Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2002 Feb 11;9(6):831–838. doi: 10.1016/S0952-7915(97)80186-0

Activation of autoreactive T cells by peptides from human pathogens

Stefan Hausmann a, Kai W Wucherpfennig b,
PMCID: PMC7134830  PMID: 9492986

Abstract

Activation of autoreactive T cells is a necessary — but not sufficient — step in the development of T cell mediated autoimmunity. Autoreactive T cells can be activated by viral and bacterial peptides that meet the structural requirements for MHC molecule binding and T cell receptor recognition. Due to the degenerate nature of MHC class II molecule binding motifs and a certain degree of flexibility in T cell receptor recognition, such microbial peptides have been found to be quite distinct in their primary sequence from the self-peptide they mimic.

Abbreviations: CNS central nervous system, EAE experimental autoimmune encephalomyelitis, EBV Epstein—Barr virus, hsp heat shock protein, MBP myelin basic protein, MS multiple sclerosis, NOD nonobese diabetic, TCR T cell receptor, v variable region

References

  • 1.Kersh GJ, Allen PM. Essential flexibility in the T-cell recognition of antigen. Nature. 1996;380:495–498. doi: 10.1038/380495a0. [DOI] [PubMed] [Google Scholar]
  • 2.Evavold BD, Sloan-Lancaster J, Wilson KJ, Rothbard JB, Allen PM. Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands. Immunity. 1995;2:655–663. doi: 10.1016/1074-7613(95)90010-1. [DOI] [PubMed] [Google Scholar]
  • 3.Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80:695–705. doi: 10.1016/0092-8674(95)90348-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Oldstone MBA. Molecular mimicry and autoimmune disease. Cell. 1987;50:819–820. doi: 10.1016/0092-8674(87)90507-1. [DOI] [PubMed] [Google Scholar]
  • 5.Davies JM. Molecular mimicry: can epitope mimicry induce autoimmune disease? Immunol Cell Biol. 1997;75:113–126. doi: 10.1038/icb.1997.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Chicz RM, Urban RG, Gorga JC, Vignali DAA, Lane WS, Strominger JL. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med. 1993;178:27–47. doi: 10.1084/jem.178.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Rammensee H-G, Friede T, Stevanovic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41:178–228. doi: 10.1007/BF00172063. [DOI] [PubMed] [Google Scholar]
  • 8.Reay PA, Kantor RM, Davis MM. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103) J Immunol. 1994;152:3946–3957. [PubMed] [Google Scholar]
  • 9.Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature. 1996;384:134–141. doi: 10.1038/384134a0. of outstanding interest. [DOI] [PubMed] [Google Scholar]; The crystal structure of a TCR—peptide—MHC molecular complex demonstrates the diagonal position of the TCR on the MHC molecule—peptide complex. The small TCR contact surface with the MHC molecule-bound peptide indicates that there is a physical limit to the specificity of a TCR.
  • 10.Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA. An αβT cell receptor structure at 2.5 Å and its orientation in the TCR-MHC complex. Science. 1996;274:209–219. doi: 10.1126/science.274.5285.209. of outstanding interest. [DOI] [PubMed] [Google Scholar]; The crystal structure of a murine TCR and its orientation on the MHC molecule—peptide complex are described. The same diagonal orientation as with the human HLA-A2 restricted TCR was observed.
  • 11.Burrows SR, Silins SL, Khanna R, Burrows JM, Rischmueller M, McCluskey J, Moss DJ. Cross-reactive memory T cells for Epstein-Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in allorecognition. Eur J Immunol. 1997;27:1726–1736. doi: 10.1002/eji.1830270720. [DOI] [PubMed] [Google Scholar]
  • 12.Tallquist MD, Yun TJ, Pease LR. A single T cell receptor recognizes structurally distinct MHC/peptide complexes with high specificity. J Exp Med. 1996;184:1017–1026. doi: 10.1084/jem.184.3.1017. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; A natural peptide ligand that stimulates the H-2Ld-specific alloreactive T cell clone 2C in the context of H-2Kbm3 is identified. The dissimilarity of this peptide, as compared with the H-2Ld-presented allopeptide, illustrates the flexibility of TCR recognition.
  • 13.Udaka K, Wiesmüller K-H, Kienle S, Jung G, Walden P. Self-MHC-restricted peptides recognized by an alloreactive T lymphocyte clone. J Immunol. 1996;157:670–678. [PubMed] [Google Scholar]
