Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Feb 10;188(1):85–92. doi: 10.1016/0042-6822(92)90737-A

A single point mutation of the influenza C virus glycoprotein (HEF) changes the viral receptor-binding activity

Sigrun Szepanski , HJ Gross , R Brossmer , H-D Klenk , G Herrler ∗,1
PMCID: PMC7131248  PMID: 1566586

Abstract

From strain JHB/1/66 of influenza C virus a mutant was derived with a change in the cell tropism. The mutant was able to grow in a subline of Madin-Darby canine kidney cells (MDCK II) which is resistant to infection by the parent virus due to a lack of receptors. Inactivation of cellular receptors by either neuraminidase or acetylesterase and generation of receptors by resialylation of cells with N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2) indicated that 9-O-acetylated sialic acid is a receptor determinant for both parent and mutant virus. However, the mutant required less Neu5,9Ac2 on the cell surface for virus attachment than the parent virus. The increased binding efficiency enabled the mutant to infect cells with a low content of 9-O-acetylated sialic acid which were resistant to the parent virus. By comparing the nucleotide sequences of the glycoprotein (HEF) genes of the parent and the mutant virus only a single point mutation could be identified on the mutant gene. This mutation at nucleotide position 872 causes an amino acid exchange from threonine to isoleucine at position 284 on the amino acid sequence. Sequence similarity with a stretch of amino acids involved in the receptor-binding pocket of the influenza A hemagglutinin suggests that the mutation site on the influenza C glycoprotein (HEF) is part of the receptor-binding site.

References

  1. Buonagurio D.A., Nakada S., Desselberger U., Krystal M., Palese P. Noncumulative sequence changes in the hemagglutinin genes of influenza C virus isolates. Virology. 1985;146:221–232. doi: 10.1016/0042-6822(85)90006-6. [DOI] [PubMed] [Google Scholar]
  2. Feldmann H., Kretzschmar E., Klingeborn B., Rott R., Klenk H.-D., Garten W. The structure of serotype H10 of influenza A virus: Comparison of an apathogenic avian and a mammalian strain pathogenic for mink. Virology. 1988;165:428–437. doi: 10.1016/0042-6822(88)90586-7. [DOI] [PubMed] [Google Scholar]
  3. Formanowski F., Meier-Ewert H. Isolation of the influenza C virus glycoprotein in a soluble form by bromelain digestion. Virus Res. 1988;10:177–192. doi: 10.1016/0168-1702(88)90014-7. [DOI] [PubMed] [Google Scholar]
  4. Gething M.J., White J.M., Waterfield M.D. Vol. 75. 1978. Purification of the fusion protein of Sendai virus. Analysis of the NH2-terminal sequence generated during precursor activation; pp. 2737–2740. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hachinohe S., Sugawara K., Nishimura H., Kitame F., Nakamura K. Effect of anti-haemagglutinin-esterase glycoprotein monoclonal antibodies on the receptor-destroying activity of influenza C virus. J. Gen. Virol. 1989;70:1287–1292. doi: 10.1099/0022-1317-70-5-1287. [DOI] [PubMed] [Google Scholar]
  6. Herrler G., Nagele A., Meier-Ewert H., Bhown A.S., Compans R.W. Isolation and structural analysis of influenza C virion glycoproteins. Virology. 1981;113:439–451. doi: 10.1016/0042-6822(81)90173-2. [DOI] [PubMed] [Google Scholar]
  7. Herrler G., Geyer R., Müller H.-P., Stirm S., Klenk H.-D. Rat α1-macroglobulin inhibits hemagglutination by influenza C virus. Virus Res. 1985;2:183–192. doi: 10.1016/0168-1702(85)90248-5. [DOI] [PubMed] [Google Scholar]
  8. Herrler G., Rott R., Klenk H.-D., Müller H.-P., Shukla A.K., Schauer R. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J. 1985;4:1503–1506. doi: 10.1002/j.1460-2075.1985.tb03809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herrler G., Rott R., Klenk H.-D. Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. Virology. 1985;141:144–147. doi: 10.1016/0042-6822(85)90190-4. [DOI] [PubMed] [Google Scholar]
  10. Herrler G., Klenk H.-D. The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology. 1987;159:102–108. doi: 10.1016/0042-6822(87)90352-7. [DOI] [PubMed] [Google Scholar]
  11. Herrler G., Reuter G., Rott R., Klenk H.-D., Schauer R. N-Acetyl-9-0-acetylneuraminic acid, the receptor determinant for influenza C virus, is a differentiation marker on chicken erythrocytes. Biol. Chem. Hoppe-Seyler. 1987;368:451–454. doi: 10.1515/bchm3.1987.368.1.451. [DOI] [PubMed] [Google Scholar]
  12. Herrler G., Dürkop I., Becht H., Klenk H.-D. The glycoprotein of influenza C virus (HEF) is the haemagglutinin, esterase and fusion factor. J. Gen. Virol. 1988;69:839–846. doi: 10.1099/0022-1317-69-4-839. [DOI] [PubMed] [Google Scholar]
  13. Herrler G., Multhaup G., Beyreuther K., Klenk H.-D. Serine 71 of glycoprotein HEF is located at the active site of the acetylesterase of influenza C virus. Arch. Virol. 1988;102:269–274. doi: 10.1007/BF01310831. [DOI] [PubMed] [Google Scholar]
  14. Kitame F., Sugawara K., Ohwada K., Homma M. Proteolytic activation of hemolysis and fusion by influenza C virus. Arch. Virol. 1982;73:357–361. doi: 10.1007/BF01318090. [DOI] [PubMed] [Google Scholar]
  15. Muchmore E.A., Varki A. Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids. Science. 1987;230:1293–1295. doi: 10.1126/science.3589663. [DOI] [PubMed] [Google Scholar]
  16. Nakada S., Creager R.S., Krystal M., Aaronson R.P., Palese P. Influenza C virus hemagglutinin: Comparison with influenza A and B Virus hemagglutinins. J. Virol. 1984;50:118–124. doi: 10.1128/jvi.50.1.118-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ohuchi M., Ohuchi R., Mifune K. Demonstration of hemolytic and fusion activities of influenza C virus. J. Virol. 1982;42:1076–1079. doi: 10.1128/jvi.42.3.1076-1079.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pfeifer J.B., Compans R.W. Structure of the influenza C glycoprotein gene as determined from cloned DNA. Virus Res. 1984;1:281–296. doi: 10.1016/0168-1702(84)90017-0. [DOI] [PubMed] [Google Scholar]
  19. Rogers G.N., Paulson J.C., Daniels R.S., Skehel J.J., Wilson I.A., Wiley D.C. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983;304:76–78. doi: 10.1038/304076a0. [DOI] [PubMed] [Google Scholar]
  20. Rogers G.N., Herrler G., Paulson J.C., Klenk H.-D. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. J. Biol. Chem. 1986;261:5947–5951. [PubMed] [Google Scholar]
  21. Rosenthal P.B., Formanowski F., Skehel J.J., Meier-ewert H., Wiley D.C. VIII. Proceedings, International Congress of Virology. 1990. p. 218. P17-025. [Google Scholar]
  22. Sambrook J., Fritsch E.F., Maniatis T. 2nd ed. Cold Spring Harbor Laboratory; Cold Spring Harbor, NY: 1989. (Molecular Cloning: A Laboratory Manual). [Google Scholar]
  23. Sato S.B., Kawasaki K., Ohnishi S.-I. Vol. 80. 1983. Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environment; pp. 3153–3157. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schauer R., Reuter G., Stoll S., Posadas Del Rio F., Herrler G., Klenk H.-D. Isolation and characterization of sialate-9-O-acetylesterase from influenza C virus. Biol. Chem. Hoppe-Jeyler. 1988;369:1121–1130. doi: 10.1515/bchm3.1988.369.2.1121. [DOI] [PubMed] [Google Scholar]
  25. Schultze B., Gross H.-J., Brossmer R., Klenk H.-D., Herrler G. Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes: Comparison with bovine coronavirus and influenza C virus. Virus Res. 1990;16:185–194. doi: 10.1016/0168-1702(90)90022-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Suzuki Y., Hideshige H., Naeve C.W., Webster R.G. Single-amino-acid substitution in an antigenic site of influenza virus hemagglutinin can alter the specificity of binding to cell membrane-associated gangliosides. J. Virol. 1989;63:4298–4302. doi: 10.1128/jvi.63.10.4298-4302.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Szepanski S., Klenk H.-D., Herrler G. Analysis of a mutant of influenza C virus with a change in the receptor specificity. In: Compans R.W., Helenius A., Oldstone M.B.A., editors. Cell Biology of Virus Entry, Replication, and Pathogenesis. A. R. Liss; New York: 1989. pp. 125–134. [Google Scholar]
  28. Vlasak R., Muster T., Lauro A.M., Powers J.C., Palese P. Influenza C virus esterase: Analysis of catalytic site, inhibition and possible function. J. Virol. 1989;63:2056–2062. doi: 10.1128/jvi.63.5.2056-2062.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vlasak R., Krystal M., Nacht M., Palese P. The Influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology. 1987;160:419–425. doi: 10.1016/0042-6822(87)90013-4. [DOI] [PubMed] [Google Scholar]
  30. Weis W., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C. Structure of influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988;333:426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
  31. Wilson J.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES