [DOI] [PubMed] [Google Scholar]
  • 97.Gomez-Pinilla F., Cummings B.J., Cotman C.W. Induction of basic fibroblast growth factor in Alzheimer's disease pathology. Neuroreport. 1990;1:211–214. doi: 10.1097/00001756-199011000-00009. [DOI] [PubMed] [Google Scholar]
  • 98.Gomez-Pinilla F., Lee J.W., Cotman C.W. Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. J. Neurosci. 1992;12:345–355. doi: 10.1523/JNEUROSCI.12-01-00345.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Gordon D.L., Sadlon T.A., Wesselingh S.L., Russell S.M., Johnstone R.W., Purcell D.F. Human astrocytes express membrane cofactor protein (CD46), a regulator of complement activation. J. Neuroimmunol. 1992;36:199–208. doi: 10.1016/0165-5728(92)90051-l. [DOI] [PubMed] [Google Scholar]
  • 100.Griffin W.S., Stanley L.C., Ling C, White L., MacLeod V., Perrot L.J., White C.L., Araoz C. 3rd edn. Vol. 86. 1989. Brain interleukin 1 and S-10 immunoreactivity are elevated in Down syndrome and Alzheimer disease; pp. 7611–7615. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Hagg T., Muir D., Engvall E., Varon S., Manthorpe M. Laminin-like antigen in rat CNS neurons: distribution and changes upon brain injury and nerve growth factor treatment. Neuron. 1989;3:721–732. doi: 10.1016/0896-6273(89)90241-9. [DOI] [PubMed] [Google Scholar]
  • 102.Halliwell B. Reactive oxygen species and the central nervous system. J. Neurochem. 1992;59:1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x. [DOI] [PubMed] [Google Scholar]
  • 103.Halliwell B., Gutteridge J.M.C. Clarendon Press; Oxford: 1985. Free Radicals in Biology and Medicine. [DOI] [PubMed] [Google Scholar]
  • 104.Halperin J.J., Heyes M.P. Neuroactive kynurenines in Lyme borreliosis. Neurology. 1992;42:43–50. doi: 10.1212/wnl.42.1.43. [DOI] [PubMed] [Google Scholar]
  • 105.Hartung H.-P., Heininger K., Scha¨fer B., Toyka K. Substance P and astrocytes: Stimulation of the cyclooxygenase pathway of arachidonic acid metabolism. Fedn Am. Soc. exp. Biol J. 1988;2:48–51. doi: 10.1096/fasebj.2.1.2446942. [DOI] [PubMed] [Google Scholar]
  • 106.Hartung H.-P., Toyka K. Phorbol diester TPA elicits prostaglandin E release from cultured rat astrocytes. Brain Res. 1987;417:347–349. doi: 10.1016/0006-8993(87)90461-6. [DOI] [PubMed] [Google Scholar]
  • 107.Hartung H.-P., Toyka K. Leukotriene production by cultured astroglial cells. Brain Res. 1987;435:367–370. doi: 10.1016/0006-8993(87)91627-1. [DOI] [PubMed] [Google Scholar]
  • 108.Hartung H.-P., Heininger K., Toyka K.V. Primary rat astroglial cultures can generate leukotriene B4. J. Neuroimmunol. 1988;19:237–243. doi: 10.1016/0165-5728(88)90005-7. [DOI] [PubMed] [Google Scholar]
  • 109.Hartung H.P., Schafer B., Heininger K., Toyka K.V. Recombinant interleukin-1 beta stimulates eicosanoid production in rat primary culture astrocytes. Brain Res. 1989;489:113–119. doi: 10.1016/0006-8993(89)90013-9. [DOI] [PubMed] [Google Scholar]
  • 110.Hatten M.E. Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol. 1985;100:384–396. doi: 10.1083/jcb.100.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Hatten M.E., Liem R.K., Shelanski M.L., Mason C.A. Astroglia in CNS injury. Glia. 1991;4:233–243. doi: 10.1002/glia.440040215. [DOI] [PubMed] [Google Scholar]
  • 112.Hertz L., McFarlin D.E., Waksman B.H. Astrocytes: auxiliary cells for immune responses in the central nervous system? Immunol. Today. 1990;11:265–268. doi: 10.1016/0167-5699(90)90106-j. [DOI] [PubMed] [Google Scholar]
  • 113.Hertz L., Schousboe A. Role of astrocytes in compartmentation of amino acids and energy metabolism. In: Fedoroff S., Vernadakis A., editors. Astrocytes. Biochemistry, Physiology, and Pharmacology of Astrocytes. Academic press; Orlando: 1986. pp. 179–208. [Google Scholar]
  • 114.Hetier E., Ayala J., Denefle P., Bousseau A., Rouget P., Mallat M., Prochiantz A. Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. J. Neurosci. Res. 1988;21:391–397. doi: 10.1002/jnr.490210230. [DOI] [PubMed] [Google Scholar]
  • 115.Heyes M.P., Brew B.J., Martin A., Price R.W., Salazar A.M., Sidtis J.J., Yergey J.A., Mouradian M.M., Sadler A.E., Keilp J. Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status. Ann. Neurol. 1991;29:202–209. doi: 10.1002/ana.410290215. [DOI] [PubMed] [Google Scholar]
  • 116.Heyes M.P., Gravell M., London W.T., Eckhaus M., Vickers J.H., Yergey J.A., April M., Blackmore D., Markey S.P. Sustained increases in cerebrospinal fluid quinolinic acid concentrations in rhesus macaques (Macaca mulatta) naturally infected with simian retrovirus type-D. Brain Res. 1990;531:148–158. doi: 10.1016/0006-8993(90)90768-7. [DOI] [PubMed] [Google Scholar]
  • 117.Heyes M.P., Lackner A. Increased cerebrospinal fluid quinolinic acid, kynurenic acid, and L-kynurenine in acute septicemia. J. Neurochem. 1990;55:338–341. doi: 10.1111/j.1471-4159.1990.tb08857.x. [DOI] [PubMed] [Google Scholar]
  • 118.Heyes M.P., Lackner A., Kaufman S., Milstien S. Cerebrospinal fluid and serum neopterin and biopterin in D-retrovirus-infected rhesus macaques (Macaca mulatta): relationship to clinical and viral status. AIDS. 1991;5:55–560. doi: 10.1097/00002030-199105000-00012. [DOI] [PubMed] [Google Scholar]
  • 119.Heyes M.P., Mefford I.N., Quearry B.J., Dedhia M., Lackner A. Increased ration of quinolinic acid to kynurenic acid in cerebrospinal fluid of D retrovirus-infected rhesus macaques: relationship to clinical and viral status. Ann. Neurol. 1990;27:666–675. doi: 10.1002/ana.410270614. [DOI] [PubMed] [Google Scholar]
  • 120.Heyes M.P., Rubinow D., Lane C., Markey S.P. Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome. Ann. Neurol. 1989;26:275–277. doi: 10.1002/ana.410260215. [DOI] [PubMed] [Google Scholar]
  • 121.Hickey W.F., Kimura H. 3rd edn. Vol. 84. 1987. Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system; pp. 2082–2086. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Hickey W.F., Kimura H. Perivascular microglial cells of the CNS are bone marrow derived and present antigen in vivo. Science. 1988;239:290–293. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
  • 123.Hickey W.F., Osborn J.P., Kirby W.M. Expression of Ia molecules by astrocytes during acute experimental allergic encephalomyelitis in the Lewis rat. Cell Immunol. 1985;91:528–535. doi: 10.1016/0008-8749(85)90251-5. [DOI] [PubMed] [Google Scholar]
  • 124.Hirayama M., Miyadai T., Yokochi T., Sato K., Kubota T., Iida M., Fujiki N. Infection of human T-lymphotropic virus type I to astrocytes in vitro with induction of the class II major histocompatibility complex. Neurosci. Lett. 1988;92:34–39. doi: 10.1016/0304-3940(88)90738-0. [DOI] [PubMed] [Google Scholar]
  • 125.Hirsch M.R., Wietzerbin J., Pierres M., Goridis C. Expression of Ia antigen by cultured astrocytes treated with gamma-interferon. Neurosci. Lett. 1983;41:199–204. doi: 10.1016/0304-3940(83)90247-1. [DOI] [PubMed] [Google Scholar]
  • 126.Hisanaga K., Sagar S.M., Hicks K.J., Swanson R.A., Sharp F.R. c-fos proto-oncogene expression in astrocytes associated with differentiation or proliferation but not depolarization. Brain Res. molec. Brain Res. 1990;8:69–75. doi: 10.1016/0169-328x(90)90011-2. [DOI] [PubMed] [Google Scholar]
  • 127.Hoffmann M.-C., Nitsch C., Scotti A.L., Reinhard E., Monard D. The prolonged presence of glia-derived nexin, an endogenous protease inhibitor, in the hippocampus after ischemia-induced delayed neuronal death. Neuroscience. 1992;49:397–408. doi: 10.1016/0306-4522(92)90105-b. [DOI] [PubMed] [Google Scholar]
  • 128.Hofman F.M., Hinton D.R., Johnson K., Merrill J.E. Tumor necrosis factor identified in multiple sclerosis brain. J. exp. Med. 1989;170:607–612. doi: 10.1084/jem.170.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Hofman F.M., von Hanwehr R.L., Dinarello C.A., Mizel S.B., Hinton D., Merrill J.E. Immunoregulatory molecules and IL-2 receptors identified in multiple sclerosis brain. J. Immunol. 1986;136:3239–3245. [PubMed] [Google Scholar]
  • 130.Hozumi I., Aquino D.A., Norton W.T. GFAP mRNA levels following stab wounds in rat brain. Brain Res. 1990;534:291–294. doi: 10.1016/0006-8993(90)90142-x. [DOI] [PubMed] [Google Scholar]
  • 131.Hozumi I., Chiu F.-C., Norton W.T. Biochemical and immunocytochemical changes in glial fibrillary acidic protein after stab wounds. Brain Res. 1990;524:64–71. doi: 10.1016/0006-8993(90)90492-t. [DOI] [PubMed] [Google Scholar]
  • 132.Ho¨sli E., Schousboe A., Ho¨sli L. Amino acid uptake. In: Fedoroff S., Vernadakis A., editors. Astrocytes. Biochemistry, Physiology, and Pharmacology of Astrocytes. Academic Press; Orlando: 1986. pp. 133–153. [Google Scholar]
  • Hurwitz A.A., Lyman W.D., Guida M.P., Calderon T.M., Berman J.W. Tumor necrosis factor α induces adhesion molecule expression on human fetal astrocytes. J. exp. Med. 1992;176:1631–1636. doi: 10.1084/jem.176.6.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Iwaki T., Wisniewski T., Iwaki A., Corbin E., Tomokane N., Tateishi J., Goldman J.E. Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am. J. Path. 1992;140:345–356. [PMC free article] [PubMed] [Google Scholar]
  • 134.Johnson K.P. Treatment of multiple sclerosis with various interferons: the cons. Neurology. 1988;38:62–65. [PubMed] [Google Scholar]
  • 135.Johnson-Green P.C., Dow K.E., Riopelle R.J. Characterization of glycosaminoglycans produced by primary astrocytes in vitro. Glia. 1991;4:314–321. doi: 10.1002/glia.440040309. [DOI] [PubMed] [Google Scholar]
  • 136.Junier M.P., Ma Y.J., Costa M.E., Hoffman G., Hill D.F., Ojeda S.R. 3rd edn. Vol. 88. 1991. Transforming growth factor alpha contributes to the mechanism by which hypothalamic injury induces precocious puberty; pp. 9743–9747. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Kalman M., Hajos F. Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. Expl Brain. Res. 1989;78:147–163. doi: 10.1007/BF00230694. [DOI] [PubMed] [Google Scholar]
  • 138.Kang J., Lemaire H.G., Unterbeck A., Salbaum J.M., Masters C.L., Grzeschik K.H., Multhaup G., Beyreuther K., Muller Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987;325:733–736. doi: 10.1038/325733a0. [DOI] [PubMed] [Google Scholar]
  • 139.Kawai K., Takahashi H., Wakabayashi K., Ikuta F. Ultracytochemical localization of Ca2+-ATPase activity in reactive astrocytes. Acta neuropath., Berlin. 1989;78:449–454. doi: 10.1007/BF00687705. [DOI] [PubMed] [Google Scholar]
  • 140.Kawaja M.D., Gage F.H. Reactive astrocytes are substrates for the growth of adult CNS axons in the presence of elevated levels of nerve growth factor. Neuron. 1991;7:1019–1030. doi: 10.1016/0896-6273(91)90346-2. [DOI] [PubMed] [Google Scholar]
  • 141.Kawamata T., Akiyama H., Yamada T., McGeer P.L. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am. J. Path. 1992;140:691–707. [PMC free article] [PubMed] [Google Scholar]
  • 142.Khelil M., Rolland B., Fages C., Tardy M. Glutamine synthetase modulation in astrocyte cultures of different mouse brain areas. Glia. 1990;3:75–80. doi: 10.1002/glia.440030110. [DOI] [PubMed] [Google Scholar]
  • 143.Kimelberg H.K., Stieg P.E., Mazurkiewica J.E. Immunocytochemical and biochemical analysis of carbonic anhydrase in primary astrocyte cultures from rat brain. J. Neurochem. 1982;39:734–742. doi: 10.1111/j.1471-4159.1982.tb07954.x. [DOI] [PubMed] [Google Scholar]
  • 144.Kiyota Y., Takami K., Iwane M., Shino A., Miyamoto M., Tsukuda R., Nagaoka A. Increase in basic fibroblast growth factor-like immunoreactivity in rat brain after forebrain ischemia. Brain Res. 1991;545:322–328. doi: 10.1016/0006-8993(91)91307-m. [DOI] [PubMed] [Google Scholar]
  • 145.Klein R.S., Das B., Fricker L.D. Secretion of car☐ypeptidase E from cultured astrocytes and from AtT-20 cells, a neuroendocrine cell line: implications for neuropeptide biosynthesis. J. Neurochem. 1992;58:2011–2018. doi: 10.1111/j.1471-4159.1992.tb10941.x. [DOI] [PubMed] [Google Scholar]
  • 146.Knobler R.L., Panitch H.S., Braheny S.L., Sipe J.C., Rice G.P., Huddlestone J.R., Francis G.S., Hooper C.K., Kamin-Lewis R.M., Johnson K.P., Oldstone M.B.A., Merigan T.C. Systemic alpha-interferon therapy of multiple sclerosis. Neurology. 1984;34:1273–1279. doi: 10.1212/wnl.34.10.1273. [DOI] [PubMed] [Google Scholar]
  • 147.Koh J.-Y., Yang L.L., Cotman C.W. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain. Res. 1990;533:315–320. doi: 10.1016/0006-8993(90)91355-k. [DOI] [PubMed] [Google Scholar]
  • 148.Koj A., Magielska-Zero D., Kurdowska A., Bereta J. Proteinase inhibitors as acute phase reactants: Regulation of synthesis and turnover. Adv. exp. med. Biol. 1988;240:171–181. doi: 10.1007/978-1-4613-1057-0_21. [DOI] [PubMed] [Google Scholar]
  • 149.Komoly S., Hudson L.D., Webster H.D., Bondy C.A. 3rd edn. Vol. 89. 1992. Insulin-like growth factor 1 gene expression is induced in astrocytes during experimental demyelination; pp. 1894–1898. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Ko¨hler C., Eriksson L.G., Okuno E., Schwarcz R. Localization of quinolinic acid metabolizing enzymes in the rat brain. Immunohistochemical studies using antibodies to 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase. Neuroscience. 1988;27:49–76. doi: 10.1016/0306-4522(88)90219-9. [DOI] [PubMed] [Google Scholar]
  • 151.Ko¨hler C., Okuno E., Flood P.R., Schwarcz R. 3rd edn. Vol. 84. 1987. Quinolinic acid phosphoribosyltransferase: preferential glial localization in the rat brain visualized by immunocytochemistry; pp. 3491–3495. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Kurdowska A., Travis J. Acute phase protein stimulation by alpha 1-antichymotrypsin-cathepsin G complexes. Evidence for the involvement of interleukin-6. J. biol. Chem. 1990;265:21,023–21,026. [PubMed] [Google Scholar]
  • 153.Lafarga M., Berciano M.T., Suarez I., Viadero C.F., Andres M.A., Berciano J. Cytology and organization of reactive astroglia in human cerebellar cortex with severe loss of granule cells: a study on the ataxic form of Creutzfeldt-Jakob disease. Neuroscience. 1991;40:337–352. doi: 10.1016/0306-4522(91)90124-7. [DOI] [PubMed] [Google Scholar]
  • 154.Lagenaur C., Masters C., Schachner M. Changes in expression of glial antigens M1 and C1 after cerebellar injury. J. Neurosci. 1982;2:470–476. doi: 10.1523/JNEUROSCI.02-04-00470.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Landry C.F., Ivy G.O., Brown I.R. Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization. J. Neurosci. Res. 1990;25:194–203. doi: 10.1002/jnr.490250207. [DOI] [PubMed] [Google Scholar]
  • 156.Lassmann H., Zimprich F., Vass K., Hickey W.F. Microglial cells are a component of the perivascular glia limitans. J. Neurosci. Res. 1991;28:243–326. doi: 10.1002/jnr.490280211. [DOI] [PubMed] [Google Scholar]
  • 157.Lavi E., Suzumura A., Murasko D.M., Murray E.M., Silberberg D.H., Weiss S.R. Tumor necrosis factor induces expression of MHC class I antigens on mouse astrocytes. J. Neuroimmunol. 1988;18:245–253. doi: 10.1016/0165-5728(88)90102-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Lawrence J.M., Morris R.J., Wilson D.J., Raisman G. Mechanisms of allograft rejection in the rat brain. Neuroscience. 1990;37:431–462. doi: 10.1016/0306-4522(90)90413-x. [DOI] [PubMed] [Google Scholar]
  • 159.Laywell E.D., Dorries U., Bartsch U., Faissner A., Schachner M., Steindler D.A. 3rd edn. Vol. 89. 1992. Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury; pp. 2634–2638. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.La¨rkfors L., Stro¨mberg L., Ebendal T., Olson L. Nerve growth factor protein level increases in the adult rat hippocampus after a specific cholinergic lesion. J. Neurosci. Res. 1987;18:525–531. doi: 10.1002/jnr.490180404. [DOI] [PubMed] [Google Scholar]
  • 161.Le Gal La Salle G., Rougon G., Valin A. The embryonic form of neural cell surface molecule (E-NCAM) in the rat hippocampus and its reexpression on glial cells following kainic acid-induced status epilepticus. J. Neurosci. 1992;12:872–882. doi: 10.1523/JNEUROSCI.12-03-00872.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • Lee S.C., Liu W., Roth P., Dickson D.W., Berman J.W., Brosnan C.F. Macrophage colony-stimulating factor in human fetal astrocytes and microglia. J. Immun. 1993;150:594–604. [PubMed] [Google Scholar]
  • 162.Lee S.C., Moore G.R., Golenwsky G., Raine C.S. Multiple sclerosis: a role for astroglia in active demyelination suggested by class II MHC expression and ultrastructural study. J. Neuropath. exp. Neurol. 1990;49:122–136. doi: 10.1097/00005072-199003000-00005. [DOI] [PubMed] [Google Scholar]
  • 163.Lee W.-H., Clemens J.A., Bondy C.A. Insulin-like growth factors in the response to cerebral ischaemia. Molec. cell. Neurosci. 1992;3:36–43. doi: 10.1016/1044-7431(92)90006-n. [DOI] [PubMed] [Google Scholar]
  • 164.Lerea L.S., McCarthy K.D. Astroglial cells in vitro are heterogeneous with respect to the expression of the α 1-adrenergic receptor. Glia. 1989;2:135–147. doi: 10.1002/glia.440020302. [DOI] [PubMed] [Google Scholar]
  • 165.Levi-Strauss M., Mallat M. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J. Immun. 1987;139:2361–2366. [PubMed] [Google Scholar]
  • 166.Levine S.M., Seyfried T.N., Yu R.K., Goldman J.E. Immunocytochemical localization of GD3 ganglioside to astrocytes in murine cerebellar mutants. Brain Res. 1986;374:260–269. doi: 10.1016/0006-8993(86)90420-8. [DOI] [PubMed] [Google Scholar]
  • 167.Lewis S.A., Cowan N.J. Temporal expression of mouse glial fibrillary acidic protein mRNA studied by a rapid in situ hybridization procedure. J. Neurochem. 1985;45:913–919. doi: 10.1111/j.1471-4159.1985.tb04080.x. [DOI] [PubMed] [Google Scholar]
  • 168.Lieberman A.P., Ptha P.M., Shin H.S., Shin M.L. 3rd edn. Vol. 86. 1989. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus; pp. 6348–6352. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Liesi V., Kaakkola S., Dahl D., Vaheri A. Laminin is induced in astrocytes of adult brain by injury. Eur. molec. Biol. Org. J. 1984;3:683–686. doi: 10.1002/j.1460-2075.1984.tb01867.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Lindholm D., Castren E., Kiefer R., Zafra F., Thoenen H. Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J. Cell Biol. 1992;117:395–400. doi: 10.1083/jcb.117.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Lindholm D., Hengerer B., Zafra F., Thoenen H. Transforming growth factor-beta 1 stimulates expression of nerve growth factor in the rat CNS. Neuroreport. 1990;1:9–12. doi: 10.1097/00001756-199009000-00003. [DOI] [PubMed] [Google Scholar]
  • 172.Lindsay R.M. Reactive gliosis. In: Fedoroff S., Vernadakis A., editors. Astrocytes. Cell Biology and Pathology of Astrocytes. Academic press; Orlando: 1986. pp. 231–262. [Google Scholar]
  • 173.Lipton S.A. Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci. 1992;15:75–79. doi: 10.1016/0166-2236(92)90013-x. [DOI] [PubMed] [Google Scholar]
  • 174.Liu Y., King N., Kesson A., Banden R.V., Mullbacher A. Flavivirus infection up-regulates the expression of class I and class II major histocompatibility antigens on and enhances T cell recognition of astrocytes in vitro. J. Neuroimmunol. 1989;21:157–168. doi: 10.1016/0165-5728(89)90171-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Liuzzi F., Lasek R.J. Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science. 1987;237:642–645. doi: 10.1126/science.3603044. [DOI] [PubMed] [Google Scholar]
  • 176.Logan A., Frautschy S.A., Gonzalez A.-M., Baird A. A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. J. Neurosci. 1992;12:3828–3837. doi: 10.1523/JNEUROSCI.12-10-03828.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Logan A., Frautschy S.A., Gonzalez A.-M., Sporn M.B., Baird A. Enhanced expression of transforming growth factor β1 in the rat brain after a localised cerebral injury. Brain Res. 1992;587:216–225. doi: 10.1016/0006-8993(92)91000-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Lu B., Yokoyama M., Dreyfus C.F., Black I.B. NGF gene expression in actively growing brain glia. J. Neurosci. 1991;11:216–326. doi: 10.1523/JNEUROSCI.11-02-00318.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Malhotra S.K., Predy R., Johnson E.S., Singh R., Leeuw K. Novel astrocytic protein in multiple sclerosis plaques. J. Neurosci. Res. 1989;22:36–49. doi: 10.1002/jnr.490220106. [DOI] [PubMed] [Google Scholar]
  • 180.Malipiero U.V., Frei K., Fontana A. Production of hemopoietic colony-stimulating factors by astrocytes. J. Immun. 1990;144:3816–3821. [PubMed] [Google Scholar]
  • 181.Mansour H., Asher R., Dahl D., Labkovsky B., Perides G., Bignami A. Permissive and non-permissive reactive astrocytes: immunofluorescence study with antibodies to the glial hyaluronate-binding protein. J. Neurosci. Res. 1990;25:300–311. doi: 10.1002/jnr.490250306. [DOI] [PubMed] [Google Scholar]
  • 182.Manthorpe M., Rudge J.S., Varon S. Astroglial cell contributions to neuronal survival and neuritic growth. In: Fedoroff S., Vernadakis A., editors. Astrocytes. Biochemistry, Physiology, and Pharmacology of Astrocytes. Academic press; Orlando: 1986. pp. 315–376. [Google Scholar]
  • 183.Martin D.L. Synthesis and release of neuroactive substances by glial cells. Glia. 1992;5:81–94. doi: 10.1002/glia.440050202. [DOI] [PubMed] [Google Scholar]
  • 184.Massa P.T., Do¨rries R., ter Meulen V. Viral particles induce Ia antigen expression on astrocytes. Nature. 1986;320:543–546. doi: 10.1038/320543a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Massa P.T., Schimpl A., Wecker E., ter Meulen V. 3rd edn. Vol. 84. 1987. Tumor necrosis factor amplifies measles virus-mediated Ia induction on astrocytes; pp. 7242–7245. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Massa P.T., ter Meulen V. Analysis of Ia induction on Lewis rat astrocytes in vitro by virus particles and bacterial adjuvants. J. Neuroimmunol. 1987;13:259–271. doi: 10.1016/0165-5728(87)90062-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Massa P.T., ter Meulen V., Fontana A. 3rd edn. Vol. 84. 1987. Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis; pp. 4219–4223. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Matsumoto Y., Hara N., Tanaka R., Fujiwara M. Immunohistochemical analysis of the rat central nervous system during experimental allergic encephalomyelitis, with special reference to Ia-positive cells with dendritic morphology. J. Immun. 1986;136:3668–3676. [PubMed] [Google Scholar]
  • 189.Mattson M.P., Cheng B., Davis D., Bryant K., Lieberburg I., Rydel R.E. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 1992;12:376–389. doi: 10.1523/JNEUROSCI.12-02-00376.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Mattson M.P., Murrain M., Guthrie P.B., Kater S.B. Fibroblast growth factor and glutamate: opposing actions in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. 1989;9:3728–3740. doi: 10.1523/JNEUROSCI.09-11-03728.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Mattson M.P., Rychlik B. Glia protect hippocampal neurons against excitatory amino acid-induced degeneration: involvement of fibroblast growth factor. Int. J. devl Neurosci. 1990;8:399–415. doi: 10.1016/0736-5748(90)90073-b. [DOI] [PubMed] [Google Scholar]
  • 192.McCarthy K.D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 1980;85:890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.McKeon R.J., Schreiber R.C., Rudge J.S., Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 1991;11:3398–3411. doi: 10.1523/JNEUROSCI.11-11-03398.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Melner M.H., Low K.G., Allen R.G., Nielsen C.P., Young S.L., Saneto R.P. The regulation of proenkephalin expression in a district population of glial cells. Eur. molec. Biol. Org. J. 1990;9:791–796. doi: 10.1002/j.1460-2075.1990.tb08175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Merrill J.E., Koyanagi Y., Zack J., Thomas L., Martin F., Chen I.S. Induction of interleukin-1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. J. Virol. 1992;66:2217–2225. doi: 10.1128/jvi.66.4.2217-2225.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Miller R.H., Fulton B.P., Raff M.C. A novel type of glial cell associated with nodes of Ranvier in rat optic nerve. Eur. J. Neurosci. 1989;1:172–180. doi: 10.1111/j.1460-9568.1989.tb00785.x. [DOI] [PubMed] [Google Scholar]
  • 197.Miller R.H., Raff M.C. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J. Neurosci. 1984;4:585–592. doi: 10.1523/JNEUROSCI.04-02-00585.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Milner R.J. Differential cloning approaches to the nervous system. Ann. N.Y. Acad. Sci. 1990;579:273–280. doi: 10.1111/j.1749-6632.1990.tb48368.x. [DOI] [PubMed] [Google Scholar]
  • 199.Morrison R.S., Sharma A., de Vellis J., Bradshaw R.A. 3rd edn. Vol. 83. 1986. Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture; pp. 7537–7541. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Mozell R.L., McMorris F.A. Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures. J. Neurosci. Res. 1991;30:382–390. doi: 10.1002/jnr.490300214. [DOI] [PubMed] [Google Scholar]
  • 201.Mucke L., Oldstone M.B.A., Morris J.C., Nerenberg M.I. Rapid activation of astrocyte-specific expression of GFAP-lacZ transgene by focal injury. New Biol. 1991;3:465–474. [PubMed] [Google Scholar]
  • 202.Murakami M., Ushio Y., Morino Y., Ohta T., Matsukado Y. Immunohistochemical localization of apolipoprotein E in human glial neoplasms. J. clin. Invest. 1988;82:177–188. doi: 10.1172/JCI113568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Murphy S., Jeremy J., Pearce B., Dandona P. Eicosanoid synthesis and release from primary cultures of rat central nervous system astrocytes and meningeal cells. Neurosci. Lett. 1985;61:61–65. doi: 10.1016/0304-3940(85)90401-x. [DOI] [PubMed] [Google Scholar]
  • 204.Nakamura S., Kawamata T., Akiguchi I., Kameyama M., Nakamura M., Kimura H. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta neuropath, Berlin. 1990;80:419–425. doi: 10.1007/BF00307697. [DOI] [PubMed] [Google Scholar]
  • 205.Nakamura Y., Takeda M., Suzuki H., Hattori H., Tada K., Hariguchi S., Hashimoto S., Nishimura T. Abnormal distribution of cathepsins in the brain of patients with Alzheimer's disease. Neurosci. Lett. 1991;130:195–198. doi: 10.1016/0304-3940(91)90395-a. [DOI] [PubMed] [Google Scholar]
  • 206.Negro A., Tavella A., Facci L., Callegaro L., Skaper S.D. Interleukin-1β regulates proencephalin gene expression in astrocytes cultures from rat cortex. Glia. 1992;6:206–212. doi: 10.1002/glia.440060308. [DOI] [PubMed] [Google Scholar]
  • 207.Nieto-Sampedro M., Gomez-Pinilla F., Knauer D.J., Broderick J.T. Epidermal growth factor receptor immunoreactivity in rat brain astrocytes. Response to injury. Neurosci. Lett. 1988;91:276–282. doi: 10.1016/0304-3940(88)90693-3. [DOI] [PubMed] [Google Scholar]
  • 208.Nishimura N., Nishimura H., Ghaffar A., Tohyama C. Localization of metallothionein in the brain of rat and mouse. J. Histochem. Cytochem. 1992;40:309–315. doi: 10.1177/40.2.1552172. [DOI] [PubMed] [Google Scholar]
  • 209.Norenberg M.D. Immunohistochemistry of glutamine synthetase. In: Hertz L., editor. Glutamine, Glutamate, and GABA in the Central Nervous System. A. R. Liss; New York: 1983. pp. 95–111. [Google Scholar]
  • 210.Norenberg M.D. Hepatic encephalopathy: a disorder of astrocytes. In: Fedoroff S., Vernadakis A., editors. Astrocytes. Cell Biology and Pathology of Astrocytes. Academic Press; Orlando: 1986. pp. 425–460. [Google Scholar]
  • 211.Norton W.T., Aquino D.A., Hozumi I., Chiu F.-C., Brosnan C.F. Quantitative aspects of reactive gliosis: a review. Neurochem. Res. 1992;17:877–885. doi: 10.1007/BF00993263. [DOI] [PubMed] [Google Scholar]
  • 212.Oh Y.J., Francis J.W., Markelonis G.J., Oh T.H. Interleukin-1-beta and tumor necrosis factor-alpha increase peripheral-type benzodiazepine binding sites in cultured polygonal astrocytes. J. Neurochem. 1992;58:2131–2138. doi: 10.1111/j.1471-4159.1992.tb10955.x. [DOI] [PubMed] [Google Scholar]
  • 213.Olson J.A., Jr, Shiverick K.T., Ogilvie S., Buhi W.C., Raizada M.K. 3rd edn. Vol. 88. 1991. Angiotensin II induces secretion of plasminogen activator inhibitor 1 and a tissue metalloprotease inhibitor-related protein from rat brain astrocytes; pp. 1928–1932. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Oltersdorf T., Fritz L.C., Schenk D.B., Lieberburg I., Johnson Wood K.L., Beattie E.C., Ward P.J., Blacher R.W., Dovey H.F., Sinha S. The secreted form of the Alzheimer's amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature. 1989;341:144–147. doi: 10.1038/341144a0. [DOI] [PubMed] [Google Scholar]
  • 215.Orita T., Akimura T., Nishizaki T., Kamiryo T., Ikeyama Y., Aoki H., Ito H. Transferrin receptors in injured brain. Acta neuropath. Berlin. 1990;79:686–688. doi: 10.1007/BF00294248. [DOI] [PubMed] [Google Scholar]
  • 216.Oropeza R.L., Wekerle H., Werb Z. Expression of apolipoprotein E by mouse brain astrocytes and its modulation by interferon-gamma. Brain Res. 1987;410:45–51. doi: 10.1016/s0006-8993(87)80018-5. [DOI] [PubMed] [Google Scholar]
  • 217.Pappolla M.A., Omar R.A., Kirn K.S., Robakis N.K. Immunohistochemical evidence of antioxidant stress in Alzheimer's disease. Am. J. Path. 1992;140:621–628. [PMC free article] [PubMed] [Google Scholar]
  • 218.Pasinetti G.M., Finch C.E. Sulfated glycoprotein-2 (SGP-2) mRNA is expressed in rat striatal astrocytes following ibotenic acid lesions. Neurosci. Lett. 1991;130:1–4. doi: 10.1016/0304-3940(91)90213-d. [DOI] [PubMed] [Google Scholar]
  • 219.Pasternack J.M., Abraham C.R., Van Dyke B.J., Potter H., Younkin S.G. Astrocytes in Alzheimer's disease gray matter express alpha 1-antichymotrypsin mRNA. Am. J. Path. 1989;135:827–833. [PMC free article] [PubMed] [Google Scholar]
  • 220.Peitsch M.C., Boguski M.S. Is apolipoprotein D a mammalian bilin-binding protein? New Biol. 1990;2:197–206. [PubMed] [Google Scholar]
  • 221.Perraud F., Besnard F., Pettmann B., Sensenbrenner M., Labourdette G. Effect of acidic and basic fibroblast growth factors (aFGF and bFGF) on the proliferation and the glutamine synthetase expression of rat astroblasts in culture. Glia. 1988;1:124–131. doi: 10.1002/glia.440010204. [DOI] [PubMed] [Google Scholar]
  • 222.Peters A., Palay S.L., Webster H.deF. The Fine Structure of the Nervous System. Neurons and Their Supporting Cells. 3rd edn. Oxford University Press; New York: 1991. Blood vessels; pp. 344–355. [Google Scholar]
  • 223.Petito C.K., Morgello S., Felix J.C., Lesser M.L. The two patterns of reactive astrocytosis in postischemic rat brain. J. cerebr Blood Flow Metab. 1990;10:850–859. doi: 10.1038/jcbfm.1990.141. [DOI] [PubMed] [Google Scholar]
  • 224.Pixley S.K.R., de Vellis J. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Devl Brain. Res. 1984;15:201–209. doi: 10.1016/0165-3806(84)90097-x. [DOI] [PubMed] [Google Scholar]
  • 225.Potter H. The involvement of astrocytes and an acute phase response in the amyloid deposition of Alzheimer's disease. In: Yu A.C.H., Hertz L., Norenberg M.D., Sykova E., Waxman S.G., editors. 4th edn. Vol. 94. Elsevier Science Publishers; Amsterdam: 1992. pp. 447–458. (Progress in Brain Research). [DOI] [PubMed] [Google Scholar]
  • 226.Predy R., Malhotra S.K., Das G.D. Enhanced expression of a protein antigen (J1-31 antigen, 30 kilodaltons) by reactive astrocytes in lacerated spinal cord. J. Neurosci. Res. 1988;19:397–404. doi: 10.1002/jnr.490190403. [DOI] [PubMed] [Google Scholar]
  • 227.Prochiantz A., Mallat M. Astrocyte diversity. Ann. N.Y. Acad. Sci. 1988;540:52–63. doi: 10.1111/j.1749-6632.1988.tb27051.x. [DOI] [PubMed] [Google Scholar]
  • 228.Pulliam L. Discussions in Neuroscience. Elsevier; Amsterdam: 1993. Cellular mechanisms of HIV dementia. Neurotoxin production and gp120 toxicity. (In press.). [Google Scholar]
  • 229.Razzaboni B.L., Papastoitsis G., Koo E.H., Abraham C.R. A calcium stimulated serine protease from monkey brain degrades the β-amyloid precursor protein. Brain. Res. 1992;589:207–216. doi: 10.1016/0006-8993(92)91279-n. [DOI] [PubMed] [Google Scholar]
  • 230.Reier P.J. Gliosis following CNS injury: the anatomy of astrocytic scars and their influences on axonal elongation. In: Fedoroff S., Vernadakis A., editors. Astrocytes. Cell Biology and Pathology of Astrocytes. Academic press; Orlando: 1986. pp. 263–324. [Google Scholar]
  • 231.Reier P.J., Eng L.F., Jakeman L. Reactive astrocyte and axonal outgrowth in the injured CNS: is gliosis really an impediment to regeneration? In: Seil F.J., editor. Neural Regeneration and Transplantation. Alan R. Liss; New York: 1989. pp. 183–209. [Google Scholar]
  • 232.Reier P.J., Stensaas L.J., Guth L. The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao C.C., Bunge R.P., Reier P.J., editors. Spinal Cord Reconstruction. Raven Press; New York: 1983. pp. 163–195. [Google Scholar]
  • 233.Reifenberger G., Deckert M., Wechsler W. Immunohistochemical determination of protein kinase C expression and proliferative activity in human brain tumors. Acta neuropath., Berlin. 1989;78:166–175. doi: 10.1007/BF00688205. [DOI] [PubMed] [Google Scholar]
  • 234.Robbins D.S., Shirazi Y., Drysdale B.-E., Lieberman A., Shin H.S., Shin M.L. Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J. Immun. 1987;139:2593–2597. [PubMed] [Google Scholar]
  • 235.Rodriguez M., Pierce M.L., Howie E.A. Immune response gene products (Ia antigens) on glial and endothelial cells in virus-induced demyelination. J. Immun. 1987;138:3438–3442. [PubMed] [Google Scholar]
  • 236.Rogister B., Leprince P., Delree P., Van Damme J., Billiau A., Moonen G. Enhanced release of plasminogen activator inhibitor(s) but not of plasminogen activators by cultured rat glial cells treated with interleukin-1. Glia. 1990;3:252–257. doi: 10.1002/glia.440030404. [DOI] [PubMed] [Google Scholar]
  • 237.Rosenberg P.A. Accumulation of extracellular glutamate and neuronal death in astrocyte-poor cortical cultures exposed to glutamine. Glia. 1991;4:91–100. doi: 10.1002/glia.440040111. [DOI] [PubMed] [Google Scholar]
  • 238.Rosenberg P.A., Amin S., Leitner M. Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J. Neurosci. 1992;12:56–61. doi: 10.1523/JNEUROSCI.12-01-00056.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239.Sakai K., Tabira T., Endoh M., Steinman L. Ia expression in chronic relapsing experimental allergic encephalomyelitis induced by long-term cultured T cell lines in mice. Lab. Invest. 1986;54:345–352. [PubMed] [Google Scholar]
  • 240.Satoh J., Kastrukoff L.F., Kim S.U. Cytokine-induced expression of intercellular adhesion molecule-1 (ICAM-1) in cultured human oligodendrocytes and astrocytes. J. Neuropath. exp. Neurol. 1991;50:215–226. doi: 10.1097/00005072-199105000-00004. [DOI] [PubMed] [Google Scholar]
  • 241.Satoh J., Kim S.U., Kastrukoff L.F., Takei F. Expression and induction of intercellular adhesion molecules (ICAMs) and major histocompatibility complex (MHC) antigens on cultured murine oligodendrocytes and astrocytes. J. Neurosci. Res. 1991;29:1–12. doi: 10.1002/jnr.490290102. [DOI] [PubMed] [Google Scholar]
  • 242.Satoh J., Yamamura T., Kunishita T., Tabira T. Heterogeneous induction of 72-kDa heat shock protein (HSP72) in cultured mouse oligodendrocytes and astrocytes. Brain Res. 1992;573:37–43. doi: 10.1016/0006-8993(92)90111-l. [DOI] [PubMed] [Google Scholar]
  • 243.Sawada M., Kondo N., Suzumura A., Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res. 1989;491:394–397. doi: 10.1016/0006-8993(89)90078-4. [DOI] [PubMed] [Google Scholar]
  • 244.Schiffer D., Giordana M.T., Migheli A., Giaccone G., Pezzotta S., Mauro A. Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain. Brain Res. 1986;374:110–118. doi: 10.1016/0006-8993(86)90399-9. [DOI] [PubMed] [Google Scholar]
  • 245.Schipper H.M. Gomori-positive astrocytes: biological properties and implications for neurologic and neuroendocrine disorders. Glia. 1991;4:365–377. doi: 10.1002/glia.440040404. [DOI] [PubMed] [Google Scholar]
  • 246.Schmidt B., Stoll G., Toyka K.V., Hartung H.P. Rat astrocytes express interferon-gamma immuno-reactivity in normal optic nerve and after nerve transection. Brain Res. 1990;515:347–350. doi: 10.1016/0006-8993(90)90621-h. [DOI] [PubMed] [Google Scholar]
  • 247.Schmidt-Kastner R., Szymas J., Hossmann K.A. Immunohistochemical study of glial reaction and serum-protein extravasation in relation to neuronal damage in rat hippocampus after ischemia. Neuroscience. 1990;38:527–540. doi: 10.1016/0306-4522(90)90048-9. [DOI] [PubMed] [Google Scholar]
  • 248.Selmaj K., Raine C.S., Cannella B., Brosnan C.F. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J. clin. Invest. 1991;87:949–954. doi: 10.1172/JCI115102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 249.Selmaj K.W., Raine C.S. Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Am. Neurol. 1988;23:339–346. doi: 10.1002/ana.410230405. [DOI] [PubMed] [Google Scholar]
  • 250.Shore V.G., Smith M.E., Perret V., Laskaris M.A. Alterations in plasma lipoproteins and apolipoproteins in experimental allergic encephalomyelitis. J. Lipid Res. 1987;28:119–129. [PubMed] [Google Scholar]
  • 251.Siman R., Card J.P., Davis L.G. Proteolytic processing of beta-amyloid precursor by calpain I. J. Neurosci. 1990;10:2400–2411. doi: 10.1523/JNEUROSCI.10-07-02400.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Siman R., Card J.P., Nelson R.B., Davis L.G. Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron. 1989;3:275–285. doi: 10.1016/0896-6273(89)90252-3. [DOI] [PubMed] [Google Scholar]
  • 253.Smith M.E., Somera F.P., Eng L.F. Immunocytochemical staining for glial fibrillary acidic protein and the metabolism of cytoskeletal proteins in experimental allergic encephalomyelitis. Brain Res. 1983;264:241–253. doi: 10.1016/0006-8993(83)90822-3. [DOI] [PubMed] [Google Scholar]
  • 254.Snyder S.H. Neuroscience. Vehicles of inactivation [news] Nature. 1991;354:187. doi: 10.1038/354187a0. [DOI] [PubMed] [Google Scholar]
  • 255.Spranger M., Lindholm D., Bandtlow C., Heumann R., Gnahn H., Na¨her-Noé M., Thoenen H. Regulation of nerve growth factor (NGF) synthesis in the rat central nervous system: comparison between the effects of interleukin-1 and various growth factors in astrocyte cultures and in vivo. Eur. J. Neurosci. 1990;2:69–76. doi: 10.1111/j.1460-9568.1990.tb00382.x. [DOI] [PubMed] [Google Scholar]
  • 256.Srebro Z. Periventricular Gomori-positive glia in brains of X-irradiated rats. Brain Res. 1971;35:463–468. doi: 10.1016/0006-8993(71)90488-4. [DOI] [PubMed] [Google Scholar]
  • 257.Steiniger B., van der Meide P.H. Rat ependyma and microglia cells express class II MHC antigens after intervenous infusion of recombinant gamma interferon. J. Neuroimmunol. 1988;19:111–118. doi: 10.1016/0165-5728(88)90040-9. [DOI] [PubMed] [Google Scholar]
  • 258.Stocker R., Yamamoto Y., McDonagh A.F., Glazer A.N., Ames B.N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235:1043–1046. doi: 10.1126/science.3029864. [DOI] [PubMed] [Google Scholar]
  • 259.Stoll G., Mu¨ller H.W. Macrophages in the peripheral nervous system and astroglia in the central nervous system of rat commonly express apolipoprotein E during development but differ in their response to injury. Neurosci. Lett. 1986;72:233–238. doi: 10.1016/0304-3940(86)90519-7. [DOI] [PubMed] [Google Scholar]
  • 260.Sugiyama K., Brunori A., Mayer M.L. Glial uptake of excitatory amino acids influences neuronal survival in cultures of mouse hippocampus. Neuroscience. 1989;32:779–791. doi: 10.1016/0306-4522(89)90298-4. [DOI] [PubMed] [Google Scholar]
  • 261.Sun D., Wekerle H. Ia-restricted encephalitogenic T lymphocytes mediating EAE lyse autoantigen-presenting astrocytes. Nature. 1986;320:70–72. doi: 10.1038/320070a0. [DOI] [PubMed] [Google Scholar]
  • 262.Suzumura A., Lavi E., Weiss S.R., Silberberg D.H. Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes. Science. 1986;232:991–993. doi: 10.1126/science.3010460. [DOI] [PubMed] [Google Scholar]
  • 263.Takami K., Iwane M., Kiyota Y., Miyamoto M., Tsukuda R., Shiosaka S. Increase in basic fibroblast growth factor immunoreactivity and its mRNA level in rat brain following transient forebrain ischemia. Expl Brain Res. 1992;90:1–10. doi: 10.1007/BF00229250. [DOI] [PubMed] [Google Scholar]
  • 264.Tedeschi B., Barrett J.N., Keane R.W. Astrocytes produce interferon that enhances the expression of H-2 antigens on a subpopulation of brain cells. J. Cell Biol. 1986;102:2244–2253. doi: 10.1083/jcb.102.6.2244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Thomson A.W. 4th edn. Academic Press; London: 1991. The Cytokine Handbook. [Google Scholar]
  • 266.Tooyama I., Akiyama H., McGeer P.L., Hara Y., Yasuhara O., Kimura H. Acidic fibroblast growth factor-like immunoreactivity in brain of Alzheimer patients. Neurosci. Lett. 1991;121:155–158. doi: 10.1016/0304-3940(91)90673-h. [DOI] [PubMed] [Google Scholar]
  • 267.Tranque P., Robbins R., Naftolin F., Andrade-Gordon P. Regulation of plasminogen activators and type-1 plasminogen activator inhibitor by cyclic AMP and phorbol ester in rat astrocytes. Glia. 1992;6:163–171. doi: 10.1002/glia.440060303. [DOI] [PubMed] [Google Scholar]
  • 268.Traugott U., Lebon P. Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann. Neurol. 1988;24:243–251. doi: 10.1002/ana.410240211. [DOI] [PubMed] [Google Scholar]
  • 269.Traugott U., Lebon P. Interferon-gamma and Ia antigen are present on astrocytes in active chronic multiple sclerosis lesions. J. neurol. Sci. 1988;84:257–264. doi: 10.1016/0022-510x(88)90130-x. [DOI] [PubMed] [Google Scholar]
  • 270.Traugott U., Scheinberg L.C., Raine C.S. On the presence of Ia-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J. Neuroimmunol. 1985;8:1–14. doi: 10.1016/s0165-5728(85)80043-6. [DOI] [PubMed] [Google Scholar]
  • 271.Tyor W.R., Glass J.D., Griffin J.W., Becker P.S., McArthur J.C., Bezman L., Griffin D.E. Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann. Neurol. 1992;31:349–360. doi: 10.1002/ana.410310402. [DOI] [PubMed] [Google Scholar]
  • 272.Uhl G.R. Neurotransmitter transporters (plus): a promising new gene family. Trends Neurosci. 1992;15:265–268. doi: 10.1016/0166-2236(92)90068-j. [DOI] [PubMed] [Google Scholar]
  • 273.Van Nostrand W.E., Wagner S.L., Suzuki M., Choi B.H., Farrow J.S., Geddes J.W., Cotman C.W., Cunningham D.D. Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid beta-protein precursor. Nature. 1989;341:546–549. doi: 10.1038/341546a0. [DOI] [PubMed] [Google Scholar]
  • 274.Vass K., Lassmann H. Intrathecal application of interferon gamma. Progressive appearance of MHC antigens within the rat nervous system. Am. J. Path. 1990;137:789–800. [PMC free article] [PubMed] [Google Scholar]
  • 275.Vidovic M., Sparacio S.M., Elovitz M., Benveniste E.N. Induction and regulation of class II major histocompatibility complex mRNA expression in astrocytes by interferon-gamma and tumor necrosis factor-alpha. J. Neuroimmunol. 1990;30:189–200. doi: 10.1016/0165-5728(90)90103-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Vinores S.A., Rubinstein L.J. Simultaneous expression of glial fibrillary acidic (GFA) protein and neuron-specific enolase (NSE) by the same reactive or neoplastic astrocytes. Neuropath. appl. Neurobiol. 1985;11:349–359. doi: 10.1111/j.1365-2990.1985.tb00031.x. [DOI] [PubMed] [Google Scholar]
  • 277.Wahl S.M., Alien J.B., McCartney-Francis N., Morganti-Kossmann M.C., Kossman T., Ellingsworth L., Mai U.E., Mergenhagen S.E., Orenstein J.M. Macrophage- and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J. exp. Med. 1991;173:981–991. doi: 10.1084/jem.173.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278.Walicke P., Cowan W.M., Ueno N., Baird A., Guillemin R. 4th edn. Vol. 83. 1986. Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension; pp. 3012–3016. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Weinstein D.E., Shelanski M.L., Liem R.K. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J. Cell Biol. 1991;112:1205–1213. doi: 10.1083/jcb.112.6.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280.Whitaker J.N., Herman P.K., Sparacio S.M., Zhou S.R., Benveniste E.N. Changes induced in astrocyte cathepsin D by cytokines and leupeptin. J. Neurochem. 1991;57:406–414. doi: 10.1111/j.1471-4159.1991.tb03767.x. [DOI] [PubMed] [Google Scholar]
  • 281.Whittemore S.R., La¨rkfors L., Ebendal T., Holets V.R., Ericsson A., Persson H. Increased β-nerve growth factor messenger RNA and protein levels in neonatal rat hippocampus following specific cholinergic lesions. J. Neurosci. 1987;7:244–251. doi: 10.1523/JNEUROSCI.07-01-00244.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282.Willmore L.J., Triggs W.J. Iron-induced lipid peroxidation and brain injury responses. Int. J. devl Neurosci. 1991;9:175–180. doi: 10.1016/0736-5748(91)90009-b. [DOI] [PubMed] [Google Scholar]
  • 283.Wong G.H., Bartlett P.F., Clark Lewis I., Battye F., Schrader J.W. Inducible expression of H-2 and Ia antigens on brain cells. Nature. 1984;310:688–691. doi: 10.1038/310688a0. [DOI] [PubMed] [Google Scholar]
  • 284.Yamada M., Zurbriggen A., Oldstone M.B., Fujinami R.S. Common immunologie determinant between human immunodeficiency virus type 1 gp41and astrocytes. J. Virol. 1991;65:1370–1376. doi: 10.1128/jvi.65.3.1370-1376.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 285.Yamamoto C., Kawana E. Immunohistochemical detection of laminin and vimentin in the thalamic VB nucleus after ablation of somatosensory cortex in the rat. Okajimas. Folia Anat. Jpn. 1990;67:21–29. doi: 10.2535/ofaj1936.67.1_21. [DOI] [PubMed] [Google Scholar]
  • 286.Yankner B.A., Shooter E.M. The biology and mechanism of action of nerve growth factor. A. Rev. Biochem. 1982;51:845–868. doi: 10.1146/annurev.bi.51.070182.004213. [DOI] [PubMed] [Google Scholar]
  • 287.Yoshida K., Gage F.H. Fibroblast growth factors stimulate nerve growth factor synthesis and secretion by astrocytes. Brain Res. 1991;538:118–126. doi: 10.1016/0006-8993(91)90385-9. [DOI] [PubMed] [Google Scholar]
  • 288.Yoshida K., Gage F.H. Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines. Brain Res. 1992;569:14–25. doi: 10.1016/0006-8993(92)90364-f. [DOI] [PubMed] [Google Scholar]
  • 289.Young J.K., Garvey J.S., Huang P.C. Glial immunoreactivity for metallothionein in the rat brain. Glia. 1991;4:602–610. doi: 10.1002/glia.440040607. [DOI] [PubMed] [Google Scholar]
  • 290.Zafra F., Lindholm D., Castren E., Hartikka J., Thoenen H. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J. Neurosci. 1992;12:4793–4799. doi: 10.1523/JNEUROSCI.12-12-04793.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291.Zlotnik I. The reaction of astrocytes to acute virus infections of the central nervous system. Br. J. exp. Palhol. 1968;49:555–564. [PMC free article] [PubMed] [Google Scholar]

Articles from Neuroscience are provided here courtesy of Elsevier

RESOURCES