Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 May 12;181(2):703–715. doi: 10.1016/0042-6822(91)90904-P

Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by simian immunodeficiency virus

Paul R Clapham 1, Dominique Blanc 1, Robin A Weiss 1,1
PMCID: PMC7131431  PMID: 1673040

Abstract

Human CD4 was expressed on a range of mammalian cell lines. CD4+ non-primate cells, derived from rat, hamster, mink, cat, and rabbit, bind recombinant gp120 of human immunodeficiency virus type 1 (HIV-1) but are resistant to HIV-1 infection. CD4 expression on various human, rhesus, and African green monkey cell lines confers differential susceptibilities for HIV-1, HIV-2, and simian immunodeficiency (SIV) strains. For example, CD4+TE671 rhabdomyosarcoma cells are sensitive to HIV-1 and HIV-2 but resistant to SIV, whereas CD4+ U87 glioma cells are resistant to HIV-1 infection but sensitive to HIV-2 and SIV. HIV-1 infection was not dependent on human major histocompatibility class I expression. Studies of cell fusion and of infection by vesicular stomatitis virus pseudotypes bearing HIV-1 and HIV-2 envelopes showed that the differential cell tropisms of HIV-1, HIV-2, and SIV are determined at the cell surface.

References

  1. Albert J., Bredberg U., Chiodi F., Bottiger B., Fenyo E.M., Norrby E., Biberfeld G. A new human retrovirus isolate of West African origin (SBL-6669) and its relationship to HTLV-IV, LAV-11, and HTLV-IIIB. AIDS Res. Hum. Retroviruses. 1987;3:3–10. doi: 10.1089/aid.1987.3.3. [DOI] [PubMed] [Google Scholar]
  2. Andersen K.B. Leupeptin inhibits retrovirus infection in mouse fibroblasts. J. Virol. 1983;48:765–769. doi: 10.1128/jvi.48.3.765-769.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersen K.B. The fate of surface protein gp70 during entry of retrovirus into mouse fibroblasts. J. Gen. Virol. 1985;142:112–120. doi: 10.1016/0042-6822(85)90426-x. [DOI] [PubMed] [Google Scholar]
  4. Andersen K.B. Cleavage fragments of the retrovirus surface protein gp70 during virus entry. J. Gen. Virol. 1987;68:2193–2202. doi: 10.1099/0022-1317-68-8-2193. [DOI] [PubMed] [Google Scholar]
  5. Andersen K.B., Skov H. Retrovirus-induced cell fusion is enhanced by protease treatment. J. Gen. Virol. 1989;70:1921–1927. doi: 10.1099/0022-1317-70-7-1921. [DOI] [PubMed] [Google Scholar]
  6. Appleyard G., Tisdale M. Inhibition of the growth of human coronavirus 229E by leupeptin. J. Gen. Virol. 1985;66:363–366. doi: 10.1099/0022-1317-66-2-363. [DOI] [PubMed] [Google Scholar]
  7. Ashorn P.A., Berger E.A., Moss B. Human immunodeficiency virus envelope glycoprotein/CD4-mediated fusion of nonprimate cells with human cells. J. Virol. 1990;64:2149–2156. doi: 10.1128/jvi.64.5.2149-2156.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barron A.L., Olshevsky C., Cohen M.M. Characteristics of the BGM line of cells from african green monkey kidney. Arch. Virusforsch. 1970;32:389–392. doi: 10.1007/BF01250067. [DOI] [PubMed] [Google Scholar]
  9. Bedinger P., Moriarty A., von Borstel R.C., Donovan N.J., Steimer K.S., Littman D.R. Internalization of the human immunodeficiency virus does not require the cytoplasmic domain of CD4. Nature. 1988;334:162–165. doi: 10.1038/334162a0. [DOI] [PubMed] [Google Scholar]
  10. Benn S., Rutledge R., Folks T., Gold J., Baker L., McCormick J., Feorino P., Piot P., Quinn T., Martin M. Genomic heterogeneity of AIDS retroviral isolates from North America and Zaire. Science. 1985;230:949–951. doi: 10.1126/science.2997922. [DOI] [PubMed] [Google Scholar]
  11. Camerini D., Seed B. A CD4 domain important for HIVmediated syncytium formation lies outside the virus binding site. Cell. 1990;60:747–754. doi: 10.1016/0092-8674(90)90089-w. [DOI] [PubMed] [Google Scholar]
  12. Canivet M., Hoffman A.D., Hardy D., Sernatinger, Levy J.A. Replication of HIV-1 in a wide variety of animal cells following phenotypic mixing with murine retroviruses. Virology. 1990;178:543–551. doi: 10.1016/0042-6822(90)90352-r. [DOI] [PubMed] [Google Scholar]
  13. Chesebro B., Buller R., Portis J., Wehrly K. Failure of human immunodeficiencyvirus entry and infection in CD4-positive human brain and skin cells. J. Virol. 1990;64:215–221. doi: 10.1128/jvi.64.1.215-221.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Clapham P.R., Nagy K., Weiss R.A. Vol. 81. 1984. Pseudotypes of human T-cell leukemia virus type 1 and 2: Neutralisation by patient's sera; pp. 2886–2889. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Clapham P.R., Weiss R.A., Dalgleish A.G., Exley M., Whitby D., Hogg N. Human immunodeficiency virus infection of monocytic and T-lymphocytic cells: Receptor modulation and differentiation induced by phorbol ester. Virology. 1987;158:44–51. doi: 10.1016/0042-6822(87)90236-4. [DOI] [PubMed] [Google Scholar]
  16. Clapham P.R., Weber J.N., Whitby D., McIntosh K., Dalgleish A.G., Maddon P.J., Deen K.C., Sweet R.W., Weiss R.A. Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature. 1989;337:368–370. doi: 10.1038/337368a0. [DOI] [PubMed] [Google Scholar]
  17. Clavel F., Guetard D., Brun-Vezinet F., Chamaret S., Rey M.A., Santos-Ferreira M.O., Laurent A.G., Dauguet C., Katlama C., Rouzioux C., Klatzmann D., Champalimaud J.L., Montagnier L. Isolation of a new human retrovirus from West African patients with AIDS. Science. 1986;233:343–346. doi: 10.1126/science.2425430. [DOI] [PubMed] [Google Scholar]
  18. Clements G.J., Price-Jones M.J., Stephens P.E., Sutton C., Schulz T.F., Clapham P.R., McKeating J.A., McClure M.O., Thomson S., Marsh M., Kay J., Weiss R.A., Moore J.P. The V3 loop of the HIV-1 surface glycoprotein contains proteolytic cleavage sites: A possible function in viral fusion. AIDS Res. Hum. Retroviruses. 1991;7:3–16. doi: 10.1089/aid.1991.7.3. [DOI] [PubMed] [Google Scholar]
  19. Corbeau P., Devaux C., Koirilsky F., Chermann J.C. An early post infection signal mediated by monoclonal antibody anti beta 2-microglobulin is responsible for delayed production of HIV-1 in PBL cells. J. Virol. 1990;64:1459–1464. doi: 10.1128/jvi.64.4.1459-1464.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cranage M.P., Almond N., Jenkins A., Kitchen P.A. Transmembrane protein of SIV. Nature. 1989;342:349. doi: 10.1038/342349a0. [DOI] [PubMed] [Google Scholar]
  21. Crandell R.A., Fabricant C.G., Nelson-Rees W.A. Development, characterisation and virus susceptibility of a feline (Fells catus) renal cell line (CRFK) In Vitro. 1973;9:176–185. doi: 10.1007/BF02618435. [DOI] [PubMed] [Google Scholar]
  22. Currie G.A., Gage J.O. Influence of tumour growth on the evolution of cytotoxic lymphoid cells in rats bearing a spontaneously metastasizing syngeneic fibrosarcoma. Br. J. Cancer. 1973;28:136–146. doi: 10.1038/bjc.1973.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dalgleish A.G., Beverley P.C.L., Clapham P.R., Crawford D.H., Greaves M.F., Weiss R.A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature. 1984;312:763–766. doi: 10.1038/312763a0. [DOI] [PubMed] [Google Scholar]
  24. Daniel M.D., Letvin N.L., King N.W., Kannagi M., Sehgal P.K., Hunt R.D., Kanki P.J., Essex M., Desrosiers R.C. Isolation of a T-cell tropic HTLV-III-like retrovirus from macaques. Science. 1985;228:1201–1204. doi: 10.1126/science.3159089. [DOI] [PubMed] [Google Scholar]
  25. Devaux C., Boucraut J., Poirir G., Corbeau P., Rey F., Berkinare M., Peraireau B., Koirilsky F., Chermann J.C. Anti beta 2-microglobulin monoclonal antibodies mediate a delay of HIV-1 cpe in MT4 cells. Scand. J. Immunol. 1991 doi: 10.1016/0923-2494(90)90026-u. in press. [DOI] [PubMed] [Google Scholar]
  26. Diamond D.C., Finberg R., Chaudhuri S., Sleckman B.P., Burakoff S.J. Vol. 87. 1990. Human immunodeficiency virus infection is efficiently mediated by a glycolipid-anchored form of CD4; pp. 5001–5005. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Filice G., Cereda P.M., Varnier O.E. Infection of rabbits with human immunodeficiency virus. Nature. 1988;335:366–369. doi: 10.1038/335366a0. [DOI] [PubMed] [Google Scholar]
  28. Gallagher W.R. Detection of fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell. 1987;50:327–328. doi: 10.1016/0092-8674(87)90485-5. [DOI] [PubMed] [Google Scholar]
  29. Hattori T., Koito A., Takatsuki K., Kido H., Katunuma N. Involvement of tryptase-related cellular proteinase(s) in human immunodeficiency virus type 1 infection. FEBS Lett. 1989;248:48–52. doi: 10.1016/0014-5793(89)80429-6. [DOI] [PubMed] [Google Scholar]
  30. Healey D., Dianda L., Moore J.P., McDougal J.S., Moore M.J., Estess P., Buck D., Kwong P.D., Beverley P.C.L., Sattentau Q.J. Novel anti-CD4 monoclonal antibodies separate HIV infection and fusion of CD4+ cells from virus binding. J. Exp. Med. 1990;172:1233–1242. doi: 10.1084/jem.172.4.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Henderson I.C., Lieber M.M., Todaro G.J. Mink cell line Mvi Lu (CCL64) focus formation and generation of non-producer transformed cell lines with murine and feline sarcoma viruses. Virology. 1974;60:282–287. doi: 10.1016/0042-6822(74)90386-9. [DOI] [PubMed] [Google Scholar]
  32. Hirsch V.M., Edmondson P., Murphey-Corb M., Arbeille B., Johnson P.R., Mullins J.I. SIV adaption to human cells. Nature. 1989;341:573–574. doi: 10.1038/341573a0. [DOI] [PubMed] [Google Scholar]
  33. Ho D.D., Kaplan J.C., Rackauskas I.E., Gurney M.E. Second conserved domain of gp120 is important for HIV infectivity and antibody neutralisation. Science. 1988;239:1021–1023. doi: 10.1126/science.2830667. [DOI] [PubMed] [Google Scholar]
  34. Hoffman A.D., Banapour B., Levy J.A. Characterisation of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology. 1985;147:326–335. doi: 10.1016/0042-6822(85)90135-7. [DOI] [PubMed] [Google Scholar]
  35. Hull R.N., Cherry W.R., Tritch O.J. Growth characteristics of monkey kidney cell strains LLC-MK1, LLC-MK2, and LLC-MK2 (NCTC-3196) and their utility in virus research. J. Exp. Med. 1962;115:903–918. doi: 10.1084/jem.115.5.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kinney Thomas E., Weber J.N., McClure J., Clapham P.R., Singhal M.C., Shriver M.K., Weiss R.A. Neutralising monoclonal antibodies to the AIDS virus. AIDS. 1988;2:25–29. doi: 10.1097/00002030-198802000-00004. [DOI] [PubMed] [Google Scholar]
  37. Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J.-C., Montagnier L. T-lymphocyte T4 molecule behaves as the receptorfor human retrovirus LAV. Nature. 1984;312:767–768. doi: 10.1038/312767a0. [DOI] [PubMed] [Google Scholar]
  38. Kowalsky M., Potz J., Basiripour L., Dorfman T., Goh W.C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science. 1987;237:1351–1355. doi: 10.1126/science.3629244. [DOI] [PubMed] [Google Scholar]
  39. Kulaga H., Folks T.M., Rutledge R., Kindt T.J. Vol. 85. 1988. Infection of rabbit T-cell and macrophage lines with human immunodeficiency virus; pp. 4455–4459. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Leerhoy J. Cytopathic effect of rubella virus in a rabbit-cornea cell line. Science. 1965;149:633–634. doi: 10.1126/science.149.3684.633. [DOI] [PubMed] [Google Scholar]
  41. Levy J.A., Hoffman A.D., Kramer S.M., Landis J.A., Shimabukuro J.M., Oshiro L.S. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science. 1984;225:840–842. doi: 10.1126/science.6206563. [DOI] [PubMed] [Google Scholar]
  42. Linsley P.S., Ledbetter J.A., Kinney-Thomas E., Hu S.-L. Effects of anti-gpl20 monoclonal antibodies on CD4 receptor binding by the env protein of human immunodeficiency virus type 1. J. Virol. 1988;62:3695–3702. doi: 10.1128/jvi.62.10.3695-3702.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Maddon P.J., Dalgleish A.G., McDougal J.S., Clapham P.R., Weiss R.A., Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986;47:333–348. doi: 10.1016/0092-8674(86)90590-8. [DOI] [PubMed] [Google Scholar]
  44. Maddon P.J., McDougal J.S., Clapham P.R., Dalgleish A.G., Jamal S., Weiss R.A., Axel R. HIV infection does not require endocytosis of its receptor CD4. Cell. 1988;54:865–874. doi: 10.1016/s0092-8674(88)91241-x. [DOI] [PubMed] [Google Scholar]
  45. Marsh M., Helenius A. Virus entry into animal cells. Adv. Virus Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. McAllister R.M., Isaacs H., Rongey R., Peer M., Au W., Soukup S.W., Gardner M.B. Establishment of a human medulloblastoma cell line. Int. J. Cancer. 1977;20:206–212. doi: 10.1002/ijc.2910200207. [DOI] [PubMed] [Google Scholar]
  47. McClure M.O., Marsh M., Weiss R.A. Human immunodeficiency virus infection of CD4-bearing cells occurs by a pHindependent mechanism. EMBO J. 1988;7:513–518. doi: 10.1002/j.1460-2075.1988.tb02839.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. McClure M.O., Sommerfelt M.A., Marsh M., Weiss R.A. The pH independence of mammalian retrovirus infection. J. Gen. Virol. 1990;71:767–773. doi: 10.1099/0022-1317-71-4-767. [DOI] [PubMed] [Google Scholar]
  49. Murphey-Corb M., Martin L.N., Rangan S.R.S., Baskin G.B., Gormus B.J., Wolf R.H., Andes W.A., West M., Montelaro R.C. Isolation of an HTLV-III-related retrovirus from macaques with simian AIDS and possible origin in asymptomatic monkeys. Nature. 1986;321:435–437. doi: 10.1038/321435a0. [DOI] [PubMed] [Google Scholar]
  50. Oram J.D., Downing R.G., Roff M., Clegg J.C.S., Serwadda D., Carswell J.W. Nucleotide sequence of a Ugandan HIV-1 provirus reveals genetic diversity from other HIV-1 isolates. AIDS Res. Hum. Retroviruses. 1990;6:1073–1078. doi: 10.1089/aid.1990.6.1073. [DOI] [PubMed] [Google Scholar]
  51. Ohta Y., Masuda T., Tsujimot0 H., Ishikawa K.-I., Kodama T., Morikawa S., Nakai M., Honjo S., Hayami M. Isolation of simian immunodeficiency virus from African green monkeys and seroepidemiologic survey of the virus in various nonhuman primates. Int. J. Cancer. 1988;41:115–122. doi: 10.1002/ijc.2910410121. [DOI] [PubMed] [Google Scholar]
  52. Ploegh H.L., Cannon L.E., Strominger J.L. Vol. 76. 1979. Cell free translation of the mRNAs for the heavy and light chains of HLA-A and HLA-B antigens; pp. 2273–2276. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Popovic M., Sarngadharan M.G., Read E., Gallo R.C. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and preAIDS. Science. 1984;224:497–500. doi: 10.1126/science.6200935. [DOI] [PubMed] [Google Scholar]
  54. Saiki R.K., Bugawan T.L., Horn G.T., Mullis K.B., Erlich H.A. Analysis of enzymatically amplified beta-globin and HLA DQa DNA with allele specific oligonucleotide probes. Nature. 1986;324:206–212. doi: 10.1038/324163a0. [DOI] [PubMed] [Google Scholar]
  55. Salahuddin S.Z., Markham P.D., Wong-Staal F., Franchini G., Kalyanaraman V.S., Gallo R.C. Restricted expression of human T-cell leukemia-lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology. 1983;129:51–54. doi: 10.1016/0042-6822(83)90395-1. [DOI] [PubMed] [Google Scholar]
  56. Sattentau Q.J., Clapham P.R., Weiss R.A., Beverley P.C.L., Montagnier L., Alhalabi M.F., Gluckman J.-C., Klatzmann D. The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS. 1988;2:101–105. doi: 10.1097/00002030-198804000-00005. [DOI] [PubMed] [Google Scholar]
  57. Schulz T.F., Whitby D., Hoad J.G., Corrah T., Whittle H., Weiss R.A. Biological and molecular variability of HIV-2 isolates from the Gambia. J. Virol. 1990;64:5177–5182. doi: 10.1128/jvi.64.10.5177-5182.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Simkovic D., Svoboda J., Valentova N. Clonal analysis of line XC rat tumor cells grown in vitro. Folia Biol. 1963;9:82–88. [PubMed] [Google Scholar]
  59. Siragarian R.P., McGriney A., Dascurian E.L., Lews F.T., Hirata F., Axelrod J. Vol. 41. 1982. Variants of the rat basophil leukemia cell line for the study of histamine release; pp. 30–34. (Fed. Proc.). [PubMed] [Google Scholar]
  60. Skinner M.A., Langlois A.J., McDanal C.B., McDougal J.S., Bolognesi D.P., Matthews T.J. Neutralising antibodies to an immunodominant envelope sequence do not prevent gpl20 binding to CD4. J. Virol. 1988;62:4195–4200. doi: 10.1128/jvi.62.11.4195-4200.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Spire B., Sire J., Zachar V., Rey F., Barre-Sinoussi F., Galibert F., Hampe A., Chermann J.-C. Nucleotide sequence of HIV1-NDK: A highly cytopathic strain of the human immunodeficiency virus. Gene. 1989;81:275–284. doi: 10.1016/0378-1119(89)90188-1. [DOI] [PubMed] [Google Scholar]
  62. Srinivasan A., Anand R., York D., Ranganathan P., Feorino P., Schochetman G., Curran J., Kalyanaraman V.S., Luciw P.A., Sanchez-Pescador R. Molecular characterization of human immunodeficiency virus from Zaire: Nucleotide sequence analysis identifies conserved and variable domains in the envelope gene. Gene. 1987;52:71–82. doi: 10.1016/0378-1119(87)90396-9. [DOI] [PubMed] [Google Scholar]
  63. Stein B.S., Gowda S., Lifson J., Penhallow R., Bensch K., Engleman E. pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell. 1987;49:659–668. doi: 10.1016/0092-8674(87)90542-3. [DOI] [PubMed] [Google Scholar]
  64. Stephens P.E., Clements G., Yarranton G.T., Moore J. A chink in HIV's armour. Nature. 1990;343:219. doi: 10.1038/343219b0. [DOI] [PubMed] [Google Scholar]
  65. Stratton M.R., Reeves B.R., Cooper C.S. Misidentified cell. Nature. 1989;337:311–312. doi: 10.1038/337311c0. [DOI] [PubMed] [Google Scholar]
  66. Takeuchi Y., Akutsu M., Murayama K., Shimuzu N., Hoshino H. Host range mutant of human immunodeficiency virus type 1: Modification of cell tropism by a single point mutation at the neutralisation epitope in the env gene. J. Virol. 1991 doi: 10.1128/jvi.65.4.1710-1718.1991. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wallace R.E., Vasington P.J., Petricciani J.C., Hopps H.E., Lorenz D.E., Kadanka Z. Development and characterization of cell lines from subhuman primates. In Vitro. 1973;8:333–341. doi: 10.1007/BF02619057. [DOI] [PubMed] [Google Scholar]
  68. Weiss R.A., Boettiger D., Murphy H.M. Pseudotypes of avian sarcoma viruses with the envelope properties of vesicular stomatitis virus. Virology. 1977;76:808–825. doi: 10.1016/0042-6822(77)90261-6. [DOI] [PubMed] [Google Scholar]
  69. Weiss R.A., Clapham P.R., Weber J.N., Dalgleish A.G., Lasky L.A., Berman P.W. Variable and conserved neutralisation antigens of human immunodeficiency virus. Nature. 1986;324:572–575. doi: 10.1038/324572a0. [DOI] [PubMed] [Google Scholar]
  70. Westermark B., Ponten J., Hugosson R. Determinants for the establishment of permanent tissue culture lines from human gliomas. Acta Pathol. Microbiol. Scand. 1973;81:791–805. doi: 10.1111/j.1699-0463.1973.tb03573.x. [DOI] [PubMed] [Google Scholar]
  71. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
  72. Willey R.L., Smith D.H., Lasky L.A., Theodore T.S., Earl P.L., Moss B., Capon D.J., Martin M.A. In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J. Virol. 1988;62:139–147. doi: 10.1128/jvi.62.1.139-147.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES