Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Nov 25;64(2):215–290. doi: 10.1016/0163-7258(94)90040-X

Picornavirus inhibitors

Luis Carrasco 1
PMCID: PMC7133639  PMID: 7533301

Abstract

Picornaviruses are among the best understood animal viruses in molecular terms. A number of important human and animal pathogens are members of the Picornaviridae family. The genome organization, the different steps of picornavirus growth and numerous compounds that have been reported as inhibitors of picornavirus functions are reviewed. The picornavirus particles and several agents that interact with them have been solved at atomic resolution, leading to computer-assisted drug design. Picornavirus inhibitors are useful in aiding a better understanding of picornavirus biology. In addition, some of them are promising therapeutic agents. Clinical efficacy of agents that bind to picornavirus particles has already been demonstrated.

Keywords: Picornavirus, poliovirus, antiviral agents, drug design, virus particles, viral proteases

Abbreviations: 2′-5′A, ppp(A2′p5′A)nA; BFA, brefel A; BFLA1, bafilomycin A1; dsRNA, double-stranded RNA; EMC, encephalomyocarditis; FMDV, foot-and-mouth disease virus; G413, 2-amino-5-(2-sulfamoylphenyl)-1,3,4-thiadiazole; HBB, 2-(α-hydroxybenzyl)-benzimidazole; HIV, human immunodeficiency virus; HPA-23, ammonium 5-tungsto-2-antimonate; ICAM-1, intercellular adhesion molecule-1; IP3, inositol triphosphate; M12325, 5-aminosulfonyl-2,4-dichorobenzoate; 3-MQ, 3-methyl quercetin; IRES, internal ribosome entry site; L protein, leader protein; RF, replicative form; RI, rplicative intermediate; RLP, ribosome landing pad; SFV, Semliki forest virus; TOFA, 5-(tetradecyloxy)-2-furoic acid; VPg, viral protein bound to the genome; VSV, vesicular stomatitis virus

References

  1. Ablashi D.V., Twardzik D.R., Easton J.M., Armstrong G.R., Luetzeler J., Jasmin C., Chermann J.C. Effects of 5-tungsto-2-antimoniate in oncogenic DNA and RNA virus-cell systems. Eur. J. Cancer. 1977;13:713–720. doi: 10.1016/0014-2964(77)90058-5. [DOI] [PubMed] [Google Scholar]
  2. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature. 1989;337:709–716. doi: 10.1038/337709a0. [DOI] [PubMed] [Google Scholar]
  3. Agol V.I. Poliovirus neurovirulence and its attenuation. In: Carrasco L., Sonenberg N., Wimmer E., editors. Regulation of Gene Expression in Animal Viruses. Plenum Press; London, New York: 1993. pp. 305–321. [Google Scholar]
  4. Agrawal S., Tang J.Y., Sun D., Sarin P.S., Zamecnik P.C. Antisense strategies: synthesis and anti-HIV activity of oligoribonucleotides and their phosphorothioate analogs. Ann. N.Y. Acad. Sci. 1992;660:2–10. doi: 10.1111/j.1749-6632.1992.tb21052.x. [DOI] [PubMed] [Google Scholar]
  5. Aktories K. ADP-ribosylating toxins. Curr. Top. Microbiol. Immunol. 1992;175:1–150. doi: 10.1007/978-3-642-76966-5_5. [DOI] [PubMed] [Google Scholar]
  6. Alarcón B., Bugany H., Carrasco L. pppA2′p5A′ blocks vesicular stomatitis virus replication in intact cell. J. Virol. 1984;52:183–187. doi: 10.1128/jvi.52.1.183-187.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alarcón B., González M.E., Carrasco L. Antiherpesvirus action of atropine. Antimicrob. Agents Chemother. 1984;26:702–706. doi: 10.1128/aac.26.5.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Alarcón B., Lacal J.C., Fernández-Sousa J.M., Carrasco L. Screening for new compounds with antiherpes activity. Antiviral. Res. 1984;4:231–244. doi: 10.1016/0166-3542(84)90029-9. [DOI] [PubMed] [Google Scholar]
  9. Alarcón B., Zerial A., Dupiol C., Carrasco L. Antirhinovirus compound 44,081 R.P. inhibits virus uncoating. Antimicrob. Agents Chemother. 1986;30:31–34. doi: 10.1128/aac.30.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Alcalde J., Bonay P., Roa A., Vilaro S., Sandoval I.V. Assembly and disassembly of the Golgi complex: two processes arranged in a cis-trans direction. J. Cell Biol. 1991;116:69–83. doi: 10.1083/jcb.116.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Almela M.J., Gonzalez M.E., Carrasco L. Inhibitors of poliovirus uncoating efficiently block the early membrane permeabilization induced by virus particles. J. Virol. 1991;65:2572–2577. doi: 10.1128/jvi.65.5.2572-2577.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Al-Nakib W., Higgins P.G., Barrow I., Tyrell D.A.J., Lenox-Smith I., Ishitsuka H. Intranasal chalcone, Ro 09-0410, as prophylaxis against rhinovirus infection in human volunteers. J. Antimicrob. Chemother. 1987;20:887–892. doi: 10.1093/jac/20.6.887. [DOI] [PubMed] [Google Scholar]
  13. Al-Nakib W., Higgins P.G., Barrow G.I., Tyrrell D.A.J., Andries K., Bussche G.V., Taylor N., Janssen P.A.J. Suppression of colds in human volunteers challenged with rhinovirus by a new synthetic drug (R 61837) Antimicrob. Agents Chemother. 1989;33:522–525. doi: 10.1128/aac.33.4.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Alonso M.A., Carrasco L. Relationship between membrane permeability and the translation capacity of human HeLa cells studied by means of the ionophore nigericin. Eur. J. Biochem. 1981;118:289–294. doi: 10.1111/j.1432-1033.1981.tb06399.x. [DOI] [PubMed] [Google Scholar]
  15. Alonso M.A., Carrasco L. Permeabilization of mammalian cells to proteins by the ionophore nigericin. FEBS Lett. 1981;127:112–114. doi: 10.1016/0014-5793(81)80354-7. [DOI] [PubMed] [Google Scholar]
  16. Alonso M.A., Carrasco L. Molecular basis of the permeabilization of mammalian cells by ionophores. Eur. J. Biochem. 1982;127:567–569. doi: 10.1111/j.1432-1033.1982.tb06909.x. [DOI] [PubMed] [Google Scholar]
  17. Alonso M.A., Carrasco L. Translation of capped viral mRNAs in poliovirus-infected HeLa cells. EMBO J. 1982;1:913–917. doi: 10.1002/j.1460-2075.1982.tb01271.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Andersen D.O., Murray B.K., Robins R.K., North J.A. In vitro antiviral activity of ribavirin against picornaviruses. Antiviral Chem. Chemother. 1992;3:361–370. [Google Scholar]
  19. Anderson Sillman K., Bartal S., Tershak D.R. Guanidine-resistant poliovirus mutants produce modified 37-kilodalton proteins. J. Virol. 1984;50:922–928. doi: 10.1128/jvi.50.3.922-928.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Andino R., Rieckhof G.E., Baltimore D. A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell. 1990;63:369–380. doi: 10.1016/0092-8674(90)90170-j. [DOI] [PubMed] [Google Scholar]
  21. Andino R., Rieckhof G.E., Trono D., Baltimore D. Substitutions in the protease (3Cpro) gene of poliovirus can suppress a mutation in the 5′ noncoding region. J. Virol. 1990;64:607–612. doi: 10.1128/jvi.64.2.607-612.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ando K., Suzuki S., Tamura G., Arima K. Antiviral activity of mycophenolic acid. Studies on antiviral and antitumor antibiotics. IV. J. Antibiot. Tokyo. 1968;21:649–652. doi: 10.7164/antibiotics.21.649. [DOI] [PubMed] [Google Scholar]
  23. Andries K., Dewindt B., De Brabander M., Stokbroekx R., Janssen P.A. In vitro activity of R 61837, a new antirhinovirus compound. Arch. Virol. 1988;101:155–167. doi: 10.1007/BF01310997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Andries K., Dewindt B., Snoeks J., Willebrords R. Lack of quantitative correlation between inhibition of replication of rhinoviruses by an antiviral drug and their stabilization. Arch. Virol. 1989;106:56–61. doi: 10.1007/BF01311037. [DOI] [PubMed] [Google Scholar]
  25. Anthony D.D., Merrick W.C. Eukaryotic initiation factor (eIF)-4F. Implications for a role in internal initiation of translation. J. biol. Chem. 1991;266:10218–10226. [PubMed] [Google Scholar]
  26. Armstrong J.A., Edmonds M., Nakazato H., Phillips B.A., Vaughn M.H. Polyadenylic acid sequences in the virion RNA of poliovirus and eastern equine encephalitis virus. Science. 1972;176:526–528. doi: 10.1126/science.176.4034.526. [DOI] [PubMed] [Google Scholar]
  27. Arnold E., Luo M., Vriend G., Rossmann M.G., Palmenberg A.C., Parks G.D., Nicklin M.J., Wimmer E. Implications of the picornavirus capsid structure for polyprotein processing. Proc. natn. Acad. Sci. U.S.A. 1987;84:21–25. doi: 10.1073/pnas.84.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ash R.J., Parker R.A., Hagan A.C., Mayer G.D. RMI 15,731 (1-[5-tetradecyloxy-2-furanyl]-ethanone), a new antirhinovirus compound. Antimicrob. Agents Chemother. 1979;16:301–305. doi: 10.1128/aac.16.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Bachrach H.L., Swaney J.B., Vande Woude G.F. Isolation of the structural polypeptides of foot-and-mouth disease virus and analysis of their C-terminal sequences. Virology. 1973;52:520–528. doi: 10.1016/0042-6822(73)90347-4. [DOI] [PubMed] [Google Scholar]
  30. Badger J., Krishnaswamy S., Kremer M.J., Oliveira M.A., Rossmann M.G., Heinz B.A., Rueckert R.R., Dutko F.J., McKinlay M.A. Three-dimensional structures of drug-resistant mutants of human rhinovirus 14. J. molec. Biol. 1989;207:163–174. doi: 10.1016/0022-2836(89)90447-6. [DOI] [PubMed] [Google Scholar]
  31. Badger J., Minor I., Kremer M.J., Oliveira M.A., Smith T.J., Griffith J.P., Guerin D.M.A., Krishnaswamy S., Luo M., Rossmann M.G., McKinlay M.A., Diana G.D., Dutko F.J., Fancher M., Rueckert R.R., Heinz B.A. Vol. 85. 1988. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14; pp. 3304–3308. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Baltera R.F.J., Tershak D.R. Guanidine-resistant mutants of poliovirus have distinct mutations in peptide 2C. J. Virol. 1989;63:4441–4444. doi: 10.1128/jvi.63.10.4441-4444.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Baltimore D. Purification and properties of poliovirus double-stranded ribonucleic acid. J. molec. Biol. 1966;18:421–428. doi: 10.1016/s0022-2836(66)80034-7. [DOI] [PubMed] [Google Scholar]
  34. Baltimore D., Eggers H.J., Franklin R.M., Tamm I. Poliovirus-induced RNA polymerase and the effects of virus-specific inhibitors on its production. Biochemistry. 1963;49:843–849. doi: 10.1073/pnas.49.6.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Baltimore D., Girard M. Vol. 56. 1966. An intermediate in the synthesis of poliovirus RNA; pp. 741–748. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Balzarini J., Mitsuya H., De Clercq E., Broder S. Aurintricarboxylic acid and Evans Blue represent two different classes of anionic compounds which selectively inhibit the cytophathogenecity of human T-cell lymphotropic virus type III/lymphadenopathy-associated virus. Biochem. biophys. Res. Commun. 1986;136:64–71. doi: 10.1016/0006-291x(86)90877-6. [DOI] [PubMed] [Google Scholar]
  37. Baron M.H., Baltimore D. Purification and properties of a host cell protein required for poliovirus replication in vitro. J. biol. Chem. 1982;257:12351–12358. [PubMed] [Google Scholar]
  38. Barrow G.I., Higgins P.G., Tyrrell D.A.J., Andries K. An appraisal of the efficacy of the antiviral R 61837 in rhinovirus infections in human volunteers. Antiviral Chem. Chemother. 1990;1:279–283. [Google Scholar]
  39. Barton D.J., Flanegan J.B. Coupled translation and replication of poliovirus RNA in vitro: synthesis of functional 3D polymerase and infectious virus. J. Virol. 1993;67:822–831. doi: 10.1128/jvi.67.2.822-831.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Basu A., Modak M.J. Observations on the suramin-mediated inhibition of cellular and viral DNA polymerases. Biochem. biophys. Res. Commun. 1985;128:1395–1402. doi: 10.1016/0006-291x(85)91095-2. [DOI] [PubMed] [Google Scholar]
  41. Bauer D.J., Apostolov K., Selway J.W.T. Activity of methisazone against RNA viruses. Ann. N.Y. Acad. Sci. 1970;173:314–319. [Google Scholar]
  42. Bauer D.J., Selway J.W., Batchelor J.F., Tisdale M., Caldwell I.C., Young D.A. 4′,6-Dichloroflavan (BW683C), a new antirhinovirus compound. Nature. 1981;292:369–370. doi: 10.1038/292369a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Baxt B. Effect of lysosomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res. 1987;7:257–271. doi: 10.1016/0168-1702(87)90032-3. [DOI] [PubMed] [Google Scholar]
  44. Beck E., Forss S., Strebel K., Cattaneo R., Feil G. Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Res. 1983;11:7873–7885. doi: 10.1093/nar/11.22.7873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Belsham G.J. Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J. 1992;11:1105–1110. doi: 10.1002/j.1460-2075.1992.tb05150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Benedetto A., Rossi G.B., Amici C., Belardelli F., Cioe L., Carruba G., Carrasco L. Inhibition of animal virus production by means of translation inhibitors unable penetrate normal cells. Virology. 1980;106:123–132. doi: 10.1016/0042-6822(80)90227-5. [DOI] [PubMed] [Google Scholar]
  47. Benziger D.P., Edelson J. Disposition of arildone, an antiviral agent, after various routes of administration. Antimicrob. Agents Chemother. 1982;22:475–481. doi: 10.1128/aac.22.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Bergstrom D.E., Brattesani A.J., Ogawa M.K., Reddy P.A., Schweickert M.J., Balzarini J., De Clercq E. Antiviral activity of C-5 substituted tubercidin analogues. J. Med. Chem. 1984;27:285–292. doi: 10.1021/jm00369a010. [DOI] [PubMed] [Google Scholar]
  49. Bernstein H.D., Sarnow P., Baltimore D. Genetic complementation among poliovirus mutants derived from an infectious cDNA clone. J. Virol. 1986;60:1040–1049. doi: 10.1128/jvi.60.3.1040-1049.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Bernstein H.D., Sonenberg N., Baltimore D. Poliovirus mutant that does not selectively inhibit host cell protein synthesis. Mol. Cell. Biol. 1985;5:2913–2923. doi: 10.1128/mcb.5.11.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Better M., Bernhard S.L., Lei S.-P., Fishwild D.M., Carroll S.F. Activity of recombinant mitogillin and mitogillin immunoconjugates. J. biol. Chem. 1992;267:16712–16718. [PubMed] [Google Scholar]
  52. Bienz K., Egger D., Pfister T., Troxler M. Structural and functional characterization of the poliorurs replication complex. J. Virol. 1992;66:2740–2747. doi: 10.1128/jvi.66.5.2740-2747.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Bienz K., Egger D., Troxler M., Pasamontes L. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J. Virol. 1990;64:1156–1163. doi: 10.1128/jvi.64.3.1156-1163.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Bjorck L., Grubb A., Kjellen L. Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J. Virol. 1990;64:941–943. doi: 10.1128/jvi.64.2.941-943.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Bonina L., Orzalesi G., Merendino R., Arena A., Mastroeni P. Structure-activity relationships of new antiviral compounds. Antimicob. Agents Chemother. 1982;22:1067–1069. doi: 10.1128/aac.22.6.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Bonneau A., Sonenberg N. Proteolysis of the p220 component of the cap-binding protein complex is not sufficient for complete inhibition of host cell protein sythesis after poliovirus infection. J. Virol. 1987;61:986–991. doi: 10.1128/jvi.61.4.986-991.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Borsa J., Morash B.D., Sargent M.D., Copps T.P., Lievaart P.A., Szekely J.G. Two modes of entry of reovirus into into L cells. J. gen. Virol. 1979;45:161–170. doi: 10.1099/0022-1317-45-1-161. [DOI] [PubMed] [Google Scholar]
  58. Bowman E.J., Siebers A., Altendorf K. Vol. 85. 1988. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms—animal cells—and plant cells; pp. 7972–7976. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Brown D.T., Burlingham B.T. Penetration of host cell membranes by adenovirus 2. J. Virol. 1973;12:386–396. doi: 10.1128/jvi.12.2.386-396.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Brown F., Planterose D.N., Stewart D.L. Effect of p-fluorophenylalanine on the multiplication of foot-and-mouth disease virus. Nature. 1961;191:414–415. [Google Scholar]
  61. Brown G.C., Ackermann W.W. Vol. 77. 1951. Effect of dl-ethionine on poliomyelitis virus growth in tissue culture; pp. 367–369. (Proc. Soc. exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  62. Bucknall R.A., Swallow D.L., Moores H., Harrad J. A novel substituted guanidine with high activity in vitro against rhinoviruses. Nature. 1973;246:144–145. doi: 10.1038/246144a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Burkhardt R. Fatty acids stimulate phosphatidylcholine synthesis and CTP:choline-phosphate cytidylytransferase in type II pneumocytes isolated from adult rat lung. Biochem. J. 1991;254:495–500. doi: 10.1042/bj2540495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Butterworth B.E., Rueckert R.R. Kinetics of synthesis and cleavae of encephalomyocarditis virus-specific proteins. Virology. 1972;50:535–549. doi: 10.1016/0042-6822(72)90405-9. [DOI] [PubMed] [Google Scholar]
  65. Caliguiri L.A., McSharry J.J., Lawrence G.W. Effect of arildone on modifications of poliovirus in vitro. Virology. 1980;105:86–93. doi: 10.1016/0042-6822(80)90158-0. [DOI] [PubMed] [Google Scholar]
  66. Caliguiri L.A., Tamm I. Action of guanidine on the replication of poliovirus RNA. Virology. 1968;35:408–417. doi: 10.1016/0042-6822(68)90219-5. [DOI] [PubMed] [Google Scholar]
  67. Caliguiri L.A., Tamm I. Distribution and translation of poliovirus RNA in guanidine-treated cells. Virology. 1968;36:223–231. doi: 10.1016/0042-6822(68)90139-6. [DOI] [PubMed] [Google Scholar]
  68. Caliguiri L.A., Tamm I. Membranous structures associated with translation and transcription of poliovirus RNA. Science. 1969;166:885–886. doi: 10.1126/science.166.3907.885. [DOI] [PubMed] [Google Scholar]
  69. Caliguiri L.A., Tamm I. Characterization of poliovirus-specific structures associated with cytoplasmic membranes. Virology. 1970;42:112–122. doi: 10.1016/0042-6822(70)90243-6. [DOI] [PubMed] [Google Scholar]
  70. Caliguiri L.A., Tamm I. The role of cytoplasmic membranes in poliovirus biosynthesis. Virology. 1970;42:100–111. doi: 10.1016/0042-6822(70)90242-4. [DOI] [PubMed] [Google Scholar]
  71. Caliguiri A.C., Tamm I. Guanidine and 2-(a-hydroxybenzyl)-benzimidazole (HBB): selective inhibitors of picornavirus multiplication. In: Carter W.A., editor. Selctive Inhibitors of Viral Functions. CRC Press; Cleveland, Ohio: 1973. pp. 257–293. [Google Scholar]
  72. Callahan L.N., Phelan M., Mallinson M., Norcross M.A. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without interfering with gp120-CD4 interactions. J. Virol. 1991;65:1543–1550. doi: 10.1128/jvi.65.3.1543-1550.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Carrasco L. The inhibition of cell functions after viral infection. A proposed general mechanism. FEBS Lett. 1977;76:11–15. doi: 10.1016/0014-5793(77)80110-5. [DOI] [PubMed] [Google Scholar]
  74. Carrasco L. Membrane leakiness after viral infection and a new approach to the development of antiviral agents. Nature. 1978;272:694–699. doi: 10.1038/272694a0. [DOI] [PubMed] [Google Scholar]
  75. Carrasco L. Modification of membrane permeability induced by animal viruses early infection. Virology. 1981;113:623–629. doi: 10.1016/0042-6822(81)90190-2. [DOI] [PubMed] [Google Scholar]
  76. Carrasco L. Mechanisms of virus-induced cell toxicity: a general overview. In: Carrasco L., editor. Mechanism of Viral Toxicity in Animal Cells. CRC Press Inc; Boca Raton, Fl: 1987. pp. 1–4. [Google Scholar]
  77. Carrasco L., Castrillo J.L. The regulation of translation in picornavirus infected cells. In: Carrasco L., editor. Mechanisms of Viral Toxicity in Animal Cells. CRC Press Inc; Boca Raton, FL: 1987. pp. 115–146. [Google Scholar]
  78. Carrasco L., Esteban M. Modification of membrane permeability in vaccinia virus-infected cells. Virology. 1982;117:62–69. doi: 10.1016/0042-6822(82)90507-4. [DOI] [PubMed] [Google Scholar]
  79. Carrasco L., Fernández-Puentes C., Alonso M.A., Lacal J.C., Muñoz A., Fernández-Sousa J.M., Vásquez D. New approaches to antiviral agents. In: De las Heras F., Vega D., editors. Medicinal Chemistry Advances. Pergamon Press; Oxford: 1981. pp. 211–224. [Google Scholar]
  80. Carrasco L., Harvey R., Blanchard C., Smith A.E. Regulation of translation of eukaryotic virus mRNAs. In: Neth R., Gallo R.C., Hofschneider P.H., Mannweiler K., editors. Modern Trends in Human Leukemia III. Springer-Verlag; Berlin: 1979. [Google Scholar]
  81. Carrasco L., Otero M.J., Castrillo J.L. Modification of membrane permeability by animal viruses. Pharmacol. Ther. 1989;40:171–212. doi: 10.1016/0163-7258(89)90096-x. [DOI] [PubMed] [Google Scholar]
  82. Carrasco L., Pérez L., Irurzun A., Lama J., Martínez-Abarca F., Rodrígez P., Guinea R., Castrillo J.L., Sanz M.A., Ayala M.J. Modification of membrane permeability by animal viruses. In: Carrasco L., Sonenberg N., Wimmer E., editors. Regulation of Gene Expression in Animal Viruses. Plenum Press; London, New York: 1993. pp. 283–303. [Google Scholar]
  83. Carrasco L., Smith A.E. Sodium ions and the shut-off of host cell protein synthesis by picornaviruses. Nature. 1976;264:807–809. doi: 10.1038/264807a0. [DOI] [PubMed] [Google Scholar]
  84. Carrasco L., Smith A.E. Molecular biology of animal virus infection. Pharmac. Ther. 1980;9:311–355. doi: 10.1016/0163-7258(80)90022-4. [DOI] [PubMed] [Google Scholar]
  85. Carrasco L., Vázquez D. Differences in eukaryotic ribosomes detected by the selective action of antibiotic. Biochim. biophys. Acta. 1973;319:209–215. doi: 10.1016/0005-2787(73)90011-7. [DOI] [PubMed] [Google Scholar]
  86. Carrasco L., Vázquez D. Viral translation inhibitors. In: Hahn F.E., editor. Vol. 6. Springer-Verlag; Berlin: 1983. pp. 1980–1990. (Antibiotics). [Google Scholar]
  87. Carrasco L., Vázquez D. Molecular bases for the action and selectivity of nucleoside antibiotics. Med. Res. Rev. 1984;4:471–512. doi: 10.1002/med.2610040403. [DOI] [PubMed] [Google Scholar]
  88. Carrillo E.C., Giachetti C., Campos R.H. Effect of lysosomotropic agents on the foot-and-mouth disease virus replication. Virology. 1984;135:542–545. doi: 10.1016/0042-6822(84)90208-3. [DOI] [PubMed] [Google Scholar]
  89. Carrillo E.C., Giachetti C., Campos R. Early steps in FMDV replication: further analysis on the effects of chloroquine. Virology. 1985;147:118–125. doi: 10.1016/0042-6822(85)90232-6. [DOI] [PubMed] [Google Scholar]
  90. Castrillo J.L., Carrasco L. Action of 3-methylquercetin on poliovirus RNA replication. J. Virol. 1987;61:3319–3321. doi: 10.1128/jvi.61.10.3319-3321.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Castrillo J.L., Carrasco L. Adenovirus late protein synthesis is resistant to the inhibition of translation induced by poliovirus. J. biol. Chem. 1987;262:7328–7334. [PubMed] [Google Scholar]
  92. Castrillo J.L., Vanden-Berghe D., Carrasco L. 3-Methylquercetin is a potent and selective inhibitor of poliovirus RNA synthesis. Virology. 1986;152:219–227. doi: 10.1016/0042-6822(86)90386-7. [DOI] [PubMed] [Google Scholar]
  93. Cavener D., Ray S. Eukaryotic start and stop translation sites. Nucleic Acids Res. 1991;19:3185–3192. doi: 10.1093/nar/19.12.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Chapman M.S., Minor I., Diana G.D., Andries K. Human rhinovirus 14 complexed with antiviral compound R 61837. J. molec. Biol. 1991;217:455–463. doi: 10.1016/0022-2836(91)90749-v. [DOI] [PubMed] [Google Scholar]
  95. Charachon G., Sobol R.W., Bisbal C., Salehzada T., Silhol M., Charubala R., Pfleiderer W., Lebleu B., Suhadolnik R.J. Phosphorothioate analogues of (2′–5′)(A)4:agonist and antagonist activities in intact cells. Biochemistry. 1990;29:2550–2556. doi: 10.1021/bi00462a017. [DOI] [PubMed] [Google Scholar]
  96. Chebath J., Benech P., Revel M., Vigneron M. Constitutive expression of (2′–5′) oligo A synthetase confers resistance to picornavirus infection. Nature. 1987;330:587–588. doi: 10.1038/330587a0. [DOI] [PubMed] [Google Scholar]
  97. Chen S., Matsuoka Y., Compans R.W. Assembly and polarized release of punta toro virus and effects of brefeldinA. J. Virol. 1991;65:1427–1439. doi: 10.1128/jvi.65.3.1427-1439.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Chermann J.C., Sinoussi F.C., Jasmin C. Inhibition of RNA-dependent DNA polymerase of murine oncornaviruses by ammoium-5-tungsto-2-antimoniate. Biochem. biophys. Res. Commun. 1975;65:1229–1236. doi: 10.1016/s0006-291x(75)80361-5. [DOI] [PubMed] [Google Scholar]
  99. Cheung P., Banfield B.W., Tufaro F. Brefeldin A arrest the maduration and egress of herpes simplex virus during infection. J. Virol. 1991;65:1893–1904. doi: 10.1128/jvi.65.4.1893-1904.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Cho M.W., Richards O.C., Dmitrieva T.M., Agol V., Enrenfeld E. RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3Dpol. J. Virol. 1993;67:3010–3018. doi: 10.1128/jvi.67.6.3010-3018.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Chow M., Newman J.F.E., Filman D., Hogle J.M., Rowlands D.J., Brown F. Myristilation of picornavirus capsid protein VP4 and its structural significance. Nature. 1987;327:482–486. doi: 10.1038/327482a0. [DOI] [PubMed] [Google Scholar]
  102. Clark M., Hämemerle T., Wimmer E., Dasgupta A. Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO J. 1991;10:2941–2947. doi: 10.1002/j.1460-2075.1991.tb07844.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Clarke B.E., Brown A.L., Currey K.M., Newton S.E., Rowlands D.J., Carroll A.R. Potential secondary and tertiary structure in the genomic RNA of foot-and-mouth disease virus. Nucleic Acids Res. 1987;15:7067–7079. doi: 10.1093/nar/15.17.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Cline J.C., Nelson J.D., Gerzon K., Williams R.H., DeLong D.C. In vitro antiviral activity of mycophenolic acid and its reversal by guanine-type compounds. Appl. Microbiol. 1969;18:14–20. doi: 10.1128/am.18.1.14-20.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Coccia E.M., Romeo G., Nissim A., Marziali G., Albertini R., Affabris E., Battistini A., Fiorucci G., Orsatti R., Rossi G.B., Chebath J. A full-length murine 2–5A synthetase cDNA transfected in NIH-3T3 cells impairs EMCV but not VSV replication. Virology. 1990;179:228–233. doi: 10.1016/0042-6822(90)90292-y. [DOI] [PubMed] [Google Scholar]
  106. Colonno R.J., Callahan P.L., Long W.J. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J. Virol. 1986;57:7–12. doi: 10.1128/jvi.57.1.7-12.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Conti C., Genovese D., Santoro R., Stein M.L., Orsi N., Fiore L. Activities and mechanisms of action of halogen-substituted flavonoids against poliovirus type 2 infection in vitro. Antimicrob. Agents Chemother. 1990;34:460–466. doi: 10.1128/aac.34.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Contreras A., Carrasco L. Selective inhibition of protein synthesis in virus-infected mammalian cells. J. Virol. 1979;29:114–122. doi: 10.1128/jvi.29.1.114-122.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Cotten M., Wagner E., Zatloukal K., Phillips S., Curiel D.T., Birnstiel M.L. Vol. 89. 1992. High-efficiency receptor-mediated delivery of small and large (48 kilobase) gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles; pp. 6094–6098. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Cowen W.F., Heydrick F.P. Incorporation of C18 polyunsaturated fatty acids into L cells phospholipids under normal conditions and during infection with Venezuelan equine encephalitis virus (VEE-arbovirus) Exp. Cell Res. 1972;72:354–360. doi: 10.1016/0014-4827(72)90002-x. [DOI] [PubMed] [Google Scholar]
  111. Dales S. Early events in cell-animal virus interactions. Bacteriol. Rev. 1973;37:103–135. doi: 10.1128/br.37.2.103-135.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Dales S., Eggers H.J., Tamm I., Palade G.E. Electron microscopic study of the formation of poliovirus. Virology. 1965;26:379–389. doi: 10.1016/0042-6822(65)90001-2. [DOI] [PubMed] [Google Scholar]
  113. Dasgupta A. Purification of host factor required for in vitro transcription of poliovirus RNA. Virology. 1983;128:245–251. doi: 10.1016/0042-6822(83)90335-5. [DOI] [PubMed] [Google Scholar]
  114. Dasgupta A., Zabel P., Baltimore D. Dependence of the activity of the poliovirus replicase on the host cell protein. Cell. 1980;19:423–429. doi: 10.1016/0092-8674(80)90516-4. [DOI] [PubMed] [Google Scholar]
  115. Davidoff F. Guanidine derivatives in medicine. N. Engl. J. Med. 1973;289:141–146. doi: 10.1056/NEJM197307192890308. [DOI] [PubMed] [Google Scholar]
  116. Davies M.V., Pelletier J., Meerovitch K., Sonenberg N., Kaufman R.J. The effect of poliovirus proteinase 2Apro expression on cellular metabolism. Inhibition of DNA replication, RNA polymerase II transcription, and translation. J. biol. Chem. 1991;266:14714–14720. [PubMed] [Google Scholar]
  117. Dawson K.M., Stewart A., Stebbing N. Absence of significant antiviral effects of beta-gamma-methylene GTP on encephalomyocarditis virus infection of L cells and mice. J. Gen. Virol. 1979;45:237–240. doi: 10.1099/0022-1317-45-1-237. [DOI] [PubMed] [Google Scholar]
  118. De Clercq E. Suramin: a potent inhibitor of the reverse transcriptase of RNA tumor viruses. Cancer Lett. 1979;8:9–22. doi: 10.1016/0304-3835(79)90017-x. [DOI] [PubMed] [Google Scholar]
  119. De Clercq E. Antiviral and antimetabolic activities of neplanocins. Antimicrob. Agents Chemother. 1985;28:84–89. doi: 10.1128/aac.28.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. De Clercq E., Bergstrom D.E., Holy A., Montgomery A. Broad-spectrum antiviral activity of adenosine analogues. Antiviral Res. 1984;4:119–133. doi: 10.1016/0166-3542(84)90012-3. [DOI] [PubMed] [Google Scholar]
  121. De Clercq E., Bernaers R., Bergstrom D.E., Robins M.J., Montgomery J.A., Holy A. Antirhinovirus activity of purine nucleoside analogs. Antimicrob. Agents Chemother. 1986;29:482–487. doi: 10.1128/aac.29.3.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. De Clercq E., Bernaerts R., Shealy Y.F., Montgomery J.A. Broad-spectrum antiviral activity of carbodine, the carbocyclic analogue of cytidine. Biochem. Pharmac. 1990;39:319–325. doi: 10.1016/0006-2952(90)90031-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. De Clercq E., Descamps J., De Somer P., Holy A. (S)-9-(2,3-Dihydroxypropyl)adenine: an aliphatic nucleoside analog with broad-spectrum antiviral activity. Science. 1978;200:563–565. doi: 10.1126/science.200.4341.563. [DOI] [PubMed] [Google Scholar]
  124. De Clercq E., Montgomery A. Broad-spectrum antiviral activity of the carbocyclic analog of 3-deazaadenosine. Antiviral Res. 1983;3:17–24. doi: 10.1016/0166-3542(83)90011-6. [DOI] [PubMed] [Google Scholar]
  125. De Clercq E., Murase J., Marquez V.E. Broad-spectrum antiviral and cytocidal activity of cyclopeentenylcytosine, a carbocyclic nuclosside targeted at CTP synthetase. Biochem. Pharmac. 1991;41:1821–1829. doi: 10.1016/0006-2952(91)90120-T. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Degols G., Leonetti J.P., Gagnor C., Lemaitre M., Lebleu B. Antiviral activity and possible mechanisms of action of oligonuckleotides-poly (l-lysine) conjugates targeted to vesicular stomatitis virus mRNA and genomic RNA. Nucleic Acids Res. 1989;17:9341–9350. doi: 10.1093/nar/17.22.9341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. de la Torre J.C., Alarcón B., Marinéz-Salas E., Carrasco L., Domingo E. Ribavirin cures cells of a persistent infection with foot-and-mouth disease virus in vitro. J. Virol. 1987;61:233–235. doi: 10.1128/jvi.61.1.233-235.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. de la Torre J.C., Wimmer E., Holland J.J. Very high frequency of reversion to guanidine resistance in clonal pools of guanidine-dependent type 1 poliovirus. J. Virol. 1990;64:664–671. doi: 10.1128/jvi.64.2.664-671.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Delong D., Reed S.E. Inhibition of rhinovirus replication in organ culture by a potential antiviral drug. J. Infect. Dis. 1980;141:87–91. doi: 10.1093/infdis/141.1.87. [DOI] [PubMed] [Google Scholar]
  130. De Maeyer E., Galasso G., Schellekens H. Elsevier/North-Holland Biomedical Press; Amsterdam: 1981. The Biology of the Interferon System. [Google Scholar]
  131. Desideri N., Sestili I., Stein M.L., Conti C., Tomao P., Orsi N. Synthesis and anti-rhinovirus 1B activity of oxazolinylflavans. Antiviral Chem. Chemother. 1990;1:307–312. [Google Scholar]
  132. Diana G., Mallamo J.P. Correlation of pocket size and shape with antiviral activity. J. molec. Biol. 1993;230:226–227. [Google Scholar]
  133. Diana G.D., McKinlay M.A., Brisson C.J., Zalay E.S., Miralles J.V., Salvador U.J. Isoxazoles with antipicornavirus activity. J. med. Chem. 1985;28:748–752. doi: 10.1021/jm00383a010. [DOI] [PubMed] [Google Scholar]
  134. Diana G.D., McKinlay M.A., Otto M.J., Akullian V., Oglesby C. [[4,5-Dihydro-2-oxazolyl)phenoxy]alkyl]isoxazoles. Inhibitors of picornavirus uncoating. J. med. Chem. 1985;28:1906–1910. doi: 10.1021/jm00150a025. [DOI] [PubMed] [Google Scholar]
  135. Diana G.D., Nitz T.J., Mallamo J.P., Treasurywala A. Antipicornavirus compounds: use of rational drug design and molecular modelling. Antiviral Chem. Chemother. 1993;4:1–10. [Google Scholar]
  136. Diana G.D., Otto M.J., McKinlay M.A. Inhibitors of picornavirus uncoating as antiviral agents. Pharmac. Ther. 1985;29:287–297. doi: 10.1016/0163-7258(85)90005-1. [DOI] [PubMed] [Google Scholar]
  137. Diana G.D., Salvador U.J., Zalay E.S., Carabateas P.M., Williams G.L., Collins J.C., Pancic F. Antiviral activity of some b-diketones. 2. Aryloxy alkyl diketones. In vitro activity against both RNA and DNA viruses. J. med. Chem. 1977;28:757–761. doi: 10.1021/jm00216a004. [DOI] [PubMed] [Google Scholar]
  138. Diana G.D., Salvador U.J., Zalay E.S., Johnson R.E., Collins J.C., Johnson D., Hinshaw W.B., Lorenz R.R., Thielking W.H., Pancic F. Antiviral activity of some b-diketones. 1. Aryl alkyl diketones. In vitro activity against both RNA and DNA viruses. J. med. Chem. 1977;20:750–756. doi: 10.1021/jm00216a003. [DOI] [PubMed] [Google Scholar]
  139. Diana G.D., Treasurywala A.M., Bailey T.R., Oglesby R.C., Pevear D.C., Dutko F.J. A model for compounds active against human rhinovirus-14 based on X-ray crystallography data. J. med. Chem. 1990;33:1306–1311. doi: 10.1021/jm00167a006. [DOI] [PubMed] [Google Scholar]
  140. Dimmock N.J. Review article initial stages in infection with animal viruses. J. Gen. Virol. 1982;59:1–22. doi: 10.1099/0022-1317-59-1-1. [DOI] [PubMed] [Google Scholar]
  141. Dinter Z., Bengston Z. Suppression of the inhibitory action of guanidine on virus multiplication by some amino acids. Virology. 1964;24:254–261. doi: 10.1016/0042-6822(64)90164-3. [DOI] [PubMed] [Google Scholar]
  142. Domingo E. RNA virus evolution and the control of viral disease. Prog. Drug Res. 1989;33:93–133. doi: 10.1007/978-3-0348-9146-2_5. [DOI] [PubMed] [Google Scholar]
  143. Domingo E. Genetic variation and quasi-species. Curr. Opin. Genetic Dev. 1992;2:61–63. doi: 10.1016/s0959-437x(05)80323-5. [DOI] [PubMed] [Google Scholar]
  144. Doms R.W., Russ G., Yewdell J.W. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 1989;109:61–72. doi: 10.1083/jcb.109.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Donaldson J.G., Finazzi D., Klausner R.D. Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature. 1992;360:350–352. doi: 10.1038/360350a0. [DOI] [PubMed] [Google Scholar]
  146. Dorsett P.H., Kerstine E.E., Powers L.J. Letter: Antiviral activity of gossypol and apogossypol. J. Pharm. Sci. 1975;64:1073–1075. doi: 10.1002/jps.2600640654. [DOI] [PubMed] [Google Scholar]
  147. Drake J.W. Vol. 90. 1993. Rates of spontaneous mutation among RNA viruses; pp. 4171–4175. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Dröse S., Bindseil K.U., Bowman E.J., Siebers A., Zeeck A., Altendorf K. Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry. 1993;32:3902–3906. doi: 10.1021/bi00066a008. [DOI] [PubMed] [Google Scholar]
  149. Dunnebacke T.H., Levinthal J.D., Williams R.C. Entry and release of poliovirus as observed by electron microscopy of cultured cells. J. Virol. 1969;4:505–513. doi: 10.1128/jvi.4.4.505-513.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Durkin J.P., Shier W.T. Staphylococcal delta toxin stimulates endogeneous phospholipase A2 activity and prostaglandin synthesis in fibroblasts. Biochim. biophys. Acta. 1981;814:319–326. doi: 10.1016/0005-2760(81)90175-2. [DOI] [PubMed] [Google Scholar]
  151. Egberts E., Hackett P.B., Traub P. Alteration of the intracellular energetic and ionic conditions by mengovirus infection of Ehrlich ascites tumor cells and its influence on protein synthesis in the midphase of infection. J. Virol. 1977;22:591–597. doi: 10.1128/jvi.22.3.591-597.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Eggers H.J. Successful treatment of entrovirus-infected mice by 2-(a-hydroxybenzil)-benzimidazole and guanidine. J. exp. Med. 1976;143:1367–1382. doi: 10.1084/jem.143.6.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Eggers H.J. Selective inhibition of uncoating of e chovirus 12 by rhodanine. A study onearly virus-cell interactions. Virology. 1977;78:241–252. doi: 10.1016/0042-6822(77)90095-2. [DOI] [PubMed] [Google Scholar]
  154. Eggers H.J. Benzimidazoles. In: Came P.E., Caliguiri L.A., editors. Chemotherapy of Viral Infections. Springer Verlag; Berlin: 1982. pp. 377–417. [Google Scholar]
  155. Eggers H.J. Antiviral agents against picornaviruses. Antiviral. Res. 1985;(Suppl. 1):57–65. doi: 10.1016/s0166-3542(85)80009-7. [DOI] [PubMed] [Google Scholar]
  156. Eggers H.J., Bode B., Brown D.T. Cytoplasmic localization of the uncoating of picornaviruses. Virology. 1979;92:211–218. doi: 10.1016/0042-6822(79)90226-5. [DOI] [PubMed] [Google Scholar]
  157. Eggers H.J., Rosenwirth B. Isolation and characterzation of an arildone-resistant poliovirus 2 mutant with an altered capsid protein VP1. Antiviral. Res. 1988;9:23–35. doi: 10.1016/0166-3542(88)90064-2. [DOI] [PubMed] [Google Scholar]
  158. Eggers H.J., Tamm I. On the mechanism of selective inhibition of enterovirus multiplication by 2-(alpha-hydroxybenzyl)-benzimidazole. Virology. 1962;18:426–438. [Google Scholar]
  159. Eggers H.J., Tamm I. Inhibition of Enterovirus ribonucleic acid synthesis by 2-(alpha-hydroxy-benzyl)-benzimidazole. Nature. 1963;197:1327–1328. [Google Scholar]
  160. Eggers H.J., Tamm I. Drug dependence of entroviruses: variants of coxsackie A9 and ECHO 13 viruses that require 2-(a-hydroxybenzyl)-benzimidazole for growth. Virology. 1963;20:62–74. [Google Scholar]
  161. Eggers H.J., Tamm I. Coxsackie A9 virus: mutation from drug dependence to drug independence. Science. 1965;148:97–98. doi: 10.1126/science.148.3666.97. [DOI] [PubMed] [Google Scholar]
  162. Endo Y., Mitsui K., Motizuki M., Tsurugi K. Mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. biol. Chem. 1987;262:5908–5912. [PubMed] [Google Scholar]
  163. Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukarvotic ribosomes. J. biol. Chem. 1987;262:8128–8130. [PubMed] [Google Scholar]
  164. Eppstein D.A., Marsh V., Schryver B.B., larsen M.A., Barnett J.W., Verheyden J.P.H., Prisbe J. Analogs of (A2′p)nA. Correlation of structure of analogs of ppp(A2′p)2A and (A2′p)2A with stability and biological activity. J. biol. Chem. 1982;257:13390–13397. [PubMed] [Google Scholar]
  165. Eppstein D.A., Schryvr B.B., Marsh Y.V. Stereoconfigu ration markedly affects the biochemical and biological properties of phosphorothhioate analogs of 2–5A core, (A2′p5′)2A. J. biol. Chem. 1986;261:5999–6003. [PubMed] [Google Scholar]
  166. Etchison D., Ehrenfeld E. Comparison of replication complexes synthesizing poliovirus RNA. Virology. 1981;111:33–46. doi: 10.1016/0042-6822(81)90651-6. [DOI] [PubMed] [Google Scholar]
  167. Etchison D., Milburn S.C., Edery I., Sonenberg N., Hershey J.W. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and cap binding protein complex. J. biol. Chem. 1982;257:14806–14810. [PubMed] [Google Scholar]
  168. Everaert L., Vrijsen R., Boeye A. Eclipse products of poliovirus after cold-synchronized infection of HeLa cells. Virology. 1989;171:76–82. doi: 10.1016/0042-6822(89)90512-6. [DOI] [PubMed] [Google Scholar]
  169. Falk M.M., Grigera P.R., Bergmann I.E., Zibert A., Multhaup G., Beck E. Foot-and-mouth disease virus 3C induces specific proteolytic cleavege of host cell histone H3. J. Virol. 1990;64:748–756. doi: 10.1128/jvi.64.2.748-756.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Feduchi E., Esteban M., Carrasco L. Reovirus type 3 synthesizes proteins in interfeon-treated HeLa cells with out reversing the antiviral state. Virology. 1988;164:420–426. doi: 10.1016/0042-6822(88)90555-7. [DOI] [PubMed] [Google Scholar]
  171. Felix H. Permeabilized cells. Anal. Biochem. 1982;120:211–234. doi: 10.1016/0003-2697(82)90340-2. [DOI] [PubMed] [Google Scholar]
  172. Fenwick M.L., Cooper P.D. Early interactions between poliovirus and ERK cells. Some observations on the nature and significance of the rejected particles. Virology. 1962;18:212–223. doi: 10.1016/0042-6822(62)90007-7. [DOI] [PubMed] [Google Scholar]
  173. Fernandez H., Banks G., Smith R. Ribavirin: a clinical overview. Eur. J. Epidemiol. 1986;2:1–14. doi: 10.1007/BF00152711. [DOI] [PubMed] [Google Scholar]
  174. Fernandez-Larsson R., Patterson J.L. Ribavirin is an inhibitor of human immunodeficiency virus reverse transcriptase. Am. Soc. Pharm. Exp. Therapy. 1990;38:766–770. [PubMed] [Google Scholar]
  175. Fernández-Puentes C., Carrasco L. Viral infection permeabilizes mammalian cells to protein toxins. Cell. 1980;20:769–775. doi: 10.1016/0092-8674(80)90323-2. [DOI] [PubMed] [Google Scholar]
  176. Filman D.J., Syed R., Chow M., Macadam A.J., Minor P.D., Holge J.M. Structural factors that control conformation transitions and serotype specificity in type 3 poliovirus. EMBO J. 1989;8:1567–1579. doi: 10.1002/j.1460-2075.1989.tb03541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Fitz Gerald D.J., Padmanabhan R., Pastan I., Willingham M.C. Adenovirus-induced release of epidermal growth factor and pseudomonas toxin into the cytosol of KB cells during receptor-mediated endocytosis. Cell. 1983;32:607–617. doi: 10.1016/0092-8674(83)90480-4. [DOI] [PubMed] [Google Scholar]
  178. Flanegan J.B., Baltimore D. Vol. 74. 1977. Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A) pp. 3677–3680. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Flanegan J.B., Petterson R.F., Ambros V., Hewlett N.J., Baltimore D. Vol. 74. 1977. Covalent linkage of protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus; pp. 961–965. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Flanagan J.B., Van Dyke T.A. Isolation of a soluble and template-dependent poliovirus RNA polymerase that copies virion RNA in vitro. J. Virol. 1979;32:155–161. doi: 10.1128/jvi.32.1.155-161.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Fletcher R.D., Hirschfield J.E., Forbes M. A common mode of antiviral action for ammonium ions and various amines. Nature. 1965;207:664–665. doi: 10.1038/207664a0. [DOI] [PubMed] [Google Scholar]
  182. Fox M.P., Bopp L.H., Pfau C.J. Contact inactivation of RNA and DNA viruses by N-methyl isatin beta-thiosemicarbazone and CuSO4. Ann. N.Y. Acad. Sci. 1977;284:533–543. doi: 10.1111/j.1749-6632.1977.tb21986.x. [DOI] [PubMed] [Google Scholar]
  183. Fox M.P., Otto M.J., McKinlay M.A. Prevention of rhinovirus and poliovirus uncoating by WIN 51711, a new antiviral drug. Antimicrob. Agents Chemother. 1986;30:110–116. doi: 10.1128/aac.30.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Fricks C.E., Hogle J.M. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 1990;64:1934–1945. doi: 10.1128/jvi.64.5.1934-1945.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Friedman R.M. Basis for variable response of arboviruses to guanidine treatment. J. Virol. 1970;6:628–636. doi: 10.1128/jvi.6.5.628-636.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Fujiwara T., Oda K., Yokota S., Takatsuki A., Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J. biol. Chem. 1988;263:18545–18552. [PubMed] [Google Scholar]
  187. Fukuchi K., Sakagami H., Ikeda M., Kawazoe Y., Ohara T., Konno K., Ichiwa S., Hata N., Kondo H., Nonoyama M. Inhibition of herpes virus infection by pine cone antitumor substances. Antiviral Res. 1989;9:313–317. [PubMed] [Google Scholar]
  188. Fukuchi K., Sakagami H., Okuda T., Hatano T., Tanuma S., Kitajima K., Inoue Y., Inoue S., Ichikawa S., Nonoyama M., Konno K. Inhibition of herpes simplex virus infection by tannins and related compounds. Antiviral. Res. 1989;11:285–297. doi: 10.1016/0166-3542(89)90038-7. [DOI] [PubMed] [Google Scholar]
  189. Galabov A.S. Thiourea derivatives as specific inhibitors of picorna viruses. Azneinimitterforschung. 1979;29:1863–1868. [PubMed] [Google Scholar]
  190. Galabov A.S., Velichkova E.H., Vassilev G.N. Antiviral activity of N-phenyl-N′-arykthiourea derivatives against some rhinoviruses. Chemotherapy. 1977;23:81–89. doi: 10.1159/000221975. [DOI] [PubMed] [Google Scholar]
  191. Garry R.F. Alteration of intracellular monovalent cation concentrations by a poliovirus mutant which encodes a defective 2A protease. Virus Res. 1989;13:129–141. doi: 10.1016/0168-1702(89)90011-7. [DOI] [PubMed] [Google Scholar]
  192. Garry R.F., Bishop J.M., Parker S., Westbrook K., Lewis G., Waite M.R. Na+ and K+ concentrations and the regulation of protein synthesis in Sindbis virus-infected chick cells. Virology. 1979;96:108–120. doi: 10.1016/0042-6822(79)90177-6. [DOI] [PubMed] [Google Scholar]
  193. Gerzon K., DeLong D.C., Cline J.C. C-nucleosides: aspects of chemistry and mode of action. Pure Appl. Chem. 1971;28:489–497. doi: 10.1351/pac197128040489. [DOI] [PubMed] [Google Scholar]
  194. Gessa G.L., Loddo B., Brotz G., Schivo M.L., Tagliamonte A., Spanedda A., Bo G., Ferrari W. Selective inhibition of polyvirus growth by D-penicillamine in vitro. Virology. 1966;30:618–622. doi: 10.1016/0042-6822(66)90166-8. [DOI] [PubMed] [Google Scholar]
  195. Giranda V.L., Heinz B.A., Oliveira M.A., Minor I., Kim K.H., Kolatkar P.R., Rossmann M.G., Rueckert R.R. Vol. 89. 1992. Acid-induced structural changes in human rhinovirus 14: possible role in uncoating; pp. 10213–10217. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Girard M. In vitro synthesis of poliovirus ribonucleic acid: role of the replicative intermediate. J. Virol. 1969;3:376–384. doi: 10.1128/jvi.3.4.376-384.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Girard M., Baltimore D. The poliovirus replication complex: site for synthesis of poliovirus RNA. J. molec. Biol. 1967;24:59–74. [Google Scholar]
  198. González M.E., Alarcón B., Carrasco L. Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob. Agents Chemother. 1987;31:1388–1393. doi: 10.1128/aac.31.9.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. González M.E., Almela M.J., Yacout M., Carrasco L. 6-(3,4-Dichlorophenoxy)-3-(ethylthio)-2-pyridincarbonitrile inhibits poliovirus uncoating. Antimicrob. Agents Chemother. 1990;34:1259–1261. doi: 10.1128/aac.34.6.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Gonzalez M.E., Carrasco L. Animal viruses promote the entry of polysaccharides with antiviral activity into cells. Biochem. biophys. Res. Commun. 1987;146:1303–1310. doi: 10.1016/0006-291x(87)90791-1. [DOI] [PubMed] [Google Scholar]
  201. González M.E., Martínez-Abarca F., Carrasco L. Flavonoids: potent inhibitors of poliovirus RNA synthesis. Antivir. Chem. Chemother. 1990;1:203–209. [Google Scholar]
  202. Goodchild J., Agrawal S., Civeira M.P., Sarin P.S., Sun D., Zamecnik P.C. Vol. 85. 1988. Inhibition of human immunodeficiency virus replication by antisense oligodeoxynucleotides; pp. 5507–5511. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Gorbalenya A.E., Koonin E.V., Wolf Y.I. A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett. 1990;262:145–148. doi: 10.1016/0014-5793(90)80175-i. [DOI] [PubMed] [Google Scholar]
  204. Goswami B.B., Borek E., Sharma O.K., Fujitaki J., Smith R.A. The broad spectrum antiviral agent ribavirin inhibits capping of mRNA. Biochem. biophys. Res. Commun. 1979;89:830–836. doi: 10.1016/0006-291x(79)91853-9. [DOI] [PubMed] [Google Scholar]
  205. Goswami B.B., Gosselin G., Imbach J.L., Sharma O.K. Mechanism of inhibition of herpesvirus growth by 2′-5′-linked trimer of 9-b-d-xylofuranosyladenine. Virology. 1984;137:400–407. doi: 10.1016/0042-6822(84)90232-0. [DOI] [PubMed] [Google Scholar]
  206. Goulet N.R., Cochran K.W., Brown G.C. Vol. 103. 1960. Differential and specific inhibition of ECHO viruses by plant extracts; pp. 96–100. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  207. Grado C., Ohlbaum A. The effect of rifampicin, actinomycin D and mitomycin C on poliovirus and foot-and-mouth disease virus replication. J. gen. Virol. 1973;21:297–303. doi: 10.1099/0022-1317-21-2-297. [DOI] [PubMed] [Google Scholar]
  208. Grant R.A., Filman D.J., Fujinami R.S., Icenogle J.P., Hogle J.M. Vol. 89. 1992. Three-dimensional structure of Theiler virus; pp. 2061–2065. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Green G.D.J., Shaw E. Peptidyl diazomethyl ketones are specific inactivators of thiol. J. biol. Chem. 1981;256:1923–1928. [PubMed] [Google Scholar]
  210. Green R.H. Vol. 67. 1948. Inhibition of influenza virus by tannic acid; pp. 483–484. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  211. Green R.H. Vol. 71. 1949. Inhibition of influenza virus by extracts of tea; pp. 84–85. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  212. Greve J.M., Davis G., Meyer A.M., Forte C.P., Yost S.C., Marlor C.W., Kamarck M.E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989;56:839–847. doi: 10.1016/0092-8674(89)90688-0. [DOI] [PubMed] [Google Scholar]
  213. Grigera P.R., Tisminetzky S.G. Histone H3 modification in BHK cells infected with foot-and-mouth disease virus. Virology. 1984;136:10–19. doi: 10.1016/0042-6822(84)90243-5. [DOI] [PubMed] [Google Scholar]
  214. Gromeier M., Wetz K. Kinetics of poliovirus uncoating in HeLa cells in a nonacidic environment. J. Virol. 1990;64:3590–3597. doi: 10.1128/jvi.64.8.3590-3597.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Gruenberger M., Pevear D., Diana G.D., Kuechler E., Blaas D. Stabilization of human rhinovirus serotype 2 against pH-induced conformational change by antiviral compounds. J. gen Virol. 1991;72:431–433. doi: 10.1099/0022-1317-72-2-431. [DOI] [PubMed] [Google Scholar]
  216. Grunberg E., Prince H.N. Vol. 129. 1968. The antiviral activity of 3,4-dihydro-1-isoquinolineacetamide hydrochloride in vitro, in ovo, and in small laboratory animals (33335) pp. 422–430. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  217. Grunberg E., Prince H.N. Experimental methodology and the search for effective antiviral agents. Ann. N.Y. Acad. Sci. 1970;173:122–130. [Google Scholar]
  218. Guinea R., Carrasco L. Phospholipid biosynthesis and poliovirus genome replication, two coupled phenomena. EMBO J. 1990;9:2011–2016. doi: 10.1002/j.1460-2075.1990.tb08329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Guinea R., Carrasco L. Effects of fatty acids on lipid synthesis and viral RNA replication in poliovirus-infected cells. Virology. 1991;185:473–476. doi: 10.1016/0042-6822(91)90802-i. [DOI] [PubMed] [Google Scholar]
  220. Guinea R., López-Rivas A., Carrasco L. Modification of phospholipase C and phospholipase A2 activities during poliovirus infection. J. biol. Chem. 1989;264:2193–21927. [PubMed] [Google Scholar]
  221. Gurgo C., Bridges S., Green M. Rifamycins. In: Came P.E., Caliguire L.A., editors. Chemotherapy of Viral Infections. Springer-Verlag; Berlin: 1982. pp. 519–555. [Google Scholar]
  222. Gutowski G.E., Sweeney M.J., DeLong D.C., Hamill R.L., Gerzon K., Dyke R.W. Biochemistry and biological effects of the pyrazofurins (pyrazomycins): initial clinical trial. Ann. N.Y. Acad. Sci. 1975;255:544–551. doi: 10.1111/j.1749-6632.1975.tb29257.x. [DOI] [PubMed] [Google Scholar]
  223. Guttman N., Baltimore D. A plasma membrane component able to bind and alter virions of poliovirus type 1: studies on cell-free alteration using a simplified assay. Virology. 1977;82:25–36. doi: 10.1016/0042-6822(77)90029-0. [DOI] [PubMed] [Google Scholar]
  224. Hahn F.E. Virazole (Ribavirin) In: Hahn F.E., editor. Mechanism of Action of Antieukaryotic and Antiviral Compounds. Vol. V. Springer-Verlag; Berlin: 1979. (Antibiotics). Part 2. [Google Scholar]
  225. Hambidge S.J., Sarnow P. Vol. 89. 1992. Translational enhancement of the poliovirus 5′ noncoding region mediated by virus-encoded polypeptide 2A; pp. 10272–10276. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Hanecak R., Semler B.L., Anderson C.W., Wimmer E. Vol. 79. 1982. Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs; pp. 3973–3977. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Harber J., Wimmer E. Aspects of the molecular biology of poliovirus replication. In: Carrasco L., Sonenberg N., Wimmer E., editors. Regulation of Gene Expression in Animal Viruses. Plenum Press; London, New York: 1993. pp. 189–224. [Google Scholar]
  228. Harborne J.B. Chapman and Hall; New York: 1988. The Flavonoids: Advances in Research Since 1980. [Google Scholar]
  229. Harnden M.R., Bailey S., Boyd M.R., Wilkinson J.B., Wright N.D. Easily hydrolyzable, water-soluble derivatives of (+/)-alph-5[1-(indol-3-yl)ethyl]-2-methylamino-delta-2-thiazoline-4-one, a novel antiviral compound. J. med. Chem. 1979;22:191–195. doi: 10.1021/jm00188a013. [DOI] [PubMed] [Google Scholar]
  230. Hartley M.R., Legname G., Osborn R., Chen Z., Lord J.M. Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett. 1991;290:65–68. doi: 10.1016/0014-5793(91)81227-y. [DOI] [PubMed] [Google Scholar]
  231. Haugh M.C., Cayley P.J., Serafinowska H.T., Norman D.G., Reese C.B., Kerr I.M. Analogues and analogue inhibitors of ppp(A2′p)nA. Their stability and biological activity. Eur. J. Biochem. 1983;131:77–84. doi: 10.1111/j.1432-1033.1983.tb07327.x. [DOI] [PubMed] [Google Scholar]
  232. Hayden F.G. Clinical applications of antiviral agents for chemoprophylaxis and therapy of respiratory viral infections. Antiviral. Res. 1985;(Suppl. 1):229–239. doi: 10.1016/s0166-3542(85)80033-4. [DOI] [PubMed] [Google Scholar]
  233. Hayden F.G., Gwaltney J.M., Jr Prophylactic activity of intranasal enviroxime against experimentally induced rhinovirus type 39 infection. Antimicrob. Agents Chemother. 1982;21:892–897. doi: 10.1128/aac.21.6.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Hayden F.G., Andries K., Janssen P.A.J. Safety and efficacy of intranasal pirodavir (R 77975) in experimental rhinovirus infection. Antimicrob. Agents Chemother. 1992;36:727–732. doi: 10.1128/aac.36.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Hayden F.G., Gwaltney J.M., Colonno R.J. Modification of experimental rhinovirus infection by receptor blockade. Antiviral. Res. 1988;9:233–247. doi: 10.1016/0166-3542(88)90055-1. [DOI] [PubMed] [Google Scholar]
  236. Hellen C.U., Krausslich H.G., Wimmer E. Proteolytic processing of polyproteins in the replication of RNA viruses. Biochemistry. 1989;28:9881–9890. doi: 10.1021/bi00452a001. [DOI] [PubMed] [Google Scholar]
  237. Hellen C.U.T., Wimmer E. Viral proteases as targets for chemotherapeutic intervention. Curr. Opin. Biotechnol. 1992;3:643–649. doi: 10.1016/0958-1669(92)90010-G. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Hellen C.U.T., Wimmer E. Maturation of poliovirus capsid proteins. Virology. 1992;187:391–397. doi: 10.1016/0042-6822(92)90440-z. [DOI] [PubMed] [Google Scholar]
  239. Helms J.B., Rothman J.E. Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature. 1992;360:352–354. doi: 10.1038/360352a0. [DOI] [PubMed] [Google Scholar]
  240. Hewlett M.J., Rozenblatt S., Ambros V., Baltimore D. Separation and quantitation of intracellular forms of poliovirus RNA by agarose gel electrophoresis. Biochemistry. 1977;16:2763–2767. doi: 10.1021/bi00631a027. [DOI] [PubMed] [Google Scholar]
  241. Hiebsch R.R., Raub T.J., Wattenberg B.W. Primaquine blocks transport by inhibiting the formation of functional transport vesicles. Studies in a cell-free assay of protein transport through the Golgi apparatus. J. biol. Chem. 1991;266:20323–20328. [PubMed] [Google Scholar]
  242. Hoekstra D., Kok J.W. Entry mechanisms of enveloped viruses. Implications for fusion of intracellular membranes. Biosci. Rep. 1989;9:273–305. doi: 10.1007/BF01114682. [DOI] [PubMed] [Google Scholar]
  243. Hogle J.M., Chow M., Filman D.J. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science. 1985;229:1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
  244. Holland J.J., de la Torre J.C., Steinhauer D.A. RNA virus populations as quasispecies. Curr. Top. Microbiol. Immunol. 1992;176:1–20. doi: 10.1007/978-3-642-77011-1_1. [DOI] [PubMed] [Google Scholar]
  245. Holsey C., Cragoe E.J.J., Nair C.N. Evidence for poliovirus-induced cytoplasmic alkalinization in HeLa cells. J. Cell Physiol. 1990;142:586–591. doi: 10.1002/jcp.1041420319. [DOI] [PubMed] [Google Scholar]
  246. Hoover-Litty H., Greve J.M. Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion. J. Virol. 1993;67:390–397. doi: 10.1128/jvi.67.1.390-397.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Horwitz S.B., Chang C.K., Grollman A.P. Antiviral action of camptothecin. Antimicrob. Agents Chemother. 1972;2:395–401. doi: 10.1128/aac.2.5.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Huggins J.W., Robins R.K., Canonico P.G. Synergistic antiviral effects of ribavirin and the C-nucleoside analogs tiazofurin and selenazofurin against togaviruses, bunyaviruses, and arenaviruses. Antimicrob. Agents Chemother. 1984;26:476–480. doi: 10.1128/aac.26.4.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Hunziker W., Whitney J.A., Mellman I. Befreldin A and the endocytic pathway: possible implications for membrane traffic and sorting. FEBS Lett. 1992;307:93–96. doi: 10.1016/0014-5793(92)80908-y. [DOI] [PubMed] [Google Scholar]
  250. Iizuka N., Kuge S., Nomoto A. Complete nucleotide sequence of the genome of coxsackievirus B1. Virology. 1987;156:64–73. doi: 10.1016/0042-6822(87)90436-3. [DOI] [PubMed] [Google Scholar]
  251. Ikuta K., Luftig R.B. Inhibition of cleavage of Moloney leukemia virus gag and env coded precursor polyproteins by cerulenin. Virology. 1986;154:195–206. doi: 10.1016/0042-6822(86)90441-1. [DOI] [PubMed] [Google Scholar]
  252. Imai J., Johnston I., Torrence P. Chemical modification potentiates the biological activities of 2-5A and its congeners. J. biol. Chem. 1982;257:12739–12745. [PubMed] [Google Scholar]
  253. Irurzun A., Perez L., Carrasco L. Involvement of membrane traffic in the replication of poliovirus genomes: effects of Brefeldin A. Virology. 1992;191:166–175. doi: 10.1016/0042-6822(92)90178-r. [DOI] [PubMed] [Google Scholar]
  254. Irurzun A., Perez L., Carrasco L. Enhancement of phospholipase C activity during poliovirus infection. J. gen. Virol. 1993;74:1063–1071. doi: 10.1099/0022-1317-74-6-1063. [DOI] [PubMed] [Google Scholar]
  255. Irvin J.D., Uckun F.M. Pokeweed antiviral protein: ribosome inactivation and therapeutic applications. Pharmac. Ther. 1992;55:279–302. doi: 10.1016/0163-7258(92)90053-3. [DOI] [PubMed] [Google Scholar]
  256. Ishitsuka H., Ninomiya Y.T., Ohsawa C., Fujiu M., Suhara Y. Direct and specific inactivation of rhinovirus by chalcone Ro 09-0410. Antimicrob. Agents Chemother. 1982;22:617–621. doi: 10.1128/aac.22.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Ishitsuka H., Ninomiya Y., Suhara Y. Molecular basis of drug resistance to new antirhinovirus agents. J. Antimicrob. Chemother. (Suppl. B) 1986;18:11–18. doi: 10.1093/jac/18.supplement_b.11. [DOI] [PubMed] [Google Scholar]
  258. Ishitsuka H., Ohsawa C., Ohiwa T., Umeda I., Suhara Y. Antipicornavirus flavone Ro 09-0179. Antimicrob. Agents Chemother. 1982;22:611–616. doi: 10.1128/aac.22.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Jackson R.J., Howell M.T., Kaminski A. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem. Sci. 1990;15:477–483. doi: 10.1016/0968-0004(90)90302-r. [DOI] [PubMed] [Google Scholar]
  260. Jacobsen H.J., Epstein D.A., Friedmann R.M., Safer B., Torrence P.F. Vol. 80. 1983. Double-stranded RNA-dependent phosphorylation of protein P1 and eukaryotic initiation factor 2a does not correlate with protein synthesis inhibition in a cell-free system from interferon-treated mouse L cells; pp. 41–45. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Jacobson M.F., Asso J., Baltimore D. Further evidence on the formation of poliovirus proteins. J. molec. Biol. 1970;49:657–669. doi: 10.1016/0022-2836(70)90289-5. [DOI] [PubMed] [Google Scholar]
  262. Jacobson M.F., Baltimore D. Vol. 61. 1968. Polypeptide cleavages in the formation of poliovirus proteins; pp. 77–84. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Jacobson S.J., Konings D.A.M., Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3t terminus of the poliovirus RNA genome and its role in viral RNA amplication. J. Virol. 1993;67:2961–2971. doi: 10.1128/jvi.67.6.2961-2971.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. James W. Towards gene-inhibition therapy: a review of progress and prospects in the field of antiviral antisense nucleic acids and ribozymes. Antivir. Chem. Chemother. 1991;2:191–214. [Google Scholar]
  265. Jang S.K., Krausslich H.G., Nicklin M.J., Duke G.M., Palmenberg A.C., Wimmer E. A segment of the 5′ nontranslated region of encephaoomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 1988;62:2636–2643. doi: 10.1128/jvi.62.8.2636-2643.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  266. Jentsch K.D., Hunsmann G., Hartmann H., Nickel P. Inhibition of human immunodeficiency virus type I reverse transcriptase by suramin-related compounds. J. gen. Virol. 1987;68:2183–2192. doi: 10.1099/0022-1317-68-8-2183. [DOI] [PubMed] [Google Scholar]
  267. Jimenez A., Vazquez D. Plant and fungal protein and glycoprotein toxins inhibiting eukaryote protein synthesis. Annu. Rev. Microbiol. 1985;39:649–672. doi: 10.1146/annurev.mi.39.100185.003245. [DOI] [PubMed] [Google Scholar]
  268. Joachims M., Etchison D. Poliovirus infection results in structural alteration of a microtubule-associated protein. J. Virol. 1992;66:5797–5804. doi: 10.1128/jvi.66.10.5797-5804.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Johnson K., Sarnow P. Three poliovirus 2B mutants exhibit noncomplementable defects in viral RNA amplification and display dosage-dependent dominance over wild-type poliovirus. J. Virol. 1991;65:4341–4349. doi: 10.1128/jvi.65.8.4341-4349.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Jubelt B., Wilson A.K., Ropka S.L., Guidinger P.L., McKinlay M.A. Clearance of a persistent human enterovirus infection of the mouse central nervous system by the antiviral agent disoxaril. J. Infect. Dis. 1989;159:866–871. doi: 10.1093/infdis/159.5.866. [DOI] [PubMed] [Google Scholar]
  271. Kaljot K.T., Shaw R.D., Rubin D.H., Greenberg H.B. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis. J. Virol. 1988;62:1136–1144. doi: 10.1128/jvi.62.4.1136-1144.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Kalko S.G., Cachau R.E., Silva A.M. Ion channels in icosahedral virus: a comparative analysis of the structures and binding sites at their fivefold axes. Biophys. J. 1992;63:879–1182. doi: 10.1016/S0006-3495(92)81693-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Kaminski A., Howell M., Jackson R. Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J. 1990;9:3753–3759. doi: 10.1002/j.1460-2075.1990.tb07588.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Kaplan G., Freistadt M.S., Racaniello V.R. Neutralization of poliovirus by cell receptors expressed in insect cells. J. Virol. 1990;64:4697–4702. doi: 10.1128/jvi.64.10.4697-4702.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Kaplan G., Peters D., Racaniello V.R. Poliovirus mutants resistant to neutralization with soluble cell receptors. Science. 1990;250:1596–1599. doi: 10.1126/science.2177226. [DOI] [PubMed] [Google Scholar]
  276. Katz E., Feliz H. Synthesis of vaccinia viral antigens in HeLa cells in the presence of isatin beta-thiosemicarbazone. Antimicrob. Agents Chemother. 1977;11:202–208. doi: 10.1128/aac.11.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Kelley J.L., Linn J.A., Selway J.W. Antirhinovirus activity of 6-anilino-9-benzyl-2-chloro-9H-purines. J. med. Chem. 1990;33:1360–1363. doi: 10.1021/jm00167a012. [DOI] [PubMed] [Google Scholar]
  278. Kenny M.T., Dulworth J.K., Bargar T.M., Torney H.L., Graham M.C., Manelli A.M. In vitro antiviral activity of the 6-substituted 2-(3′,4′-dichlorophenoxy)-2H-pyrano[2,3-b] pyridines MDL 20,610, MDL 20,646, and MDL 20,957. Antimicrob. Agents Chemother. 1986;30:516–518. doi: 10.1128/aac.30.3.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Kenny M.T., Dulworth J.K., Torney H.L. In vitro and in vivo antipicornavirus activity of some phenoxypyridinecarbonitriles. Antimicrob. Agents Chemother. 1985;28:745–750. doi: 10.1128/aac.28.6.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Kenny M.T., Torney H.L., Dulworth J.K. Mechanism of action of the antiviral compound MDL 20,610. Antiv. Res. 1988;9:249–261. doi: 10.1016/0166-3542(88)90056-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  281. Kerr I.M., Cayley P.J., Silverman R.H., Knight M. The antiviral action of interferon. Philos. Trans. R. Soc. London Biol. 1982;299:59–67. doi: 10.1098/rstb.1982.0106. [DOI] [PubMed] [Google Scholar]
  282. Kerr I.M., Martin E.M. Virus protein synthesis in animal cell-free systems: nature of the products synthesized in response to ribonucleic acid of encephalomyocarditis virus. J. Virol. 1971;7:438–447. doi: 10.1128/jvi.7.4.438-447.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Kerr I.M., Stark G.R. The antiviral effects of the interferons and their inhibition. J. Interferon Res. 1992;12:237–240. doi: 10.1089/jir.1992.12.237. [DOI] [PubMed] [Google Scholar]
  284. Kettner C.A., Korant B.D. 1987. Method for preparing specific inhibitors of virus-specific proteases. US Patent 4,644,055. [Google Scholar]
  285. Kim K.H., Willingmann P., Gong Z.X., Kremer M.J., Chapman M.S., Minor I., Oliveira M.A., Rossmann M.G., Andries K., Diana G.D., Dutko F.J., McKinlay M.A., Pevear D.C. A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A. J. molec. Biol. 1993;230:206–227. doi: 10.1006/jmbi.1993.1137. [DOI] [PubMed] [Google Scholar]
  286. Kim K.S., Sapienza V.J., Carp R.I. Antiviral activity of arildone on deoxyribonucleic acid and ribonucleic acid viruses. Antimicrob. Agents Chemother. 1980;18:276–280. doi: 10.1128/aac.18.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Kim S., Smith T.J., Chapman M.S., Rossmann M.G., Pevear D.C., Dutko F.J., Felock P.J., Diana G.D., McKinlay M.A. Crystal structure of human rhinovirus serotype 1A (HRV1A) J. molec. Biol. 1989;210:91–111. doi: 10.1016/0022-2836(89)90293-3. [DOI] [PubMed] [Google Scholar]
  288. Kirkegaard K. Genetic analysis of picornavirus. Current Opinion Genetics Develop. 1992;2:64–70. doi: 10.1016/S0959-437X(05)80324-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Kirsi J.J., McKernan P.A., Burns N.J., North J.A., Murray B.K., Robins R.K. Broad-spectrum synergistic antiviral activity of selenazofurin and ribavirin. Antimicrob. Agents Chemother. 1984;26:466–475. doi: 10.1128/aac.26.4.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Kitamura N., Semler B.L., Rothberg P.G., Larsen G.R., Adler C.J., Dorner A.J., Emini E.A., Hanecak R., Lee J.J., van-der-Werf S., Anderson C.W., Wimmer E. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature. 1981;291:547–553. doi: 10.1038/291547a0. [DOI] [PubMed] [Google Scholar]
  291. Klausner R.D., Donaldson J.G., Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 1992;116:1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Kleina L.G., Grubman M.J. Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus. J. Virol. 1992;66:7168–7175. doi: 10.1128/jvi.66.12.7168-7175.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Knowalchuk J., Speirs J.I. Antiviral effect of apple beverages. Appl. Environ Microbiol. 1978;36:798–801. doi: 10.1128/aem.36.6.798-801.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Koch F., Koch G. Springer Verlag; Vienna: 1985. The Molecular Biology of Poliovirus. [Google Scholar]
  295. Kohn A., Gitelman J., Inbar M. Unsaturated free fatty acids inactivate animal enveloped viruses. Arch. Virol. 1980;66:301–307. doi: 10.1007/BF01320626. [DOI] [PubMed] [Google Scholar]
  296. Koike S., Horie H., Ise I., Okitsu A., Yoshida M., Iizuka N., Takeuchi K., Takegami T., Nomoto A. The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 1990;9:3217–3224. doi: 10.1002/j.1460-2075.1990.tb07520.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Koike S., Ise I., Nomoto A. Vol. 88. 1991. Functional domains of the poliovirus receptor; pp. 4104–4108. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Koike S., Ise I., Sato Y., Yonekawa H., Gotoh O., Nomoto A. A second gene for the African green monkey poliovirus receptor that has no putative N-glycosylation site in the functional N-terminal immunoglobulin-like domain. J. Virol. 1992;66:7059–7066. doi: 10.1128/jvi.66.12.7059-7066.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Koike S., Taya C., Kurata T., Abe S., Ise I., Yonekawa H., Nomoto A. Vol. 88. 1991. Transgenic mice susceptible to poliovirus; pp. 951–955. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Komatsu K., Inazuki J., Hosoya J., Satoh S. Beneficial effect of new thiol protease inhibitors, epoxide derivatives, on dystrophic mice. Exp. Neurol. 1986;91:23–29. doi: 10.1016/0014-4886(86)90022-1. [DOI] [PubMed] [Google Scholar]
  301. Konowalchuk J., Speirs J.I. Virus inactivation by grapes and wines. Appl. Environ. Microbiol. 1976;32:757–763. doi: 10.1128/aem.32.6.757-763.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Korant B., Chow N., Lively M., Powers J. Vol. 76. 1979. Virus-specified protease in poliovirus-infected HeLa cells; pp. 2992–2995. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Korant B.D. Cleavage of viral precursor proteins vivo and in vitro. J. Virol. 1972;10:751–759. doi: 10.1128/jvi.10.4.751-759.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Korant B.D. Viral protein cleavages: target for viral therapy. In: Aoyagi T., editor. Umezawa Memorial Symposium. Japan Science Press; Tokyo: 1987. pp. 138–149. [Google Scholar]
  305. Korant B.D. Strategies to inhibit viral polyprotein cleavages. Ann. N.Y. Acad. Sci. 1990;616:252–257. doi: 10.1111/j.1749-6632.1990.tb17845.x. [DOI] [PubMed] [Google Scholar]
  306. Korant B.D. Viral protein cleavages as a drug design target. Acta Biol. Hung. 1991;43:203–211. [PubMed] [Google Scholar]
  307. Korant B.D., Brzin J., Turk V. Cystatin, a protein inhibitor of cysteine proteases alters viral protein cleavages in infected human cells. Biochem. biophys. Res. Commun. 1985;127:1072–1076. doi: 10.1016/s0006-291x(85)80054-1. [DOI] [PubMed] [Google Scholar]
  308. Korant B.D., Kauer J.C., Butterworth B.E. Zinc ions inhibit replication of rhinoviruses. Nature. 1974;248:588–590. doi: 10.1038/248588a0. [DOI] [PubMed] [Google Scholar]
  309. Korant B.D., Towatari T., Ivanoff L., Petteway S., Jr, Brzin J., Lenarcic B., Turk V. Viral therapy: prospects for protease inhibitors. J. Cell Biochem. 1986;32:91–95. doi: 10.1002/jcb.240320202. [DOI] [PubMed] [Google Scholar]
  310. Kozak M. The scanning model for translation: an update. J. Cell Biol. 1989;108:229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Kozak M. Regulation of translation in eukaryotic systems. Annu. Rev. Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  312. Krausslich H.G., Wimmer E. Viral proteinases. Annu. Rev. Biochem. 1988;57:701–754. doi: 10.1146/annurev.bi.57.070188.003413. [DOI] [PubMed] [Google Scholar]
  313. Krishnaswamy S., Rossmann M.G. Structural refinement and analysis of Mengo virus. J. molec. Biol. 1990;211:803–844. doi: 10.1016/0022-2836(90)90077-Y. [DOI] [PubMed] [Google Scholar]
  314. Kronenberger P., Vrijsen R., Boeyé A. Chloroquine induces empty capsid formation during poliovirus eclipse. J. Virol. 1991;65:7008–7011. doi: 10.1128/jvi.65.12.7008-7011.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. Kronenberger P., Vrijsen R., Boeyé A. Compartmentalization of subviral particles during poliovirus eclipse in HeLA cells. J. gen. Virol. 1992;73:1739–1744. doi: 10.1099/0022-1317-73-7-1739. [DOI] [PubMed] [Google Scholar]
  316. Kucera L.S., Hermann E.C. Vol. 124. 1967. Antiviral substances in plants of the mint family (Labiatae). I. Tannin of Melissa officinalis. II. Non-tannin polyphenol of Mellissa officinalis; pp. 865–878. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  317. Kuhrt M.F., Fancher M.J., Jasty V., Pancic F., Came P.E. Preliminary studies of the mode of action of arildone, a novel antiviral agent. Antimicrob. Agents Chemother. 1979;15:813–819. doi: 10.1128/aac.15.6.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Kumar R., Choubey K., Lengyel P., Sen G.C. Studies on the role of the 2′-5′-oligoadenylate synthetase-RNase L pathway in beta interferon-mediated inhibition of encephalomyocarditis virus replication. J. Virol. 1988;62:3175–3181. doi: 10.1128/jvi.62.9.3175-3181.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  319. Kuwata T., Fuse A., Morinaga N. Effects of ouabain on the anticellular and antiviral activities of human and mouse interferon. J. gen. Virol. 1977;34:537–540. doi: 10.1099/0022-1317-34-3-537. [DOI] [PubMed] [Google Scholar]
  320. Lacal J.C., Carrasco L. Relationship between membrane integrity and the inhibition of host translation in virus-infected mammalian cells. Comparative studies between encephalomyocarditis virus and poliovirus. Eur. J. Biochem. 1982;127:359–366. doi: 10.1111/j.1432-1033.1982.tb06880.x. [DOI] [PubMed] [Google Scholar]
  321. Lacal J.C., Carrasco L. Modification of membrane permeability in poliovirus-infected HeLa cells: effect of guanidine. J. gen. Virol. 1983;64:787–793. doi: 10.1099/0022-1317-64-4-787. [DOI] [PubMed] [Google Scholar]
  322. Lacal J.C., Carrasco L. Antiviral effects of hygromycin B, a translation inhibitor nonpermeant to uninfected cells. Antimicrob. Agents Chemother. 1983;24:273–275. doi: 10.1128/aac.24.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  323. Lacal J.C., Vázquez D., Fernández-Sousa J.M., Carrasco L. Antibiotics that specifically block translation in virus-infected cells. J. Antibiot. Tokyo. 1980;33:441–446. doi: 10.7164/antibiotics.33.441. [DOI] [PubMed] [Google Scholar]
  324. La Colla P., Marcialis M.A., Mereu G.P., Loddo B. Specific inhibition of poliovirus induced blockade of cell protein synthesis by a thiopyrimidine derivative. J. gen. Virol. 1972;17:13–18. doi: 10.1099/0022-1317-17-1-13. [DOI] [PubMed] [Google Scholar]
  325. Lain S., Riechmann J.L., Martin M.T., Garcia J.A. Homologous potyvirus and flavivirus proteins belonging to a superfamily of helicase-like proteins. Gene. 1989;82:357–362. doi: 10.1016/0378-1119(89)90063-2. [DOI] [PubMed] [Google Scholar]
  326. Lama J., Carrasco L. Inducible expression of a toxic poliovirus membrane protein in Escherichia coli. Comparative studies using different expression systems based on T7 promoters. Biochem. biophys. Res. Commun. 1992;188:972–981. doi: 10.1016/0006-291x(92)91327-m. [DOI] [PubMed] [Google Scholar]
  327. Lama J., Carrasco L. Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability induced by 2B and 3A. J. biol. Chem. 1992;267:15932–15937. [PubMed] [Google Scholar]
  328. Lama J., Guinea R., Martinez-Abarca F., Carrasco L. Cloning and inducible synthesis of poliovirus nonstructural proteins. Gene. 1992;117:185–192. doi: 10.1016/0378-1119(92)90728-8. [DOI] [PubMed] [Google Scholar]
  329. Lanker S., Müller P.P., Altmann M., Goyer C., Sonenberg N., Trachsel H. Interactions of the eIF-4F subunits in the yeast Saccharomyces cerevisiae. J. biol. Chem. 1992;267:21167–21171. [PubMed] [Google Scholar]
  330. Larin N.M., Copping M.P., Herbst-Laier R.H., Roberts B., Wenham R.B.M. Antiviral activity of gliotoxin. Chemoterapia. 1965;10:12–23. doi: 10.1159/000220389. [DOI] [PubMed] [Google Scholar]
  331. Laurence L., Marti J., Roux D., Cailla H. Vol. 81. 1984. Immunological evidence for the in vivo occurence of (2′-5′)adenylyladenosine oligonucleotides in eukaryotes and prokaryotes; pp. 2322–2326. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  332. Lawson M.A., Semler B.L. Picornavirus protein processing—enzymes, substrates, and genetic regulation. Curr. Top. Microbiol. Immunol. 1990;161:49–89. [PubMed] [Google Scholar]
  333. Lee S.B., Esteban M. The interferon-induced double-stranded RNA-activated human p68 protein kinase inhibits the replication of vaccina virus. Virology. 1993;193:1037–1041. doi: 10.1006/viro.1993.1223. [DOI] [PubMed] [Google Scholar]
  334. Lee T., Crowell M., Shearer M.H., Aron G.M., Irvin J.D. Poliovirus-mediated entry of pokeweed antiviral protein. Antimicrob. Agents Chemother. 1990;34:2034–2037. doi: 10.1128/aac.34.10.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Lee Y.F., Nomoto A., Detjen B.M., Wimmer E. Vol. 74. 1977. A protein covalently linked to poliovirus genome RNA; pp. 59–63. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  336. Leiter J.M., Agrawal S., Palese P., Zamecnik P.C. Vol. 87. 1990. Inhibition of influenza virus replication by phosphorothioate oligodeoxynucleotides; pp. 3430–3434. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  337. Lejbkowicz F., Goyer C., Darveau A., Neron S., Lemieux R., Sonenberg N. Vol. 89. 1992. A fraction of the mRNA 5′ cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus; pp. 9612–9616. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Lentz T.L. The recognition event between virus and host cell receptor: a target for antiviral agents. J. gen. Virol. 1990;71:751–766. doi: 10.1099/0022-1317-71-4-751. [DOI] [PubMed] [Google Scholar]
  339. Leonetti J.P., Machy P., Degols G., Lebleu B., Leserman L. Vol. 87. 1990. Antibody-targeted liposomes containing oligodeoxyribonucleotides complementary to viral RNA selectively inhibit viral replication; pp. 2448–2451. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  340. Levandowski R.A., Pachucki C.T., Rubenis M., Jackson G.G. Topical enviroxime against rhinovirus infection. Antimicrob. Agents Chemother. 1982;22:1004–1007. doi: 10.1128/aac.22.6.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Levinson W. Inhibition of viruses, tumors, and pathogenic microorganisms by isatin beta-thiosemicarbazone and other thiosemicarbazones. In: Carter W.A., editor. Selective Inhibitors of Viral Functions. CRC Press Inc; Boca Raton, FL: 1975. pp. 213–226. [Google Scholar]
  342. Levintow L., Thorén M.M., Darnell J.E., Hooper J.L. Effect of p-fluorophenylalanine and puromycin of the replication of poliovirus. Virology. 1962;16:220–229. doi: 10.1016/0042-6822(62)90241-6. [DOI] [PubMed] [Google Scholar]
  343. Lewis J.A. Induction of an antiviral state by interferon in the absence of elevated levels of 2,5-oligo(A) synthetase and eIF-2 kinase. Virology. 1988;162:118–127. doi: 10.1016/0042-6822(88)90400-x. [DOI] [PubMed] [Google Scholar]
  344. Li C.P. Vol. 103. 1960. Antimicrobial effect of abalone juice; pp. 522–524. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  345. Li J.P., Baltimore D. Isolation of poliovirus 2C mutants defective in viral RNA synthesis. J. Virol. 1988;62:4016–4021. doi: 10.1128/jvi.62.11.4016-4021.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  346. Li J.P., Baltimore D. An intragenic revertant of a poliovirus 2C mutant has an uncoating defect. J. Virol. 1990;64:1102–1107. doi: 10.1128/jvi.64.3.1102-1107.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  347. Lippincott-Schwartz J. Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell Biol. 1993;3:81–88. doi: 10.1016/0962-8924(93)90078-f. [DOI] [PubMed] [Google Scholar]
  348. Lippinott-Schwartz J., Yuan L.C., Bonifacino J.S., Klausner R.D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989;56:801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  349. Lippincott-Schwartz J., Yuan L., Tipper C., Amherdt M., Orci L., Klausner R.D. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell. 1991;67:601–616. doi: 10.1016/0092-8674(91)90534-6. [DOI] [PubMed] [Google Scholar]
  350. Lloyd R.E., Bovee M. Persistent infection of human erythroblastoid cells by poliovirus. Virology. 1993;194:200–209. doi: 10.1006/viro.1993.1250. [DOI] [PubMed] [Google Scholar]
  351. Lloyd R.E., Grubman M.J., Ehrenfeld E. Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequencing. J. Virol. 1988;62:4216–4223. doi: 10.1128/jvi.62.11.4216-4223.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  352. Loddo B., Gessa G.L., Schivo M.L., Spanedda A., Brotzu G., Ferrari W. Antagonism of the guanidine interference with poliovirus replication by simple methylated and ethylated compounds. Virology. 1966;28:707–712. doi: 10.1016/0042-6822(66)90255-8. [DOI] [PubMed] [Google Scholar]
  353. Loddo B., Mutoni S., Spanedda A., Brotzu G., Ferrari W. Guanidine conditional infectivity of ribonucleic acid extracted from a strain of guanidine-dependent polio-1 virus. Nature. 1963;197:315. doi: 10.1038/197315a0. [DOI] [PubMed] [Google Scholar]
  354. Lonberg Holm K., Gosser L.B., Kauer J.C. Early alteration of poliovirus in infected cells and its specific inhibition. J. gen. Virol. 1975;27:329–342. doi: 10.1099/0022-1317-27-3-329. [DOI] [PubMed] [Google Scholar]
  355. Lopez Guerrero J.A., Martinez Abarca F., Fresno M., Carrasco L., Alonso M.A. Cell type determines the relative proportions of (−) and (+) strand RNA during poliovirus replication. Virus. Res. 1991;20:23–29. doi: 10.1016/0168-1702(91)90058-4. [DOI] [PubMed] [Google Scholar]
  356. Lopez Pila J.M., Kopecka H., Vanden Berghe D. Lack of evidence for strand-specific inhibition of poliovirus RNA synthesis by 3-methylquercetin. Antiviral Res. 1989;11:47–53. doi: 10.1016/0166-3542(89)90020-x. [DOI] [PubMed] [Google Scholar]
  357. López-Rivas A., Castrillo J.L., Carrasco L. Cation content in poliovirus-infected HeLa cells. J. gen. Virol. 1987;68:335–342. doi: 10.1099/0022-1317-68-2-335. [DOI] [PubMed] [Google Scholar]
  358. Luo M., Vriend G., Kamer G., Minor I., Arnold E., Rossmann M.G., Boege U., Scraba D.G., Duke G.M., Palmenberg A.C. The atomic structure of Mengo virus at 3.0 Å resolution. Science. 1987;235:182–191. doi: 10.1126/science.3026048. [DOI] [PubMed] [Google Scholar]
  359. Lwoff A. The specific effectors of viral development. Biochem. J. 1965;96:289–302. doi: 10.1042/bj0960289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  360. Machamer C.E., Mentone S.A., Rose J.K., Farquhar M.G. Vol. 87. 1992. The E1 glycorprotein of an avian coronavirus is targeted to the cis Golgi complex; pp. 6944–6948. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  361. Madshus I.H., Olsnes S., Sandvig K. Different pH requirements for entry of the two picornaviruses, human rhinovirus 2 and murine encephalomyocarditis virus. Virology. 1984;139:346–357. doi: 10.1016/0042-6822(84)90380-5. [DOI] [PubMed] [Google Scholar]
  362. Madshus I.H., Olsnes S., Sandvig K. Requirements for entry of poliovirus RNA into cells at low pH. EMBO J. 1984;3:1945–1950. doi: 10.1002/j.1460-2075.1984.tb02074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  363. Madshus I.H., Olsnes S., Sandvig K. Mechanism of entry into cytosol of poliovirus type 1: requirement for low pH. J. Cell Biol. 1984;98:1194–1200. doi: 10.1083/jcb.98.4.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  364. Marlin S.D., Stauton D.E., Springer T.A., Stratowa C., Sommergruber W., Merluzzi V.J. A soluble form of intracellular adhesion molecule-1 inhibits rhinovirus infection. Nature. 1990;344:70–72. doi: 10.1038/344070a0. [DOI] [PubMed] [Google Scholar]
  365. Marsh M., Helenius A. Virus entry into animal cells. Adv. Virus. Res. 1989;36:107–151. doi: 10.1016/S0065-3527(08)60583-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  366. Marshall W.S., Caruthers M.H. Phosphorodithioate DNA as a potential therapeutic drug. Science. 1993;259:1564–1570. doi: 10.1126/science.7681216. [DOI] [PubMed] [Google Scholar]
  367. Martin S., Casasnovas J.M., Staunton D.E., Springer T.A. Efficient neutralization and disruption of rhinovirus by chimeric ICAM-1/immunoglobulin molecules. J. Virol. 1993;67:3561–3568. doi: 10.1128/jvi.67.6.3561-3568.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  368. Mason P.W., Baxt B., Brown F., Harber J., Murdin A., Wimmer E. Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology. 1993;192:568–577. doi: 10.1006/viro.1993.1073. [DOI] [PubMed] [Google Scholar]
  369. Matsumoto S., Stanfield F.J., Goore M.Y., Haff R.F. Vol. 139. 1972. The antiviral activity of a triazinoindole (SK&F 30079) (36163) pp. 455–460. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  370. Matthews T.J., Lawrence M.K., Nair C.D.G., Tyrell D.A.J. Antiviral activity in milk of possible clinical importance. Lancet. 1976;ii:1387–1389. doi: 10.1016/s0140-6736(76)91922-x. [DOI] [PubMed] [Google Scholar]
  371. Maynell L.A., Kirkegaard K., Klymkowsky M.W. Inhibition of poliovirus RNA synthesis by brefeldin A. J. Virol. 1992;66:1985–1994. doi: 10.1128/jvi.66.4.1985-1994.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  372. McClure M.O., Whitby D., Patience C., Gooderham N.J., Bradshaw A., Cheingsong-Popov R., Weber J.N., Davies D.S., Cook G.M.W., Keynes R.J., Weiss R.A. Dextrin sulphate and fucoidan are potent inhibitors of HIV infection in vitro. Antivir. Chem. Chemother. 1991;2:149–156. [Google Scholar]
  373. McDougall J.K. Antiviral action of gliotoxin. Arch. Gesamte. Virusforsch. 1969;27:255–267. doi: 10.1007/BF01249648. [DOI] [PubMed] [Google Scholar]
  374. McKinlay M.A. WIN 51711, a new systematically active broad-spectrum antipicornavirus agent. Antimicrob. Agents Chemother. 1985;16:284–286. doi: 10.1093/jac/16.3.284. [DOI] [PubMed] [Google Scholar]
  375. McKinlay M.A., Peaver D.C., Rossmann M.G. Treatment of the picornavirus common cold by inhibitors of viral uncoating and attachment. Annu. Rev. Microbiol. 1992;46:635–654. doi: 10.1146/annurev.mi.46.100192.003223. [DOI] [PubMed] [Google Scholar]
  376. McKinlay M.A., Rossmann M.G. Rational design of antiviral agents. Annu. Rev. Pharmac. Toxicol. 1989;29:111–122. doi: 10.1146/annurev.pa.29.040189.000551. [DOI] [PubMed] [Google Scholar]
  377. McKinlay M.A., Steinberg B.A. Oral efficacy of WIN 51711 in mice infected with human poliovirus. Antimicrob. Agents Chemother. 1986;29:30–32. doi: 10.1128/aac.29.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  378. McNair A.N.B., Kerr I.M. Viral inhibition of the interferon system. Pharmac. Ther. 1992;56:79–95. doi: 10.1016/0163-7258(92)90038-2. [DOI] [PubMed] [Google Scholar]
  379. McSharry J.J., Caliguiri L.A., Eggers H.J. Inhibition of uncoating of poliovirus by arildone, a new antiviral drug. Virology. 1979;97:307–315. doi: 10.1016/0042-6822(79)90342-8. [DOI] [PubMed] [Google Scholar]
  380. McSharry J.J., Pancic F. Arildone: a b-diketone. In: Came P.E., Caliguiri L.A., editors. Chemotherapy of Viral Infections. Springer Verlag; Berlin: 1982. pp. 419–444. [Google Scholar]
  381. Meerovitch K., Nicholson R., Sonenberg N. In vitro mutational analysis of cis-acting RNA translational elements within the poliovirus type 2 5′ untranslated region. J. Virol. 1991;65:5895–5901. doi: 10.1128/jvi.65.11.5895-5901.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  382. Meerovitch K., Sonenberg N. Studies on the mechanism of internal initiation of translation on poliovirus RNA. In: Carrasco L., Sonenberg N., Wimmer E., editors. Regulation of Gene Expression in Animal Viruses. Plenum Press; London, New York: 1993. pp. 245–254. [Google Scholar]
  383. Meerovitch K., Svitkin Y.V., Lee H.S., Lejbkowicz F., Kenan D.J., Chan E.K.L., Agol V.I., Keene J.D., Sonenberg N. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J. Virol. 1993;67:3798–3807. doi: 10.1128/jvi.67.7.3798-3807.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  384. Mehdi S. Cell-penetrating inhibitors of calpain. TIBS. 1991;16:150–153. doi: 10.1016/0968-0004(91)90058-4. [DOI] [PubMed] [Google Scholar]
  385. Mendelsohn C.L., Wimmer E., Racaniello V.R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–865. doi: 10.1016/0092-8674(89)90690-9. [DOI] [PubMed] [Google Scholar]
  386. Merryman P., Jaffe I.A., Ehrenfeld E. Effect of d-penicillamine on poliovirus replication in HeLa cells. J. Virol. 1974;13:881–887. doi: 10.1128/jvi.13.4.881-887.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  387. Meurs E.F., Watanabe Y., Kadereit S., Barber G.N., Katze M.G., Chong K., Williams B.R.G., Hovanessian A.G. Constitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J. Virol. 1992;66:5805–5814. doi: 10.1128/jvi.66.10.5805-5814.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  388. Meyer W.J., Gidwitz S., Ayers V.K., Schoepp R.J., Johnston R.E. Conformational alteration of Sandbis virion glycoproteins induced by heat, reducing agents, or low pH. J. Virol. 1992;66:3504–3513. doi: 10.1128/jvi.66.6.3504-3513.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  389. Michel K.H., Chaney M.O., Jones N.D., Hoehn M.M., Nagarajan R. Epipolythiopiperazinedione antibiotics from Penicillium turbatum. J. Antibiot. Tokyo. 1974;27:57–64. doi: 10.7164/antibiotics.27.57. [DOI] [PubMed] [Google Scholar]
  390. Miller F.A., Rightsel W.A., Sloan B.J., Ehrlich J., French J.C., Bartz Q.R. Antiviral activity of tenuazonic acid. Nature. 1963;200:1338–1339. doi: 10.1038/2001338a0. [DOI] [PubMed] [Google Scholar]
  391. Miller K.D., Miller G.G., Sanders M., Fellowes O.N. Inhibition of virus-induced plaque formation by a toxic derivative of purified cobra neurotoxin. Biochim. biophys. Acta. 1977;496:192–196. doi: 10.1016/0304-4165(77)90127-1. [DOI] [PubMed] [Google Scholar]
  392. Miller P.A., Milstrey K.P., Trown P.W. Specific inhibition of viral ribonucleic acid replication by gliotoxin. Science. 1968;159:431–432. doi: 10.1126/science.159.3813.431. [DOI] [PubMed] [Google Scholar]
  393. Minor P.D. Antigenic structure of picornaviruses. In: Racaneillo V.R., editor. Current Topics in Microbiology 161 and Immunology, Picornaviruses. Springer Verlag; Berlin, Heidelberg: 1990. pp. 121–155. [DOI] [PubMed] [Google Scholar]
  394. Minor P.D. The Molecular biology of poliovaccines. J. gen. Virol. 1992;73:3065–3077. doi: 10.1099/0022-1317-73-12-3065. [DOI] [PubMed] [Google Scholar]
  395. Minor P.D., Macadam A., Cammack N., Dunn G., Almond J.W. Molecular biology and the control of viral vaccines. FEMS. Microbiol. Immunol. 1990;2:207–213. doi: 10.1111/j.1574-6968.1990.tb03521.x. [DOI] [PubMed] [Google Scholar]
  396. Minor P.D., Pipkin P.A., Hockley D., Schild G.C., Almond J.W. Monoclonal antibodies which block cellular receptors of poliovirus. Virus Res. 1984;1:203–212. doi: 10.1016/0168-1702(84)90039-x. [DOI] [PubMed] [Google Scholar]
  397. Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. biol. Chem. 1986;261:11398–11403. [PubMed] [Google Scholar]
  398. Mitsuya H., Popovic M., Yarchoan R., Matsushita S., Gallo R.C., Broder S. Suramin protection of T cells in vitro against infectivity and cytopathic effect of HTLV-III. Science. 1984;226:172–174. doi: 10.1126/science.6091268. [DOI] [PubMed] [Google Scholar]
  399. Patterson J.L., Fernandez-Larsson R. Molecular mechanisms of action of ribavirin. Rev. Infect. Dis. 1990;12:1139–1146. doi: 10.1093/clinids/12.6.1139. [DOI] [PubMed] [Google Scholar]
  400. Paul A.V., Schultz A., Pincus S.E., Oroszlan S., Wimmer E. Vol. 84. 1987. Capsid protein VP4 of poliovirus is N-myristoylated; pp. 7827–7831. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  401. Pearson G.D., Zimmerman E.F. Inhibition of poliovirus replication by N-methylisatin-beta-4′:4′-dibutylthiosemicarbazone. Virology. 1969;38:641–650. doi: 10.1016/0042-6822(69)90183-4. [DOI] [PubMed] [Google Scholar]
  402. Pelletier J., Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–325. doi: 10.1038/334320a0. [DOI] [PubMed] [Google Scholar]
  403. Pellkofer R., Marsh D., Hoffmann-Bleihauer P., Sandhoff K. Melittin stimulates incorporation and degradation of sphyngomyelin in synaptosomal plasma membranes. J. Neurochem. 1982;38:1230–1235. doi: 10.1111/j.1471-4159.1982.tb07895.x. [DOI] [PubMed] [Google Scholar]
  404. Pennington T.H. Isatin-beta-thiosemicarbazone causes premature cessation of vaccini virus-induced late post-replicative polypeptide synthesis. J. gen. Virol. 1977;35:567–571. doi: 10.1099/0022-1317-35-3-567. [DOI] [PubMed] [Google Scholar]
  405. Pérez L., Carrasco L. Cerulenin—an inhibitor of lipid synthesis-blocks vesicular stomatitis virus RNA replication. FEBS Lett. 1991;280:129–133. doi: 10.1016/0014-5793(91)80220-w. [DOI] [PubMed] [Google Scholar]
  406. Pérez L., Carrasco L. Lack of direct correlation between p220 cleavage and the shut-off of host translation after poliovirus infection. Virology. 1992;189:178–186. doi: 10.1016/0042-6822(92)90693-j. [DOI] [PubMed] [Google Scholar]
  407. Pérez L., Carrasco L. Entry of poliovirus into cells does not require a low-pH step. J. Virol. 1993;67:4543–4548. doi: 10.1128/jvi.67.8.4543-4548.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  408. Pérez L., Guinea R., Carrasco L. Synthesis of Semliki Forest virus RNA requires continuous lipid snnthesis. Virology. 1991;183:74–82. doi: 10.1016/0042-6822(91)90119-v. [DOI] [PubMed] [Google Scholar]
  409. Pevear D.C., Fancher M.J., Felock P.J., Rossmann M.G., Miller M.S., Diana G., Treasurywala A.M., McKinlay M.A., Dutko F.J. Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. J. Virol. 1989;63:2002–2007. doi: 10.1128/jvi.63.5.2002-2007.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  410. Pfau C.J. The thiosemicarbazones. In: Came P.E., Caliguiri L.A., editors. Chemotherapy of Viral Infections. Springer Verlag; Berlin: 1982. pp. 147–204. [Google Scholar]
  411. Philipson L., Bengtsson S., Dinter Z. The reversion of guanidine inhibition of poliovirus synthesis. Virology. 1966;29:317. doi: 10.1016/0042-6822(66)90039-0. [DOI] [PubMed] [Google Scholar]
  412. Phillpotts R.J., Wallace J., Tyrell D.A., Freestone D.S., Shepherd W.M. Failure of oral 4′,6-dichloroflavan to protect against rhinovirus infection in man. Arch. Virol. 1983;75:115–121. doi: 10.1007/BF01314131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  413. Phillpotts R.J., Wallace J., Tyrrell D.A.J., Tagart V.B. Therapeutic activity of enviroxime against rhinovirus infection in volunteers. Antimicrob. Agents Chemother. 1983;23:671–675. doi: 10.1128/aac.23.5.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  414. Pincus S.E., Diamond D.C., Emini E.A., Wimmer E. Guadenine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. J. Virol. 1986;57:638–646. doi: 10.1128/jvi.57.2.638-646.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  415. Pincus S.E., Rohl H., Wimmer E. Guanidine-dependent mutants of poliovirus: identification of three classes with different growth requirements. Virology. 1987;157:83–88. doi: 10.1016/0042-6822(87)90316-3. [DOI] [PubMed] [Google Scholar]
  416. Pincus S.E., Wimmer E. Production of guanidine-resistant and -dependent poliovirus mutants from cloned cDNA: mutations in polypeptide 2C are directly responsible for altered guanidine sensitivity. J. Virol. 1986;60:793–796. doi: 10.1128/jvi.60.2.793-796.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  417. Pinto C.A., Bahnsen H.P., Ravin L.J., Haff R.F., Pagano J.F. Vol. 141. 1972. The antiviral effect of a triazinoindole (SK&F 40491) in rhinovirus infected gibbons; pp. 467–474. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  418. Pinto L.H., Holsinger L.J., Lamb R.A. Influenza virus M2 protein has ion channel activity. Cell. 1992;69:517–528. doi: 10.1016/0092-8674(92)90452-i. [DOI] [PubMed] [Google Scholar]
  419. Planterose D.N. Antiviral and cytotoxic effects of mycophenolic acid. J. gen. Virol. 1969;4:629–630. doi: 10.1099/0022-1317-4-4-629. [DOI] [PubMed] [Google Scholar]
  420. Pleij C.W. Pseudoknots: a new motif in the RNA game. Trends Biochem. Sci. 1990;15:143–147. doi: 10.1016/0968-0004(90)90214-v. [DOI] [PubMed] [Google Scholar]
  421. Pohjanpelto P. Stabilization of poliovirus by cystine. Virology. 1958;6:472–487. doi: 10.1016/0042-6822(58)90095-3. [DOI] [PubMed] [Google Scholar]
  422. Pompei R., Flore O., Marccialis M.A., Pani A., Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature. 1979;281:689–690. doi: 10.1038/281689a0. [DOI] [PubMed] [Google Scholar]
  423. Powers R.D., Gwaltney J.M.J., Hayden F.G. Activity of 2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile (MDL-860) against picornaviruses in vitro. Antimicrob. Agents Chemother. 1982;22:639–642. doi: 10.1128/aac.22.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  424. Putnak J.R., Phillips B.S. Picornaviral structure and assembly. Microbiol. Rev. 1981;45:287–315. doi: 10.1128/mr.45.2.287-315.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  425. Racaniello V.R. Cell receptors for picornaviruses. Curr. Top. Microbiol. Immunol. 1990;161:1–22. doi: 10.1007/978-3-642-75602-3_1. [DOI] [PubMed] [Google Scholar]
  426. Racaniello V.R., Baltimore D. Vol. 78. 1981. Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome; pp. 4887–4891. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  427. Racaniello V.R., Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science. 1981;214:916–919. doi: 10.1126/science.6272391. [DOI] [PubMed] [Google Scholar]
  428. Rawlings N.D., Barrett A.J. Evolutionary families of peptidases. Biochem. J. 1993;290:205–218. doi: 10.1042/bj2900205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  429. Reed S.E. The assessment of antirhinovirus compounds with clinical potential. In: Collier L.H., Oxford J., editors. Developments in Antiviral Therapy. Academic Press; London: 1980. pp. 157–170. [Google Scholar]
  430. Ren R., Costantini F., Gorgacz E.J., Lee J.J., Racaniello V.R. Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell. 1990;63:353–362. doi: 10.1016/0092-8674(90)90168-e. [DOI] [PubMed] [Google Scholar]
  431. Ren R., Racaniello V.R. Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. J. Virol. 1992;66:296–304. doi: 10.1128/jvi.66.1.296-304.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  432. Rhoads R.E. Cap recognition and the entry of mRNA into the protein synthesis initiation cycle. Trends Biochem. Sci. 1988;13:52–56. doi: 10.1016/0968-0004(88)90028-x. [DOI] [PubMed] [Google Scholar]
  433. Rhoads R.E. Regulation of eukaryotic protein synthesis by initiation factors. J. biol. Chem. 1993;268:3017–3020. [PubMed] [Google Scholar]
  434. Rice A.P., Duncan R., Hershey W.B., Kerr I.M. Double-stranded RNA-dependent protein kinase and 2-5A system are both activated in interferon-treated, encephalomyocarditis virus-infected HeLa cells. J. Virol. 1985;54:894–898. doi: 10.1128/jvi.54.3.894-898.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  435. Richards O.C., Ehrenfeld E. Poliovirus RNA replication. Curr. Top. Microbiol. Immunol. 1990;161:89–121. doi: 10.1007/978-3-642-75602-3_4. [DOI] [PubMed] [Google Scholar]
  436. Rightsel W.A., Dice J.R., McAlpine R.J., Timm E.A., McLean I.W., Dixon G.J., Schabel F.M. Antiviral effect of guanidine. Science. 1961;134:558–559. doi: 10.1126/science.134.3478.558. [DOI] [PubMed] [Google Scholar]
  437. Rinehart K.L., Jr, Gloer J.B. Didemnins: antiviral and antitumor depsipeptides from a Carribean tunicate. Science. 1981;212:933–935. doi: 10.1126/science.7233187. [DOI] [PubMed] [Google Scholar]
  438. Robins P.K., Revankar G.R., McKernan P.A., Murray B.K., Kirsi J.J., North J.A. The importance of IMP dehydrogenase inhibition in the broad spectrum antiviral activity of ribavirin and selenazofurin. Adv. Enzyme Regul. 1985;24:29–43. doi: 10.1016/0065-2571(85)90068-8. [DOI] [PubMed] [Google Scholar]
  439. Rodriguez P.L., Carrasco L. Gliotoxin: Inhibitor of poliovirus RNA synthesis that blocks the viral RNA polymerase 3Dpol. J. Virol. 1992;66:1971–1976. doi: 10.1128/jvi.66.4.1971-1976.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  440. Rodríguez P.L., Carrasco L. Poliovirus protein 2C has ATPase and GTPase activities. J. biol. Chem. 1993;268:8105–8110. [PubMed] [Google Scholar]
  441. Rombaut B., Andries K., Boeye A. A comparison of WIN 51711 and R 78206 as stabilizers of poliovirus virions and procapsids. J. gen. Virol. 1991;72:2153–2157. doi: 10.1099/0022-1317-72-9-2153. [DOI] [PubMed] [Google Scholar]
  442. Rosenwirth B., Eggars H.J. Echovirus 12-induced host cell shutoff is prevented by rhodanine. Nature. 1977;267:370–371. doi: 10.1038/267370a0. [DOI] [PubMed] [Google Scholar]
  443. Rosenwirth B., Eggers H.J. Early processes of echovirus 12-infection: elution, penetration, and uncoating under the influence of rhodanine. Virology. 1979;97:241–255. doi: 10.1016/0042-6822(79)90336-2. [DOI] [PubMed] [Google Scholar]
  444. Rossmann M.G. Vol. 85. 1988. Antiviral agents targeted to interact with viral capsid proteins and a possible application to human immunodeficiency virus; pp. 4625–4627. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  445. Rossmann M.G. The structure of antiviral agents that inhibit uncoating when complexed with viral capsids. Antiviral. Res. 1988;11:3–13. doi: 10.1016/0166-3542(89)90016-8. [DOI] [PubMed] [Google Scholar]
  446. Rossmann M.G. The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J. biol. Chem. 1988;264:14587–14590. [PubMed] [Google Scholar]
  447. Rossman M.G., Johnson J.E. Icosahedral RNA virus structure. Annu. Rev. Biochem. 1989;58:533–573. doi: 10.1146/annurev.bi.58.070189.002533. [DOI] [PubMed] [Google Scholar]
  448. Rossmann M.G., Arnold E., Erickson J.W., Frankenberger E.A., Griffith J.P., Hecht H.-J., Johnson J.E., Kamer G., Luo M., Mosser A.G., Rueckert R.R., Sherry B., Vriend G. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985;317:145–153. doi: 10.1038/317145a0. [DOI] [PubMed] [Google Scholar]
  449. Rothman J.E., Orci L. Molecular dissection of the secretory pathway. Nature. 1992;355:409–415. doi: 10.1038/355409a0. [DOI] [PubMed] [Google Scholar]
  450. Rueckert R.R., Wimmer E. Systematic nomenclature of picornavirus proteins. J. Virol. 1984;50:957–959. doi: 10.1128/jvi.50.3.957-959.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  451. Sabin A.B., Fieldsteel A.H. Antipoliomyelitic activity of human and bovine colostrum and milk. Pedriat. 1962;29:105–115. [PubMed] [Google Scholar]
  452. Saborio J.L., Pong S.S., Koch G. Selective and reversible inhibition of initiation of protein synthesis in mammalian cells. J. molec. Biol. 1974;85:195–211. doi: 10.1016/0022-2836(74)90360-x. [DOI] [PubMed] [Google Scholar]
  453. Sakai A., Ebina T., Ishida N. Interferon induction in mice by oral administration of K-582, a new peptide antibiotic. J. Antibiotics. 1983;36:335–338. doi: 10.7164/antibiotics.36.335. [DOI] [PubMed] [Google Scholar]
  454. Sanders M., Soret M.G., Akin B.A. Vol. 58. 1953. Neurotoxoid interference with two human strains of poliomyelitis in Rhesus monkey; pp. 1–12. (Ann. N.Y. Acad. Sci.). [PubMed] [Google Scholar]
  455. Sanders M., Soret M.G., Akin B.A., Roizin L. Neurotoxoid interference in Macacus rhesus infected intramuscularly with poliovirus. Science. 1958;127:594–596. doi: 10.1126/science.127.3298.594-a. [DOI] [PubMed] [Google Scholar]
  456. Sarnow P. Role of 3′-end sequences in infectivity of poliovirus transcripts made in vitro. J. Virol. 1989;63:467–470. doi: 10.1128/jvi.63.1.467-470.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  457. Sarnow P., Bernstein H.D., Baltimore D. Vol. 83. 1986. A poliovirus temperature-sensitive RNA synthesis mutant located in noncoding region of the genome; pp. 571–575. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  458. Sarnow P., Jacobson S.J., Najita L. Poliovirus genetics. Curr. Top. Microbiol. Immunol. 1990;161:155–188. doi: 10.1007/978-3-642-75602-3_6. [DOI] [PubMed] [Google Scholar]
  459. Saunders K., King A.M. Guanidine-resistant mutants of aphthovirus induce the synthesis of an altered nonstructural polypeptide, P34. J. Virol. 1982;42:389–394. doi: 10.1128/jvi.42.2.389-394.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  460. Sawai H., Iami J., Lesiak K., Johnston M.I., Torrence F. Cordycepin analogues of 2–5A and its derivatives. Chemical synthesis and biological activity. J. biol. Chem. 1983;258:1671–1677. [PubMed] [Google Scholar]
  461. Schaeffer H.J., Beauchamp L., De Miranda P., Elion G.B., Bauer D.J., Collins P. 9-(2-Hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature. 1978;272:583–585. doi: 10.1038/272583a0. [DOI] [PubMed] [Google Scholar]
  462. Scharff M.D., Levintow L. Quantitative study of the formation of poliovirus antigens in infected HeLa cells. Virology. 1963;19:491–500. doi: 10.1016/0042-6822(63)90043-6. [DOI] [PubMed] [Google Scholar]
  463. Schiff G.M., Sherwood J.R., Young E.C., Mason L.J. Prophylactic efficacy of WIN 54954 in prevention of experimental human coxsackievirus A21 infection and illness. Antiviral Res. 1992;17:92. [Google Scholar]
  464. Schlesinger M.J., Malfer C. Cerulenin blocks fatty acid acylation of glycoproteins and inhibits vesicular stomatitis and Sindbis virus particle formation. J. Biol. Chem. 1982;257:9887–9890. [PubMed] [Google Scholar]
  465. Schneider D.L. The proton pump ATPase of lysosomes and related organelles of the vacuolar apparatus. Biochim. biophys. Acta. 1987;895:1–10. doi: 10.1016/s0304-4173(87)80013-7. [DOI] [PubMed] [Google Scholar]
  466. Schols D., Pauwels R., Desmyter J., De Clercq E. Dextran sulfate and other polynionic anti-HIV compounds specifically interact with the viral gp120 glycoprotein expressed by T-cells persistently infected with HIV-1. Virology. 1990;175:556–561. doi: 10.1016/0042-6822(90)90440-3. [DOI] [PubMed] [Google Scholar]
  467. Schrader A.P., Westaway E.G. Succesful competition in translation by the flavivirus Kunjin with poliovirus during co-infections in Vero cells. Arch. Virol. 1990;114:75–89. doi: 10.1007/BF01311013. [DOI] [PubMed] [Google Scholar]
  468. Seglen P.O. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:737–764. doi: 10.1016/s0076-6879(83)96063-9. [DOI] [PubMed] [Google Scholar]
  469. Sehgal P.B., Pfeffer L.M., Tamm I. Interferon and its inducers. In: Came P.E., Caliguiri L.A., editors. Chemotherapy of Viral Infections. Springer Verlag; Berlin: 1982. pp. 205–312. [Google Scholar]
  470. Semler B.L., Johnson V.H., Tracy S. Vol. 83. 1986. A chimeric plasmid from cDNA clones of poliovirus and coxsackievirus produces a recombinant virus that is temperature-sensitive; pp. 1777–1781. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  471. Semler B.L., Kuhn R.J., Wimmer E. Replication of the poliovirus genome. In: Domingo E., Holland J.J., Ahlquist P., editors. RNA Genetics, Vol. I, RNA-Directed Virus Replication. CRC Press Inc; Boca Raton, FL: 1988. pp. 23–49. [Google Scholar]
  472. Shannon W.M. Mechanisms of action and pharmacology: chemical agents. In: Galasso G.J., Merigan T.C., Buchanan R.A., editors. Raven Press; New York: 1984. pp. 55–121. (Antiviral Agents and Viral Diseases of Man). [Google Scholar]
  473. Shepard D.A., Heinz B.A., Rueckert R.R. WIN 52035-2 inhibits both attachment and eclipse of human rhinovirus 14. J. Virol. 1993;67:2245–2254. doi: 10.1128/jvi.67.4.2245-2254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  474. Shope R.E. An antiviral substance from Penicillium funiculosum: III. General properties and characteristics of helenine. J. exp. Med. 1953;97:639–650. doi: 10.1084/jem.97.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  475. Shope R.E. An antiviral substance from Penicillium funiculosm: I. Effect upon infection in mice with Swine influenza virus and Columbia SK encephalomyelitis virus. J. exp. Med. 1953;97:601–625. doi: 10.1084/jem.97.5.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  476. Shope R.E. An antiviral substance from Penicillium funiculosum: II. Effect of helenine upon infection in mice with Semliki Forest virus. J. exp. Med. 1953;97:627–638. doi: 10.1084/jem.97.5.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  477. Shugar D. Progress with antiviral agents. FEBS Lett. 1974;40:S48–S62. doi: 10.1016/0014-5793(74)80688-5. [DOI] [PubMed] [Google Scholar]
  478. Sidwell R.W., Robins R.K., Hillyard I.W. Ribavirin: an antiviral agent. Pharmac. Ther. 1979;6:123–146. doi: 10.1016/0163-7258(79)90058-5. [DOI] [PubMed] [Google Scholar]
  479. Siegl G., Eggers H.J. Failure of guanidine and 2-(alpha-hydroxybenzyl)benzimidazole to inhibit replication of hepatitis A virus in vitro. J. gen. Virol. 1982;61:111–114. doi: 10.1099/0022-1317-61-1-111. [DOI] [PubMed] [Google Scholar]
  480. Silverman R.H., Cayley P.J., Knight M., Gilbert C.S., Kerr I.M. Control of the ppp(A2′p)nA system in HeLa cells. Effects of interferon and virus infection. Eur. J. Biochem. 1982;124:131–138. doi: 10.1111/j.1432-1033.1982.tb05915.x. [DOI] [PubMed] [Google Scholar]
  481. Singh K.R.P., Pavri K., Anderson C.R. Experimental transovarial transmission of Kyasanur Forest disease virus in Haemaphysalis spinigera. Nature. 1963;199:513. doi: 10.1038/199513a0. [DOI] [PubMed] [Google Scholar]
  482. Singh S.B., Cordingley M.G., Ball R.G., Smith J.L., Dombrowski A.W., Goetz M.A. Structure and stereochemistry of thysanone: a novel human rhinovirus 3C-protease inhibitor from Thysanophora penicilloides. Tetrahedron Lett. 1991;32:5279–5282. [Google Scholar]
  483. Skiles J.W., McNeil D. Spiro indolinone beta-lactams, inhibitors of poliovirus and rhinovirus 3c-proteinases. Tetrahedron Lett. 1990;31:7277–7280. [Google Scholar]
  484. Smith R.A., Kirkpatrick W. Academic Press; New York: 1980. Ribavirin: A Broad Spectrum Antiviral Agent. [Google Scholar]
  485. Smith T.J., Kremer M.J., Luo M., Vriend G., Arnold E., Kamer G., Rossmann M.G., McKinlay M.A., Diana G.D., Otto M.J. The site of attachment in human rhinovirus 14 for antiviral agents inhibit uncoating. Science. 1986;233:1286–1293. doi: 10.1126/science.3018924. [DOI] [PubMed] [Google Scholar]
  486. Smyth M., Hall J., Fry E., Stuart D., Stanway G., Hyypiä T. Preliminary crystallographic analysis of coxsackievirus A9. J. molec. Biol. 1993;230:667–669. doi: 10.1006/jmbi.1993.1179. [DOI] [PubMed] [Google Scholar]
  487. Sola A., Rodríguez S., García Gancedo A., Vilas P., Gil-Fernández C. Inactivation and inhibition of African swine fever virus by monoolein-monolinolein and gamma-linolenyl alcohol. Arch. Virol. 1986;88:285–292. doi: 10.1007/BF01310882. [DOI] [PubMed] [Google Scholar]
  488. Sola A., Rodríguez S., Gil-Fernández C., Alarcón B., González M.E., Carrasco L. New agents active against African swine fever virus. Antimicrob. Agents Chemother. 1986;29:284–288. doi: 10.1128/aac.29.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  489. Sonenberg N. Poliovirus translation. Curr. Top. Microbiol. Immunol. 1990;161:23–47. doi: 10.1007/978-3-642-75602-3_2. [DOI] [PubMed] [Google Scholar]
  490. Sonenberg N. Picornavirus RNA translation continues to surprise. TIG. 1991;7:105–106. doi: 10.1016/0168-9525(91)90440-2. [DOI] [PubMed] [Google Scholar]
  491. Spector D.H., Baltimore D. Polyadenylic acid on poliovirus RNA. II. Poly(A) on intracellular RNAs. J. Virol. 1975;15:1418–1431. doi: 10.1128/jvi.15.6.1418-1431.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  492. Spector D.H., Baltimore D. Polyadenylic acid on poliovirus RNA IV. Poly(U) in replicative intermediate and double-stranded RNA. Virology. 1975;67:498–505. doi: 10.1016/0042-6822(75)90450-x. [DOI] [PubMed] [Google Scholar]
  493. Spector D.H., Villa-Komaroff L., Baltimore D. Studies on the function of polyadenylic acid on poliovirus RNA. Cell. 1975;6:41–44. doi: 10.1016/0092-8674(75)90071-9. [DOI] [PubMed] [Google Scholar]
  494. Srivastava P.C., Pickering M.V., Allen L.B., Streeter D.G., Campbell M.T., Witkowski J.T., Sidwell R.W., Robins R.K. Synthesis and antiviral activity of certain thiazole C-nucleosides. J. med. Chem. 1977;20:256–262. doi: 10.1021/jm00212a014. [DOI] [PubMed] [Google Scholar]
  495. Staeheli P. Interferon-induced proteins and the antiviral state. Adv. Virus. Res. 1990;38:147–200. doi: 10.1016/s0065-3527(08)60862-3. [DOI] [PubMed] [Google Scholar]
  496. Stanway G. Structure, function and evolution of picornaviruses. J. gen. Virol. 1990;71:2483–2501. doi: 10.1099/0022-1317-71-11-2483. [DOI] [PubMed] [Google Scholar]
  497. Staunton D.E., Dustin M.L., Erickson H.P., Springer T.A. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell. 1990;61:243–254. doi: 10.1016/0092-8674(90)90805-o. [DOI] [PubMed] [Google Scholar]
  498. Staunton D.E., Merluzzi V.J., Rothlein R., Barton R., Marlin S.D., Springer T.A. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989;56:849–853. doi: 10.1016/0092-8674(89)90689-2. [DOI] [PubMed] [Google Scholar]
  499. Stebbing N. Antiviral effects of single-stranded polynucleotides and their mode of action. In: Shugar D., editor. Vol. 1. Pergamon Press; Oxford: 1984. pp. 437–479. (Viral Chemotherapy). [Google Scholar]
  500. Stebbing N., Grantham C.A., Kaminski F. Investigation of the anti-viral mechanism of poly I and poly C against encephalomyocarditis virus infection in the absence of interferon induction in mice. J. gen. Virol. 1976;32:25–35. doi: 10.1099/0022-1317-32-1-25. [DOI] [PubMed] [Google Scholar]
  501. Stebbing N., Grantham C.A., Lindley I.J., Eaton M.A., Carey N.H. In vivo antiviral activity of polynucleotide mimics of strategic regions in viral RNA. Ann. N.Y. Acad. Sci. 1977;284:682–696. doi: 10.1111/j.1749-6632.1977.tb22004.x. [DOI] [PubMed] [Google Scholar]
  502. Steele F.M., Black F.L. Inactivation and heat stabilization of poliovirus by 2-thiouracil. J. Virol. 1967;1:653–658. doi: 10.1128/jvi.1.4.653-658.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  503. Stein I.M., Micklus M.J. Concentrations in serum and urinary excretion of guanidine 1-methylguanidine and 1,1-dimethylguanidine in renal failure. Clin. Chem. 1973;19:583–585. [PubMed] [Google Scholar]
  504. Stephenson M.L., Zamecnik P.C. Vol. 75. 1978. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide; pp. 285–288. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  505. Strebel K., Beck E. A second protease of foot-and-mouth disease virus. J. Virol. 1986;58:893–899. doi: 10.1128/jvi.58.3.893-899.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  506. Streeter D.G., Witkowski J.T., Khare G.P., Sidwell R.W., Bauer R.J., Robins R.K., Simon L.N. Vol. 70. 1973. Mechanism of action of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent; pp. 1174–1178. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  507. Streissle G., Paessens A., Oediger H. New antiviral compounds. Adv. Virus Res. 1985;30:83–138. doi: 10.1016/s0065-3527(08)60449-2. [DOI] [PubMed] [Google Scholar]
  508. Stringellow D.A. Induction of interferon with low molecular weight compounds: fluorenone esters, ethers (Tilorone), and pyramidinones. Meth. Enzymol. 1981;78:262–284. doi: 10.1016/0076-6879(81)78128-x. [DOI] [PubMed] [Google Scholar]
  509. Sturzenbecker L.J., Nibert M., Furlong D., Fields B.N. Intracellular digestion of reovirus particles requires a low pH and is an essential step in the viral infections cycle. J. Virol. 1987;61:2351–2361. doi: 10.1128/jvi.61.8.2351-2361.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  510. Suhadolnik R.J. Gliotoxin. In: Gottlieb D., Shaw P.D., editors. Springer Verlag; Berlin: 1967. pp. 29–31. (Antibiotics, Vol. II, Biosynthesis). [Google Scholar]
  511. Suhadolnik R.J. Cordycepin, Psicofuranine, Decoyinine, Tubercidin and Toyocamycin. In: Gottlieb D., Shaw P.D., editors. Springer Verlag; Berlin: 1967. pp. 400–409. (Antibiotics, Vol. II, Biosynthesis). [Google Scholar]
