Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2008 Apr 11;175:137–240. doi: 10.1016/S0074-7696(08)62127-0

Sialic Acids in Molecular and Cellular Interactions

Sørge Kelm 1, Roland Schauer 1
PMCID: PMC7133163  PMID: 9203358

Abstract

Sialic acids (Sias) are terminal components of many glycoproteins and glycolipids especially of higher animals. In this exposed position they contribute significantly to the structural properties of these molecules, both in solution and on cell surfaces. Therefore, it is not surprising that Sias are important regulators of cellular and molecular interactions, in which they play a dual role. They can either mask recognition sites or serve as recognition determinants. Whereas the role of Sias in masking and in binding of pathogens to host cells has been documented over many years, their role in nonpathological cellular interaction has only been shown recently. The aim of this chapter is to summarize our knowledge about Sias in masking, for example, galactose residues, and to review the progress made during the past few years with respect to Sias as recognition determinants in the adhesion of pathogenic viruses, bacteria, and protozoa, and particularly as binding sites for endogenous cellular interaction molecules. Finally, perspectives for future research on these topics are discussed.

Key Words: Sialic acid, Cell adhesion, Cell interactions, Sialoadhesins, Selectins, Galactose–specific receptor.

References

  1. Abdullah M., Widgren E.E., O'Rand M.G. A mammalian sperm lectin related to rat hepatocyte lectin-2/3. Purification from rabbit testis and identification as a zona binding protein. Mol. Cell. Biochem. 1991;103:155–161. doi: 10.1007/BF00227482. [DOI] [PubMed] [Google Scholar]
  2. Afar D.E., Salzer J.L., Roder J., Braun P.E., Bell J.C. Differential phosphorylation of myelin-associated glycoprotein isoforms in cell culture. J. Neurochem. 1990;55:1418–1426. doi: 10.1111/j.1471-4159.1990.tb03155.x. [DOI] [PubMed] [Google Scholar]
  3. Agrawal H.C., Noronha A.B., Agrawal D., Quarles R.H. The myelin-associated glycoprotein is phosphorylated in the peripheral nervous system. Biochem. Biophys. Res. Commun. 1990;169:953–958. doi: 10.1016/0006-291x(90)91986-3. [DOI] [PubMed] [Google Scholar]
  4. Air G.M., Laver W.G. Red cells bound to influenza virus N9 neuraminidase are not released by the N9 neuraminidase activity. Virology. 1995;211:278–284. doi: 10.1006/viro.1995.1401. [DOI] [PubMed] [Google Scholar]
  5. Aminoff D., Vor der Bruegge W.F., Bell W.C., Sarpolis K., Williams R. Role of sialic acid in survival of erythrocytes in the circulation: Interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level. Proc. Natl. Acad. Sci. USA. 1977;74:1521–1524. doi: 10.1073/pnas.74.4.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aruffo A., Kanner S.B., Sgroi D., Ledbetter J.A., Stamenkovic I. CD22-mediated stimulation of T cells regulates T-cell receptor/CD3-induced signaling. Proc. Natl. Acad. Sci. USA. 1992;89:10242–10246. doi: 10.1073/pnas.89.21.10242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Asa D., Raycroft L., Ma L., Aeed P.A., Kaytes P.S., Elhammer A.P., Geng J.G. The P-selectin glycoprotein ligand functions as a common human leukocyte ligand for P- and E-selectins. J. Biol. Chem. 1995;270:11662–11670. doi: 10.1074/jbc.270.19.11662. [DOI] [PubMed] [Google Scholar]
  8. Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 1982;51:531–554. doi: 10.1146/annurev.bi.51.070182.002531. [DOI] [PubMed] [Google Scholar]
  9. Ashwell G., Morell A.G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv. Enzymol. 1974;41:99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
  10. Baker N., Hansson G.C., Leff;er H., Riise G., Svanborg Eden C. Glycosphingolipid receptors for Pseudomonas aeruginosa. Infect. Immun. 1990;58:2361–2366. doi: 10.1128/iai.58.7.2361-2366.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bambrick L.L., Braun P.E. Phosphorylation of myelin-associated glycoprotein in cultured oligodendrocytes. Dev. Neurosci. 1991;13:412–416. doi: 10.1159/000112192. [DOI] [PubMed] [Google Scholar]
  12. Barbis D.P., Parrish C.R. Characterization of canine parvovirus (CPV) interactions with 3201 T cells: Involvement of GPI-anchored protein(s) in binding and infection. Braz. J. Med. Biol. Res. 1994;27:401–407. [PubMed] [Google Scholar]
  13. Barbis D.P., Chang S.F., Parrish C.R. Mutations adjacent to the dimple of the canine parvovirus capsid structure affect sialic acid binding. Virology. 1992;191:301–308. doi: 10.1016/0042-6822(92)90192-r. [DOI] [PubMed] [Google Scholar]
  14. Barclay A.N., Beyers A.D., Birkeland M.L., Brown M.H., Davis S.J., Somoza C., Williams A.F. “The Leukocyte Antigen Factsbook.”. Academic Press; London: 1993. [Google Scholar]
  15. Bartsch U., Bandtlow C.E., Schnell L., Bartsch S., Spillmann A.A., Rubin B.P., Hillenbrand R., Montag D., Schwab M.E., Schachner M. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron. 1995;15:1375–1381. doi: 10.1016/0896-6273(95)90015-2. [DOI] [PubMed] [Google Scholar]
  16. Bartsch U., Montag D., Bartsch S., Schachner M. Multiply myelinated axons in the optic nerve of mice deficient for the myelin-associated glycoprotein. Glia. 1995;14:115–122. doi: 10.1002/glia.440140206. [DOI] [PubMed] [Google Scholar]
  17. Basak S., Turner H., Parr S. Identification of a 40-to 42-kDa attachment polypeptide for canine parvovirus in A72 cells. Virology. 1994;205:7–16. doi: 10.1006/viro.1994.1614. [DOI] [PubMed] [Google Scholar]
  18. Baseman J.B., Morrison-Plummer J., Drouillard D., Puleo-Scheppke B., Tryon V.V., Holt S.C. Identification of a 32 kilodalton protein of Mycoplasma pneumoniae associated with hemadsorption. Ureal J. Med. Sci. 1987;23:474–479. [PubMed] [Google Scholar]
  19. Bass D.M., Mackow E.R., Greenberg H.B. Identification and partial characterization of a rhesus rotavirus binding glycoprotein on murine enterocytes. Virology. 1991;183:602–610. doi: 10.1016/0042-6822(91)90989-o. [DOI] [PubMed] [Google Scholar]
  20. Bast B.J.E.G., Zhou L.J., Freeman G.J., Colley K.J., Ernst T.J., Munro J.M., Tedder T.F. The HB-6, CDw75, and CD76 differentiation antigens are unique cell-surface carbohydrate determinants generated by the β3-galactoside α2, 6-sialyltransferase. J. Cell. Biol. 1992;116:423–435. doi: 10.1083/jcb.116.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bauer P.H., Bronson R.T., Fung S.C., Freund R., Stehle T., Harrison S.C., Benjamin T.L. Genetic and structural analysis of a virulence determinant in polyomavirus VPl. J. Virol. 1995;69:7925–7931. doi: 10.1128/jvi.69.12.7925-7931.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Baum L.G., Paulson J.C. Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem. Suppl. 1990;40:35–38. [PubMed] [Google Scholar]
  23. Baum L.G., Paulson J.C. The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology. 1991;180:10–15. doi: 10.1016/0042-6822(91)90003-t. [DOI] [PubMed] [Google Scholar]
  24. Baumhueter S., Singer M.S., Henzel W., Hemmerich S., Renz M., Rosen S.D., Lasky L.A. Binding of L-selectin to the vascular sialomucin CD34. Science. 1993;262:436–438. doi: 10.1126/science.7692600. [DOI] [PubMed] [Google Scholar]
  25. Berg E.L., McEvoy L.M., Berlin C., Bargatze R.F., Butcher E.C. L-selectin-mediated lymphocyte rolling on MAdCAM-1. Nature. 1993;366:695–698. doi: 10.1038/366695a0. [DOI] [PubMed] [Google Scholar]
  26. Bernard G., Zoccola D., Ticchioni M., Breittmayer J.P., Aussel C., Bernard A. Engagement of the CD45 molecule induces homotypic adhesion of human thymocytes through a LFA-l/ICAM-3-dependent pathway. J. Immunol. 1994;152:5161–5170. [PubMed] [Google Scholar]
  27. Bevilacqua M., Stengelin S., Gimbrone M.A.J., Seed B. Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989;243:1160–1165. doi: 10.1126/science.2466335. [DOI] [PubMed] [Google Scholar]
  28. Bevilacqua M., Butcher E., Furie B., Gallatin M., Gimbrone M., Harlan J., Kishimoto K., Lasky L., McEver R., Paulson J., Rosen S., Seed B., Siegelman M., Springer T., Stoolman L., Tedder T., Varki A., Wagner D., Weissman I., Zimmerman G. Selectins—A family of adhesion receptors. Cell. 1991;67:233. doi: 10.1016/0092-8674(91)90174-w. [DOI] [PubMed] [Google Scholar]
  29. Bevilacqua M.P., Pober J.S., Wheeler M.E., Cotran R.S., Gimbrone M.A., Jr. Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J. Clin. Invest. 1985;76:2003–2011. doi: 10.1172/JCI112200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Bevilacqua M.P., Pober J.S., Mendrick D.L., Cotran R.S., Gimbrone M.A., Jr. Identification of an inducible endothelial-leukocyte adhesion molecule. Proc. Natl. Acad. Sci. USA. 1987;84:9238–9242. doi: 10.1073/pnas.84.24.9238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Biessen E.A., Bakkeren H.F., Beuting D.M., Kuiper J., van Berkel T.J. Ligand size is a major determinant of high-affinity binding of fucose-and galactose-exposing (lipo)proteins by the hepatic fucose receptor. Biochem. J. 1994;299:291–296. doi: 10.1042/bj2990291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Biessen E.A., Vietsch H., van Berkel T.J. Cholesterol derivative of a new triantennary cluster galactoside directs low- and high-density lipoproteins to the parenchymal liver cell. Biochem. J. 1994;302:283–289. doi: 10.1042/bj3020283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Biessen E.A., Beuting D.M., Roelen H.C., van de Marel G.A., van Boom J.H., van Berkel T.J. Synthesis of cluster galactosides with high affinity for the hepatic asialoglycoprotein receptor. J. Med. Chem. 1995;38:1538–1546. doi: 10.1021/jm00009a014. [DOI] [PubMed] [Google Scholar]
  34. Biessen E.A., Broxterman H., van Boom J.H., van Berkel T.J. The cholesterol derivative of a triantennary galactoside with high affinity for hepatic asialoglycoprotein receptor: A potent cholesterol lowering agent. J. Med. Chem. 1995;38:1846–1852. doi: 10.1021/jm00011a003. [DOI] [PubMed] [Google Scholar]
  35. Biessen E.A., Vietsch H., van Berkel T.J. Cholesterol derivative of a new triantennary cluster galactoside lowers serum cholesterol levels and enhances secretion of bile acids in the rat. Circulation. 1995;91:1847–1854. doi: 10.1161/01.cir.91.6.1847. [DOI] [PubMed] [Google Scholar]
  36. Bijsterbosch M.K., van Berkel T.J. Uptake of lactosylated low-density lipoprotein by galactose-specific receptors in rat liver. Biochem. J. 1990;270:233–239. doi: 10.1042/bj2700233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Bijsterbosch M.K., Bakkeren H.F., Kempen H.J., Roelen H.C., van Boom J.FL, van Berkel T.J. A monogalactosylated cholesterol derivative that specifically induces uptake of LDL by the liver. Arterioscler. Thromb. 1992;12:1153–1160. doi: 10.1161/01.atv.12.10.1153. [DOI] [PubMed] [Google Scholar]
  38. Binsztein N., Jouve M.J., Viboud G.I., Lopez Moral L., Rivas M., Orskov I., Ahren C., Svennerholm A.M. Colonization factors of enterotoxigenic Escherichia coli isolated from children with diarrhea in Argentina. J. Clin. Microbiol. 1991;29:1893–1898. doi: 10.1128/jcm.29.9.1893-1898.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Blanck O., Iobsl S.T., Gabel C., Drickamer K. Introduction of selectin-like binding specificity into a homologous mannose-binding protein. J. Biol. Chem. 1996;271:7289–7292. doi: 10.1074/jbc.271.13.7289. [DOI] [PubMed] [Google Scholar]
  40. Blick T.J., Tiong T., Sahasrabudhe A., Varghese J.N., Colman P.M., Hart G.J., Bethell R.C., McKimmbreschkin J.L. Generation and characterization of an influenza virus neuraminidase variant with decreased sensitivity to the neuraminidase-specific inhibitor 4-guanidino-Neu5Ac2en. Virology. 1995;214:475–484. doi: 10.1006/viro.1995.0058. [DOI] [PubMed] [Google Scholar]
  41. Boltz-Nitulescu G., Ortel B., Riedl M., Förster O. Ganglioside receptor of rat macrophages—Modulation by enzyme treatment and evidence for its protein nature. Immunology. 1984;51:177–184. [PMC free article] [PubMed] [Google Scholar]
  42. Bonfanti R., Furie B.C., Furie B., Wagner D.D. PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells. Blood. 1989;73:1109–1112. [PubMed] [Google Scholar]
  43. Bossart-Whitaker P., Carson M., Babu Y.S., Smith C.D., Laver W.G., Air G.M. Three-dimensional structure of influenza A N9 neuraminidase and its complex with the inhibitor 2-deoxy 2, 3-dehydro-N-acetyl neuraminic acid. J. Mol. Biol. 1993;232:1069–1083. doi: 10.1006/jmbi.1993.1461. [DOI] [PubMed] [Google Scholar]
  44. Braesch-Andersen S., Stamenkovic I. Sialylation of the B lymphocyte molecule CD22 by α 2, 6-sialyltransferase is implicated in the regulation of CD22-mediated adhesion. J. Biol. Chem. 1994;269:11783–11786. [PubMed] [Google Scholar]
  45. Brandley B.K., Kiso M., Abbas S., Nikrad P., Srivasatava O., Foxall C., Oda Y., Hasegawa A. Structure-function studies on selectin carbohydrate ligands. Modifications to fucose, sialic acid and sulphate as a sialic acid replacement. Glycobiology. 1993;3:633–641. doi: 10.1093/glycob/3.6.633. [DOI] [PubMed] [Google Scholar]
  46. Bridges K., Harford J., Ashwell G., Klausner R. Fate of receptor and ligand during endocytosis of asialoglycoproteins by isolated hepatocytes. Proc. Natl. Acad. Sci. USA. 1982;79:350–354. doi: 10.1073/pnas.79.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Brooks D.E., Cavanagh J., Jayroe D., Janzen J., Snoek R., Trust T.J. Involvement of the MN blood group antigen in shear-enhanced hemagglutination induced by the Escherichia coli F41 adhesin. Infect. Immun. 1989;57:377–383. doi: 10.1128/iai.57.2.377-383.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Burmeister W.P., Ruigrok R.W., Cusack S. The 2, 2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992;11:49–56. doi: 10.1002/j.1460-2075.1992.tb05026.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Butor C., Diaz S., Varki A. High level O-acetylation of sialic acids on N-linked oligosaccharides of rat liver membranes—Differential subcellular distribution of 7-O-acetyl and 9-O-acetyl groups and of enzymes involved in their regulation. J. Biol. Chem. 1993;268:10197–10206. [PubMed] [Google Scholar]
  50. Cahan L.D., Paulson J.C. Polyoma virus adsorbs to specific sialyloligosaccharide receptors on erythrocytes. Virology. 1980;103:505–509. doi: 10.1016/0042-6822(80)90208-1. [DOI] [PubMed] [Google Scholar]
  51. Cahan L.D., Singh R., Paulson J.C. Sialyloligosaccharide receptors of binding variants of polyoma virus. Virology. 1983;130:281–289. doi: 10.1016/0042-6822(83)90083-1. [DOI] [PubMed] [Google Scholar]
  52. Chaouchi N., Vazquez A., Galanaud P., Leprince C. B cell antigen receptor-mediated apoptosis—Importance of accessory molecules CD19 and CD22, and of surface IgM cross-linking. J. Immunol. 1995;154:3096–3104. [PubMed] [Google Scholar]
  53. Chen C.C., Baylor M., Bass D.M. Murine intestinal mucins inhibit rotavirus infection. Gastroenterology. 1993;105:84–92. doi: 10.1016/0016-5085(93)90013-3. [DOI] [PubMed] [Google Scholar]
  54. Chen J., Stickles R.J., Daichendt K.A. Galactosylated histone-mediated gene transfer and expression. Hum. Gene Ther. 1994;5:429–435. doi: 10.1089/hum.1994.5.4-429. [DOI] [PubMed] [Google Scholar]
  55. Chiarini F., Mastromarino P., Mansi A., Rieti S., Orsi N. Role of membrane glycosphingolipids as Pseudomonas aeruginosa adhesin receptor in rabbit bladder mucosa. Microbiologica. 1990;13:91–95. [PubMed] [Google Scholar]
  56. Chmiela M., Lelwala-Guruge J., Wadström T. Interaction of cells of Helicobacter pylori with human polymorphonuclear leucocytes: Possible role of haemagglutinins. FEMS Immunol. Med. Microbiol. 1994;9:41–48. doi: 10.1111/j.1574-695X.1994.tb00472.x. [DOI] [PubMed] [Google Scholar]
  57. Chmiela M., Paziak Domanska B., Wadström T. Attachment, ingestion and intracellular killing of Helicobacter pylori by human peripheral blood mononuclear leukocytes and mouse peritoneal inflammatory macrophages. FEMS Immunol. Med. Microbiol. 1995;10:307–316. doi: 10.1111/j.1574-695X.1995.tb00049.x. [DOI] [PubMed] [Google Scholar]
  58. Choi A.H., Paul R.W., Lee P.W. Reovirus binds to multiple plasma membrane proteins of mouse L fibroblasts. Virology. 1990;178:316–320. doi: 10.1016/0042-6822(90)90412-k. [DOI] [PubMed] [Google Scholar]
  59. Collins T., Williams A., Johnston G.I., Kim J., Eddy R., Shows T., Gimbrone M.A., Jr., Bevilacqua M.P. Structure and chromosomal location of the gene for endothelial-leukocyte adhesion molecule-1. J. Biol. Chem. 1991;266:2466–2473. [PubMed] [Google Scholar]
  60. Connolly D., Townsend R.R., Kawaguchi K., Bell W.R., Lee Y.C. Binding and endocytosis of cluster glycosides by rabbit hepatocytes; Evidence for a short-circuit pathway that does not lead to degradation. J. Biol. Chem. 1982;257:939–945. [PubMed] [Google Scholar]
  61. Connor R.J., Kawaoka Y., Webster R.G., Paulson J.C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology. 1994;205:17–23. doi: 10.1006/viro.1994.1615. [DOI] [PubMed] [Google Scholar]
  62. Cotran R.S., Gimbrone M.A., Jr., Bevilacqua M.P., Mendrick D.L., Pober J.S. Induction and detection of a human endothelial activation antigen in vivo. J. Exp. Med. 1986;164:661–666. doi: 10.1084/jem.164.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Courtoy P., Quintan J., Limet J.N., de Roe C., Baldhuin P. Polymeric IgA and galactose-specific pathways in rat hepatocytes: Evidence for intracellular ligand sorting. In: Pastan I., Willingham M.C., editors. “Endocytosis”. Plenum; New York: 1985. pp. 163–194. [Google Scholar]
  64. Cowan M.M., Taylor K.G., Doyle R.J. Role of sialic acid in the kinetics of Streptococcus sanguis adhesion to artificial pellicle. Infect. Immun. 1987;55:1552–1557. doi: 10.1128/iai.55.7.1552-1557.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Crocker P.R., Feizi T. Carbohydrate recognition systems; Functional triads in cell-cell interactions. Curr. Opin. Struct. Biol. 1996;6:679–691. doi: 10.1016/s0959-440x(96)80036-4. [DOI] [PubMed] [Google Scholar]
  66. Crocker P.R., Gordon S. Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages. J. Exp. Med. 1986;164:1862–1875. doi: 10.1084/jem.164.6.1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Crocker P.R., Gordon S. Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal antibody. J. Exp. Med. 1989;169:1333–1346. doi: 10.1084/jem.169.4.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Crocker P.R., Morris L., Gordon S. Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells. J. Cell Sci. Suppl. 1988;9:185–206. doi: 10.1242/jcs.1988.supplement_9.10. [DOI] [PubMed] [Google Scholar]
  69. Crocker P.R., Werb Z., Gordon S., Bainton D.F. Ultrastructural localization of a macrophage-restricted sialic acid binding hemagglutinin, SER, in macrophage-hematopoietic cell clusters. Blood. 1990;76:1131–1138. [PubMed] [Google Scholar]
  70. Crocker P.R., Kelm S., Dubois C., Martin B., McWilliam A.S., Shotton D.M., Paulson J.C., Gordon S. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J. 1991;10:1661–1669. doi: 10.1002/j.1460-2075.1991.tb07689.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Crocker P.R., Kelm S., Morris L., Bainton D.F., Gordon S. Cellular interaction between stromal macrophages and hematopoietic cells. In: v. Furth R., editor. “Mononuclear Phagocytes”. Kluwer; Dordrecht: 1992. pp. 55–69. [Google Scholar]
  72. Crocker P.R., Mucklow S., Bouckson V., McWilliam A., Willis A.C., Gordon S., Milon G., Kelm S., Bradfield P. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-Iike domains. EMBO J. 1994;13:4490–4503. doi: 10.1002/j.1460-2075.1994.tb06771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Crocker P.R., Freeman S., Gordon S., Kelm S. Sialoadhesin binds preferentially to cells of the granulocytic lineage. J. Clin. Invest. 1995;95:635–643. doi: 10.1172/JCI117708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Crocker P.R., Kelm S., Hartnell A., Freeman S., Nath D., Vinson M., Mucklow S. Sialoadhesin and related cellular recognition molecules of the immunoglobulin superfamily. Biochem. Soc. Trans. 1996;24:150–156. doi: 10.1042/bst0240150. [DOI] [PubMed] [Google Scholar]
  75. Crottet P., Kim Y.J., Varki A. Subsets of sialylated, sulfated mucins of diverse origins are recognized by L-selectin. Lack of evidence for unique oligosaccharide sequences mediating binding. Glycobiology. 1996;6:191–208. doi: 10.1093/glycob/6.2.191. [DOI] [PubMed] [Google Scholar]
  76. Dallo S.F., Chavoya A., Baseman J.B. Characterization of the gene for a 30-kilodalton adhesion-related protein of Mycoplasma pneumoniae. Infect. Immun. 1990;58:4163–4165. doi: 10.1128/iai.58.12.4163-4165.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Davis S.J., van der Merwe P.A. The structure and ligand interactions of CD2: Implications for T-cell function. Immunol. Today. 1996;17:177–187. doi: 10.1016/0167-5699(96)80617-7. [DOI] [PubMed] [Google Scholar]
  78. de Bellard M.E., Tang S., Mukhopadhyay G., Shen Y.J., Filbin M.T. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol. Cell. Neurosci. 1996;7:89–101. doi: 10.1006/mcne.1996.0007. [DOI] [PubMed] [Google Scholar]
  79. de Lima M.C., Ramalho Santos J., Flasher D., Slepushkin V.A., Nir S., Duzgunes N. Target cell membrane sialic acid modulates both binding and fusion activity of influenza virus. Biochim. Biophys. Acta. 1995;1236:323–330. doi: 10.1016/0005-2736(95)00067-d. [DOI] [PubMed] [Google Scholar]
  80. Del Poeta G., Stasi R., Venditti A., Suppo G., Aronica G., Bruno A., Masi M., Tabilio A., Papa G. Prognostic value of cell marker analysis in de novo acute myeloid leukemia. Leukemia. 1994;8:388–394. [PubMed] [Google Scholar]
  81. Demuth D.R., Golub E.E., Malamud D. Streptococcal-host interactions. Structural and functional analysis of a Streptococcus sanguis receptor for a human salivary glycoprotein. J. Biol. Chem. 1990;265:7120–7126. [PubMed] [Google Scholar]
  82. Demuth D.R., Lammey M.S., Huck M., Lally E.T., Malamud D. Comparison of Streptococcus mutans and Streptococcus sanguis receptors for human salivary agglutinin. Microb. Pathogen. 1990;9:199–211. doi: 10.1016/0882-4010(90)90022-i. [DOI] [PubMed] [Google Scholar]
  83. Di Simone C., Baldeschwieler J.D. Membrane fusion of mumps virus with ghost erythrocytes and CV-1 cells. Virology. 1992;191:338–345. doi: 10.1016/0042-6822(92)90196-v. [DOI] [PubMed] [Google Scholar]
  84. Doody G.M., Justement L.B., Delibrias C.C., Matthews R.J., Lin J.J., Thomas M.L., Fearon D.T. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science. 1995;269:242–244. doi: 10.1126/science.7618087. [DOI] [PubMed] [Google Scholar]
  85. Dowbenko D.J., Diep A., Taylor B.A., Lusis A.J., Lasky L.A. Characterization of the murine homing receptor gene reveals correspondence between protein domains and coding exons. Genomics. 1991;9:270–277. doi: 10.1016/0888-7543(91)90252-a. [DOI] [PubMed] [Google Scholar]
  86. Doyle R.J., Ofek I. “Adhesion of Microbial Pathogens.”. Academic Press; San Diego: 1995. [Google Scholar]
  87. Drickamer K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem. 1988;263:9557–9560. [PubMed] [Google Scholar]
  88. Drickamer K. Increasing diversity of animal lectin structures. Curr. Opin. Struct. Biol. 1995;5:612–616. doi: 10.1016/0959-440x(95)80052-2. [DOI] [PubMed] [Google Scholar]
  89. Drickamer K., Mamon J.F., Binns G., Leung J.O. Primary structure of the rat liver asialoglycoprotein receptor—Structural evidence for multiple polypeptide species. J. Biol. Chem. 1984;259:770–778. [PubMed] [Google Scholar]
  90. Dulac C., Tropak M.B., Cameron Curry P., Rossier J., Marshak D.R., Roder J., Le Douarin N.M. Molecular characterization of the Schwann cell myelin protein, SMP: Structural similarities within the immunoglobulin superfamily. Neuron. 1992;8:323–334. doi: 10.1016/0896-6273(92)90298-r. [DOI] [PubMed] [Google Scholar]
  91. Dwarakanath A.D., Tsai H.H., Sunderland D., Hart C.A., Figura N., Crabtree J.E., Rhodes J.M. The production of neuraminidase and fucosidase by Helicobacter pylori: Their possible relationship to pathogenicity. FEMS Immunol. Med. Microbiol. 1995;12:213–216. doi: 10.1111/j.1574-695X.1995.tb00194.x. [DOI] [PubMed] [Google Scholar]
  92. Egenhofer C., Alsdorff K., Fehsel K., Kolb-Bachofen V. Membrane-associated C-reactive protein on rat liver macrophages is synthesized within the macrophages, expressed as neo-C-reactive protein and bound through a C-reactive protein-specific membrane receptor. Hepatology. 1993;18:1216–1223. [PubMed] [Google Scholar]
  93. Enegren B.J., Burness A.T. Chemical structure of attachment sites for viruses on human erythrocytes. Nature. 1977;268:536–537. doi: 10.1038/268536a0. [DOI] [PubMed] [Google Scholar]
  94. Engel P., Nojima Y., Rothstein D., Zhou L.J., Wilson G.L., Kehrl J.H., Tedder T.F. The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils, and monocytes. J. Immunol. 1993;150:4719–4732. [PubMed] [Google Scholar]
  95. Engel P., Wagner N., Miller A.S., Tedder T.F. Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J. Exp. Med. 1995;181:1581–1586. doi: 10.1084/jem.181.4.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Engstler M., Schauer R. Trans-sialidases in the insect-vector stages of African and American trypanosomes—Reply. Parasitol. Today. 1994;10:180. doi: 10.1016/0169-4758(94)90022-1. [DOI] [PubMed] [Google Scholar]
  97. Engstler M., Reuter G., Schauer R. The developmentally regulated trans-sialidase from Trypanosoma brucei sialylates the procyclic acidic repetitive protein. Mol. Biochem. Parasitol. 1993;61:1–14. doi: 10.1016/0166-6851(93)90153-o. [DOI] [PubMed] [Google Scholar]
  98. Engstler M., Schauer R., Brun R. Distribution of developmentally regulated trans-sialidases in the Kinetoplastida and characterization of a shed trans-sialidase activity from procyclic Trypanosoma congolense. Acta Trop. 1995;59:117–129. doi: 10.1016/0001-706x(95)00077-r. [DOI] [PubMed] [Google Scholar]
  99. Erbe D.V., Wolitzky B.A., Presta L.G., Norton C.R., Ramos R.J., Burns D.K., Rumberger J.M., Rao B.N.N., Foxall C., Brandley B.K., Lasky L.A. Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion. J. Cell. Biol. 1992;119:215–227. doi: 10.1083/jcb.119.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Erbe D.V., Watson S.R., Presta L.G., Wolitzky B.A., Foxall C., Brandley B.K., Lasky L.A. P- and E-selectin use common sites tor carbohydrate ligand recognition and cell adhesion. J. Cell. Biol. 1993;120:1227–1235. doi: 10.1083/jcb.120.5.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Evans D.G., Evans D.J., Moulds J.J., Graham D.J. N-acetylneuraminlactose-binding fibrillar hemagglutinin of Campylobacter pylori: A putative colonization factor antigen. Infect. Immun. 1988;56:2896–2906. doi: 10.1128/iai.56.11.2896-2906.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Evans D.G., Karjalainen T.K., Evans D.J., Jr., Graham D.Y., Lee C.H. Cloning, nucleotide sequence, and expression of a gene encoding an adhesin subunit protein of Helicobacter pylori. J. Bacteriol. 1993;175:674–683. doi: 10.1128/jb.175.3.674-683.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Fernandes J., Tang D., Leone G., Lee P.W. Binding of reovirus to receptor leads to conformational changes in viral capsid proteins that are reversible upon virus detachment. J. Biol. Chem. 1994;269:17043–17047. [PubMed] [Google Scholar]
  104. Fischer C., Kelm S., Ruch B., Schauer R. Reversible binding of sialidase-treated rat lymphocytes by homologous peritoneal macrophages. Carbohydr. Res. 1991;213:263–273. doi: 10.1016/s0008-6215(00)90613-x. [DOI] [PubMed] [Google Scholar]
  105. Förster O., Boltz-Nitulescu G., Holzinger C., Wiltschke C., Riedl M., Ortel B., Fellinger A., Bernheimer H. Specificity of ganglioside binding to rat macrophages. Mol. Immunol. 1986;23:1267–1273. doi: 10.1016/0161-5890(86)90163-x. [DOI] [PubMed] [Google Scholar]
  106. Fotiadis C., Kilpatrick D.R., Lipton H.L. Comparison of the binding characteristics to BHK-21 cells of viruses representing the two Theiler's virus neurovirulence groups. Virology. 1991;182:365–370. doi: 10.1016/0042-6822(91)90683-3. [DOI] [PubMed] [Google Scholar]
  107. Frasch A.C.C. Trans-sialidases in the insect-vector stages of African and American trypanosomes. Parasitol. Today. 1994;10:170–171. doi: 10.1016/0169-4758(94)90018-3. [DOI] [PubMed] [Google Scholar]
  108. Freeman S.D., Kelm S., Barber E.K., Crocker P.R. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood. 1995;85:2005–2012. [PubMed] [Google Scholar]
  109. Fried H., Cahan L.D., Paulson J.C. Polyoma virus recognizes specific sialyloligo-saccharide receptors on host cells. Virology. 1981;109:188–192. doi: 10.1016/0042-6822(81)90485-2. [DOI] [PubMed] [Google Scholar]
  110. Fruttiger M., Montag D., Schachner M., Martini R. Crucial role for the myelin-associated glycoprotein in the maintenance of axon-myelin integrity. Eur. J. Neurosci. 1995;7:511–515. doi: 10.1111/j.1460-9568.1995.tb00347.x. [DOI] [PubMed] [Google Scholar]
  111. Fuentespanana E.M., Lopez S., Gorziglia M., Arias C.F. Mapping the hemagglutination domain of rotaviruses. J. Virol. 1995;69:2629–2632. doi: 10.1128/jvi.69.4.2629-2632.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Fujita N., Sato S., Kurihara T., Kuwano R., Sakimura K., Inusuka T., Takahashi Y., Miyatake T. cDNA cloning of mouse myelin associated glycoprotein: A novel alternative splicing pattern. Biochem. Biophys. Res. Commun. 1989;165:1162–1169. doi: 10.1016/0006-291x(89)92724-1. [DOI] [PubMed] [Google Scholar]
  113. Fukuda M., Spooncer E., Oates J.E., Dell A., Klock J.C. Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J. Biol. Chem. 1984;259:10925–10935. [PubMed] [Google Scholar]
  114. Fukuda M., Dell A., Oates J.E., Wu P., Klock J.C. Structure of glycosphingolipids isolated from human granulocytes; The presence of a series of linear poly-N-acetyllactosaminylceramide and its significance in glycolipids of whole blood cells. J. Biol. Chem. 1985;260:1067–1082. [PubMed] [Google Scholar]
  115. Fukuda M., Carlsson S.R., Klock J.C., Dell A. Structures of O-linked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. J. Biol. Chem. 1986;27:12796–12806. [PubMed] [Google Scholar]
  116. Gagneten S., Gout O., Dubois Dalcq M., Rottier P., Rossen J., Holmes K.V. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J. Virol. 1995;69:889–895. doi: 10.1128/jvi.69.2.889-895.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Gallatin W.M., Weissman I.L., Butcher E.C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983;304:30–34. doi: 10.1038/304030a0. [DOI] [PubMed] [Google Scholar]
  118. Gamian A., Chomik M., Laferriere C.A., Roy R. Inhibition of influenza A virus hemagglutinin and induction of interferon by synthetic sialylated glycoconjugates. Can. J. Microbiol. 1991;37:233–237. doi: 10.1139/m91-035. [DOI] [PubMed] [Google Scholar]
  119. Geng J.G., Bevilacqua M.P., Moore K.L., McIntyre T.M., Prescott S.M., Kim J.M., Bliss G.A., Zimmerman G.A., McEver R.P. Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature. 1990;343:757–760. doi: 10.1038/343757a0. [DOI] [PubMed] [Google Scholar]
  120. Gentsch J.R., Pacitti A.F. Effect of neuraminidase treatment of cells and effect of soluble glycoproteins on type 3 reovirus attachment. J. Virol. 1985;56:356–364. doi: 10.1128/jvi.56.2.356-364.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Glick G.D., Knowles J.R. Molecular recognition of bivalent sialosides by influenza virus. J. Am. Chem. Soc. 1991;113:4701–4703. [PubMed] [Google Scholar]
  122. Glick G.D., Toogood P.L., Wiley D.C., Skehel J.J., Knowles J.R. Ligand recognition by influenza virus. The binding of bivalent sialosides. J. Biol. Chem. 1991;266:23660–23669. [PubMed] [Google Scholar]
  123. Goluboff E.T., Mertz J.R., Tres L.L., Kierszenbaum A.L. Galactosyl receptor in human testis and sperm is antigenically related to the minor C-type (Ca2+-dependent) lectin variant of human and rat liver. Mot Reprod. Dev. 1995;40:460–466. doi: 10.1002/mrd.1080400410. [DOI] [PubMed] [Google Scholar]
  124. Gomatos P.J., Tamm I. Reactive sites of reovirus type 3 and their interaction with receptor substances. Virology. 1962;17:455–461. doi: 10.1016/0042-6822(62)90140-x. [DOI] [PubMed] [Google Scholar]
  125. Gonatas J.O., Mourelatos Z., Stieber A., Lane W.S., Brosius J., Gonatas N.K. MG-160, a membrane sialoglycoprotein of the medial cisternae of the rat Golgi apparatus, binds basic fibroblast growth factor and exhibits a high level of sequence identity to a chicken fibroblast growth factor receptor. J. Cell. Sci. 1995;108:457–461. doi: 10.1242/jcs.108.2.457. [DOI] [PubMed] [Google Scholar]
  126. Gradl G., Faust D., Oesch F., Wieser R.J. Density-dependent regulation of cell growth by contactinhibin and the contactinhibin receptor. Curr. Biol. 1995;5:526–535. doi: 10.1016/s0960-9822(95)00105-9. [DOI] [PubMed] [Google Scholar]
