Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Apr 10;118:253–267. doi: 10.1016/S0079-6123(08)63213-6

Chapter 18 Expression of nitric oxide synthase-2 in glia associated with CNS pathology

Angela K Loihl 1, Sean Murphy 1,*
PMCID: PMC7133158  PMID: 9932447

Abstract

This chapter discusses the expression of nitric oxide synthase-2 (NOS-2) in glia associated with central nervous system (CNS) pathology. The production of nitric oxide (NO) in the nervous system is catalyzed by three, highly homologous isoforms of NO synthase (NOS). NOS-2, the dimeric, heme-containing, soluble protein whose activity is independent of a rise in intracellular calcium, is variously termed ‘inducible,’ ‘immunologic,’ and ‘macrophage NOS (macNOS).’ Nitric oxide inhibits not only NOS-2 activity but also regulates the level of NOS-2 messenger RNA (mRNA) expression through a mechanism involving NF-K B. There is specific evidence for the glial expression of NOS-2 associated with neuronal injury and infection of the CNS and in neurodegenerative and demyelinating diseases. Direct injury in the CNS results in a reactive gliosis, characterized by the induction of the glial fibrillary acidic protein gene and changes in astrocyte morphology.

References

  1. Adamson D.C., Wildemann B., Sasaki M., Glass J.D., McCarthur J.C., Christov V.I., Dawson T.M., Dawson V.L. Immunologic NO synthase: Elevation in severe AIDS dementia and induction by HIV-1 gp41. Science. 1996;21 A:1917–1921. doi: 10.1126/science.274.5294.1917. [DOI] [PubMed] [Google Scholar]
  2. Andrew P.J., Harant H., Lindley I.J.D. Nitric oxide regulates IL-8 expression in melanoma cells at the transcriptional level. Biochem. Biophys. Res. Commun. 1995;214:949–956. doi: 10.1006/bbrc.1995.2378. [DOI] [PubMed] [Google Scholar]
  3. Arnhold S., Andressen C., Bloch W., Mai J.K., Addicks K. NO synthase II is transiently expressed in embryonic mouse olfactroy receptor neurions. Neurosci. Lett. 1997;229:165–168. doi: 10.1016/s0304-3940(97)00457-6. [DOI] [PubMed] [Google Scholar]
  4. Ashwal S., Cole D.J., Osborne T.N., Pearce W.J. Low dose L-NAME reduces infarct volume in the rat MCA/O reperfusion model. J. Neurosurg. Anesthesiol. 1993;5:241–259. doi: 10.1097/00008506-199310000-00004. [DOI] [PubMed] [Google Scholar]
  5. Bagasra O., Michaels F.H., Zheng Y.M., Bobroski L.E., Spitsin S.V., Fu Z.F., Tawadros R., Koprowski H. Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA. 1995;92:12041–12045. doi: 10.1073/pnas.92.26.12041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barger S.W., Harmon A.D. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature. 1997;388:878–881. doi: 10.1038/42257. [DOI] [PubMed] [Google Scholar]
  7. Boje K.M.K. Inhibition of nitric oxide synthase attenuates blood-brain barrier disruption during experimental meningitis. Brain Res. 1996;720:75–83. doi: 10.1016/0006-8993(96)00142-4. [DOI] [PubMed] [Google Scholar]
  8. Borgerding R., Murphy S. Expression of NO synthase in cerebral endothelial cells is regulated by cytokine-activated astrocytes. J. Neurochem. 1995;65:1342–1347. doi: 10.1046/j.1471-4159.1995.65031342.x. [DOI] [PubMed] [Google Scholar]
  9. Boullerne A.I., Petry K.G., Meynard M., Geffard M. Indirect evidence for nitric oxide involvement in multiple sclerosis by characterization of circulating antibodies directed against conjugated S-nitrosocysteine. J. Neuro-immunol. 1995;60:117–124. doi: 10.1016/0165-5728(95)00061-6. [DOI] [PubMed] [Google Scholar]
  10. Buisson A., Plotkine M., Boulu R.G. The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischemia. Br. J. Pharmacol. 1992;106:766–767. doi: 10.1111/j.1476-5381.1992.tb14410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Butler A.R., Flitney F.W., Williams D.L.H. NO, nitrosonium ions, nitroxide ions, nitrosothiols and irro-nitrosyls in biology. Trends Pharmacol. Sci. 1995;16:18–22. doi: 10.1016/s0165-6147(00)88968-3. [DOI] [PubMed] [Google Scholar]
  12. Campbell I.L. Exacerbation of lymphocytic choriomen-ingitis in mice treated with the inducible nitric oxide synthase inhibitor aminoguanidine. J. Neuroimmunol. 1996;71:31–36. doi: 10.1016/s0165-5728(96)00129-4. [DOI] [PubMed] [Google Scholar]
  13. Christopherson K.S., Bredt D.S. Nitric oxide in excitable tissues. J. Clin, Invest. 1997;100:2424–2429. doi: 10.1172/JCI119783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Colasanti M., Persichini T., Menegazzi M., Mariotto S., Giodano E., Caldarera C.M., Sogos V., Lauro G.M., Suzuki H. Induction of nitric oxide synthase mRNA expression. J. Biol. Chem. 1995;270:26731–26733. doi: 10.1074/jbc.270.45.26731. [DOI] [PubMed] [Google Scholar]
  15. Cotinet A., Goureau O., Hicks D., Thillaye-Goldenberg B., de Kozak Y. TNF and NO production by retinal Muller glial cells from rats exhibiting inherited retinal dystrophy. Glia. 1997;20:59–69. [PubMed] [Google Scholar]
  16. Cross A.H., Misko T.P., Lin R.F., Hickey W.F., Trotter J.L., Tilton R.G. Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J. Clin. Invest. 1994;93:2684–2690. doi: 10.1172/JCI117282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cross A.H., Keeling R.M., Goorha S., San M., Rodi C., Wyatt P.S., Manning P.T., Misko T.P. Inducible nitric oxide synthase gene expression and enzyme activity correlate with disease activity in murine EAE. J. Neuroimmunol. 1996;71:145–153. doi: 10.1016/s0165-5728(96)00147-6. [DOI] [PubMed] [Google Scholar]
  18. Crow J.P., Beckman J.S. Reactions between nitric oxide, superoxide and peroxynitrite. In: Ignarro L., Murad F., editors. Nitric Oxide. Academic Press; San Diego: 1995. pp. 17–43. [DOI] [PubMed] [Google Scholar]
  19. Dawson D.A., Kusumoto K., Graham D.I., McCulloch J., Macrae I.M. Inhibition of nitric oxide synthesis does not reduce infarct volume in a rat model of focal cerebral ischemia. Neurosci. Lett. 1992;142:151–154. doi: 10.1016/0304-3940(92)90361-a. [DOI] [PubMed] [Google Scholar]
  20. DeCaterina R., Libby P., Peng H-B., Thannickal V.J., Rajavshisth T.B., Gimbrone M.A., Jr., Shin W.S., Liao J.K. Nitric oxide decreases cytokine-induced endothelial activation. J. Clin. Invest. 1995;96:60–68. doi: 10.1172/JCI118074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. DeGroot C.J.A., Ruuls S.R., Theeuwes J.W.M., Dijkstra C.D., Van der Walk P. Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 1997;56:10–20. doi: 10.1097/00005072-199701000-00002. [DOI] [PubMed] [Google Scholar]
  22. DelaTorre A., Schroeder R.A., Kuo P.C. Alteration of NF-k B p50 DNA binding kinetics by S-nitrosylation. Biochem. Biophys. Res. Commun. 1997;238:703–706. doi: 10.1006/bbrc.1997.7279. [DOI] [PubMed] [Google Scholar]
  23. Ding M., Wong J.L., Rogers N.E., Ignarro L.J., Voslhul R.R. Gender differences of inducible nitric oxide production in SJL/J mice with EAE. J. Neuroimmunol. 1997;77:99–106. doi: 10.1016/s0165-5728(97)00065-9. [DOI] [PubMed] [Google Scholar]
  24. Eddleston M., Mucke L. Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience. 1993;54:15–36. doi: 10.1016/0306-4522(93)90380-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Endoh M., Maiese K., Wagner J.A. Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res. 1994;651:92–100. doi: 10.1016/0006-8993(94)90683-1. [DOI] [PubMed] [Google Scholar]
  26. Feinstein D.L. Suppression of astroglial nitric oxide synthase expression by norepinepohrine results from decreased NOS-2 promoter activity. J. Neurochem. 1998;70:1484–1496. doi: 10.1046/j.1471-4159.1998.70041484.x. [DOI] [PubMed] [Google Scholar]
  27. Feinstein D.L., Galea E., Aquino D.A., Li G.C., Xu H., Reis D.J. Heat shock protein 70 suppresses astroglial inducible nitric oxide synthase expression by decreasing NFk B activation. J. Biol. Chem. 1996;271:17724–17732. doi: 10.1074/jbc.271.30.17724. [DOI] [PubMed] [Google Scholar]
  28. Fenyk-Melody J., Garrison A., Brunnert S., Weidner J., Shen F., Shelton B., Mudgett J.S. Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS-2 gene. J. Immunol. 1998;160:2940–2949. [PubMed] [Google Scholar]
  29. Forstermann U., Gath I., Schwarz P., Closs E.I., Kleinert H. Isoforms of nitric oxide synthase. Biochem. Pharmacol. 1995;50:1321–1332. doi: 10.1016/0006-2952(95)00181-6. [DOI] [PubMed] [Google Scholar]
  30. Fujii M., Hara H., Meng W., Vonsattel J.P., Huang Z., Moskowitz M.A. Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57.BL6 mice. Stroke. 1997;28:1805–1810. doi: 10.1161/01.str.28.9.1805. [DOI] [PubMed] [Google Scholar]
  31. Galea E., Reis D.J., Feinstein D.L. Cloning and expression of inducible nitric oxide synthase from rat astrocytes. J. Neurosci. Res. 1994;37:406–414. doi: 10.1002/jnr.490370313. [DOI] [PubMed] [Google Scholar]
  32. Galea E., Reis D.J., Xu H., Feinstein D.L. Transient expression of calcium-independent nitric oxide synthase activity in brain blood vessels during development. FASEB J. 1995;9:1632–1637. doi: 10.1096/fasebj.9.15.8529843. [DOI] [PubMed] [Google Scholar]
  33. Ghirnikar R.S., Lee Y.L., He T.R., Eng L.F. Chemokine expression in rat stab wound brain injury. J. Neurosic. Res. 1996;46:727–733. doi: 10.1002/(SICI)1097-4547(19961215)46:6<727::AID-JNR9>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  34. Griffith O.W., Stuehr D.J. Nitric oxide synthases. Annu. Rev. Physiol. 1995;57:707–736. doi: 10.1146/annurev.ph.57.030195.003423. [DOI] [PubMed] [Google Scholar]
  35. Grzybicki D., Kwack K.B., Perlman S., Murphy S. Nitric oxide synthase type II expression by different cell types in MHV-JHM encephalitis suggests distinct roles for nitric oxide in acute vs. persistent virus infection. J. Neuroimmunol. 1997;73:15–27. doi: 10.1016/S0165-5728(96)00159-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Grzybicki D., Moore S.A., Schelper R., Glabinski A., Ransohoff R.M., Murphy S. Expression of monocyte chemoattractant protein (MCP-1) and nitric oxide synthase-2 following cerebral trauma. Acta Neuropathol. 1998;95:98–103. doi: 10.1007/s004010050770. [DOI] [PubMed] [Google Scholar]
  37. Hall G.L., Compston A., Scolding N.J. β-interferon and multiple sclerosis. Trends Neurosci. 1997;20:63–67. doi: 10.1016/s0166-2236(96)10071-0. [DOI] [PubMed] [Google Scholar]
  38. Hamada Y., Ikata T., Katoh S., Tsuchiya K., Niwa M., Tsutsumishata Y., Fukuzawa K. Roles of nitric oxide in compression injury of rat spinal cord. Free Rad. Biol. Med. 1996;20:1–9. doi: 10.1016/0891-5849(95)02017-9. [DOI] [PubMed] [Google Scholar]
  39. Hickey M.J., Sharkey K.A., Sihota E.G., Reinhardt P.H., MacMicking J.D., Nathan C., Kubes P. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J. 1997;11:955–964. doi: 10.1096/fasebj.11.12.9337148. [DOI] [PubMed] [Google Scholar]
  40. Hooper D.C., Ohnishi S.T., Kean R., Numagami Y., Dietzschold B., Koprowski H. Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc. Natl. Acad. Sci. USA. 1995;92:5312–5316. doi: 10.1073/pnas.92.12.5312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hooper D.C., Bagasra O., Marini J.C., Zborek A., Ohnishi S.T., Kean R., Champoin J.M., Sarler A.B., Bobroski L., Farber J.L., Akaike T., Maeda H., Koprowski H. Prevention of EAE by targeting nitric oxide and peroxynitrie. Proc. Natl. Acd. Sci. USA. 1997;94:2528–2533. doi: 10.1073/pnas.94.6.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Htain W.W., Leong S.K., Ling E.A. In vivo expression of inducible nitric oxide synthase in supra-venticular amoeboid microglial cells in neonatal BALB/c and athymic mice. Neurosci. Lett. 1997;223:53–56. doi: 10.1016/s0304-3940(97)13387-0. [DOI] [PubMed] [Google Scholar]
  43. Huang Z., Huang P.L., Panahian N., Dalkara T., Fishman M.C., Moskowitz M.A. Effects of cerbral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994;265:1883–1885. doi: 10.1126/science.7522345. [DOI] [PubMed] [Google Scholar]
  44. Hulkower K., Brosnan C.F., Aquino D.A., Cammer W., Kulshrestha S., Guida M.P., Rapoport D.A., Berman J.W. Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. J. Immunol. 1993;150:2525–2533. [PubMed] [Google Scholar]
  45. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci. 1997;20:132–139. doi: 10.1016/s0166-2236(96)10074-6. [DOI] [PubMed] [Google Scholar]
  46. Iadecola C., Zhang F., Xu S., Casey R., Ross M.E. Inducible nitric oxide synthase expression in brain following cerebral ischemia. J. Cerebral Blood Flow Metab. 1995;15:378–384. doi: 10.1038/jcbfm.1995.47. [DOI] [PubMed] [Google Scholar]
  47. Iadecola C., Zhang F., Xu X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am. J. Physiol. 1995;268:R286–R292. doi: 10.1152/ajpregu.1995.268.1.R286. [DOI] [PubMed] [Google Scholar]
  48. Iadecola C., Xu X., Zhang F., El-Fakahany E.E., Ross M.E. Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 1995;15:52–59. doi: 10.1038/jcbfm.1995.6. [DOI] [PubMed] [Google Scholar]
  49. Iadecola C., Zhang F., Casey R., Clark H.B., Ross M.E. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke. 1996;27:1373–1380. doi: 10.1161/01.str.27.8.1373. [DOI] [PubMed] [Google Scholar]
  50. Iadecola C, Zhang F., Casey R., Nagayama M., Ross M.E. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 1997;17:9157–9164. doi: 10.1523/JNEUROSCI.17-23-09157.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Johnson A.W., Land J.M., Thompson E.J., Bolanos J.P., Clark J.B., Heales S.J. Evidence for increased nitric oxide production in multiple sclerosis. J. Neurol. Neurosur. Psych. 1995;58:107–116. doi: 10.1136/jnnp.58.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Kader A., Frazzini V.I., Solomon R.A., Trifiletti R.R. Nitric oxide production during focal cerebral ischemia in rats. Stroke. 1993;24:1709–1716. doi: 10.1161/01.str.24.11.1709. [DOI] [PubMed] [Google Scholar]
  53. Karpus W.J., Lukacs N.W., McRae B.L., Strieter R.M., Kunkel S.L., Miller S.D. An important role for the chemokine macrophage inflammatory protein-la in the pathogenesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. J. Immunol. 1995;155:5003–5010. [PubMed] [Google Scholar]
  54. Khan B.V., Harrison D.G., Olbrych M.T., Alexander R.W., Medford R.M. Nitric oxide regulates vascular cell adhesion molecule-1 gene expression and redox-sensitive transcriptional events in human vascular cells. Proc. Natl. Acad. Sci. USA. 1996;93:9114–9119. doi: 10.1073/pnas.93.17.9114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kim J.S., Gautam S.C., Chopp M., Zaloga C., Jones M.L., Ward P.A., Welch K.M.A. Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. J. Neuroimmunol. 1995;56:127–134. doi: 10.1016/0165-5728(94)00138-e. [DOI] [PubMed] [Google Scholar]
  56. Knowles R.G. Nitric oxide, mitochondria and metabolism. Trans. Biochem. Soc. 1997;25:895–901. doi: 10.1042/bst0250895. [DOI] [PubMed] [Google Scholar]
  57. Koka P., He K., Zack J.A., Kitchen S., Peacock W., Fried I., Tran T., Yashar S.S., Merrill J.E. Human immunodeficiency virus 1 envelope proteins induce interleu-kin 1, tumor necrosis factor α and nitric oxide in glial culture from fetal, neonatal, and adult human brain. J. Exp. Med. 1995;182:941–952. doi: 10.1084/jem.182.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Kopnisky K.L., Sumners C., Chandler L.J. Cytokine- and endotoxin-induced nitric oxide synthase in rat astroglial cultures. J. Neurochem. 1997;68:935–944. doi: 10.1046/j.1471-4159.1997.68030935.x. [DOI] [PubMed] [Google Scholar]
  59. Kossman T., Stahel P.F., Lenzlinger P.M., Redl H., Dubs R.W., Trentz O., Schalg G., Morganti-Kossman M.C. Interleukin 8 released into the CSF after brain injury is associated with blood-brain barrier dysfunction and NGF production. J. Cereb. Blood Flow Metab. 1997;17:280–289. doi: 10.1097/00004647-199703000-00005. [DOI] [PubMed] [Google Scholar]
  60. Krupinski J., Kumar P., Kumar S., Kaluza J. Increased expression of TGF-bl in brain tissue after ischemic stroke in humans. Stroke. 1996;27:852–857. doi: 10.1161/01.str.27.5.852. [DOI] [PubMed] [Google Scholar]
  61. Kuluz J.W., Prado R.J., Dietrich W.D., Schleine C.L., Watson B.D. The effect of nitric oxide synthase inhibition on infarct volume after reversible focal cerebral ischemia in conscious rats. Stroke. 1993;24:2023–2029. doi: 10.1161/01.str.24.12.2023. [DOI] [PubMed] [Google Scholar]
  62. Lane T.E., Buchmeier M.J., Watry D.D., Fox H.S. Expression of inflammatory cytokines and inducible nitric oxide synthase in brains of SIV-infected Rhesus monkeys: Applications to HIV-induced central nervous system disease. Molec. Med. 1996;2:27–37. [PMC free article] [PubMed] [Google Scholar]
  63. Lane T.E., Paoletti A.D., Buchmeier M.J. Disas-sociation between the invitro and in vivo effects of nitric oxide on a neurotropic murine coronavirus. J. Virol. 1997;71:2202–2210. doi: 10.1128/jvi.71.3.2202-2210.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Lei D.L., Yang D.L., Liu H.M. Local injection of kainic acid causes widespread degeneration of NADPH-d neurons and induction of NADPH-d in neurons, endothelial cells and reactive astrocytes. Brain Res. 1996;730:199–206. doi: 10.1016/0006-8993(96)00447-7. [DOI] [PubMed] [Google Scholar]
  65. Lin H.L., Murphy S. Regulation of astrocyte nitric oxide synthase type II expression by ATP and glutamate involves loss of transcription factor binding to DNA. J. Neurochem. 1997;69:612–616. doi: 10.1046/j.1471-4159.1997.69020612.x. [DOI] [PubMed] [Google Scholar]
  66. Loihl A.K., Murphy S. Expression of nitric oxide synthase-2 in various cell types following focal cerebral ischemia in mice. Abst. Soc. Neurosci. 1997;23:2437. [Google Scholar]
  67. Luss H., DiDilvio M., Litton A.L., Moli Y., Vedia L., Nussler A.K., Billiar T.R. Inhibition of nitric oxide synthesis enhances the expression of inducible nitric oxide synthase mRNA and protein in a model of chronic liver inflammation. Biochem. Biophys. Res. Commun. 1994;204:635–640. doi: 10.1006/bbrc.1994.2506. [DOI] [PubMed] [Google Scholar]
  68. MacMicking J.D., Nathan C., Hom G., Chartrain N., Fletcher D.S., Trumbauer M., Stevens K., Xie Q., Sokol K., Hutchinson N., Chen H., Mudgett J.S. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995;81:641–650. doi: 10.1016/0092-8674(95)90085-3. [DOI] [PubMed] [Google Scholar]
  69. Malinski T., Bailey F., Zhang Z.G., Chopp M. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 1993;13:355–358. doi: 10.1038/jcbfm.1993.48. [DOI] [PubMed] [Google Scholar]
  70. McCall T.B., Palmer R.M.J., Moncada S. Inter-leukin-8 inhibits the induction of nitric oxide synthase in rat peritoneal neutrophils. Biochem. Biophys. Res. Commun. 1992;186:680–685. doi: 10.1016/0006-291x(92)90800-z. [DOI] [PubMed] [Google Scholar]
  71. Meda L., Bernasconi S., Bonaiuto C., Sozzani S., Zhou D., Otvos L., Mantovani A., Rossi F., Cassatella M.A. β-amyloid (25—35) peptide and IFN-γ synergistically induce the production of the chemotactic cytokine MCP-1/JE in monocytes and microglial cells. J. Immunol. 1996;157:1213–1218. [PubMed] [Google Scholar]
  72. Merrill J.E., Genain C.P., Parkinson J.F., Medberry P., Halks-Miller M., DelVecchio V., Kardos S, Murphy S. iNOS and nitrotyrosine in macrophages and glia in demyelinating lesions. Submitted. 1988 [Google Scholar]
  73. Merrill J.E., Murphy S. Regulation of gene expression in the nervous system by reactive oxygen and nitrogen species. Metab. Brain Disease. 1997;12:97–112. [PubMed] [Google Scholar]
  74. Merrill J.E., Benveniste E.N. Cytokines in inflammatory brain lesions: Helpful and harmful. Trends Neurosci. 1996;19:331–338. doi: 10.1016/0166-2236(96)10047-3. [DOI] [PubMed] [Google Scholar]
  75. Miyagishi R., Kikuchi S., Fukazawa T., Tashiro K. Macrophage inflammatory protein-la in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological diseases. J. Neurol. Sci. 1995;129:223–227. doi: 10.1016/0022-510x(95)00004-l. [DOI] [PubMed] [Google Scholar]
  76. Murphy S., Grzybicki D. Glial NO: Normal and pathological roles. Neuroscientist. 1996;2:91–100. [Google Scholar]
  77. Murphy S., Simmons M.S., Agullo L., Garcia A., Feistein D.L., Gallea E., Reis D.L., Minc-Golomb D., Schwartz J.P. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci. 1993;16:323–328. doi: 10.1016/0166-2236(93)90109-y. [DOI] [PubMed] [Google Scholar]
  78. Nagafugi T., Matsui T., Koide T., Asano T. Blockade of nitric oxide formation by Nw-nitro-L-arginine mitigates ischemic brain edema and subsequent cerebral infarction in rats. Neurosci. Lett. 1992;147:159–162. doi: 10.1016/0304-3940(92)90584-t. [DOI] [PubMed] [Google Scholar]
  79. Nathan C. Inducible nitric oxide synthase. J. Clin. Invest. 1997;100:2417–2423. doi: 10.1172/JCI119782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Nowicki J.P., Duval D., Poignet H., Scatton B. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur. J. Pharmacol. 1991;204:339–340. doi: 10.1016/0014-2999(91)90862-k. [DOI] [PubMed] [Google Scholar]
  81. Okuda Y., Nakatsuji Y., Fujimura H., Esumi H., Ogura T., Yanagihara T., Sakoda S. Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J. Neuroim-munol. 1995;62:103–112. doi: 10.1016/0165-5728(95)00114-h. [DOI] [PubMed] [Google Scholar]
  82. Okuda Y., Sakoda S., Fujimura H., Yanagihara T. Nitric oxide via an inducible isoform of nitirc oxide synthase is a spossible factor to eliminate inflammatory cells from the CNS of mice with EAE. J. Neuroimmunol. 1997;73:107–116. doi: 10.1016/s0165-5728(96)00194-4. [DOI] [PubMed] [Google Scholar]
  83. Oleszak E.L., Katsetos C.D., Kuzmak J., Varadhachary A. Inducible nitric oxide synthase in Theiler's murine encephalomyelitis virus infection. J. Virol. 1997;71:3228–3235. doi: 10.1128/jvi.71.4.3228-3235.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Park S.K., Murphy S. Duration of expression of inducible nitric oxide synthase in glial cells. J. Neurosci. Res. 1994;39:405–411. doi: 10.1002/jnr.490390407. [DOI] [PubMed] [Google Scholar]
  85. Park S.K., Murphy S. Nitric oxide synthase type II mRNA stability is translation- and transcription-dependent. J. Neurochem. 1996;67:1766–1769. doi: 10.1046/j.1471-4159.1996.67041766.x. [DOI] [PubMed] [Google Scholar]
  86. Park S.K., Lin H.L., Murphy S. Nitric oxide limits transcriptional induction of nitric oxide synthase in CNS glial cells. Biochem. Biophys. Res. Commun. 1994;201:762–768. doi: 10.1006/bbrc.1994.1766. [DOI] [PubMed] [Google Scholar]
  87. Park S.K., Lin H.L., Murphy S. Nitric oxide regulates nitric oxide synthase-2 gene expression by inhibiting NF-kB binding to DNA. Biochem. J. 1997;322:609–613. doi: 10.1042/bj3220609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Peng H., Libby P., Liao J.K. Induction and stabilization of IkBα by nitric oxide mediates inhibition of NF-kB. J. Biol. Chem. 1995;270:14214–14219. doi: 10.1074/jbc.270.23.14214. [DOI] [PubMed] [Google Scholar]
  89. Ransohoff R.M., Glabinski A., Tani M. Chem-okines in immune-mediated inflammation of the central nervous system. Cytokine and Growth Factor Rev. 1996;7:35–46. doi: 10.1016/1359-6101(96)00003-2. [DOI] [PubMed] [Google Scholar]
  90. Rojas A., Delgado R., Glaria L., Palacios M. MCP-1 inhibits the induction of nitric oxide synthase in J774 cells. Biochem. Biophys. Res. Commun. 1993;196:274–279. doi: 10.1006/bbrc.1993.2245. [DOI] [PubMed] [Google Scholar]
  91. Rossi F., Bianchini E. Synergistic induction of nitric oxide by β-amyloid and cytokines in astrocytes. Biochem. Biophys. Res. Commun. 1996;225:474–478. doi: 10.1006/bbrc.1996.1197. [DOI] [PubMed] [Google Scholar]
  92. Ruuls S.R., Van Der Linden S., Sontrop K., Huitinga I., Dijkstra C.D. Aggravation of experimental allergic encephalomyelitis by administration of nitric oxide synthase inhibitors. Clin. Exp. Immunol. 1996;103:467–476. doi: 10.1111/j.1365-2249.1996.tb08304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Sato S., Tominaga T., Ohnishi T., Ohnishi S.T. Role of nitric oxide in brain ischemia. Ann. NY. Acad. Sci. 1994;738:369–373. doi: 10.1111/j.1749-6632.1994.tb21823.x. [DOI] [PubMed] [Google Scholar]
  94. Shafer R., Murphy S. Activated astrocytes induce nitric oxide synthase-2 in cerebral endothelium via TNFa. GLIA. 1997;21:370–379. doi: 10.1002/(sici)1098-1136(199712)21:4<370::aid-glia4>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  95. Shibata M., Araki N., Hamada J., Sasaki T., Shimazu K., Fukuuchi Y. Brain nitrite production during global ischemia and reperfusion. Brain Res. 1996;735:86–90. [PubMed] [Google Scholar]
  96. Siesjö B.K. Pathophysiology and treatment of focal cerebral ischemia. J. Neurosurg. 1992;77:169–184. doi: 10.3171/jns.1992.77.2.0169. [DOI] [PubMed] [Google Scholar]
  97. Spanaus K-S., Nadal D., Pfister H-W., Seebach J., Widmer U., Frei K., Gloor S., Fontana A. C-X-C and C-C chemoklines are expressed in the CSF in bacterial meningitis and mediate chemotactic activity on peripheral blood-derived polymorphonclear and mononuclear cells in vitro. J. Immunol. 1997;158:1956–1964. [PubMed] [Google Scholar]
  98. Spitsin S.V., Koprowski H., Michaels F.H. Characterization and functional analysis of the human inducible nitric oxide synthaser gene promoter. Molec. Med. 1996;2:226–235. [PMC free article] [PubMed] [Google Scholar]
  99. Stewart V.C., Giovannoni G., Land J.M., McDonald W.I., Clark J.B., Heales S.J.R. Pretreatment of astrocytes with interferon α/β impairs interferon γ induction of nitric oxide synthase. J. Neurochem. 1997;68:2547–2551. doi: 10.1046/j.1471-4159.1997.68062547.x. [DOI] [PubMed] [Google Scholar]
  100. Sun N., Grzybicki D., Castro R.F., Murphy S., Perlman S. Activation of astrocytes in the spinal cord of mice chronically infected with a neurotropic coronavirus. Virology. 1995;213:482–493. doi: 10.1006/viro.1995.0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Takami S., Nishikawa H., Minami M., Nishiyori A., Sato M., Akaike A., Satoh M. Induction of MIP-la mRNA on glial cells after focal ischemia in the rat. Neurosci. Lett. 1997;227:173–176. doi: 10.1016/s0304-3940(97)00338-8. [DOI] [PubMed] [Google Scholar]
  102. Togashi H., Sasaki M., Frohman E., Taira E., Ratan R.R., Dawson T.M., Dawson V.L. Neuronal (type I) nitric oxide synthase regulates nuclear factor kB activity and immunologic (type II) nitric oxide synthase expression. Proc. Natl. Acad. Sci. USA. 1997;94:2676–2680. doi: 10.1073/pnas.94.6.2676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Tran E.H., Hardin-Pouzet H., Verge G., Owens T. Astrocytes and microglia exporess inducible nitric oxide synthase in mice with EAE. J. Neuroimmunol. 1997;74:121–129. doi: 10.1016/s0165-5728(96)00215-9. [DOI] [PubMed] [Google Scholar]
  104. Tsao P.S., Buitrago R., Chan J.R., Cooke J.P. Fluid flow inhibits endothelial adhesiveness. Circulation. 1996;94:1682–1689. doi: 10.1161/01.cir.94.7.1682. [DOI] [PubMed] [Google Scholar]
  105. van der Veen R.C., Hinton D.R., Incardonna F., Hofman F.M. Extensive peroxynitrite actvivity during progressive stages of CNS inflammation. J. Immunol. 1997;77:1–7. doi: 10.1016/s0165-5728(97)00013-1. [DOI] [PubMed] [Google Scholar]
  106. Vodovotz Y., Lucia M.S., Flanders K.C., Chesler L., Xie Q.W., Smith T.W., Weidner J., Mumford R., Webber R., Nathan C., Roberts A.B., Lippa C.F., Sporn M.B. Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer's disease. J. Exp. Med. 1996;184:1425–1433. doi: 10.1084/jem.184.4.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Wang X., Yue T., White R.F., Baroen F.C., Feuerstein G.Z. Transforming growth factor β1 exhibits delayed gene expression following focal cerebral ischemia. Brain Res. Bull. 1995;36:607–609. doi: 10.1016/0361-9230(94)00243-t. [DOI] [PubMed] [Google Scholar]
  108. Weldon D.T., Rogers S.D., Ghilardi J.R., Finke M.P., Cleary J.P., O'Hare E., Esler W.P., Maggio J.E., Mantyh P.W. Fibrillar β-amyloid induces microglial phagocytosis expression of inducible nitric oxide synthase and loss of a select population of neurons in the rat CNS in vivo. J. Neurosci. 1998;18:2161–2173. doi: 10.1523/JNEUROSCI.18-06-02161.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Willenborg D.O., Fordham S.A., Cowden W.B., Ram-shaw I.A. Cytokines and murine autoimmune encep-halomyelitis: Inhibition or enhancement of disease with antibodies to select cytokines, or by delivery of exogenous cytokines using a recombinant vaccinia virus system. Scand. J. Immunol. 1995;41:31–41. doi: 10.1111/j.1365-3083.1995.tb03530.x. [DOI] [PubMed] [Google Scholar]
  110. Wong M.L., Rettori V., Al-Shekhlee A., Bongiorno P.B., Canteros G., McCann S.M., Gold P.W., Licinio J. Inducible nitric oxide synthase gene expression in the brain during systemic inflammation. Nature Med. 1996;2:581–584. doi: 10.1038/nm0596-581. [DOI] [PubMed] [Google Scholar]
  111. Xie Q-W., Nathan C. The high output nitric oxide pathway: Role and regulation. J. Leuk. Biol. 1994;56:576–582. doi: 10.1002/jlb.56.5.576. [DOI] [PubMed] [Google Scholar]
  112. Yamamoto S., Golanov E.V., Berger S.B., Reis D.J. Inhibition of nitric oxide synthase increases focal ischemic infarction in rat. J. Cereb. Blood Flow Metab. 1992;12:717–726. doi: 10.1038/jcbfm.1992.102. [DOI] [PubMed] [Google Scholar]
  113. Yamasaki Y., Matsuo Y., Matsuura N., Onodera H., Itoyama Y., Kogure K. Transient increase of cytokine-induced neutrophil chemoattractant, a member of the interleukin-8 family, in ischemic brain areas after focal ischemia in rats. Stroke. 1995;26:318–323. doi: 10.1161/01.str.26.2.318. [DOI] [PubMed] [Google Scholar]
  114. Yamasaki Y., Matsuo Y., Zagorski J., Matsuura N., Onodera H., Itoyama Y., Kogure K. New therapeutic possibility of blocking cytokine-induced neurtro-phil chemoattractant on tranisent ischemic brain damage in rats. Brain Res. 1997;759:103–111. doi: 10.1016/s0006-8993(97)00251-5. [DOI] [PubMed] [Google Scholar]
  115. Yang G., Kitagawa K., Matsushita K., Mabuchi T., Yagita Y., Yanagihara T., Matsumoto I. C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains. Brain Res. 1997;752:209–218. doi: 10.1016/s0006-8993(96)01453-9. [DOI] [PubMed] [Google Scholar]
  116. Yoshida T., Waeber C., Huang Z., Moskowitz M.A. Induction of nitric oxide synthase activity in rodent brain following middle cerebral artery occlusion. Neurosci. Lett. 1995;194:214–218. doi: 10.1016/0304-3940(95)11752-i. [DOI] [PubMed] [Google Scholar]
  117. Yoshimoto T., Houkin K., Tada M., Abe H. Induction of cytokines, chemokines and adhesion molecule mRNA in a rat forebrain reperfusion model. Acta Ne-uropathol. 1997;93:154–158. doi: 10.1007/s004010050596. [DOI] [PubMed] [Google Scholar]
  118. Zea Longa E., Weinstein P.R., Carlson S., Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91. doi: 10.1161/01.str.20.1.84. [DOI] [PubMed] [Google Scholar]
  119. Zeiher A.M., Fisslthaler B., Schray-Utz B., Busse R. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ. Res. 1995;76:980–986. doi: 10.1161/01.res.76.6.980. [DOI] [PubMed] [Google Scholar]
  120. Zhang F., Casey R., Ross M.E., Iadecola C. Aminoguanidine ameliorates and L-arginine worsens brain damage from intraluminal middle cerebral artery occlusion. Stroke. 1996;27:317–323. doi: 10.1161/01.str.27.2.317. [DOI] [PubMed] [Google Scholar]
  121. Zhao W., Tilton R.G., Corbett J.A., McDaniel M.L., Misko T.P., Williamson J.R., Cross A.H., Hickey W.F. Experimental allergic encephalomyelitis in the rat is inhibited by aminoguanidine, an inhibitor of nitric oxide synthase. J. Neuroimmunol. 1996;64:123–133. doi: 10.1016/0165-5728(95)00158-1. [DOI] [PubMed] [Google Scholar]
  122. Zielasek J., Jung S., Gold R., Liew F.Y., Toyka K.V., Hartung H-.P. Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalitis. J. Neuroimmunol. 1995;58:81–88. doi: 10.1016/0165-5728(94)00192-q. [DOI] [PubMed] [Google Scholar]

Articles from Progress in Brain Research are provided here courtesy of Elsevier

RESOURCES