  512. Summers D.F., Maizel J.V.J. Vol. 59. 1968. Evidence for large precursor proteins in poliovirus synthesis; pp. 966–971. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  513. Summers D.F., Maizel J.V.J. Vol. 68. 1971. Determination of the gene sequence of poliovirus with pactamycin; pp. 2852–2856. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  514. Summers D.F., Shaw E.N., Stewart M.L., Maizel J.V.J. Inhibition of cleavage of large poliovirus-specific precursor proteins in infected HeLa cells by inhibitors of proteolytic enzymes. J. Virol. 1972;10:880–884. doi: 10.1128/jvi.10.4.880-884.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  515. Svensson U. Role of vesicles during adenovirus 2 internalization into HeLa cells. J. Virol. 1985;55:442–449. doi: 10.1128/jvi.55.2.442-449.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  516. Taber R., Rekosh D., Baltimore D. Effect of pactamycin on synthesis of poliovirus proteins: a method for genetic mapping. J. Virol. 1971;8:395–401. doi: 10.1128/jvi.8.4.395-401.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  517. Takeda N., Kuhn R.J., Yang C.F., Takegami T., Wimmer E. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells. J. Virol. 1986;60:43–53. doi: 10.1128/jvi.60.1.43-53.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  518. Takegami T., Kuhn R.J., Anderson C.W., Wimmer E. Vol. 80. 1983. Membrane-dependent uridylylation of the genome-linked protein VPg of poliovirus; pp. 7447–7451. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  519. Tamm I., Sehgal P.B. Halobenzimidazole ribosides and RNA synthesis of cells and viruses. Adv. Virus Res. 1978;22:187–258. doi: 10.1016/s0065-3527(08)60775-7. [DOI] [PubMed] [Google Scholar]
  520. Tamura G., Ando K., Suzuki S., Takatsuki A., Arima K. Antiviral activity of brefeldin A and verrucarin A. J. Antibiot. Tokyo. 1968;21:160–161. doi: 10.7164/antibiotics.21.160. [DOI] [PubMed] [Google Scholar]
  521. Tang J., Colacino J.M., Larsen S.H., Spitzer W. Virucidal activity of hypericin against enveloped and non-enveloped DNA and RNA viruses. Antiviral Res. 1990;13:313–325. doi: 10.1016/0166-3542(90)90015-y. [DOI] [PubMed] [Google Scholar]
  522. Taylor J.L., Grossberg S.E. Recent progress in interferon research: molecular mechanisms of regulation, action, and virus circumvention. Virus Res. 1990;15:1–25. doi: 10.1016/0168-1702(90)90010-9. [DOI] [PubMed] [Google Scholar]
  523. Tershak D.R. Guanidine inhibition of poliovirus growth. Partial elimination by protease antagonists and low temperature. Can. J. Microbiol. 1974;20:817–824. doi: 10.1139/m74-126. [DOI] [PubMed] [Google Scholar]
  524. Tershak D.R. Inhibition of poliovirus polymerase by guanidine in vitro. J. Virol. 1982;41:313–318. doi: 10.1128/jvi.41.1.313-318.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  525. Tershak D.R., Mitchell W., Garfinkle B. Effect of guanidine on the growth of LSc poliovirus. Can. J. Microbiol. 1972;18:747–755. doi: 10.1139/m72-119. [DOI] [PubMed] [Google Scholar]
  526. Tershak D.R., Yin F.H., Korant B.D. Guanidine. In: Came P.E., Caliguiri L.A., editors. Chemotherapy of Viral Infections. Springer Verlag; Berlin: 1982. pp. 343–377. [Google Scholar]
  527. Thomas A.A., ter Haar E., Wellink J., Voorma H.O. Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. J. Virol. 1991;65:2953–2959. doi: 10.1128/jvi.65.6.2953-2959.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  528. Tisdale M., Selway J.W.T. Inhibition of an early stage of rhinovirus replication by dichloroflavan (BW683C) J. gen. Virol. 1983;64:795–803. doi: 10.1099/0022-1317-64-4-795. [DOI] [PubMed] [Google Scholar]
  529. Tobin G.J., Young D.C., Flanegan J.B. Self-catalyzed linkage of poliovirus terminal protein VPg to poliovirus RNA. Cell. 1989;59:511–519. doi: 10.1016/0092-8674(89)90034-2. [DOI] [PubMed] [Google Scholar]
  530. Togo Y., Schwartz A.R., Hornick R.B. Antiviral effect of 3,4-dihydro-1-isoquinolineacetamide hydrochloride in experimental human rhinovirus infection. Antimicrob. Agents Chemother. 1973;4:612–616. doi: 10.1128/aac.4.6.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  531. Togo Y., Schwartz A.R., Hornick R.B. Failure of a 3-substituted triazinoindole in the prevention of experimental human rhinovirus infection. Chemotherapy. 1973;18:17–26. doi: 10.1159/000221243. [DOI] [PubMed] [Google Scholar]
  532. Tomassini J.E., Graham D., DeWitt C.M., Lineberger D.W., Rodkey J.A., Colonno R.J. Vol. 86. 1989. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1; pp. 4907–4911. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  533. Tonew E., Indulen M.K., Dzeguze D.R. Antiviral action of dipyridamole and its derivatives against influenza virus A. Acta Virol. Praha. 1982;26:125–129. [PubMed] [Google Scholar]
  534. Torney H.L., Dulworth J.K., Steward D.L. Antiviral activity and mechanism of action of 2-(3,4-dichlorophenoxy)-5-nitrobenzonitrile (MDL-860) Antimicrob. Agents Chemother. 1982;22:635–638. doi: 10.1128/aac.22.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  535. Toyoda H., Nicklin M.J., Murray M.G., Anderson C.W., Dunn J.J., Studier F.W., Wimmer E. A second virus-encoded proteinase involved in preteolytic processing of poliovirus polyprotein. Cell. 1986;45:761–770. doi: 10.1016/0092-8674(86)90790-7. [DOI] [PubMed] [Google Scholar]
  536. Trown P.W. Antiviral activity of N,N′-dimethyl-epidithiapiprazinedione, a synthetic compound related to the gliotoxins, LL-S88alpha and beta, chetomin and the sporidesmins. Biochem. biophys. Res. Commun. 1968;33:402–407. doi: 10.1016/0006-291x(68)90585-8. [DOI] [PubMed] [Google Scholar]
  537. Trown P.W., Bilello J.A. Mechanism of action of gliotoxin: elimination of activity by sulfhydryl compounds. Antimicrob. Agents Chemother. 1972;2:261–266. doi: 10.1128/aac.2.4.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  538. Troxler M., Egger D., Pfister T., Bienz K. Intracellular localization of poliovirus RNA by in situ hybridization at the ultrastructural level using single-stranded riboprobes. Virology. 1992;191:687–697. doi: 10.1016/0042-6822(92)90244-j. [DOI] [PubMed] [Google Scholar]
  539. Turner R.B., Dutko F.J., Goldstein N.H., Lockwood G., Hayden F.G. Efficacy of oral WIN 54954 for prophylaxis of experimental rhinovirus infection. Antimicrob. Agents Chemother. 1993;37:297–300. doi: 10.1128/aac.37.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  540. Tyrrell D.A.J. Antirhinovirus drugs. In: De Clercq E., Walder R.T., editors. Targets for the Design of Antiviral Agents. Plenum Press; New York: 1984. pp. 189–202. [Google Scholar]
  541. Ulmer J.B., Palade G.E. Effects of brefeldin A on the processing of viral envelope glycoproteins in murine erythroleukemia cells. J. biol. Chem. 1990;266:9173–9179. [PubMed] [Google Scholar]
  542. Ulug E.T., Garry R.F., Bose H.R., Jr. Cell killing by enveloped RNA viruses. In: Carrasco L., editor. Mechanisms of Viral Toxicity in Animal Cells. CRC Press Inc; Boca Raton, FL: 1987. pp. 91–144. [Google Scholar]
  543. Urzainqui A., Carrasco L. Post-translational modifications of poliovirus proteins. Biochem. biophys. Res. Comm. 1988;158:263–271. doi: 10.1016/s0006-291x(89)80207-4. [DOI] [PubMed] [Google Scholar]
  544. Urzainqui A., Carrasco L. Degradation of cellular proteins during poliovirus infection: studies by two-dimensional gel electrophoresis. J. Virol. 1989;63:4729–4735. doi: 10.1128/jvi.63.11.4729-4735.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  545. Ussery M.A., Irvin J.D., Hardesty B. Inhibition of poliovirus replication by a plant antiviral peptide. Ann. N.Y. Acad. Sci. 1977;284:431–440. doi: 10.1111/j.1749-6632.1977.tb21979.x. [DOI] [PubMed] [Google Scholar]
  546. Van Aerschot A., Herdewijn P., Janssen G., Cools M., De Clercq E. Synthesis and antiviral activity evaluation of 3′-fluoro-3′-deoxyribonucleosides: broad-spectrum antiviral activity of 3′-fluoro-3′-deoxyandenosine. Antiviral Res. 1989;12:133–150. doi: 10.1016/0166-3542(89)90047-8. [DOI] [PubMed] [Google Scholar]
  547. Van Hoof L., Vanden Berghe D.A., Hatfield G.M., Vlietinck A.J. Plant antiviral agents: V. 3-Methoxyflavones as potent inhibitors of viral-induced block of cell synthesis. Planta Med. 1984;50:513–517. [PubMed] [Google Scholar]
  548. Varga M.J., Weibull C., Everitt E. Infectious entry pathway of adenovirus type 2. J. Virol. 1991;65:6061–6070. doi: 10.1128/jvi.65.11.6061-6070.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  549. Vázquez D. Springer Verlag; Berlin, Heidelberg, New York: 1979. Inhibitors of Protein Biosynthesis. [Google Scholar]
  550. Veckenstedt A., Béládi I., Mucsi I. Effect of treatment with certain flavonoids on mengo virus-induced encephalitis in mice. Arch. Virol. 1978;57:255–260. doi: 10.1007/BF01315089. [DOI] [PubMed] [Google Scholar]
  551. Verhaegen-Lewalle M., Kuwata T., Zhang Z.-X., DeClercq E., Cantell K., Content J. 2–5A Synthetase activity induced by interferon a, b and g in human cell lines differing in their sensitivity to the anticellular and antiviral activities of these interferons. Virology. 1982;117:425–434. doi: 10.1016/0042-6822(82)90481-0. [DOI] [PubMed] [Google Scholar]
  552. Vlietinck A.J., Vanden Berghe D.A., Van Hoof L.M., Vrijsen R., Boeye A. Antiviral activity of 3-methoxyflavones. Prog. Clin. Biol. Res. 1986;213:537–540. [PubMed] [Google Scholar]
  553. Wagner E., Cotten M., Foisner R., Birnsteil M.L. Vol. 88. 1991. Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells; pp. 4255–4259. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  554. Wagner E., Plank C., Zatloukal K., Cotten M., Birnstiel M.L. Vol. 89. 1992. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle; pp. 7934–7938. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  555. Wagner E., Zatloukal K., Cotten M., Kirlappos H., Mechtler K., Curiel D.T., Birnstiel M.L. Vol. 89. 1992. Coupling of adenovirus to transferrin-polylysine-DNA complexes great;y enhances receptor-mediated gene delivery and expression of transfected genes; pp. 6099–6103. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  556. Werner G.H., Jasmin C., Chermann J.C. Effect of ammonium 5-tungsto-2-antimoniate on encephalomyocarditis and vesicular stomatitis virus infections in mice. J. Gen. Virol. 1976;31:59–64. doi: 10.1099/0022-1317-31-1-59. [DOI] [PubMed] [Google Scholar]
  557. Whealy M.E., Card J.P., Meade R.P., Robbins A.K., Enquist L.W. Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J. Virol. 1991;65:1066–1081. doi: 10.1128/jvi.65.3.1066-1081.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  558. White J.M. Viral and cellular membrane fusion proteins. Annu. Rev. Physiol. 1990;52:675–697. doi: 10.1146/annurev.ph.52.030190.003331. [DOI] [PubMed] [Google Scholar]
  559. Wigle D.T., Smith A.E. Specificity in initiation of protein synthesis in a fractionated mammalian cell-free system. Nature New. Biol. 1973;242:136–140. doi: 10.1038/newbio242136a0. [DOI] [PubMed] [Google Scholar]
  560. Wiley D.C., Skehel J.J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu. Rev. Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
  561. Williams B.R.G., Golgher R.R., Brown R.E., Gilbert C.S., Kerr I.M. Natural occurrence of 2–5A in interferon-treated EMC virus-infected L cells. Nature. 1979;282:582–586. doi: 10.1038/282582a0. [DOI] [PubMed] [Google Scholar]
  562. Williams B.R.G., Kerr I.M., Gilbert C.S., White C.N., Ball L.A. Synthesis and breakdown of pppA2′p5′p5′A and transient inhibition of protein synthesis from interferon-treated and control cells. Eur. J. Biochem. 1978;92:455–562. doi: 10.1111/j.1432-1033.1978.tb12767.x. [DOI] [PubMed] [Google Scholar]
  563. Williams R.H., Lively D.H., DeLong D.C., Cline J.C., Sweeney M.J., Poore G.A., Larsen S.H. Micophenolic acid: antiviral and antitumor properties. J. Antibiotics. 1968;21:463–464. doi: 10.7164/antibiotics.21.463. [DOI] [PubMed] [Google Scholar]
  564. Wimmer E., Kuhn R.J., Pincus S., Yang C.F., Toyoda H., Nicklin M.J., Takeda N. Molecular events leading to picornavirus genome replication. J. Cell Sci. 1987;7:251–276. doi: 10.1242/jcs.1987.supplement_7.18. [DOI] [PubMed] [Google Scholar]
  565. Witkowski J.T., Robins R.K., Sidwell R.W., Simon L.N. Design, synthesis, and broad spectrum antiviral activity of 1-β-d-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J. Med. Chem. 1972;15:1150–1154. doi: 10.1021/jm00281a014. [DOI] [PubMed] [Google Scholar]
  566. Wu M., Davidson N., Wimmer E. An electron microscope study of the proteins attached to polio virus RNA and its replicative form (RF) Nucleic Acids Res. 1978;5:4711–4723. doi: 10.1093/nar/5.12.4711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  567. Wu Y., Zhang D.Y., Kramer F.R. Vol. 89. 1992. Amplifiable messenger RNA; pp. 11769–11773. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  568. Wyckoff E.E., Hershey J.W.B., Ehrenfeld E. Vol. 87. 1990. Eukaryotic initiation factor 3 is required for poliovirus 2A protease-induced cleavage of the p220 component of eukaryotic initiation factor 4F; pp. 9529–9533. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  569. Wyckoff E.E., Lloyd R.E., Ehrenfeld E. Relationship of eukaryotic initiation factor 3 to poliovirus-induced p220 cleavage activity. J. Virol. 1992;66:2943–2951. doi: 10.1128/jvi.66.5.2943-2951.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  570. Wyde P.R., Six H.R., Wilson S.Z., Gilbert B.E., Knight V. Activity against rhinoviruses, toxicity, and delivery in aerosol of enviroxime in liposomes. Antimicrob. Agents Chemother. 1988;32:890–895. doi: 10.1128/aac.32.6.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  571. Yamada Y., Natsumeda Y., Weber G. Action of the active metabolites of tiazofurin and ribavirin on purified IMP dehydrogenase. Biochemistry. 1988;27:2193–2196. doi: 10.1021/bi00406a057. [DOI] [PubMed] [Google Scholar]
  572. Yamaizumi M., Uchida T., Okada Y. Macromolecules can penetrate the host cell membrane during the early period of incubation with HVJ (Sendai virus) Virology. 1979;95:218–221. doi: 10.1016/0042-6822(79)90418-5. [DOI] [PubMed] [Google Scholar]
  573. Yamazi Y., Takahashi M., Todome Y. Vol. 133. 1970. Inhibition of poliovirus by effect of a methylthiopyrimidine derivative; pp. 674–677. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
  574. Yeates T.O., Jacobson D.H., Martin A., Wychowski C., Girard M., Filman D.J., Hogle J.M. Three-dimensional structure of a mouse-adapted type 2/type 1 poliovirus chimera. EMBO J. 1991;10:2331–2341. doi: 10.1002/j.1460-2075.1991.tb07772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  575. Yogo Y., Wimmer E. Vol. 69. 1972. Polyadenylic acid at the 3′-terminus of poliovirus RNA; pp. 1877–1882. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  576. Zatloukal K., Wagner E., Cotten M., Phillips S., Plank C., Steinlein P., Curiel D.T., Birnstiel M.L. Transferrinfection: a highly efficient way to express gene constructs in eukaryotic cells. Ann. N.Y. Acad. Sci. 1992;660:136–153. doi: 10.1111/j.1749-6632.1992.tb21066.x. [DOI] [PubMed] [Google Scholar]
  577. Zeichhardt H., Otto M.J., McKinlay M.A., Willingmann P., Habermehl K.O. Inhibition of poliovirus uncoating by disoxaril (WIN 51711) Virology. 1987;160:281–285. doi: 10.1016/0042-6822(87)90075-4. [DOI] [PubMed] [Google Scholar]
  578. Zeichhardt H., Wetz K., Willingmann P., Habernehl K.O. Entry of poliovirus type 1 and Mouse Elberfeld (ME) virus into HEp-2 cells: receptor-mediated endocytosis and endosomal or lysosomal uncoating. J. gen. Virol. 1985;66:483–492. doi: 10.1099/0022-1317-66-3-483. [DOI] [PubMed] [Google Scholar]
  579. Zenke M., Steinlein P., Wagner E., Cotten M., Beug H., Birnstiel M.L. Vol. 87. 1990. Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells; pp. 3655–3659. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  580. Zerial A., Werner G.H., Phillpots R.J., Willmann J.S., Higgins P.G., Tyrrell D.A. Studies on 44 081 R.P., a new antirhinovirus compound, in cell cultures and in volunteers. Antimicrob. Agents Chemother. 1985;27:846–850. doi: 10.1128/aac.27.5.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  581. Zeuzem S., Feick P., Zimmermann P., Haase W., Kahn R.A., Schulz I. Vol. 89. 1992. Intravesicular acidification correlates with binding of ADP-ribosylation factor to microsomal membranes; pp. 6619–6623. (Proc. natn. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  582. Zhang A., Nanni R.G., Li T., Arnold G.F., Oren D.A., Jacobo-Molina A., Williams R.L., Kamer G., Rubinstein D.A., Li Y., Rozhon E., Cox S., Buontempo P., O'Connell J., Schwartz J., Miller G., Bauer B., Versace R., Pinto P., Ganguly A., Girijavallabhan V., Arnold E. Structure determination of antiviral compound SCH 38057 complexed with human rhinovirus 14. J. molec. Biol. 1993;230:857–867. doi: 10.1006/jmbi.1993.1206. [DOI] [PubMed] [Google Scholar]
  583. Zhou A., Hassel B.A., Silverman R.H. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell. 1993;72:753–765. doi: 10.1016/0092-8674(93)90403-d. [DOI] [PubMed] [Google Scholar]
  584. Zuckerman A.J. Screening of antiviral drugs for hepadna virus infection in Pekin ducks: a review. J. Virol. Methods. 1987;17:119–126. doi: 10.1016/0166-0934(87)90074-7. [DOI] [PubMed] [Google Scholar]

Articles from Pharmacology & Therapeutics are provided here courtesy of Elsevier

RESOURCES