  127. Graves B.J., Crowther R.L., Chandran C., Rumberger J.M., Li S., Huang K.S., Presky D.H., Familletti P.C., Wolitzky B.A., Burns D.K. Insight into E-selectin ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature. 1994;367:532–538. doi: 10.1038/367532a0. [DOI] [PubMed] [Google Scholar]
  128. Green P.J., Tamatani T., Watanabe T., Miyasaka M., Hasegawa A., Kiso M., Yuen C.T., Stoll M.S., Feizi T. High affinity binding of the leucocyte adhesion molecule L-selectin to 3'-sulphated-Le(a) and -Le(x) oligosaccharides and the predominance of sulphate in this interaction demonstrated by binding studies with a series of lipid-linked oligosaccharides. Biochem. Biophys. Res. Commun. 1992;188:244–251. doi: 10.1016/0006-291x(92)92376-9. [DOI] [PubMed] [Google Scholar]
  129. Green P.J., Yuen C.T., Childs R.A., Chai W., Miyasaka M., Lemoine R., Lubineau A., Smith B., Ueno H., Nicolaou K.C., Feizi T. Further studies of the binding specificity of the leukocyte adhesion molecule, L–selectin, towards sulphated oligosaccharides—suggestion of a link between the selectin- and the integrin-mediated lymphocyte adhesion systems. Glycobiology. 1995;5:29–38. doi: 10.1093/glycob/5.1.29. [DOI] [PubMed] [Google Scholar]
  130. Gubareva L.V., Penn C.R., Webster R.G. Inhibition of replication of avian influenza viruses by the neuraminidase inhibitor 4-guanidino-2, 4-dideoxy-2, 3-dehydro-A'-acetylneuraminic acid. Virology. 1995;212:323–330. doi: 10.1006/viro.1995.1489. [DOI] [PubMed] [Google Scholar]
  131. Gubareva L.V., Bethell R., Hart G.J., Murti K.G., Penn C.R., Webster R.G. Characterization of mutants of influenza A virus selected with the neuraminidase inhibitor 4-guanidino-Neu5Ac2en. J. Virol. 1996;70:1818–1827. doi: 10.1128/jvi.70.3.1818-1827.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Hacker J. Genetic determinants coding for fimbriae and adhesins of extraintestinal Escherichia coli Curr. Topics Microbiol. Immunol. 1990;151:1–27. doi: 10.1007/978-3-642-74703-8_1. [DOI] [PubMed] [Google Scholar]
  133. Hacker J., Schmidt G., Hughes C., Knapp S., Marget M., Goebel W. Cloning and characterization of genes involved in production of mannose-resistant, neuraminidase susceptible (x) fimbriae from a uropathogenic 06:K15:H31 Escherichia coli strain. Infect. Immun. 1985;47:434–440. doi: 10.1128/iai.47.2.434-440.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Hanasaki K., Varki A., Stamenkovic I., Bevilacqua M.P. Cytokine-induced β-galactoside α-2, 6-sialyltransferase in human endothelial cells mediates α-2, 6-sialylation of adhesion molecules and CD22 ligands. J. Biol. Chem. 1994;269:10637–10643. [PubMed] [Google Scholar]
  135. Hanasaki K., Powell L.D., Varki A. Binding of human plasma sialoglycoproteins by the B cell-specific lectin CD22—Selective recognition of immunoglobulin M and haptoglobin. J. Biol. Chem. 1995;270:7543–7550. doi: 10.1074/jbc.270.13.7543. [DOI] [PubMed] [Google Scholar]
  136. Hanasaki K., Varki A., Powell L.D. CD22-mediated cell adhesion to cytokine-activated human endothelial cells. J. Biol. Chem. 1995;270:7533–7542. doi: 10.1074/jbc.270.13.7533. [DOI] [PubMed] [Google Scholar]
  137. Hanisch F.G., Hacker J., Schroten H. Specificity of S fimbriae on recombinant Escherichia coli: Preferential binding to gangliosides expressing NeuGcα(2–3)Gal and Neu-Acα(2–8)NeuAc. Infect. Immun. 1993;61:2108–2115. doi: 10.1128/iai.61.5.2108-2115.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Hanson J.E., Sauter N.K., Skehel J.J., Wiley D.C. Proton nuclear magnetic resonance studies of the binding of sialosides to intact influenza virus. Virology. 1992;189:525–533. doi: 10.1016/0042-6822(92)90576-b. [DOI] [PubMed] [Google Scholar]
  139. Harford J., Ashwell G. Chemical and physical properties of the hepatic receptor for asialoglycoproteins. In: Pastan I., Willingham M.C., editors. “Endocytosis”. Plenum; New York: 1985. pp. 69–83. [Google Scholar]
  140. Harford J., Klausner R.D., Ashwell G. Inhibition of the endocytic pathway for asialo-glycoprotein catabolism. Biol. Cell. 1984;51:173–179. doi: 10.1111/j.1768-322x.1984.tb00296.x. [DOI] [PubMed] [Google Scholar]
  141. Harms G., Reuter G., Corfield A.P., Schauer R. Binding specificity of influenza C-virus to variably O-acetylated glycoconjugates and its use for histochemical detection of -N-acetyl-9-O-acetylneuraminic acid in mammalian tissues. Glycoconjugate J. 1996;13:621–630. doi: 10.1007/BF00731450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Hartshorn K.L., Liou L.S., White M.R., Kazhdan M.M., Tauber J.L., Tauber A.I. Neutrophil deactivation by influenza A virus—Role of hemagglutinin binding to specific sialic acid-bearing cellular proteins. J. Immunol. 1995;154:3952–3960. [PubMed] [Google Scholar]
  143. Haun G., Keppler O.T., Bock C.T., Herrmann M., Zentgraf H., Pawlita M. The cell surface receptor is a major determinant restricting the host range of the B-lymphotropic papovavirus. J. Virol. 1993;67:7482–7492. doi: 10.1128/jvi.67.12.7482-7492.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Hausmann J., Kretzschmar E., Garten W., Klenk H.-D. Nl neuraminidase of influenza virus A/FPV/Rostock/34 has haemadsorbing activity. J. Gen. Virol. 1995;76:1719–1728. doi: 10.1099/0022-1317-76-7-1719. [DOI] [PubMed] [Google Scholar]
  145. Hayden F.G., Treanor J.J., Betts R.F., Lobo M., Esinhart J.D., Hussey E.K. Safety and efficacy of the neuraminidase inhibitor GG167 in experimental human influenza. J. Am. Med. Assoc. 1996;275:295–299. [PubMed] [Google Scholar]
  146. Hazlett L.D., Rudner X.L. Investigations on the role of flagella in adhesion of Pseudomonas aeruginosa to mouse and human corneal epithelial proteins. Ophthalmic Res. 1994;26:375–379. doi: 10.1159/000267504. [DOI] [PubMed] [Google Scholar]
  147. Hazlett L., Rudner X.W., Masinick S., Ireland M., Gupta S. In the immature mouse, Pseudomonas aeruginosa pill bind a 57- kd α 2–6 sialylated corneal epithelial cell surface protein: A first step in infection. Invest. Ophthalmol. Vis. Sci. 1995;36:634–643. [PubMed] [Google Scholar]
  148. Hemmerich S., Rosen S.D. 6'-Sulfated sialyl Lewis x is a major capping group of GlyCAM-1. Biochemistry. 1994;33:4830–4835. doi: 10.1021/bi00182a011. [DOI] [PubMed] [Google Scholar]
  149. Hemmerich S., Butcher E.C., Rosen S.D. Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, an adhesion-blocking monoclonal antibody. J. Exp. Med. 1994;180:2219–2226. doi: 10.1084/jem.180.6.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Hemmerich S., Leffler H., Rosen S.D. Structure of the O-glycans in GlyCAM-1, an endothelial-derived ligand for L-selectin. J. Biol. Chem. 1995;270:12035–12047. doi: 10.1074/jbc.270.20.12035. [DOI] [PubMed] [Google Scholar]
  151. Herrler G., Klenk H.-D. The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology. 1987;159:102–108. doi: 10.1016/0042-6822(87)90352-7. [DOI] [PubMed] [Google Scholar]
  152. Herrler G., Klenk H.-D. Structure and function of the HEF glycoprotein of influenza C virus. Adv. Virus. Res. 1991;40:213–234. doi: 10.1016/S0065-3527(08)60280-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Herrler G., Rott R., Klenk H.-D., Müller H.-P., Shukla A.K., Schauer R. The receptor destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO. J. 1985;4:1503–1506. doi: 10.1002/j.1460-2075.1985.tb03809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Herrler G., Multhaup G., Beyreuther K., Klenk H.-D. Serine 71 of the glycoprotein HEF is located at the active site of the acetylesterase of influenza C virus. Arch. Virol. 1988;102:269–274. doi: 10.1007/BF01310831. [DOI] [PubMed] [Google Scholar]
  155. Herrler G., Szepanski S., Schultze B. 9-O-acetylated sialic acid, a receptor determinant for influenza C virus and coronaviruses. Behring Inst. Mitt. 1991;89:177–184. [PubMed] [Google Scholar]
  156. Herrler G., Gross H.J., Brossmer R. A synthetic sialic acid analog that is resistant to the receptor-destroying enzyme can be used by influenza C virus as a receptor determinant for infection of cells. Biochem. Biophys. Res. Commun. 1995;216:821–827. doi: 10.1006/bbrc.1995.2695. [DOI] [PubMed] [Google Scholar]
  157. Herrler G., Hausmann J., Klenk H.-D. Sialic acid as receptor determinant of ortho- and paramyxoviruses. In: Rosenberg A., editor. “Biology of the Sialic Acids”. Plenum; New York: 1995. pp. 315–336. [Google Scholar]
  158. Higa H.H., Rogers G.N., Paulson J.C. Influenza virus hemagglutinins differentiate between receptor determinants bearing N-acetyl, N-glycolyl-, and N, O-diacetylneuraminic acid. Virology. 1985;144:279–282. doi: 10.1016/0042-6822(85)90325-3. [DOI] [PubMed] [Google Scholar]
  159. Higuchi M., Oh-eda M., Kuboniwa H., Tomonoh K., Shimonaka Y., Ochi N. Role of sugar chains in the expression of the biological activity of human erythropoietin. J. Biol. Chem. 1992;267:7703–7709. [PubMed] [Google Scholar]
  160. Hirmo S., Kelm S., Schauer R., Nilsson B., Wadström T. Adhesion of Helicobacter pylori strains to α-2, 3-linked sialic acids. Glycoconjugate J. 1996;13:1005–1011. doi: 10.1007/BF01053196. [DOI] [PubMed] [Google Scholar]
  161. Hirmo S., Kelm S., Wadström T., Schauer R. Lack of evidence for sialidase activity in Helicobacter pylori. FEMS Immunol. Med. Microbiol. 1977;12:67–72. doi: 10.1111/j.1574-695X.1997.tb00997.x. [DOI] [PubMed] [Google Scholar]
  162. Hirst G.K. Agglutination of red cells by allantoic fluid of chick embryos infected wiht influenza virus. Science. 1941;94:22–23. doi: 10.1126/science.94.2427.22. [DOI] [PubMed] [Google Scholar]
  163. Hirst G.K. Adsorption of influenza virus hemagglutinins and virus by red blood cells. J. Exp. Med. 1942;76:195–209. doi: 10.1084/jem.76.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Hollenbaugh D., Bajorath J., Stenkamp R., Aruffo A. Interaction of P-selectin (CD62) and its cellular ligand—analysis of critical residues. Biochemistry. 1993;32:2960–2966. doi: 10.1021/bi00063a006. [DOI] [PubMed] [Google Scholar]
  165. Holmgren J., Svennerholm L., Elwing H., Fredman P., Strannegard Ö. Sendai virus receptor: Proposed recognition structure based on binding to plastic-adsorbed gangliosides. Proc. Natl. Acad. Sci. USA. 1980;77:1947–1950. doi: 10.1073/pnas.77.4.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Hoshino Y., Kapikian A.Z. Rotavirus vaccine development for the prevention of severe diarrhea in infants and young children. Trends Microbiol. 1994;2:242–249. doi: 10.1016/0966-842x(94)90629-7. [DOI] [PubMed] [Google Scholar]
  167. Hotta K., Goso K. Isolation of sulfated glycoproteins from human gastric juice with lysine-sepharose. Anal. Biochem. 1981;110:338–341. doi: 10.1016/0003-2697(81)90200-1. [DOI] [PubMed] [Google Scholar]
  168. Hsu S.D., Cisar J.O., Sandberg A.L., Kilian M. Adhesive properties of viridians streptococcal species. Microb. Ecol. Health Dis. 1994;7:125–137. [Google Scholar]
  169. Hsu-Lin S., Berman C.L., Furie B.C., August D., Furie B. A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets. J. Biol. Chem. 1984;259:9121–9126. [PubMed] [Google Scholar]
  170. Huberman K., Peluso R.W., Moscona A. Hemagglutinin-neuraminidase of human parainfluenza 3: Role of the neuraminidase in the viral life cycle. Virology. 1995;214:294–300. doi: 10.1006/viro.1995.9925. [DOI] [PubMed] [Google Scholar]
  171. Hudgin R.L., Pricer W.E., Ashwell G., Stockert R.J., Morell A.G. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J. Biol. Chem. 1974;249:5536–5543. [PubMed] [Google Scholar]
  172. Il M., Kurata H., Itoh N., Yamashina I., Kawasaki T. Molecular cloning and sequence analysis of cDNA encoding the macrophage lectin specific for galactose and N-acetylgalactosamine. J. Biol. Chem. 1990;265:11295–11298. [PubMed] [Google Scholar]
  173. Imai Y., Rosen S.D. Direct demonstration of heterogeneous, sulfated O-linked carbohydrate chains on an endothelial ligand for L-selectin. Glycoconjugate J. 1993;10:34–39. doi: 10.1007/BF00731184. [DOI] [PubMed] [Google Scholar]
  174. Imai Y., Lasky L.A., Rosen S.D. Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin. Nature. 1993;361:555–557. doi: 10.1038/361555a0. [DOI] [PubMed] [Google Scholar]
  175. Inuzuka T., Fujita N., Sato S., Baba H., Nakano R., Ishiguro H., Miyatake T. Expression of the large myelin-associated glycoprotein isoform during the development in the mouse peripheral nervous system. Brain Res. 1991;562:173–175. doi: 10.1016/0006-8993(91)91204-e. [DOI] [PubMed] [Google Scholar]
  176. Iobst S.T., Drickamer K. Binding of sugar ligands to Ca2+-dependent animal lectins. II. Generation of high-affinity galactose binding by site directed mutagenesis. J. Biol. Chem. 1994;269:15512–15519. [PubMed] [Google Scholar]
  177. Iobst S.T., Drickamer K. Selective sugar binding to the carbohydrate recognition domains of the rat hepatic and macrophage asialoglycoprotein receptors. J. Biol. Chem. 1996;271:6686–6693. doi: 10.1074/jbc.271.12.6686. [DOI] [PubMed] [Google Scholar]
  178. Ishiguro H., Sato S., Fujita N., Inuzuka T., Nakano R., Miyatake T. Immunohistochemical localization of myelin-associated glycoprotein isoforms during the development in the mouse brain. Brain Res. 1991;563:288–292. doi: 10.1016/0006-8993(91)91548-f. [DOI] [PubMed] [Google Scholar]
  179. Ishikawa H., Isayama Y. Evidence for sialyl glycoconjugates as receptors for Bordetella bronchiseptica on swine nasal mucosa. Infect. Immun. 1987;55:578–584. doi: 10.1128/iai.55.7.1607-1609.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Jancik J., Schauer R. Sialic acid—A determinant of the life-time of rabbit erythrocytes. Hoppe-Seyler's Z Physiol. Chem. 1974;355:395–400. doi: 10.1515/bchm2.1974.355.1.395. [DOI] [PubMed] [Google Scholar]
  181. Jancik J., Schauer R., Streicher H.-J. Influence of membrane-bound N-acetylneuraminic acid on the survival of erythrocytes in man. Hoppe-Seyler's Z Physiol. Chem. 1975;356:1329–1331. [PubMed] [Google Scholar]
  182. Jancik J.M., Schauer R., Andres K.H., von Düring M. Sequestration of neuraminidase-treated erythrocytes. Studies on its topographic, morphologic, and immunologic aspects. Cell Tissue Res. 1978;186:209–226. doi: 10.1007/BF00225532. [DOI] [PubMed] [Google Scholar]
  183. Jaramillo M.L., Afar D.E.H., Almazan G., Bell J.C. Identification of tyrosine 620 as the major phosphorylation site of myelin associated glycoprotein and its implication in interacting with signaling molecules. J. Biol. Chem. 1994;269:27240–27245. [PubMed] [Google Scholar]
  184. Jibril S.e.-D., von Gaudecker B., Kelm S., Schauer R. Interactions of rat peritoneal macrophages with sialidase-treated homologous lymphocytes. Biol. Chem. Hoppe-Seyler. 1987;368:819–829. doi: 10.1515/bchm3.1987.368.2.819. [DOI] [PubMed] [Google Scholar]
  185. Johnson P.W., Abramow-Newerly W., Seilheimer B., Sadoul R., Tropak M.B., Arquint M., Dunn R.J., Schachner M., Roder J.C. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron. 1989;3:377–385. doi: 10.1016/0896-6273(89)90262-6. [DOI] [PubMed] [Google Scholar]
  186. Johnston G., Cook R.G., McEver R.P. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation. Cell. 1989;56:1033–1044. doi: 10.1016/0092-8674(89)90636-3. [DOI] [PubMed] [Google Scholar]
  187. Johnston G.I., Bliss G.A., Newman P.J., McEver R.P. Structure of the human gene encoding granule membrane protein-140, a member of the selectin family of adhesion receptors for leukocytes. J. Biol. Chem. 1990;265:21381–21385. [PubMed] [Google Scholar]
  188. Jones E.Y., Davis S.J., Williams A.F., Harlos K., Stuart D.I. Nature. 1992;360:232–239. doi: 10.1038/360232a0. [DOI] [PubMed] [Google Scholar]
  189. Jones E.Y., Harlos K., Bottomley M.J., Robinson R.C., Driscoll P.C., Edwards R.M., Clements J.M., Dudgeon T.J., Stuart D.I. Crystal structure of an integrinbinding fragment of vascular cell adhesion molecule-1 at 1.8 A resolution. Nature. 1995;373:539–544. doi: 10.1038/373539a0. [DOI] [PubMed] [Google Scholar]
  190. Kaufmann S.H.E., Schauer R., Hahn H. Carbohydrate surface constituents of T-cell mediating delayed-type hypersensitvity that control entry into sites of antigen deposition. Immunobiology. 1981;160:184–195. doi: 10.1016/S0171-2985(81)80046-0. [DOI] [PubMed] [Google Scholar]
  191. Kawasaki T., II, Kotzusumi M.Y., Yamashina I. Isolation and characterization of a receptor lectin specific for galactose lN-acetylgalactosamine from macrophages. Carbohydr. Res. 1986;151:197–206. doi: 10.1016/s0008-6215(00)90340-9. [DOI] [PubMed] [Google Scholar]
  192. Kelm S., Schauer R. The galactose-recognizing system of rat peritoneal macrophages: Receptor-mediated binding and uptake of glycoproteins. Biol. Chem. Hoppe-Seyler. 1986;367:989–998. doi: 10.1515/bchm3.1986.367.2.989. [DOI] [PubMed] [Google Scholar]
  193. Kelm S., Schauer R. The galactose-recognizing system of rat peritoneal macrophages—Identification and characterization of the receptor molecule. Biol. Chem. Hoppe-Seyler. 1988;369:693–704. doi: 10.1515/bchm3.1988.369.2.693. [DOI] [PubMed] [Google Scholar]
  194. Kelm S., Shukla A.K., Paulson J.C., Schauer R. Reconstitution of the masking effect of sialic acid groups on sialidase-treated erythrocytes by the action of sialyltransferases. Carbohydr. Res. 1986;149:59–64. doi: 10.1016/s0008-6215(00)90369-0. [DOI] [PubMed] [Google Scholar]
  195. Kelm S., Paulson J.C., Rose U., Brossmer R., Schmid W., Bandgar B.P., Schreiner E., Hartmann M., Zbiral E. Use of sialic acid analogues to define functional groups involved in binding to the influenza virus hemagglutinin. Eur. J. Biochem. 1992;205:147–153. doi: 10.1111/j.1432-1033.1992.tb16762.x. [DOI] [PubMed] [Google Scholar]
  196. Kelm S., Pelz A., Schauer R., Filbin M.T., Tang S., de Bellard M.E., Schnaar R.L., Mahoney J.A., Hartnell A., Bradfield P., Crocker P.R. Sialoadhesin, myelinassociated glycoprotein and CD22 define a new family of sialic acid–dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 1994;4:965–972. doi: 10.1016/s0960-9822(00)00220-7. [DOI] [PubMed] [Google Scholar]
  197. Kelm S., Schauer R., Manuguerra J.C., Gross H.J., Crocker P.R. Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconjugate J. 1994;11:576–585. doi: 10.1007/BF00731309. [DOI] [PubMed] [Google Scholar]
  198. Kelm S., Schauer R., Crocker P.R. The sialoadhesins—A family of sialic aciddependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconjugate J. 1996;13:913–926. doi: 10.1007/BF01053186. [DOI] [PubMed] [Google Scholar]
  199. Kempka G., Kolb-Bachofen V. Galactose-specific receptors on liver cells. I. Hepatocyte and liver macrophage receptors differ in their membrane anchorage. Biochim. Biophys. Acta. 1985;847:108–114. doi: 10.1016/0167-4889(85)90160-0. [DOI] [PubMed] [Google Scholar]
  200. Kempka G., Roos P.H., Kolb Bachofen V. A membrane-associated form of C-reactive protein is the galactose-specific particle receptor on rat liver macrophages. J. Immunol. 1990;144:1004–1009. [PubMed] [Google Scholar]
  201. Keppler O.T., Herrmann M., Oppenlander M., Meschede W., Pawlita M. Regulation of susceptibility and cell surface receptor for the B-lymphotropic papovavirus by N-glycosylation. J. Virol. 1994;68:6933–6939. doi: 10.1128/jvi.68.11.6933-6939.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Keppler O.T., Stehling P., Herrmann M., Kayser H., Grunow D., Reutter W., Pawlita M. Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses. J. Biol. Chem. 1995;270:1308–1314. doi: 10.1074/jbc.270.3.1308. [DOI] [PubMed] [Google Scholar]
  203. Kichler A., Schuber F. Versatile synthesis of bi- and tri-antennary galactose ligands: Interaction with the Gal/GalNAc receptor of human hepatoma cells. Glycoconjugate J. 1995;12:275–281. doi: 10.1007/BF00731330. [DOI] [PubMed] [Google Scholar]
  204. Kilbourne E.D. “Influenza.”. Plenum; New York: 1987. [Google Scholar]
  205. Kilpatrick D.R., Lipton H.L. Predominant binding of Theiler's viruses to a 34-kilodalton receptor protein on susceptible cell lines. J. Virol. 1991;65:5244–5249. doi: 10.1128/jvi.65.10.5244-5249.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Kingerywood J.E., Williams K.W., Sigal G.B., Whitesides G.M. The agglutination of erythrocytes by influenza virus is strongly inhibited by liposomes incorporating an analog of sialyl gangliosides. J. Am. Chem. Soc. 1992;114:7303–7305. [Google Scholar]
  207. Kirchhoff F., Hofer H.W., Schachner M. Myelin-associated glycoprotein is phosphorylated by protein kinase-C. J. Neurosci. Res. 1993;36:368–381. doi: 10.1002/jnr.490360403. [DOI] [PubMed] [Google Scholar]
  208. Klein A., Krishna M., Varki N.M., Varki A. 9-O-acetylated sialic acids have widespread but selective expression: Analysis using a chimeric dual-function probe derived from influenza C hemagglutinin-esterase. Proc. Natl. Acad. Sci. USA. 1994;91:7782–7786. doi: 10.1073/pnas.91.16.7782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Klemm P. Fimbrial adhesins. Rev. Infect. Dis. 1985;7:321–340. doi: 10.1093/clinids/7.3.321. [DOI] [PubMed] [Google Scholar]
  210. Klenk H.-D., Garten W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 1994;2:39–42. doi: 10.1016/0966-842x(94)90123-6. [DOI] [PubMed] [Google Scholar]
  211. Klotz F.W., Orlandi P.A., Reuter G., Cohen S.J., Haynes J.D., Schauer R., Howard R.J., Palese P., Miller L.H. Binding of Plasmodium falciparum 175-kilodalton erythrocyte binding antigen and invasion of murine erythrocytes requires N- acetylneuraminic acid but not its O-acetylated form. Mol. Biochem. Parasitol. 1992;51:49–54. doi: 10.1016/0166-6851(92)90199-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Kluge A., Reuter G., Lee H., Ruch-Heeger B., Schauer R. Interaction of rat peritoneal macrophages with homologous sialidase-treated thrombocytes in vitro: Biochemical and morphological studies. Detection of N-(O-acetyl)glycoloylneuraminic acid. Eur. J. Cell. Biol. 1992;59:12–20. [PubMed] [Google Scholar]
  213. Knapp W., Strobl H., Majdic O. Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis. Cytometry. 1994;18:187–198. doi: 10.1002/cyto.990180402. [DOI] [PubMed] [Google Scholar]
  214. Kogan T.P., Revelle B.M., Tapp S., Scott D., Beck P.J. A single amino acid residue can determine the ligand specificity of E-selectin. J. Biol. Chem. 1995;270:14047–14055. doi: 10.1074/jbc.270.23.14047. [DOI] [PubMed] [Google Scholar]
  215. Koketsu M., Nitoda T., Juneja L.R., Kim M., Kashimura N., Yamamoto T. Sialyloligosaccharides from egg yolk as an inhibitor of rotaviral infection. J. Agric. Food Chem. 1995;43:858–861. [Google Scholar]
  216. Kolatkar A.R., Weis W.I. Structural basis of galactose recognition by C-type animal lectins. J. Biol. Chem. 1996;271:6679–6685. [PubMed] [Google Scholar]
  217. Kolb H., Kolb-Bachofen V. A lectin-like receptor on mammalian macrophages. Biochem. Biophys. Res. Commun. 1978;85:678–683. doi: 10.1016/0006-291x(78)91215-9. [DOI] [PubMed] [Google Scholar]
  218. Kolb H., Kriese A., Kolb-Bachofen V., Kolb H.-A. Possible mechanism of entrapment of neuraminidase-treated lymphocytes in the liver. Cell. Immunol. 1978;40:457–462. doi: 10.1016/0008-8749(78)90355-6. [DOI] [PubMed] [Google Scholar]
  219. Kolb-Bachofen V., Schlepper-Schäfer J., Vogell W., Kolb H. Electron microscopic evidence for an asialoglycoprotein receptor on Kupffer cells: Locaization of lectinmediated endocytosis. Cell. 1982;29:859–866. doi: 10.1016/0092-8674(82)90447-0. [DOI] [PubMed] [Google Scholar]
  220. Kolb-Bachofen V., Schlepper-Schäfer J., Kolb H. Receptor-mediated uptake by liver macrophages. Exp. Cell. Res. 1983;148:173–182. doi: 10.1016/0014-4827(83)90197-0. [DOI] [PubMed] [Google Scholar]
  221. Kolb-Bachofen V., Puchta Teudt N., Egenhofer C. Expression of membrane-associated C-reactive protein by human monocytes: Indications for a selectin-like activity participating in adhesion. Glycoconjugate J. 1995;12:122–127. doi: 10.1007/BF00731355. [DOI] [PubMed] [Google Scholar]
  222. Köttgen E., Hell B., Kage A., Tauber R. Lectin specificity and binding characteristics of human C-reactive protein. J. Immunol. 1992;149:445–453. [PubMed] [Google Scholar]
  223. Kristensen J.S., Hokland P. Monoclonal antibodies in myeloid diseases: Prognostic use in acute myeloid leukaemia. Leukemia Res. 1991;15:693–700. doi: 10.1016/0145-2126(91)90071-z. [DOI] [PubMed] [Google Scholar]
  224. Kuiper J., Bakkeren H.F., Biessen E.A., van Berkel T.J. Characterization of the interaction of galactose-exposing particles with rat Kupffer cells. Biochem. J. 1994;299:285–290. doi: 10.1042/bj2990285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Kunkel F., Herrler G. Structural and functional analysis of the surface protein of human coronavirus OC43. Virology. 1993;195:195–202. doi: 10.1006/viro.1993.1360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Küster J.M., Schauer R. Phagocytosis of sialidase-treated rat erythrocytes: Evidence for a two-step mechanism. Hoppe-Seyler's Z. Physiol. Chem. 1981;362:1507–1514. doi: 10.1515/bchm2.1981.362.2.1507. [DOI] [PubMed] [Google Scholar]
  227. Lamb R.A. Genes and proteins of the influenza viruses. In: Krug R.M., editor. “The Influenza Viruses”. Plenum; New York: 1989. pp. 1–87. [Google Scholar]
  228. La Russa V.F., Griffin J.D., Kessler S.W., Cutting M.A., Knight R.D., Blattler W.A., Lambert J.M., Wright D.G. Effects of anti-CD33 blocked ricin immunotoxin on the capacity of CD34+ human marrow cells to establish in vitro hematopoiesis in long-term marrow cultures. Exp. Hematol. 1992;20:442–448. [PubMed] [Google Scholar]
  229. Lasky L.A. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem. 1995;64:113–139. doi: 10.1146/annurev.bi.64.070195.000553. [DOI] [PubMed] [Google Scholar]
  230. Lasky L.A., Singer M.S., Yednock T.A., Dowbenko D., Fennie C., Rosen S.D. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell. 1989;56:1045–1055. doi: 10.1016/0092-8674(89)90637-5. [DOI] [PubMed] [Google Scholar]
  231. Lasky L.A., Singer M.S., Dowbenko D., Imai Y., Henzel W.J., Grimley C., Fennie C., Gillett N., Watson S.R., Rosen S.D. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell. 1992;69:927–938. doi: 10.1016/0092-8674(92)90612-g. [DOI] [PubMed] [Google Scholar]
  232. Law C.L., Torres R.M., Sundberg H.A., Parkhouse R.M., Brannan C.I., Copeland N.G., Jenkins N.A., Clark E.A. Organization of the murine Cd22 locus. Mapping to chromosome 7 and characterization of two alleles. J. Immunol. 1993;151:175–187. [PubMed] [Google Scholar]
  233. Law C.L., Sidorenko S.P., Clark B.A. Regulation of lymphocyte activation by the cell-surface molecule CD22. Immunol. Today. 1994;15:442–449. doi: 10.1016/0167-5699(94)90275-5. [DOI] [PubMed] [Google Scholar]
  234. Law C.L., Sidorenko S.P., Chandran K.A., Zhao Z.H., Shen S.H., Fischer E.H., Clark E.A. CD22 associates with protein tyrosine phosphatase 1C, Syk, and phospholipase C-gammal upon B cell activation. J. Exp. Med. 1996;183:547–560. doi: 10.1084/jem.183.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Lee H., Kelm S., Yoshino T., Schauer R. Carbohydrate specificity of the galactose-recognizing receptor of rat peritoneal macrophages. Biol. Chem. Hoppe-Seyler. 1988;369:705–714. doi: 10.1515/bchm3.1988.369.2.705. [DOI] [PubMed] [Google Scholar]
  236. Lee H., Kelm S., Michalski J.-C., Schauer R. Influence of sialic acids on the galactose-recognizing receptor of rat peritoneal macrophages. Biol. Chem. Hoppe-Seyler. 1990;371:307–316. doi: 10.1515/bchm3.1990.371.1.307. [DOI] [PubMed] [Google Scholar]
  237. Lee R.T., Lin P., Lee Y.C. New synthetic ligands for Gal/GalNAc-specific lectin of mammalian liver. Biochemistry. 1984;23:4255–4261. doi: 10.1021/bi00313a037. [DOI] [PubMed] [Google Scholar]
  238. Lee Y.C., Lee R.T. Carbohydrate-protein interactions: Basis of glycobiology. Account. Chem. Res. 1995;28:321–327. [Google Scholar]
  239. Lees W.J., Spaltenstein A., Kingery Wood J.E., Whitesides G.M. Polyacryl-amides bearing pendant α-sialoside groups strongly inhibit agglutination of erythrocytes by influenza A virus: Multivalency and steric stabilization of particulate biological systems. J. Med. Chem. 1994;37:3419–3433. doi: 10.1021/jm00046a027. [DOI] [PubMed] [Google Scholar]
  240. Lehrman M.A., Hill R.L. Purification of rat liver fucose binding protein. Methods Enzymol. 1983;98:309–320. doi: 10.1016/0076-6879(83)98159-4. [DOI] [PubMed] [Google Scholar]
  241. Lehrman M.A., Haltiwanger R.S., Hill R.L. The binding of fucose-containing glycoproteins by hepatic lectins. The binding specificity of the rat liver fucose lectin. J. Biol. Chem. 1986;261:7426–7432. [PubMed] [Google Scholar]
  242. Leigh M.W., Connor R.J., Kelm S., Baum L.G., Paulson J.C. Receptor specificity of influenza virus influences severity of illness in ferrets. Vaccine. 1995;13:1468–1473. doi: 10.1016/0264-410x(95)00004-k. [DOI] [PubMed] [Google Scholar]
  243. Lelwala-Guruge J., Ljungh A., Wadström T. Haemagglutination patterns of Helicobacter pylori. Frequency of sialic acid-specific and non-sialic acid-specific haemagglutinins. APMIS. 1992;100:908–913. [PubMed] [Google Scholar]
  244. Leprince C., Draves K.E., Geahlen R.L., Ledbetter J.A., Clark E.A. CD22 associates with the human surface IgM-B-cell antigen receptor complex. Proc. Natl. Acad. Sci. USA. 1993;90:3236–3240. doi: 10.1073/pnas.90.8.3236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Li C., Tropak M.B., Gerlai R., Clapoff S., Abramow Newerly W., Trapp B., Peterson A., Roder J. Myelination in the absence of myelin-associated glycoprotein. Nature. 1994;369:747–750. doi: 10.1038/369747a0. [DOI] [PubMed] [Google Scholar]
  246. Li F.G., Wilkins P.P., Crawley S., Weinstein J., Cummings R.D., McEver R.P. Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E- selectin. J. Biol. Chem. 1996;271:3255–3264. [PubMed] [Google Scholar]
  247. Lindahl M., Brossmer R., Wadström T. Carbohydrate receptor specificity of K99 fimbriae of enterotoxigenic Escherichia coli. Glycoconjugate J. 1987;4:51–58. [Google Scholar]
  248. Lindahl M., Brossmer R., Wadström T. Sialic acid and N-acetylgalactosamine specific bacterial lectins of enterotoxigenic Escherichia coli (ETEC). Adv. Exp. Med. Biol. 1988;228:123–152. doi: 10.1007/978-1-4613-1663-3_6. [DOI] [PubMed] [Google Scholar]
  249. Lindberg F., Lund B., Johansson L., Noramrk S. Localisation of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature. 1987;328:84–87. doi: 10.1038/328084a0. [DOI] [PubMed] [Google Scholar]
  250. Liukkonen J., Haataja S., Tikkanen K., Kelm S., Finne J. Identification of N-acetylneuraminyl α 2–3 poly-N acetyllactosamine glycans as the receptors of sialic acid-binding Streptococcus suis strains. J. Biol. Chem. 1992;267:21105–21111. [PubMed] [Google Scholar]
  251. Lobert P.E., Hober D., Dewilde A., Wattre P. Cell membrane bound N-acetylneuraminic acid is involved in the infection of fibroblasts and phorbol-ester differentiated monocyte-like cells with human cytomegalovirus (HCMW). Arch. Virol. 1995;140:1357–1371. doi: 10.1007/BF01322663. [DOI] [PubMed] [Google Scholar]
  252. Lodish H.F. Recognition of complex oligosaccharides by the multi-subunit asialoglycoprotein receptor. Trends Biochem. Sci. 1991;16:374–377. doi: 10.1016/0968-0004(91)90154-n. [DOI] [PubMed] [Google Scholar]
  253. Loomes L.M., Uemura K.-L, Childs R.A., Paulson J.C., Rogers G.N., Scudder P.R., Michalski J.-C., Hounsell E.F., Taylor-Robinson D., Feizi T. Erythrocyte receptors for Mycoplasma pneumoniae are sialylated oligosaccharides of Ii antigen type. Nature. 1984;307:560–563. doi: 10.1038/307560a0. [DOI] [PubMed] [Google Scholar]
  254. Loomes L.M., Uemura K., Feizi T. Interaction of Mycoplasma pneumoniae with erythrocyte glycolipids and I and i antigen types. Infect. Immun. 1985;47:15–20. doi: 10.1128/iai.47.1.15-20.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Low K., Orberger G., Schmitz B., Martini R., Schachner M. The L2/HNK-1 carbohydrate is carried by the myelin associated glycoprotein and sulphated glucuronyl glycolipids in muscle but not cutaneous nerves of adult mice. Eur. J. Neurosci. 1994;6:1773–1781. doi: 10.1111/j.1460-9568.1994.tb00570.x. [DOI] [PubMed] [Google Scholar]
  256. Lowe J.B., Stoolman L.M., Nair R.P., Larsen R.D., Berhend T.L., Marks R.M. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell. 1990;63:475–484. doi: 10.1016/0092-8674(90)90444-j. [DOI] [PubMed] [Google Scholar]
  257. Lund B., Marklund B.I., Strömberg N., Lindberg F., Karlsson K.-A., Normark S. Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. Mol. Microbiol. 1988;2:255–263. doi: 10.1111/j.1365-2958.1988.tb00027.x. [DOI] [PubMed] [Google Scholar]
  258. Ma L., Raycroft L., Asa D., Anderson D.C., Geng J.G. A sialoglycoprotein from human leukocytes functions as a ligand for P-selectin. J. Biol. Chem. 1994;269:27739–27746. [PubMed] [Google Scholar]
  259. Machytka D., Kharitonenkov I., Isecke R., Hetterich P., Brossmer R., Klein R.A., Klenk H.-D., Egge H. Methyl α-glycoside of N-thioacetyl-D-neuraminic acid: A potential inhibitor of influenza A virus. A 1H-NMR study. FEBS Lett. 1993;334:117–120. doi: 10.1016/0014-5793(93)81694-u. [DOI] [PubMed] [Google Scholar]
  260. Maisner A., Schneider Schaulies J., Liszewski M.K., Atkinson J.P., Herrler G. Binding of measles virus to membrane cofactor protein (CD46): Importance of disulfide bonds and N-glycans for the receptor function. J. Virol. 1994;68:6299–6304. doi: 10.1128/jvi.68.10.6299-6304.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Mäntyjärvi R.A., Arstila P., Meurman O.H. Hemagglutination by BK virus, a tentative new member of the papovavirus group. Infect. Immun. 1972;6:824–828. doi: 10.1128/iai.6.5.824-828.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Manuguerra J.C., Dubois C., Hannoun C. Analytical detection of 9(4)-O-acetylated sialoglycoproteins and gangliosides using influenza C virus. Anal. Biochem. 1991;194:425–432. doi: 10.1016/0003-2697(91)90252-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Markwell M.A.K., Svennerholm L., Paulson J.C. Specific gangliosides function as host cell receptors for Sendai virus. Proc. Natl. Acad. Sci. USA. 1981;78:5406–5410. doi: 10.1073/pnas.78.9.5406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Markwell M.K., Paulson J.C. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Proc. Natl. Acad. Sci. USA. 1980;77:5693–5697. doi: 10.1073/pnas.77.10.5693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Marre R., Kreft B., Hacker J. Genetically engineered S and F1C fimbriae differ in their contribution to adherence of Escherichia coli to cultured renal tubular cells. Infect. Immun. 1990;58(1):3434–3437. doi: 10.1128/iai.58.10.3434-3437.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Martinez Fong D., Mullersman J.E., Purchio A.F., Armendariz Borunda J., Martinez Hernandez A. Nonenzymatic glycosylation of poly-L-lysine: A new tool for targeted gene delivery. Hepatology. 1994;20:1602–1608. doi: 10.1002/hep.1840200633. [DOI] [PubMed] [Google Scholar]
  267. Matrosovich M.N., Mochalova L.V., Marinina V.P., Byramova N.E., Bovin N.V. Synthetic polymeric sialoside inhibitors of influenza virus receptor-binding activity. FEBS Lett. 1990;272:209–212. doi: 10.1016/0014-5793(90)80486-3. [DOI] [PubMed] [Google Scholar]
  268. Matrosovich M.N., Gambaryan A.S., Reizin F.N., Chumakov M.P. Recognition by human A and B influenza viruses of 8- and 7-carbon analogues of sialic acid modified in the polyhydroxyl side chain. Virology. 1991;182:879–882. doi: 10.1016/0042-6822(91)90634-n. [DOI] [PubMed] [Google Scholar]
  269. Matrosovich M.N., Gambaryan A.S., Chumakov M.P. Influenza viruses differ in recognition of 4-O-acetyl substitution of sialic acid receptor determinant. Virology. 1992;188:854–858. doi: 10.1016/0042-6822(92)90541-v. [DOI] [PubMed] [Google Scholar]
  270. Matrosovich M.N., Gambaryan A.S., Tuzikov A.B., Byramova N.E., Mochalova L.V., Golbraikh A.A., Shenderovich M.D., Finne J., Bovin N.V. Probing of the receptor-binding sites of the H1 and H3 influenza A and influenza B virus hemagglutinins by synthetic and natural sialosides. Virology. 1993;196:111–121. doi: 10.1006/viro.1993.1459. [DOI] [PubMed] [Google Scholar]
  271. McCauley J.W., Pullen L.A., Forsyth M., Penn C.R., Thomas G.P. 4-Guanidino-Neu5Ac2en fails to protect chickens from infection with highly pathogenic avian influenza virus. Antiviral Res. 1995;27:179–186. doi: 10.1016/0166-3542(95)00005-7. [DOI] [PubMed] [Google Scholar]
  272. McClelland L., Hare R. The adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus in the embryonated egg. Can. J. Public Health. 1941;32:530–538. [Google Scholar]
  273. McEver R.P. Selectins. Curr. Opin. Immunol. 1994;6:75–84. doi: 10.1016/0952-7915(94)90037-x. [DOI] [PubMed] [Google Scholar]
  274. McEver R.P., Martin MN. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J. Biol. Chem. 1984;259:9799–9804. [PubMed] [Google Scholar]
  275. McEver R.P., Beckstead J.H., Moore K.L., Marshall-Carlson L., Bainton D.F. GMP-140, a platelet α-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J. Clin. Invest. 1989;84:92–99. doi: 10.1172/JCI114175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. McKerracher L., David S., Jackson D.L., Kottis V., Dunn R.J., Braun P.E. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994;13:805–811. doi: 10.1016/0896-6273(94)90247-x. [DOI] [PubMed] [Google Scholar]
  277. McKimmbreschkin J.L., Blick T.J., Sahasrabudhe A., Tiong T., Marshall D., Hart G.J., Bethell R.C., Penn C.R. Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en. Antimicrob. Agents Chemother. 1996;40:40–46. doi: 10.1128/aac.40.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. Mendez E., Arias C.F., Lopez S. Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture. J. Virol. 1993;67:5253–5259. doi: 10.1128/jvi.67.9.5253-5259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Mendez E., Arias C.F., Lopez S. Interactions between the two surface proteins of rotavirus may alter the receptor-binding specificity of the virus. J. Virol. 1996;70:1218–1222. doi: 10.1128/jvi.70.2.1218-1222.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Midoux P., Mendes C., Legrand A., Raimond J., Mayer R., Monsigny M., Roche A.C. Specific gene transfer mediated by lactosylated poly-L-lysine into hepatoma cells. Nucleic Acids Res. 1993;21:871–878. doi: 10.1093/nar/21.4.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Miller-Podraza H., Milh M.A., Bergstrom J., Karlsson K.-A. Recognition of glycoconjugates by Helicobacter pylori: An apparently high-affinity binding of human polyglycosylceramides, a second sialic acid-based specificity. Glycoconjugate J. 1996;13:453–460. doi: 10.1007/BF00731478. [DOI] [PubMed] [Google Scholar]
  282. Milton J.D., Eccleslon D., Parker N., Raouf A., Cubbin C., Hoffman J., Hart C.A., Rhodes J.M. Distribution of O-acetylated sialomucin in the normal and diseased gastrointestinal tract shown by a new monoclonal antibody. J. Clin. Pathol. 1993;46:323–329. doi: 10.1136/jcp.46.4.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Ming M., Chuenkova M., Ortega Barria E., Pereira M.E. Mediation of Trypanosoma cruzi invasion by sialic acid on the host cell and trans-sialidase on the trypanosome. Mol. Biochem. Parasitol. 1993;59:243–252. doi: 10.1016/0166-6851(93)90222-j. [DOI] [PubMed] [Google Scholar]
  284. Moch T., Hoschützky H., Hacker J., Kröncke K.-D., Jann K. Isolation and characterization of the α-sialyl-β-2, 3galactosyl-specific adhesion from fimbriated Escherichia coli. Proc. Natl. Acad. Sci. USA. 1987;84:3462–3466. doi: 10.1073/pnas.84.10.3462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Mochalova L.V., Tuzikov A.B., Marinina V.P., Gambaryan A.S., Byramova N.E., Bovin N.V., Matrosovich M.N. Synthetic polymeric inhibitors of influenza virus receptor-binding activity suppress virus replication. Antiviral Res. 1994;23:179–190. doi: 10.1016/0166-3542(94)90016-7. [DOI] [PubMed] [Google Scholar]
  286. Montag D., Giese K.P., Bartsch U., Martini R., Lang Y., Bluthmann H., Karthigasan J., Kirschner D.A., Wintergerst E.S., Nave K.A., Zielasek J., Toyka K.V., Lipp H.-P., Schachner M. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron. 1994;13:229–246. doi: 10.1016/0896-6273(94)90472-3. [DOI] [PubMed] [Google Scholar]
  287. Moore K.L., Stults N.L., Diaz S., Smith D.F., Cummings R.D., Varki A., McEver R.P. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J. Cell. Biol. 1992;118:445–456. doi: 10.1083/jcb.118.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. Moore K.L., Eaton S.F., Lyons D.E., Lichenstein H.S., Cummings R.D., McEver R.P. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J. Biol. Chem. 1994;269:23318–23327. [PubMed] [Google Scholar]
  289. Morell A.G., Gregoriadis G., Scheinberg I.H., Hickman J.A., Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem. 1971;246:1461–1467. [PubMed] [Google Scholar]
  290. Morschhäuser J., Hoschutzky H., Jann K., Hacker J. Functional analysis of the sialic acid-binding adhesin SfaS of pathogenic Escherichia coli by site-specific mutagenesis. Infect. Immun. 1990;58:2133–2138. doi: 10.1128/iai.58.7.2133-2138.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Moscona A., Peluso R.W. Relative affinity of the human parainfluenza virus type 3 hemagglutinin-neuraminidase for sialic acid correlates with virus-induced fusion activity. J. Virol. 1993;67:6463–6468. doi: 10.1128/jvi.67.11.6463-6468.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Mouricout M., Petit J.M., Carias J.R., Julien R. Glycoprotein glycans that inhibit adhesion of Escherichia coli mediated by K99 fimbriae: Treatment of experimental colibacillosis. Infect, lmmun. 1990;58:98–106. doi: 10.1128/iai.58.1.98-106.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Muchmore E.A., Varki A. Selective inactivation of influenza C esterase: A probe for detecting 9-O-acetylated sialic acids. Science. 1987;230:1293–1295. doi: 10.1126/science.3589663. [DOI] [PubMed] [Google Scholar]
  294. Mucklow S., Hartnell A., Mattei M.G., Gordon S., Crocker P.R. Sialoadhesin (Sn) maps to mouse chromosome 2 and human chromosome 20 and is not linked to the other members of the sialoadhesin family, CD22, MAG, and CD33. Genomics. 1995;28:344–346. doi: 10.1006/geno.1995.1153. [DOI] [PubMed] [Google Scholar]
  295. Mukhopadhyay G., Doherty P., Walsh F.S., Crocker P.R., Filbin M.T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994;13:757–767. doi: 10.1016/0896-6273(94)90042-6. [DOI] [PubMed] [Google Scholar]
  296. Mullen P.J., Carr N., Milton J.D., Rhodes J.M. Immunohistochemical detection of O-acetylated sialomucins in intestinal metaplasia and carcinoma of the stomach. Histopathology. 1995;27:161–167. doi: 10.1111/j.1365-2559.1995.tb00024.x. [DOI] [PubMed] [Google Scholar]
  297. Müller E., Franco M.W., Schauer R. Involvement of membrane galactose in the in vivo and in vitro sequestration of desialylated erythrocytes. Hoppe-Seyler's Z. Physiol. Chem. 1981;362:1615–1620. doi: 10.1515/bchm2.1981.362.2.1615. [DOI] [PubMed] [Google Scholar]
  298. Müller E., Schröder C., Schauer R., Sharon N. Binding and phagocytosis of sialidase-treated rat erythrocytes by a mechanism independent of opsonins. Hoppe-Seyler's Z. Physiol Chem. 1983;364:1419–1429. doi: 10.1515/bchm2.1983.364.2.1419. [DOI] [PubMed] [Google Scholar]
  299. Munro S., Bast B.J.E.G., Colley K.J., Tedder T.F. The lymphocyte-B surface antigen CD75 is not an α-2, 6-sialyltransferase but is a carbohydrate antigen, the production of which requires the enzyme. Cell. 1992;68:1003–1004. doi: 10.1016/0092-8674(92)90070-s. [DOI] [PubMed] [Google Scholar]
  300. Murray P.A., Levine M.J., Tabak L.A., Reddy M.S. Specificity of salivary-bacterial interactions: II Evidence for a lectin on Streptococcus sanguis with specificity for a Neu5Acα2, 3Galβl, 3GalNAc sequence. Biochem. Biophys. Res. Commun. 1982;106:390–396. doi: 10.1016/0006-291x(82)91122-6. [DOI] [PubMed] [Google Scholar]
  301. Murray P.A., Levine M.J., Reddy M.S., Tabak L.A., Bergey E.J. Preparation of a sialic acid-binding protein from Streptococcus mitis KS32AR. Infect. Immun. 1986;53:359–365. doi: 10.1128/iai.53.2.359-365.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Murray P.A., Prakobphol A., Lee T., Hoover C.I., Fisher S.J. Adherence of oral streptococci to salivary glycoproteins. Infect, lmmun. 1992;60:31–38. doi: 10.1128/iai.60.1.31-38.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Müthing J., Unland F. A comparative assessment of TLC overlay technique and microwell adsorption assay in the examination of influenza A and Sendai virus specificities towards oligosaccharides and sialic acid linkages of gangliosides. Glycoconjugate J. 1994;11:486–492. doi: 10.1007/BF00731285. [DOI] [PubMed] [Google Scholar]
  304. Müthing J., Spanbroek R., Peter-Katalinic J., Hanisch F.G., Hanski C., Hasegawa A., Unland F., Lehmann J., Tschesche H., Egge H. Isolation and structural characterization of fucosylated gangliosides with linear poly-N-acetyllactosaminyl chains from human granulocytes. Glycobiology. 1996;6:147–156. doi: 10.1093/glycob/6.2.147. [DOI] [PubMed] [Google Scholar]
  305. Nagamura Y., Kolb H. Presence of a lectin-like receptor for D-galactose on rat peritoneal macrophages. FEBS Lett. 1980;115:59–62. doi: 10.1016/0014-5793(80)80726-5. [DOI] [PubMed] [Google Scholar]
  306. Nakano R., Fujita N., Sato S., Inuzuka T., Sakimura K., Ishiguro H., Mishina M., Miyatake T. Structure of mouse myelin-associated glycoprotein gene. Biochem. Biophys. Res. Commun. 1991;178:282–290. doi: 10.1016/0006-291x(91)91811-p. [DOI] [PubMed] [Google Scholar]
  307. Nath D., van der Merwe P.A., Kelm S., Bradfield P., Crocker P.R. The amino-terminal immunoglobulin-like domain of sialoadhesin contains the sialic acid binding site—Comparison with CD22. J. Biol. Chem. 1995;270:26184–26191. doi: 10.1074/jbc.270.44.26184. [DOI] [PubMed] [Google Scholar]
  308. Neeser J.R., Chambaz A., Del Vedovo S., Prigent M.J., Guggenheim B. Specific and nonspecific inhibition of adhesion of oral actinomyces and streptococci to erythrocytes and polystyrene by caseinoglycopeptide derivatives. Infect. Immun. 1988;56:3201–3208. doi: 10.1128/iai.56.12.3201-3208.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Neeser J.R., Grafstrom R.C., Woltz A., Brassart D., Fryder V., Guggenheim B. A 23 kDa membrane glycoprotein bearing NeuNAc α 2–3Gal β l-3GalNAc O-linked carbohydrate chains acts as a receptor for Streptococcus sanguis OMZ 9 on human buccal. Glycobiology. 1995;5:97–104. doi: 10.1093/glycob/5.1.97. [DOI] [PubMed] [Google Scholar]
  310. Ng K.K.S., Drickamer K., Weis W.I. Structural analysis of monosaccharide recognition by rat liver mannose-binding protein. J. Biol. Chem. 1996;271:663–674. doi: 10.1074/jbc.271.2.663. [DOI] [PubMed] [Google Scholar]
  311. Ng W.P., Cartel N., Li C.M., Roder J., Lozano A. Myelin from MAG-deficient mice is a strong inhibitor of neurite outgrowth. Neuroreport. 1996;7:861–864. doi: 10.1097/00001756-199603220-00005. [DOI] [PubMed] [Google Scholar]
  312. Nobusawa E., Aoyama T., Kato H., Suzuki Y., Tateno Y., Nakajima K. Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology. 1991;182:475–485. doi: 10.1016/0042-6822(91)90588-3. [DOI] [PubMed] [Google Scholar]
  313. Norgard K.E., Han H., Powell L., Kriegler M., Varki A., Varki N.M. Enhanced interaction of L-selectin with the high endothelial venule ligand via selectively oxidized sialic acids. Proc. Natl. Acad. Sci. USA. 1993;90:1068–1072. doi: 10.1073/pnas.90.3.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Norgard K.E., Moore K.L., Diaz S., Stults N.L., Ushiyama S., McEver R.P., Cummings R.D., Varki A. Characterization of a specific ligand for P-selection on myeloid cells. A minor glycoprotein with sialylated O-linked oligosaccharides. J. Biol. Chem. 1993;268(30):22953. J. Biol. Chem.268, 12764–12774., published erratum appears in. [PubMed] [Google Scholar]
  315. Oda S., Sato M., Toyoshima S., Osawa T. Purification and characterization of a lectin-like molecule specific for galactose/N-acetyl-galactosamine from tumoricidal macrophages. J. Biochem. 1988;104:600–605. doi: 10.1093/oxfordjournals.jbchem.a122518. [DOI] [PubMed] [Google Scholar]
  316. Ofek I., Doyle J. “Bacterial Adhesion to Cells and Tissues”. Chapman & Hall; New York: 1994. [Google Scholar]
  317. Oka J.A., Herzig M.C., Weigel P.H. Functional galactosyl receptors on isolated rat hepatocytes are hetero-oligomers. Biochem. Biophys. Res. Commun. 1990;170:1308–1313. doi: 10.1016/0006-291x(90)90536-v. [DOI] [PubMed] [Google Scholar]
  318. Orlandi P.A., Klotz F.W., Haynes J.D. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Acα2–3Gal-sequences of glycophorin A. J. Cell. Biol. 1992;116:901–909. doi: 10.1083/jcb.116.4.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. O'Toole P.W., Janzon L., Doig P., Huang J.Z., Kostrzynska M., Trust T.J. The putative neuraminyllactose-binding hemagglutinin HpaA of Helicobacter pylori CCUG 17874 is a lipoprotein. J. Bacteriol. 1995;177:6049–6057. doi: 10.1128/jb.177.21.6049-6057.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  320. Owen D.A., Reid P.E. Histochemical alterations of mucin in normal colon, inflammatory bowel disease and colonic adenocarcinoma. Histochem. J. 1995;27:882–889. [PubMed] [Google Scholar]
  321. Owens G.C., Bunge R.P. Evidence for an early role for myelin-associated glycoprotein in the process of myelination. Glia. 1989;2:119–128. doi: 10.1002/glia.440020208. [DOI] [PubMed] [Google Scholar]
  322. Owens G.C., Bunge R.P. Schwann cells infected with a recombinant retrovirus expressing myelin-associated glycoprotein antisense RNA do not form myelin. Neuron. 1991;7:565–575. doi: 10.1016/0896-6273(91)90369-b. [DOI] [PubMed] [Google Scholar]
  323. Ozaki K., Lee R.T., Lee Y.C., Kawasaki T. The differences in structural specificity for recognition and binding between asialoglycoprotein receptors of liver and macrophages. Glycoconjugate J. 1995;12:268–274. doi: 10.1007/BF00731329. [DOI] [PubMed] [Google Scholar]
  324. Parkkinen J., Finne J., Achtman M., Väisänen V., Korhonen T.K. Escherichia coli binding neuraminyl α-2–3 galactosides. Biochem. Biophys. Res. Commun. 1983;111:456–461. doi: 10.1016/0006-291x(83)90328-5. [DOI] [PubMed] [Google Scholar]
  325. Parkkinen J., Rogers G.N., Korhonen T., Dahr W., Finne J. Identification of the O-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coli. Infect. Immun. 1986;54:37–42. doi: 10.1128/iai.54.1.37-42.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Patel K.D., Nollert M.U., McEver R.P. P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J. Cell. Biol. 1995;131:1893–1902. doi: 10.1083/jcb.131.6.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  327. Patel T.P., Goelz S.E., Lobb R.R., Parekh R.B. Isolation and characterization of natural protein-associated carbohydrate ligands for E-selectin. Biochemistry. 1994;33:14815–14824. doi: 10.1021/bi00253a021. [DOI] [PubMed] [Google Scholar]
  328. Patel T.P., Edge C.J., Parekh R.B., Goelz S.E., Lobb R.R. Identification of endogenous protein-associated carbohydrate ligands for E-selectin. In: Marsh J., Goode J.A., editors. “Cell Adhesion and Human Disease”. Wiley; Chichester: 1995. pp. 212–226. [DOI] [PubMed] [Google Scholar]
  329. Paul R.W., Choi A.H.C., Lee P.W.K. The α-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology. 1989;172:382–385. doi: 10.1016/0042-6822(89)90146-3. [DOI] [PubMed] [Google Scholar]
  330. Paulson J.C. Interactions of animal viruses with cell surface receptors. In: Conn M., editor. “The Receptors”. Academic Press; New York: 1985. pp. 131–219. [Google Scholar]
  331. Paulson J.C., Rogers G.N. Resialylated erythrocytes for assesment of the specificity of sialyloligosaccharide binding proteins. Methods Enzymol. 1987;138:162–168. doi: 10.1016/0076-6879(87)38013-9. [DOI] [PubMed] [Google Scholar]
  332. Paulson J.C., Hill R.L., Tanabe T., Ashwell G. Reactivation of asialo-rabbit liver binding protein by resialylation with β-D-galactoside α2–6 sialyltransferase. J. Biol. Chem. 1977;252:8624–8628. [PubMed] [Google Scholar]
  333. Paulson J.C., Sadler J.E., Hill R. Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases. J. Biol. Chem. 1979;254:2120–2124. [PubMed] [Google Scholar]
  334. Peaker C.J. Transmembrane signalling by the B-cell antigen receptor. Curr. Opin. Immunol. 1994;6:359–363. doi: 10.1016/0952-7915(94)90113-9. [DOI] [PubMed] [Google Scholar]
  335. Peaker C.J., Neuberger M.S. Association of CD22 with the B cell antigen receptor. Eur. J. Immunol. 1993;23:1358–1363. doi: 10.1002/eji.1830230626. [DOI] [PubMed] [Google Scholar]
  336. Petchow B.T., Talbott R.D. Response of Bifidobacterium species to growth promotors in human and cow milk. Pediatr. Res. 1991;29:208–213. doi: 10.1203/00006450-199102000-00021. [DOI] [PubMed] [Google Scholar]
  337. Phillips M.L., Nudelman E., Gaeta F.C.A., Perez Singhal A.K., Hakomori S.-i., Paulson J.C. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, Sialyl-Lex. Science. 1990;250:1130–1132. doi: 10.1126/science.1701274. [DOI] [PubMed] [Google Scholar]
  338. Pierelli L., Teofili L., Menichella G., Rumi C., Paoloni A., Iovino S., Puggioni P.L., Leone G., Bizzi B. Further investigations on the expression of HLA-DR, CD33 and CD13 surface antigens in purified bone marrow and peripheral blood CD34+ haematopoietic progenitor cells. Br. J. Haematol. 1993;84:24–30. doi: 10.1111/j.1365-2141.1993.tb03021.x. [DOI] [PubMed] [Google Scholar]
  339. Pieroni P., Worobec E.A., Parachych W., Armstrong G.D. Identification of a human erythrocyte receptor for colonization factor antigen I pili expressed by H10407 enterotoxigenic Escherichia coli. Infect. Immun. 1988;56:1334–1340. doi: 10.1128/iai.56.5.1334-1340.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  340. Plank C., Zatloukal K., Cotten M., Mechtler K., Wagner E. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjugate Chem. 1992;3:533–539. doi: 10.1021/bc00018a012. [DOI] [PubMed] [Google Scholar]
  341. Pleschka S., Klenk H.-D., Herrler G. The catalytic triad of the influenza C virus glycoprotein HEF esterase: Characterization by site-directed mutagenesis and functional analysis. J. Gen. Virol. 1995;76:2529–2537. doi: 10.1099/0022-1317-76-10-2529. [DOI] [PubMed] [Google Scholar]
  342. Pouyani T., Seed B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell. 1995;83:333–343. doi: 10.1016/0092-8674(95)90174-4. [DOI] [PubMed] [Google Scholar]
  343. Powell L.D., Varki A. The oligosaccharide binding specificities of CD22 β, a sialic acid-specific lectin of B cells. J. Biol. Chem. 1994;269:10628–10636. [PubMed] [Google Scholar]
  344. Powell L.D., Varki A. I-type lectins. J. Biol. Chem. 1995;270:14243–14246. doi: 10.1074/jbc.270.24.14243. [DOI] [PubMed] [Google Scholar]
  345. Powell L.D., Sgroi D., Sjoberg E.R., Stamenkovic I., Varki A. Natural ligands of the B cell adhesion molecule CD22 β carry N-linked oligosaccharides with α-2, 6-linked sialic acids that are required for recognition. J. Biol. Chem. 1993;268:7019–7027. [PubMed] [Google Scholar]
  346. Powell L.D., Jain R.K., Matta K.L., Sabesan S., Varki A. Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22—Evidence for a minimal structural recognition motif and the potential importance of multisite binding. J. Biol. Chem. 1995;270:7523–7532. doi: 10.1074/jbc.270.13.7523. [DOI] [PubMed] [Google Scholar]
  347. Prasadarao N.V., Wass C.A., Hacker J., Jann K., Kim K.S. Adhesion of S-fimbriated Escherichia coli to brain glycolipids mediated by sfaA gene-encoded protein of S-fimbriae. J. Biol. Chem. 1993;268:10356–10363. [PubMed] [Google Scholar]
  348. Pritchett T.J., Paulson J.C. Basis for the potent inhibition of influenza virus infection by equine and guinea pig α2-macroglobulin. J. Biol. Chem. 1989;264:9850–9858. [PubMed] [Google Scholar]
  349. Pritchett T.J., Brossmer R., Rose U., Paulson J.C. Recognition of monovalent sialosides by influenza virus H3 hemagglutinin. Virology. 1987;160:502–506. doi: 10.1016/0042-6822(87)90026-2. [DOI] [PubMed] [Google Scholar]
  350. Probstmeier R., Fahrig T., Spiess E., Schachner M. Interactions of the neural cell adhesion molecule and the myelin-associated glycoprotein with collagen type I: Involvement in fibrillogenesis. J. Cell. Biol. 1992;116:1063–1070. doi: 10.1083/jcb.116.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  351. Ravindranath R.M., Graves M.C. Attenuated murine cytomegalovirus binds to N-acetylglucosamine, and shift to virulence may involve recognition of sialic acids. J. Virol. 1990;64:5430–5440. doi: 10.1128/jvi.64.11.5430-5440.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  352. Reuter G., Schauer R. Determination of sialic acids. Methods Enzymol. 1994;230:168–199. doi: 10.1016/0076-6879(94)30012-7. [DOI] [PubMed] [Google Scholar]
  353. Reuter G., Schauer A., Bumm P. Sialic acids of human nasal mucin, possible targets of influenza C viruses. In: Schauer R., Yamakawa T., editors. “Sialic Acids 1988, Proceedings of the German-Japanese Symposium on Sialic Acids”. Verlag Wissenschaft and Bildung; Kiel: 1988. pp. 88–89. [Google Scholar]
  354. Revelle B.M., Scott D., Beck P.J. Single amino acid residues in the E- and P-selectin epidermal growth factor domains can determine carbohydrate binding specificity. J. Biol. Chem. 1996;271:16160–16170. doi: 10.1074/jbc.271.27.16160. [DOI] [PubMed] [Google Scholar]
  355. Revelle B.M., Scott D., Kogan T.P., Zheng J.H., Beck P.J. Structure-function analysis of P-selectin-sialyl Lewis(x) binding interactions—Mutagenic alteration of ligand binding specificity. J. Biol. Chem. 1996;271:4289–4297. doi: 10.1074/jbc.271.8.4289. [DOI] [PubMed] [Google Scholar]
  356. Reyesleyva J., Hernandezjauregui P., Montano L.F., Zenteno E. The porcine paramyxovirus LPM specifically recognizes sialyl α 2, 3 lactose-containing structures. Arch. Virol. 1993;133:195–200. doi: 10.1007/BF01309755. [DOI] [PubMed] [Google Scholar]
  357. Rice K.G., Lee Y.C. Modification of triantennary glycopeptide into probes for the asialoglycoprotein receptor of hepatocytes. J. Biol. Chem. 1990;265:18423–18428. [PubMed] [Google Scholar]
  358. Rice K.G., Weisz O.A., Barthel T., Lee R.T., Lee Y.C. Defined geometry of binding between triantennary glycopeptide and the asialoglycoprotein receptor of rat heptocytes. J. Biol. Chem. 1990;265:18429–18434. [PubMed] [Google Scholar]
  359. Riedl M., Förster O., Rumpold H., Bernheimer H. A ganglioside-dependent cellular binding mechanism in rat macrophages. J. Immunol. 1982;128:1205–1210. [PubMed] [Google Scholar]
  360. Robertson M.J., Soiffer R.J., Freedman A.S., Rabinowe S.L., Anderson K.C., Ervin T.J., Murray C., Dear K., Griffin J.D., Nadler L.M. Human bone marrow depleted of CD33-positive cells mediates delayed but durable reconstitution of hematopoiesis: Clinical trial of MY9 monoclonal antibody-purged autografts for the treatment of acute myeloid leukemia. Blood. 1992;79:2229–2236. [PubMed] [Google Scholar]
  361. Rogers G.N., Paulson J.C. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology. 1983;127:361–373. doi: 10.1016/0042-6822(83)90150-2. [DOI] [PubMed] [Google Scholar]
  362. Rogers G.N., Paulson J.C., Daniels R.S., Skehel J.J., Wiley D.C. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983;304:76–78. doi: 10.1038/304076a0. [DOI] [PubMed] [Google Scholar]
  363. Rogers G.N., Pritchett T.J., Lane J.L., Paulson J.C. Differential sensitivity of human, avian, and equine influenza A viruses to a glycoprotein inhibitor of infection: Selection of receptor specific variants. Virology. 1983;131:394–408. doi: 10.1016/0042-6822(83)90507-x. [DOI] [PubMed] [Google Scholar]
  364. Rogers G.N., Herder G., Paulson J.C., Klenk H.-D. Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as high affinity receptor determinant for attachment to cells. J. Biol. Chem. 1986;261:5947–5951. [PubMed] [Google Scholar]
  365. Rohm C., Zhou N.A., Suss J.C., MacKenzie J., Webster R.G. Characterization of a novel influenza hemagglutinin, H15: Criteria for determination of influenza A subtypes. Virology. 1996;217:508–516. doi: 10.1006/viro.1996.0145. [DOI] [PubMed] [Google Scholar]
  366. Rolsma M.D., Gelberg H.B., Kuhlenschmidt M.S. Assay for evaluation of rotavirus–cell interactions: Identification of an enterocyte ganglioside fraction that mediates group A porcine rotavirus recognition. J. Virol. 1994;68:258–268. doi: 10.1128/jvi.68.1.258-268.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  367. Roos P.H., Kolb-Bachofen V., Schlepper–Schäfer J., Monsigny M., Stockert J., Kolb H. Two galactose-specific receptors in the liver with different function. FEBS Lett. 1983;157:253–256. doi: 10.1016/0014-5793(83)80556-0. [DOI] [PubMed] [Google Scholar]
  368. Roos P.H., Hartman H.-J.S., Schlepper-Schäfer J., Kolb H., Kolb-Bachofen V. Galactose-specific receptors on liver cells. II. Characterization of the purified receptor from macrophages reveals no structural relationship to the hepatocyte receptor. Biochim. Biophys. Acta. 1985;847:115–121. doi: 10.1016/0167-4889(85)90161-2. [DOI] [PubMed] [Google Scholar]
  369. Rosen S., Singer M.S., Yednock T.A., Stoolman L.M. Involvement of sialic acid on endothelial cells in organ-specific lymphocyte recirculation. Science. 1985;228:1005–1007. doi: 10.1126/science.4001928. [DOI] [PubMed] [Google Scholar]
  370. Rosen S., Chi S.-I., True D.D., Singer M.S., Yednock T.A. Intravenously injected sialidase inactivates attachment sites for lymphocytes on high endothelial venules. J. Immunol. 1989;142:1895–1902. [PubMed] [Google Scholar]
  371. Rosen S.D., Bertozzi C.R. Leukocyte adhesion—Two selectins converge on sulphate. Curr. Biol. 1996;6:261–264. doi: 10.1016/s0960-9822(02)00473-6. [DOI] [PubMed] [Google Scholar]
  372. Rosenberg A. “Biology of the Sialic Acids.”. Plenum; New York: 1995. [Google Scholar]
  373. Roth J. Cellular sialoglycoconjugates—A histochemical perspective. Histochem. J. 1993;25:687–710. doi: 10.1007/BF00211765. [DOI] [PubMed] [Google Scholar]
  374. Rubin D.H., Weiner D.B., Dworkin C., Greene M.I., Maul G.G., Williams W.V. Receptor utilization by reovirus type 3: Distinct binding sites on thymoma and fibroblast cell lines result in differential compartmentalization of virions. Microb. Pathogen. 1992;12:351–365. doi: 10.1016/0882-4010(92)90098-9. [DOI] [PubMed] [Google Scholar]
  375. Ruch B. Rezeptor-vermittelte Endozytose durch das Galaktose-erkennende System von Peritoneal-Makrophagen der Ratte. Ph.D. thesis. University of Kiel. Kiel; Germany: 1990. [Google Scholar]
  376. Rudner X.L., Zheng Z., Berk R.S., Irvin R.T., Hazlett L.D. Corneal epithelial glycoproteins exhibit Pseudomonas aeruginosa pilus binding activity. Invest. Ophthalmol. Vis. Sci. 1992;33:2185–2193. [PubMed] [Google Scholar]
  377. Ryan D.M., Ticehurst J., Dempsey M.H. GG167 (4-guanidino-2, 4-dideoxy-2, 3-dehydro-N-acetylneuraminic acid) is a potent inhibitor of influenza virus in ferrets. Antimicrob. Agents Chemother. 1995;39:2583–2584. doi: 10.1128/aac.39.11.2583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  378. Sabesan S., Duus J.O., Domaille P., Kelm S., Paulson J.C. Synthesis of cluster sialoside inhibitors for influenza virus. J. Am. Chem. Soc. 1991;113:5865–5866. [Google Scholar]
  379. Sabesan S., Duus J.O., Neira S., Domaille P., Kelm S., Paulson J.C., Bock K. Cluster sialoside inhibitors for influenza virus—Synthesis, NMR, and biological studies. J. Am. Chem. Soc. 1992;114:8363–8375. [Google Scholar]
  380. Sadoul R., Fahrig T., Bartsch U., Schachner M. Binding properties of liposomes containing the myelin-associated glycoprotein MAG to neural cell cultures. J. Neurosci. Res. 1990;25:1–13. doi: 10.1002/jnr.490250102. [DOI] [PubMed] [Google Scholar]
  381. Saitoh T., Natomi H., Zhao W.L., Okuzumi K., Sugano K., Iwamori M., Nagai Y. Identification of glycolipid receptors for Helicobacter pylori by TLC-immunostaining. FEBS Lett. 1991;282:385–387. doi: 10.1016/0014-5793(91)80519-9. [DOI] [PubMed] [Google Scholar]
  382. Sako D., Chang X.J., Barone K.M., Vachino G., White H.M., Shaw G., Veldman G.M., Bean K.M., Ahern T.J., Furie B., Cumming D.A., Larsen G.R. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 1993;75:1179–1186. doi: 10.1016/0092-8674(93)90327-m. [DOI] [PubMed] [Google Scholar]
  383. Sako D., Comess K.M., Barone K.M., Camphausen R.T., Cumming D.A., Shaw G.D. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 1995;83:323–331. doi: 10.1016/0092-8674(95)90173-6. [DOI] [PubMed] [Google Scholar]
  384. Sarkar M., Liao J., Kabat E.A., Tanabe T., Ashwell G. The binding site of rabbit hepatic lectin. J. Biol. Chem. 1979;254:3170–3174. [PubMed] [Google Scholar]
  385. Sato S., Yanagisawa K., Miyatake T. Conversion of the myelin-associated glycoprotein (MAG) to a smaller derivative by calcium activated neutral protease (CANP) like enzyme in myelin and inhibition by E-64 analogue. Neurochem. Res. 1984;9:629–635. doi: 10.1007/BF00964509. [DOI] [PubMed] [Google Scholar]
  386. Sauter N.K., Bednarski M.D., Wurzburg B.A., Hanson J.E., Skehel J.J., Wiley D.C. Hemagglutinins from two influenza virus variants bind sialic acid derivatives with millimolar dissociation constants: A 500-MHz proton nuclear magnetic resonance study. Biochemistry. 1989;28:8388–8396. doi: 10.1021/bi00447a018. [DOI] [PubMed] [Google Scholar]
  387. Sauter N.K., Glick G.D., Crowther R.L., Park S.J., Eisen M.B., Skehel J.J., Knowles J.R., Wiley D.C. Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA. 1992;89:324–328. doi: 10.1073/pnas.89.1.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  388. Sauter N.K., Hanson J.E., Glick G.D., Brown J.H., Crowther R.L., Park S.J., Skehel J.J., Wiley D.C. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: Analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry. 1992;31:9609–9621. doi: 10.1021/bi00155a013. [DOI] [PubMed] [Google Scholar]
  389. Schäfer M., Fruttiger M., Montag D., Schachner M., Martini R. Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wld(s) mice. Neuron. 1996;16:1107–1113. doi: 10.1016/s0896-6273(00)80137-3. [DOI] [PubMed] [Google Scholar]
  390. Schauer R. Sialic acids. Adv. Carbohydr. Chem. Biochem. 1982;40:131–234. doi: 10.1016/s0065-2318(08)60109-2. [DOI] [PubMed] [Google Scholar]
  391. Schauer R. “Sialic Acids—Chemistry, Metabolism and Function.”. Springer; Vienna: 1982. [DOI] [PubMed] [Google Scholar]
  392. Schauer R. Sialic acids and their role as biological masks. Trends Biochem. Sci. 1985;10:357–360. [Google Scholar]
  393. Schauer R. Metabolism of O-acetyl groups. Methods Enzymol. 1987;138:611–626. doi: 10.1016/0076-6879(87)38055-3. [DOI] [PubMed] [Google Scholar]
  394. Schauer R., Kamerling J.P. Chemistry, biochemistry and biology of sialic acids. In: Montreuil J., Schachter H., Vliegenthart J.F.G., editors. “Glycoproteins”. Elsevier; Amsterdam: 1997. in press. [Google Scholar]
  395. Schauer R., Schröder C., Müller E., von Gaudecker B. Interaction between rat peritoneal macrophages and sialidase-treated erythrocytes: Biochemical and morphological studies. Biomed. Biochim. Acta. 1984;43:711–717. [PubMed] [Google Scholar]
  396. Schauer R., Shukla A.K., Schröder C., Müller E. The anti-recognition function of sialic acids: Studies with eryhtrocytes and macrophages. Pure Appl. Chem. 1984;56:907–921. [Google Scholar]
  397. Schauer R., Fischer C., Kluge A., Lee H., Ruch B. Mechanism of binding and uptake of sialidase-treated blood cells and glycoproteins by the galactose-specific receptor of rat peritoneal macrophages. Biomed. Biochim. Acta. 1990;49:S230–S235. [PubMed] [Google Scholar]
  398. Schauer R., Kelm S., Reuter G., Roggentin P., Shaw L. Biochemistry and role of sialic acids. In: Rosenberg A., editor. “Biology of the Sialic Acids”. Plenum; New York: 1995. pp. 7–67. [Google Scholar]
  399. Scheinberg D.A., Lovett D., Divgi C.R., Graham M.C., Berman E., Pentlow K., Feirt N., Finn R.D., Clarkson B.D., Gee T.S., Larson S.M., Oettgen H.F., Old L.J. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: Specific bone marrow targeting and internalization of radionuclide. J. Clin. Oncol. 1991;9:478–490. doi: 10.1200/JCO.1991.9.3.478. [DOI] [PubMed] [Google Scholar]
  400. Schenkman S., Eichinger D. Trypanosoma-cruzi trans-sialidase and cell invasion. Parasitol. Today. 1993;9:218–222. doi: 10.1016/0169-4758(93)90017-a. [DOI] [PubMed] [Google Scholar]
  401. Schenkman S., Jiang M.S., Hart G.W., Nussenzweig V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell. 1991;65:1117–1125. doi: 10.1016/0092-8674(91)90008-m. [DOI] [PubMed] [Google Scholar]
  402. Schmoll T., Hoschützky H., Morschhäuser J., Lottspeich F., Jann K., Hacker J. Analysis of genes coding for the sialic acid-binding adhesin and two other minor fimbrial subunits of the S-fimbrial adhesin determinant of Escherichia coli. Mol. Microbiol. 1989;3(1):1735–1744. doi: 10.1111/j.1365-2958.1989.tb00159.x. [DOI] [PubMed] [Google Scholar]
  403. Schulte R.J., Campbell M.A., Fischer W.H., Seflon B.M. Tyrosine phosphorylation of CD22 during B cell activation. Science. 1992;258:1001–1004. doi: 10.1126/science.1279802. [DOI] [PubMed] [Google Scholar]
  404. Schultze B., Herder G. Recognition of N-acetyl-9-O-acetylneuraminic acid by bovine coronavirus and hemagglutinating encephalomyelitis virus. Adv. Exp. Med. Biol. 1993;342:299–304. doi: 10.1007/978-1-4615-2996-5_46. [DOI] [PubMed] [Google Scholar]
  405. Schultze B., Herrler G. Recognition of cellular receptors by bovine coronavirus. Arch. Virol. 1994;9(Suppl.):451–459. doi: 10.1007/978-3-7091-9326-6_44. [DOI] [PubMed] [Google Scholar]
  406. Schultze B., Gross H.J., Brossmer R., Klenk H.-D., Herrler G. Hemagglutinating encephalomyelitis virus attaches to N-acetyl-9-O-acetylneuraminic acid-containing receptors on erythrocytes: Comparison with bovine coronavirus and influenza C virus. Virus Res. 1990;16:185–194. doi: 10.1016/0168-1702(90)90022-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  407. Schultze B., Gross H.J., Brossmer R., Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. J. Virol. 1991;65:6232–6237. doi: 10.1128/jvi.65.11.6232-6237.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  408. Schultze B., Cavanagh D., Herrler G. Neuraminidase treatment of avian infectious bronchitis coronavirus reveals a hemagglutinating activity that is dependent on sialic acid-containing receptors on erythrocytes. Virology. 1992;189:792–794. doi: 10.1016/0042-6822(92)90608-R. [DOI] [PMC free article] [PubMed] [Google Scholar]
  409. Schultze B., Krempl C., Ballesteros M.L., Shaw L., Schauer R., Enjuanes L., Herrler G. Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J. Virol. 1996;70:5634–5637. doi: 10.1128/jvi.70.8.5634-5637.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  410. Schwartz A.L. The hepatic asialoglycoprotein receptor. Crit. Rev. Biochem. 1984;16:207–233. doi: 10.3109/10409238409108716. [DOI] [PubMed] [Google Scholar]
  411. Schwartz A.L. Trafficking of asialoglycoproteins and the asialoglycoprotein receptor. Targeted Diagn. Ther. 1991;4:3–39. [PubMed] [Google Scholar]
  412. Seganti L., Mastromarino P., Superti F., Simibaldi L., Orsi N. Receptors for BK virus on human erythrocytes. Ada Virol. 1981;25:1225–1228. [In English] [PubMed] [Google Scholar]
  413. Seganti L., Superti F., Sinibaldi L., Marchetti M., Bianchi S., Orsi N. Rabies virus infection in Aedes pseudoscutellaris cells: A study on receptorial structures. Comp. Immunol. Microbiol. Infect. Dis. 1991;14:265–275. doi: 10.1016/0147-9571(91)90007-z. [DOI] [PubMed] [Google Scholar]
  414. Sgroi D., Varki A., Braesch Andersen S., Stamenkovic I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J. Biol. Chem. 1993;268:7011–7018. [PubMed] [Google Scholar]
  415. Sgroi D., Koretzky G.A., Stamenkovic I. Regulation of CD45 engagement by the B-cell receptor CD22. Proc. Natl. Acad. Sci. USA. 1995;92:4026–4030. doi: 10.1073/pnas.92.9.4026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  416. Sgroi D., Nocks A., Stamenkovic I. A single N-linked glycosylation site is implicated in the regulation of ligand recognition by the I-type lectins CD22 and CD33. J. Biol. Chem. 1996;271:18803–18809. doi: 10.1074/jbc.271.31.18803. [DOI] [PubMed] [Google Scholar]
  417. Siegelman M.H., van de Rijn M., Weissman I.L. Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains. Science. 1989;243:1165–1172. doi: 10.1126/science.2646713. [DOI] [PubMed] [Google Scholar]
  418. Simmons D.L., Seed B. Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells. J. Immunol. 1988;141:2797–2800. [PubMed] [Google Scholar]
  419. Sinibaldi L., Goldoni P., Longhi C., Orsi N. Involvement of gangliosides in the interaction between BK virus and vero cells. Arch. Virol. 1990;113:291–296. doi: 10.1007/BF01316682. [DOI] [PubMed] [Google Scholar]
  420. Sjoberg E.R., Powell L.D., Klein A., Varki A. Natural ligands of the B cell adhesion molecule CD22 β can be masked by 9-O-acetylation of sialic acids. J. Cell. Biol. 1994;126:549–562. doi: 10.1083/jcb.126.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  421. Sjöberg P.-O., Lindahl M., Porath J., Wadström T. Purification and characterization of CS2, a sialic acid-specific haemagglutinin of enterotoxigenic Escherichia coli. Biochem. J. 1988;255:105–111. doi: 10.1042/bj2550105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  422. Sparks M.A., Williams K.W., Whitesides G.M. Neuraminidase-resistant hemagglutination inhibitors: Acrylamide copolymers containing a C-glycoside of N-acetylneuraminic acid. J. Med. Chem. 1993;36:778–783. doi: 10.1021/jm00058a016. [DOI] [PubMed] [Google Scholar]
  423. Srnka C.A., Tiemeyer M., Gilbert J.H., Moreland M., Schweingruber H., de Lappe B.W., James P.G., Gant T., Willoughby R.E., Yolken R.H., Nashed M.A., Abbas S.A., Laine R.A. Cell surface ligands for rotavirus: Mouse intestinal glycolipids and synthetic carbohydrate analogs. Virology. 1992;190:794–805. doi: 10.1016/0042-6822(92)90917-e. [DOI] [PubMed] [Google Scholar]
  424. Stahl B., Thurl S., Zeng J.R., Karas M., Hillenkamp F., Steup M., Sawatzki G. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 1994;223:218–226. doi: 10.1006/abio.1994.1577. [DOI] [PubMed] [Google Scholar]
  425. Stamenkovic I., Seed B. The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature. 1990;345:74–77. doi: 10.1038/345074a0. [DOI] [PubMed] [Google Scholar]
  426. Stamenkovic I., Sgroi D., Aruffo A., Sy M.S., Anderson T. The lymphocyte-B adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T-cells and α-2–6 sialyltransferase, CD75, on B-cells. Cell. 1991;66:1133–1144. doi: 10.1016/0092-8674(91)90036-x. [DOI] [PubMed] [Google Scholar]
  427. Stamenkovic I., Sgroi D., Aruffo A. CD22 binds to α-2, 6-sialyltransferase-dependent epitopes on COS cells. Cell. 1992;68:1003–1004. doi: 10.1016/0092-8674(92)90071-j. [DOI] [PubMed] [Google Scholar]
  428. Steegmaier M., Levinovitz A., Isenmann S., Borges E., Lenter M., Kocher H.P., Kleuser B., Vestweber D. The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature. 1995;373:615–620. doi: 10.1038/373615a0. [DOI] [PubMed] [Google Scholar]
  429. Stehle T., Harrison S.C. Crystal structures of murine polyomavirus in complex with straight-chain and branched-chain sialyloligosaccharide receptor fragments. Structure. 1996;4:183–194. doi: 10.1016/s0969-2126(96)00021-4. [DOI] [PubMed] [Google Scholar]
  430. Stehle T., Yan Y., Benjamin T.L., Harrison S.C. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature. 1994;369:160–163. doi: 10.1038/369160a0. [DOI] [PubMed] [Google Scholar]
  431. Stein P.E., Boodhoo A., Armstrong G.D., Heerze L.D., Cockle S.A., Klein M.H., Read R.J. Structure of a pertussis toxin-sugar complex as a model for receptor binding. Nat. Struct. Biol. 1994;1:591–596. doi: 10.1038/nsb0994-591. [DOI] [PubMed] [Google Scholar]
  432. Stepinska M., Trafny E.A. Modulation of Pseudomonas aeruginosa adherence to collagen type I and type II by carbohydrates. FEMS Immunol. Med. Microbiol. 1995;12:187–194. doi: 10.1111/j.1574-695X.1995.tb00191.x. [DOI] [PubMed] [Google Scholar]
  433. Stiff P.J., Schulz W.C., Bishop M., Marks L. Anti-CD33 monoclonal antibody and etoposide/cytosine arabinoside combinations for the ex vivo purification of bone marrow in acute nonlymphocytic leukemia. Blood. 1991;77:355–362. [PubMed] [Google Scholar]
  434. Stoner J.D., Williams B., Kniazeff A., Shimkin M.B. Effect of neuraminidase pretreatment of normal and transformed mammalian cells to bovine enterovirus 261. Nature. 1973;245:319–320. doi: 10.1038/245319a0. [DOI] [PubMed] [Google Scholar]
  435. Stoolman L., Rosen S.D. Possible role for cell-surface carbohydrate-binding molecules in lymphocyte recirculation. J. Cell. Biol. 1983;96:722–729. doi: 10.1083/jcb.96.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  436. Stoorvogel W., Schwartz A.L., Strous G.J., Fallon R.J. A pool of intracellular phosphorylated asialoglycoprotein receptors which is not involved in endocytosis. J. Biol. Chem. 1991;266:5438–5444. [PubMed] [Google Scholar]
  437. Stott E.T., Killington R.A. Hemagglutination by rhinoviruses. Lancet. 1972;1:1369–1370. doi: 10.1016/s0140-6736(72)91097-5. [DOI] [PubMed] [Google Scholar]
  438. Stroud M.R., Handa K., Salyan M.E.K., Ito K., Levery S.B., Hakomori S., Reinhold B.B., Reinhold V.N. Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 2. Characterization of E-selectin binding fractions, and structural requirements for physiological binding to E-selectin. Biochemistry. 1996;35:770–778. doi: 10.1021/bi952461g. [DOI] [PubMed] [Google Scholar]
  439. Stroud M.R., Handa K., Salyan M.E.K., Ito K., Levery S.B., Hakomori S., Reinhold B.B., Reinhold V.N. Monosialogangliosides of human myelogenous leukemia HL60 cells and normal human leukocytes. 1. Separation of E-selectin binding from nonbinding gangliosides, and absence of sialosyl-Le(x) having tetraosyl to octaosyl core. Biochemistry. 1996;35:758–769. doi: 10.1021/bi951600r. [DOI] [PubMed] [Google Scholar]
  440. Su C.J., Tryon V.V., Baseman J.B. Cloning and sequence analysis of cytadhesin P1 gene from Mycoplasma pneumoniae. Infect. Immun. 1987;55:3023–3029. doi: 10.1128/iai.55.12.3023-3029.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  441. Su C.J., Chavoya A., Baseman J.B. Regions of Mycoplasma pneumoniae cytadhesin P1 structural gene exist as multiple copies. Infect. Immun. 1988;56:3157–3161. doi: 10.1128/iai.56.12.3157-3161.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  442. Su C.J., Chavoya A., Dallo S.F., Baseman J.B. Sequence divergency of the cytadhesin gene of Mycoplasma pneumoniae. Infect. Immun. 1990;58:2669–2674. doi: 10.1128/iai.58.8.2669-2674.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  443. Su C.J., Dallo S.F., Alderman H., Baseman J.B. Distinctions in DNA and protein profiles among clinical isolates of Mycoplasma pneumoniae. J. Gen. Microbiol. 1991;137:2727–2732. doi: 10.1099/00221287-137-12-2727. [DOI] [PubMed] [Google Scholar]
  444. Su C.J., Dallo S.F., Chavoya A., Baseman J.B. Possible origin of sequence divergence in the P1 cytadhesin gene of Mycoplasma pneumoniae. Infect. Immun. 1993;61:816–822. doi: 10.1128/iai.61.3.816-822.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  445. Superti F., Donelli G. Gangliosides as binding sites in SA-11 rotavirus infection of LLC-MK2 cells. J. Gen. Virol. 1991;72:2467–2474. doi: 10.1099/0022-1317-72-10-2467. [DOI] [PubMed] [Google Scholar]
  446. Superti F., Donelli G. Characterization of SA-11 rotavirus receptorial structures on human colon carcinoma cell line HT-29. J. Med. Virol. 1995;47:421–428. doi: 10.1002/jmv.1890470421. [DOI] [PubMed] [Google Scholar]
  447. Suttajit M., Winzler R.J. Effect of modification of N-acetylneuraminic acid on the binding of glycoproteins to influenza virus and on susceptibility to cleavage by neuraminidase. J. Biol. Chem. 1971;246:3398–3404. [PubMed] [Google Scholar]
  448. Suzuki Y. Gangliosides as influenza virus receptors. Variation of influenza viruses and their recognition of the receptor sialo-sugar chains. Prog. Lipid Res. 1994;33:429–457. doi: 10.1016/0163-7827(94)90026-4. [DOI] [PubMed] [Google Scholar]
  449. Suzuki Y., Matsunaga M., Matsumoto M. N-Acetylneuraminyllactosylceramide, GM3-Neu5Ac, a new influenza A virus receptor which mediates the adsorption-fusion process of viral infection. Binding specificity of influenza A/Aichi/268 (H3N2) to membrane-associated GM3 with different molecular species of sialic acid. J. Biol. Chem. 1985;260:1362–1365. [PubMed] [Google Scholar]
  450. Suzuki Y., Nagao Y., Matsumoto M., Nerome K., Nakajima K., Nobusawa E. Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion process of viral infection. J. Biol. Chem. 1986;261:17057–17061. [PubMed] [Google Scholar]
  451. Svensson L. Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding. J. Virol. 1992;66:5582–5585. doi: 10.1128/jvi.66.9.5582-5585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  452. Tang D., Strong J.E., Lee P.W. Recognition of the epidermal growth factor receptor by reovirus. Virology. 1993;197:412–414. doi: 10.1006/viro.1993.1603. [DOI] [PubMed] [Google Scholar]
  453. Tauber R., Abetz J., Schwartz A.L., Katz N., Gerok W., Reutter W. Degradation of plasma membrane glycoproteins in primary cultures of rat hepatocytes and in rat liver. Role of Asn-linked glycans. Biol. Chem. Hoppe-Seyler. 1988;369:930–931. [Google Scholar]
  454. Tavakkol A., Burness A.T. Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes. Biochemistry. 1990;29:10684–10690. doi: 10.1021/bi00499a016. [DOI] [PubMed] [Google Scholar]
  455. Tchilian E.Z., Beverley P.C., Young B.D., Watt S.M. Molecular cloning of two isoforms of the murine homolog of the myeloid CD33 antigen. Blood. 1994;83:3188–3198. [PubMed] [Google Scholar]
  456. Tedder T.F., Isaacs C.M., Ernst T.J., Demetri G.D., Adler D.A., Disteche C.M. Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule, LAM-1. J. Exp. Med. 1989;170:123–133. doi: 10.1084/jem.170.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  457. Teneberg S., Willemsen P.T.J., Degraaf F.K., Karlsson K.-A. Calf small intestine receptors for K99 fimbriated enterotoxigenic Escherichia coli. FEMS Microbiol. Lett. 1993;109:107–112. doi: 10.1111/j.1574-6968.1993.tb06151.x. [DOI] [PubMed] [Google Scholar]
  458. Tiemeyer M., Swiedler S.J., Ishihara M., Moreland M., Schweingruber H., Hirtzer P., Brandley B.K. Carbohydrate ligands for endothelial leukocyte adhesion molecule. Proc. Natl. Acad. Sci. USA. 1991;88:1138–1142. doi: 10.1073/pnas.88.4.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  459. Tiemeyer M., Brandley B.K., Ishihara M., Swiedler S.J., Greene J., Hoyle G.W., Hill R.L. The binding specificity of normal and variant rat Kupffer cell (lectin) receptors expressed in COS cells. J. Biol. Chem. 1992;267:12252–12257. [PubMed] [Google Scholar]
  460. Toogood P.L., Galliker P.K., Glick G.D., Knowles J.R. Monovalent sialosides that bind tightly to influenza A virus. J. Med. Chem. 1991;34:3138–3140. doi: 10.1021/jm00114a025. [DOI] [PubMed] [Google Scholar]
  461. Torres R.M., Law C.L., Santos Argumedo L., Kirkham P.A., Grabstein K., Parkhouse R.M., Clark E.A. Identification and characterization of the murine homologue of CD22, a B lymphocyte-restricted adhesion molecule. J. Immunol. 1992;149:2641–2649. [PubMed] [Google Scholar]
  462. Trapp B.D. Myelin-associated glycoprotein, Location and potential functions. Ann. N.Y. Acad. Sci. 1990;605:29–43. doi: 10.1111/j.1749-6632.1990.tb42378.x. [DOI] [PubMed] [Google Scholar]
  463. Tresnan D.B., Southard L., Weichert W., Sgro J.Y., Parrish C.R. Analysis of the cell and erythrocyte binding activities of the dimple and canyon regions of the canine parvovirus capsid. Virology. 1995;211:123–132. doi: 10.1006/viro.1995.1385. [DOI] [PubMed] [Google Scholar]
  464. Tropak M.B., Jansz G.F., Abramownewerly W., Roder J.C. Conservation of functionally important epitopes on myelin associated glycoprotein (MAG). Comp. Biochem. Physiol. B. 1995;112:345–354. doi: 10.1016/0305-0491(95)00087-9. [DOI] [PubMed] [Google Scholar]
  465. Tulip W.R., Varghese J.N., Baker A.T., van Donkelaar A., Laver W.G., Webster R.G., Colman P.M. Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants. J. Mol. Biol. 1991;221:487–497. doi: 10.1016/0022-2836(91)80069-7. [DOI] [PubMed] [Google Scholar]
  466. Tuscano J.M., Engel P., Tedder T.F., Kehrl J.H. Engagement of the adhesion receptor CD22 triggers a potent stimulatory signal for B cells and blocking CD22/CD22L interactions impairs T-cell proliferation. Blood. 1996;87:4723–4730. [PubMed] [Google Scholar]
  467. Tuscano J.M., Engel P., Tedder T.F., Agarwal A., Kehrl J.H. Involvement of p72syk kinase, p53/561yn kinase and phosphatidyl inositol-3 kinase in signal transduction via the human B lymphocyte antigen CD22. Eur. J. Immunol. 1996;26:1246–1252. doi: 10.1002/eji.1830260610. [DOI] [PubMed] [Google Scholar]
  468. Tyrrell D., James P., Rao N., Foxall C., Abbas S., Dasgupta F., Nashed M., Hasegawa A., Kiso M., Asa D., Kidd J., Brandley B.K. Structural requirements for the carbohydrate ligand of E-seleclin. Proc. Natl. Acad. Sci. USA. 1991;88:10372–10376. doi: 10.1073/pnas.88.22.10372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  469. Umemori H., Sato S., Yagi T., Aizawa S., Yamamoto T. Initial events of myelination involve Fyn tyrosine kinase signalling. Nature. 1994;367:572–576. doi: 10.1038/367572a0. [DOI] [PubMed] [Google Scholar]
  470. Uncapher C.R., DeWitt C.M., Colonno R.J. The major and minor group receptor families contain all but one human rhinovirus serotype. Virology. 1991;180:814–817. doi: 10.1016/0042-6822(91)90098-v. [DOI] [PubMed] [Google Scholar]
  471. Unverzagt C., Kelm S., Paulson J.C. Chemical and enzymatic synthesis of multivalent sialoglycopeptides. Carbohydr. Res. 1994;251:285–301. doi: 10.1016/0008-6215(94)84292-2. [DOI] [PubMed] [Google Scholar]
  472. Utagawa E.T., Miyamura K., Mukoyama A., Kono R. Neuraminidase-sensitive erythrocyte receptor for enterovirus Type 70. J. Gen. Virol. 1982;63:141–148. doi: 10.1099/0022-1317-63-1-141. [DOI] [PubMed] [Google Scholar]
  473. van Alphen L., van den Broek L.G., Blaas L., van Horn M., Dankert J. Blocking of fimbriae-mediated adherence of Haemophilus influenzae by sialyl gangliosides. Infect. Immun. 1991;59:4473–4477. doi: 10.1128/iai.59.12.4473-4477.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  474. Van den Berg T.K., Breve J.J., Damoiseaux J.G., Dopp E.A., Kelm S., Crocker P.R., Dijkstra C.D., Kraal G. Sialoadhesin on macrophages: Its identification as a lymphocyte adhesion molecule. J. Exp. Med. 1992;176:647–655. doi: 10.1084/jem.176.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  475. van der Merwe P.A., McNamee P.N., Davies E.A., Barclay A.N., Davis S.J. Topology of the CD2-CD48 cell-adhesion molecule complex: Implications for antigen recognition by T cells. Curr. Biol. 1995;5:74–84. doi: 10.1016/s0960-9822(95)00019-4. [DOI] [PubMed] [Google Scholar]
  476. van der Merwe P.A., Crocker P.R., Vinson M., Barclay A.N., Schauer R., Kelm S. Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22. J. Biol. Chem. 1996;271:9273–9280. [PubMed] [Google Scholar]
  477. van't Wout J., Burnette W.N., Mar V.L., Rozdzinski E., Wright S.D., Tuomanen E.I. Role of carbohydrate recognition domains of pertussis toxin in adherence of Bordetella pertussis to human macrophages. Infect. Immun. 1992;60:3303–3308. doi: 10.1128/iai.60.8.3303-3308.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  478. Varghese J.N., Colman P.M. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 Å resolution. J. Mol. Biol. 1991;221:473–486. doi: 10.1016/0022-2836(91)80068-6. [DOI] [PubMed] [Google Scholar]
  479. Varki A. Diversity in the sialic acids. Glycobiology. 1992;2:25–40. doi: 10.1093/glycob/2.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  480. Varki A. Selectin ligands. Proc. Natl. Acad. Sci. USA. 1994;91:7390–7397. doi: 10.1073/pnas.91.16.7390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  481. Varki A., Hooshmand F., Diaz S., Varki N.M., Hedrick S.M. Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9-O-acetylesterase. Cell. 1991;65:65–74. doi: 10.1016/0092-8674(91)90408-q. [DOI] [PubMed] [Google Scholar]
  482. Vinson M., van der Merwe P.A., Kelm S., May A., Jones E.Y., Crocker P.R. Characterization of the sialic acid-binding site in sialoadhesin by site-directed mutagenesis. J. Biol. Chem. 1996;271:9267–9272. doi: 10.1074/jbc.271.16.9267. [DOI] [PubMed] [Google Scholar]
  483. Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 1988;62:4686–4690. doi: 10.1128/jvi.62.12.4686-4690.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  484. Vlasak R., Luytjes W., Spaan W., Palese P. Human and bovine coronaviruses recognize sialic acid-containing receptors similar to those of influenza C viruses. Proc. Natl. Acad. Sci. USA. 1988;85:4526–4529. doi: 10.1073/pnas.85.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  485. Vlasak R., Muster T., Lauro A.M., Powers J.C., Palese P. Influenza C virus esterase: Analysis of catalytic site, inhibition, and possible function. J. Virol. 1989;63:2056–2062. doi: 10.1128/jvi.63.5.2056-2062.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  486. von Itzstein M., Wu W.Y., Kok G.B., Pegg M.S., Dyason J.C., Jin B., Van Phan T., Smythe M.L., White H.F., Oliver S.W., Colman P.M., Varghese J.N., Ryan D.M., Woods J.M., Bethell R.C., Hotham V.J., Cameron J.M., Penn C.R. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993;363:418–423. doi: 10.1038/363418a0. [DOI] [PubMed] [Google Scholar]
  487. Wadell G. Hemagglutination with adenovirus serotypes belonging to Rosen's subgroups II and III. Proc. Soc. Exp. Biol. Med. 1969;132:413–421. doi: 10.3181/00379727-132-34227. [DOI] [PubMed] [Google Scholar]
  488. Wadström T., Baloda S.B. Molecular aspects of small bowel colonization by enterotoxigenic Escherichia coli. Mikrookol. Ther. 1986;16:243–255. [Google Scholar]
  489. Wadström T., Hirmo S., Boren T. Biochemical aspects of Helicobacter pylori colonization of the human gastric mucosa. Aliment. Pharmacol. Therap. 1996;10:17–27. doi: 10.1046/j.1365-2036.1996.22164002.x. [DOI] [PubMed] [Google Scholar]
  490. Walz G., Aruffo A., Kolanus W., Bevilacqua M., Seed B. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science. 1990;250:1132–1135. doi: 10.1126/science.1701275. [DOI] [PubMed] [Google Scholar]
  491. Wang X.C., Vertino A., Eddy R.L., Byers M.G., Janisait S.N., Shows T.B., Lau J.T.Y. Chromosome mapping and organization of the human β-galactoside α2, 6-sialyltransferase gene—Differential and cell-type specific usage of upstream exon sequences in B- lymphoblastoid cells. J. Biol. Chem. 1993;268:4355–4361. [PubMed] [Google Scholar]
  492. Warren H.S., Altin J.G., Waldron J.C., Kinnear B.F., Parish C.R. A carbohydrate structure associated with CD15 (Lewisx) on myeloid cells is a novel ligand for human CD2. J. Immunol. 1996;156:2866–2873. [PubMed] [Google Scholar]
  493. Watowich S.J., Skehel J.J., Wiley D.C. Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. Structure. 1994;2:719–731. doi: 10.1016/s0969-2126(00)00073-3. [DOI] [PubMed] [Google Scholar]
  494. Watson M.L., Kingsmore S.F., Johnston G.I., Siegelman M.H., Le Beau M.M., Lemons R.S., Bora N.S., Howard T.A., Weissman I.L., McEver R.P., Seldin M.F. Genomic organization of the selectin family of leukocyte adhesion molecules on human and mouse chromosome 1. J. Exp. Med. 1990;172:263–272. doi: 10.1084/jem.172.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  495. Weigel P.H. Endocytosis and function of the hepatic asialoglycoprotein receptor. Subcell. Biochem. 1993;19:125–161. doi: 10.1007/978-1-4615-3026-8_5. [DOI] [PubMed] [Google Scholar]
  496. Weinhold E.G., Knowles J.R. Design and evaluation of a tightly binding fluorescent ligand for influenza-A hemagglutinin. J. Am. Chem. Soc. 1992;114:9270–9275. [Google Scholar]
  497. Weis W.I., Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem. 1996;65:441–473. doi: 10.1146/annurev.bi.65.070196.002301. [DOI] [PubMed] [Google Scholar]
  498. Weis W.I., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C. Structure of the influenza virus hemagglutinin complexed with its receptor, sialic acid. Nature. 1988;333:426–431. doi: 10.1038/333426a0. [DOI] [PubMed] [Google Scholar]
  499. Weis W.I., Crichlow G.V., Murthy H.M.K., Hendrickson W.A., Drickamer K. Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat. J. Biol. Chem. 1991;266:20678–20686. [PubMed] [Google Scholar]
  500. Wenneras C., Holmgren J., Svennerholm A.M. The binding of colonization factor antigens of enterotoxigenic Escherichia coli to intestinal cell membrane proteins. FEMS Microbiol. Lett. 1990;54:107–112. doi: 10.1016/0378-1097(90)90266-s. [DOI] [PubMed] [Google Scholar]
  501. Wieser R.J., Baumann C.E., Oesch F. Cell-contact mediated modulation of the sialylation of contactinhibin. Glycoconjugate J. 1995;12:672–679. doi: 10.1007/BF00731264. [DOI] [PubMed] [Google Scholar]
  502. Wilkins P.P., Moore K.L., McEver R.P., Cummings R.D. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J. Biol. Chem. 1995;270:22677–22680. doi: 10.1074/jbc.270.39.22677. [DOI] [PubMed] [Google Scholar]
  503. Williams A.F., Barclay A.N. The immunoglobulin superfamily—Domains for cell surface recognition. Annu. Rev. Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
  504. Williams A.F., Davis S.J., He Q., Barclay A.N. Structural diversity in domains of the immunoglobulin superfamily. Cold Spring Harbor Symp. Quant. Biol. 1989;54:637–647. doi: 10.1101/sqb.1989.054.01.075. [DOI] [PubMed] [Google Scholar]
  505. Williams W.V., Kieber Emmons T., Weiner D.B., Rubin D.H., Greene M.I. Contact residues and predicted structure of the reovirus type 3-receptor interaction. J. Biol. Chem. 1991;266:9241–9250. [PubMed] [Google Scholar]
  506. Willoughby R.E. Rotaviruses preferentially bind O-linked sialylglycoconjugates and sialomucins. Glycobiology. 1993;3:437–445. doi: 10.1093/glycob/3.5.437. [DOI] [PubMed] [Google Scholar]
  507. Willoughby R.E., Yolken R.H. SA11 rotavirus is specifically inhibited by an acetylated sialic acid. J. Infect. Dis. 1990;161:116–119. doi: 10.1093/infdis/161.1.116. [DOI] [PubMed] [Google Scholar]
  508. Willoughby R.E., Yolken R.H., Schnaar R.L. Rotaviruses specifically bind to the neutral glycosphingolipid asialo-GMl. J. Virol. 1990;64:4830–4835. doi: 10.1128/jvi.64.10.4830-4835.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  509. Wilson G.L., Fox C.H., Fauci A.S., Kehrl J.H. cDNA cloning of the B cell membrane protein CD22: A mediator of B-B cell interactions. J. Exp. Med. 1991;173:137–146. doi: 10.1084/jem.173.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  510. Wilson G.L., Najfeld V., Kozlow E., Menniger J., Ward D., Kehrl J.H. Genomic structure and chromosomal mapping of the human CD22 gene. J. Immunol. 1993;150:5013–5024. [PubMed] [Google Scholar]
  511. Wilson I.A., Skehel J.J., Wiley D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature. 1981;289:366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  512. Wong T.C., Townsend R.R., Lee Y.C. Carbohydr. Res. 1987;170:27–46. doi: 10.1016/0008-6215(87)85003-6. [DOI] [PubMed] [Google Scholar]
  513. Wu G.Y., Wu C.H. Delivery systems for gene therapy. Biotherapy. 1991;3:87–95. doi: 10.1007/BF02175102. [DOI] [PubMed] [Google Scholar]
  514. Xu G., Suzuki T., Hanagata G., Deya E., Kiso M., Hasegawa A., Suzuki Y. Drift of the sialyl-linkage specific recognition of the sialidase of influenza B virus isolates. J. Biochem. 1993;113:304–307. doi: 10.1093/oxfordjournals.jbchem.a124043. [DOI] [PubMed] [Google Scholar]
  515. Xu G., Suzuki T., Maejima Y., Mizoguchi T., Tsuchiya M., Kiso M., Hasegawa A., Suzuki Y. Sialidase of swine influenza A viruses: Variation of the recognition specificities for sialyl linkages and for the molecular species of sialic acid with the year of isolation. Glycoconjugate J. 1995;12:156–161. doi: 10.1007/BF00731360. [DOI] [PubMed] [Google Scholar]
  516. Yang L.J.S., Zeller C.B., Shaper N.L., Kiso M., Hasegawa A., Shapiro R.E., Schnaar R.L. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl. Acad. Sci. USA. 1996;93:814–818. doi: 10.1073/pnas.93.2.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  517. Yolken R.H., Peterson J.A., Vonderfecht S.L., Fouts E.T., Midthun K., Newburg D.S. Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 1992;90:1984–1991. doi: 10.1172/JCI116078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  518. Yuen C.T., Lawson A.M., Chai W.G., Larkin M., Stoll M.S., Stuart A.C., Sullivan F.X., Ahern T.J., Feizi T. Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among O-linked oligosaccharides on an ovarian cystadenoma glycoprotein. Biochemistry. 1992;31:9126–9131. doi: 10.1021/bi00153a003. [DOI] [PubMed] [Google Scholar]
  519. Yuen C.T., Bezouska K., Obrien J., Stoll M., Lemoine R., Lubineau A., Kiso M., Hasegawa A., Bockovich N.J., Nicolaou K.C., Feizi T. Sulfated blood group Lewisa—A superior oligosaccharide ligand for human E-selectin. J. Biol. Chem. 1994;269:1595–1598. [PubMed] [Google Scholar]
  520. Zeng F.Y., Gabius H.J. Sialic acid-binding proteins: Characterization, biological function and application. Z. Naturforsch. C. 1992;47:641–653. doi: 10.1515/znc-1992-9-1001. [DOI] [PubMed] [Google Scholar]
  521. Zeng F.Y., Kaphalia B.S., Ansari G.A., Weigel P.H. Fatty acylation of the rat asialoglycoprotein receptor. The three subunits from active receptors contain covalently bound palmitate and stearate. J. Biol. Chem. 1995;270:21382–21387. doi: 10.1074/jbc.270.36.21382. [DOI] [PubMed] [Google Scholar]
  522. Zimmer G., Reuter G., Schauer R. Use of influenza C virus for detection of 9-O-acetylated sialic acids on immobilized glycoconjugates by esterase activity. Eur. J. Biochem. 1992;204:209–215. doi: 10.1111/j.1432-1033.1992.tb16626.x. [DOI] [PubMed] [Google Scholar]
  523. Zimmer G., Suguri T., Reuter G., Yu R.K., Schauer R., Herrler G. Modification of sialic acids by 9-O-acetylation is detected in human leucocytes using the lectin property of influenza C virus. Glycobiology. 1994;4:343–349. doi: 10.1093/glycob/4.3.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  524. Zimmer G., Klenk H.-D., Herrler G. Identification of a 40-kDa cell surface sialoglycoprotein with the characteristics of a major influenza C virus receptor in a Madin-Darby canine kidney cell line. J. Biol. Chem. 1995;270:17815–17822. doi: 10.1074/jbc.270.30.17815. [DOI] [PubMed] [Google Scholar]

Articles from International Review of Cytology are provided here courtesy of Elsevier

RESOURCES