  • 14.Udaka K, Tsomides TJ, Walden P, Fukusen N, Eisen HN. A ubiquitous protein is the source of naturally occuring peptides that are recognized by a CD8+ T-cell clone. Proc Natl Acad Sci USA. 1993;90:11272–11276. doi: 10.1073/pnas.90.23.11272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Brock R, Wiesmüller K-H, Jung G, Walden P. Molecular basis for the recognition of two structurally different major histocompatibility complex/peptide complexes by a single T-cell receptor. Proc Natl Acad Sci USA. 1996;93:13108–13113. doi: 10.1073/pnas.93.23.13108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Loftus DJ, Chen Y, Covell DG, Engelhard VH, Appella E. Differential contact of disparate class I/peptide complexes as the basis for epitope cross-recognition by a single T cell receptor. J Immunol. 1997;158:3651–3658. of special interest. [PubMed] [Google Scholar]; The analysis of the fine specificity of a murine xenoreactive HLA-A2-specific T cell clone reveals differences in the relative importance of peptide side chains for TCR recognition in different MHC molecule—peptide complexes. This implies that a single TCR is able to use differential contact sites for recognition.
  • 17.Sawcer S, Jones HB, Feakes R, Gray J, Smaldon N, Chataway J, Robertson N, Clayton D, Goodfellow PN, Compston A. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet. 1996;13:464–468. doi: 10.1038/ng0896-464. [DOI] [PubMed] [Google Scholar]
  • 18.The Multiple Sclerosis Genetics Group A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. Nat Genet. 1996;13:469–471. doi: 10.1038/ng0896-469. [DOI] [PubMed] [Google Scholar]
  • 19.Ebers GC, Kukay K, Bulman DE, Sadovnick AD, Rice G, Anderson C, Armstrong H, Cousin K, Bell RB, Hader W. A full genome search in multiple sclerosis. Nat Genet. 1996;13:472–476. doi: 10.1038/ng0896-472. [DOI] [PubMed] [Google Scholar]
  • 20.Kurzke JF. Epidemiology of multiple sclerosis. In: Vinken PJ, Bruyn HL, Klawans HL, Koetsier JC, editors. Elsevier Science; Amsterdam/New york: 1985. (Handbook of Clinical Neurology). [Google Scholar]
  • 21.Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990;346:183–187. doi: 10.1038/346183a0. [DOI] [PubMed] [Google Scholar]
  • 22.Martin R, Jaraquemada D, Flerlage M, Richert J, Whitaker J, Long EO, McFarlin DE, Mcfarland HF. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J Immunol. 1990;145:540–548. [PubMed] [Google Scholar]
  • 23.Pette M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G, Hinkkanen A, Epplen JT, Kappos L, Wekerle H. Myelin autoreactivity in multiple sclerosis: recognition of myek=lin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc Natl Acad Sci USA. 1990;87:7968–7972. doi: 10.1073/pnas.87.20.7968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Wucherpfennig KW, Zhang J, Witek C, Matsui M, Modabber Y, Ota K, Hafler DA. Clonal expansion and persistence of human T cells specific for an immunodominant myelin basic protein peptide. J Immunol. 1994;152:5581–5592. [PubMed] [Google Scholar]
  • 25.Wucherpfennig KW, Sette A, Southwood S, Oseroff C, Matsui M, Strominger JL, Hafler DA. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med. 1994;179:279–290. doi: 10.1084/jem.179.1.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wucherpfennig KW, Hafler DA, Strominger JL. Structure of human T-cell receptors specific for an immunodominant myelin basic protein peptide: positioning of T-cell receptors on HLA-DR2/peptide complexes. Proc Natl Acad Sci USA. 1995;92:8896–8900. doi: 10.1073/pnas.92.19.8896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Vergelli M, Hemmer B, Kalbus M, Vogt AB, Ling N, Conlon P, Coligan JE, McFarland H, Martin R. Modifications of peptide ligands enhancing T cell responsiveness imply large numbers of stimulatory ligands for autoreactive T cells. J Immunol. 1997;158:3746–3752. [PubMed] [Google Scholar]
  • 28.Ausubel LJ, Kwan CK, Sette A, Kuchroo V, Hafler DA. Complementary mutations in an antigenic peptide allow for crossreactivity of autoreactive T-cell clones. Proc Natl Acad Sci USA. 1996;93:15317–15322. doi: 10.1073/pnas.93.26.15317. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; This study shows that the combination of two nonstimulatory substitutions in the MBP(85–99) peptide in a double substituted analog can restore the activation of some MBP-specific T cell clones. This illustrates the combinatorial effects of multiple substitutions on T cell activation by peptide analogs.
  • 29.Hemmer B, Fleckenstein BT, Vergelli M, Jung G, McFarland H, Martin R, Wiesmüller K-H. Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med. 1997;185:1651–1659. doi: 10.1084/jem.185.9.1651. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; The fine specificity of a highly degenerate myelin basic protein-specific T cell clone — MBP(88–98) specific — is analyzed using random peptide libraries. Based on that motif several peptides of human and microbial origin were identified that can activate this autoreactive clone.
  • 30.Warren KG, Catz I, Steinman L. Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: the minimal B-cell epitope and a model of its features. Proc Natl Acad Sci USA. 1995;92:11061–11065. doi: 10.1073/pnas.92.24.11061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wucherpfennig KW, Catz I, Hausmann S, Strominger JL, Steinman L, Warren KG. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2 restricted T-cell clones from multiple sclerosis patients: identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest. 1997;100:1114–1122. doi: 10.1172/JCI119622. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; The fine specificity of myelin basic protein (MBP)-specific antibodies that were purified from brains multiple sclerosis patients was compared to MBP specific T cell clones. Residues that were critical for both antibody binding and T cell receptor recognition were located in a 10 amino acid segment. A viral peptide was identified that was bound by purified autoantibodies and that also stimulated a MBP specific T cell clone.
  • 32.Talbot PJ, Paquette J-S, Ciurli C, Antel JP, Ouellet F. Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Ann Neurol. 1996;39:233–240. doi: 10.1002/ana.410390213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993;72:551–560. doi: 10.1016/0092-8674(93)90074-z. [DOI] [PubMed] [Google Scholar]
  • 34.Brabb T, Goldrath AW, von Dassow P, Paez A, Liggitt HD, Goverman J. Triggers of autoimmune disease in a murine TCR-transgenic model for multiple sclerosis. J Immunol. 1997;159:497–507. of special interest. [PubMed] [Google Scholar]; The increased incidence of spontaneous experimental autoimmunoe encephalomyelitis in TCR transgenic mice under non-germ free conditions demonstrates the impact of the microbial environment on the induction of autoimmunity. Further studies on these transgenic mice show that following T cell activation in vivo the entry of the autoreactive MBP-specific T cells into the central nervous system is a critical step for the initiation of the autoimmune disease.
  • 35.Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, Balish E, Hammer RE. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–2364. doi: 10.1084/jem.180.6.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Fujinami RS, Oldstone MBA. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science. 1985;230:1043–1045. doi: 10.1126/science.2414848. [DOI] [PubMed] [Google Scholar]
  • 37.Gautam AM, Pearson CI, Smilek DE, Steinman L, McDevitt HO. A polyalanine peptide with only five native myelin basic protein residues induces autoimmune encephalomyelitis. J Exp Med. 1992;176:605–609. doi: 10.1084/jem.176.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Gautam AM, Lock CB, Smilek DE, Pearson CI, Steinman L, McDevitt HO. Minimal structural requirements for peptide presentation by major histocompatibility complex class II molecules: implications in induction of autoimmunity. Proc Natl Acad Sci USA. 1994;91:767–771. doi: 10.1073/pnas.91.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Singh VK, Nagaraju K. Experimental autoimmune uveitis: molecular mimicry and oral tolerance. Immunol Res. 1996;15:323–346. doi: 10.1007/BF02935316. [DOI] [PubMed] [Google Scholar]
  • 40.Garza KM, Tung KSK. Frequency of molecular mimicry among T cell peptides as the basis for autoimmune disease and autoantibody induction. J Immunol. 1995;155:5444–5448. [PubMed] [Google Scholar]
  • 41.Van Eden W, Hogervorst EJM, Hensen EJ, van der Zee R, van Embden JDA, Cohen IR. A cartilage-mimicking T-cell epitope on a 65K mycobacterial heat shock protein: adjuvant arthritis as a model for human rheumatoid arthritis. Curr Top Microbiol Immunol. 1989;145:27–43. doi: 10.1007/978-3-642-74594-2_3. [DOI] [PubMed] [Google Scholar]
  • 42.Billingham MEJ, Carney S, Butler R, Colston MJ. A mycobacterial 65-kD heat shock protein induces antigen-specific suppression of adjuvant arthritis, but is not itself arthritogenic. J Exp Med. 1990;171:339–344. doi: 10.1084/jem.171.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Moudgil KD, Chang TT, Eradat H, Chen AM, Gupta RS, Brahn E, Sercarz EE. Diversification of T cell responses to carboxy-terminal determinants within the 65-kD heat-shock protein is involved in regulation of autoimmune arthritis. J Exp Med. 1997;185:1307–1316. doi: 10.1084/jem.185.7.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Von Herrath MG, Oldstone MBA. Virus-induced autoimmune disease. Curr Opin Immunol. 1996;8:878–885. doi: 10.1016/S0952-7915(96)80019-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H. Ablation of ‘tolerance’ and induction of diabetes by virus infection in viral antigen transgenic mice. Cell. 1991;65:305–317. doi: 10.1016/0092-8674(91)90164-t. [DOI] [PubMed] [Google Scholar]
  • 46.Oldstone MBA, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell. 1991;65:319–331. doi: 10.1016/0092-8674(91)90165-u. [DOI] [PubMed] [Google Scholar]
  • 47.Evans CF, Horwitz MS, Hobbs MV, Oldstone MBA. Viral infection of transgenic mice expressing a viral protein in oligodendrocytes leads to chronic central nervous system autoimmune disease. J Exp Med. 1996;184:2371–2384. doi: 10.1084/jem.184.6.2371. of special interest. [DOI] [PMC free article] [PubMed] [Google Scholar]; Transgenic mice, expressing a viral protein in oligodendrocytes, exhibit signs of central nervous autoimmunity, although no EAE, after infection with the corresponding virus.
  • 48.Von Herrath MG, Allison J, Miller JFAP, Oldstone MBA. Focal expression of interleukin-2 does not break unresponsiveness to ‘self’ (viral) antigen expressed in β cells but enhances development of autoimmune disease (diabetes) after initiation of an anti-self immune response. J Clin Invest. 1995;95:477–485. doi: 10.1172/JCI117688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Lee M-S, von Herrath M, Reiser H, Oldstone MBA, Sarvetnick N. Sensitization of self (virus) antigen by in situ expression of murine interferon-γ. J Clin Invest. 1995;95:486–492. doi: 10.1172/JCI117689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Von Herrath MG, Oldstone MBA. Interferon-γ is essential for destruction of β cells and development of insulin-dependent diabetes mellitus. J Exp Med. 1997;185:531–539. doi: 10.1084/jem.185.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Von Herrath MG, Guerder S, Lewicki H, Flavell RA, Oldstone MBA. Coexpression of B7-1 and viral (‘self’) transgenes in pancreatic β cells can break peripheral ignorance and lead to spontaneous autoimmune disease. Immunity. 1995;3:727–738. doi: 10.1016/1074-7613(95)90062-4. [DOI] [PubMed] [Google Scholar]
  • 52.Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, Reed PW, Gough SCL, Jenkins SC, Palmer SM. A genome-wide search for human type 1 diabetes susceptibility genes. Nature. 1994;371:130–136. doi: 10.1038/371130a0. [DOI] [PubMed] [Google Scholar]
  • 53.Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK. Cellular immunity to a determinant common to glutamate decarboxylase and Coxsackie virus in insulin-dependent diabetes. J Clin Invest. 1994;94:2125–2129. doi: 10.1172/JCI117567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Quayle AJ, Wilson KB, Li SG, Kjeldsen-Kragh J, Oftung F, Shinnick T, Sioud M, Forre O, Capra JD, Natvig JB. Peptide recognition, T cell receptor usage and HLA restriction elements of human heat-shock protein (hsp) 60 and mycobacterial 65-kDa hsp-reactive T cell clones from rheumatoid synovial fluid. Eur J Immunol. 1992;22:1315–1322. doi: 10.1002/eji.1830220529. [DOI] [PubMed] [Google Scholar]
  • 55.Shimoda S, Nakamura M, Ishibashi H, Hayashida K, Niho Y. HLA DRB4*0101-restricted immunodominant T cell autoepitope of pyruvate dehydrogenase complex in primary biliary cirrhosis: evidence of molecular mimicry in human autoimmune disease. J Exp Med. 1995;181:1835–1845. doi: 10.1084/jem.181.5.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Tian J, Lehmann PV, Kaufman DL. T cell cross-reactivity between Coxsackievirus and glutamate decarboxylase is associated with a murine diabetes susceptibility allele. J Exp Med. 1994;180:1979–1984. doi: 10.1084/jem.180.5.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Zügel U, Schoel B, Yamamoto S, Hengel H, Morein B, Kaufmann SHE. Crossrecognition by CD8 T cell receptor αβ cytotoxic T lymphocytes of peptides in the self and the mycobacterial hsp60 which share intermediate sequence homology. Eur J Immunol. 1995;25:451–458. doi: 10.1002/eji.1830250222. [DOI] [PubMed] [Google Scholar]

Articles from Current Opinion in Immunology are provided here courtesy of Elsevier

RESOURCES