Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2007 Apr 29;53(1):2–13. doi: 10.1111/j.1398-9995.1998.tb03767.x

The role of cytokines in infectious sinusitis and nasal polyposis

C Bachert 1,, M Wagenmann 2, C Rudack 2, K Höpken 2, M Hiltebrandt 2, D Wang 1, P van Cauwenberge 1
PMCID: PMC7159491  PMID: 9491223

The content is available as a PDF (16.6 MB).

References

  • 1. Moss AJ, Parsons VL. Current estimates from the National Health Interview Survey. United States ‐ 1985. In: Hyattsville , Maryland : National Center for Health Statistics; DHHS publication no. (PHS) 68–1588 (Vital and Health Statistics; series 10: no. 160). 1986;66–7. [PubMed] [Google Scholar]
  • 2. Settipane GA, Chaffee FH. Nasal polyps. Am J Rhinol 1987;1:119–26. [Google Scholar]
  • 3. Gwaltney JM. Microbiology of sinusitis In: Druce HM. editor. Sinusitis: pathophysiology and treatment, New York : Marcel Dekker; 1994;41–56. [Google Scholar]
  • 4. Baraniuk JN. Physiology of sinusitis In: Druce HM. editor. Sinusitis: pathophysioloey and treatment. New York : Marcel Dekker; 1994;19–39. [Google Scholar]
  • 5. Stammberger H. Endoscopic endonasal surgery ‐ concepts in treatment of recurring rhinosinusitis. I. Anatomic and pathophysiological considerations. Otolaryngol Head Neck Surg 1986;94:143–7. [DOI] [PubMed] [Google Scholar]
  • 6. Mygind N. Nasal poiyposis. J Allergy Clin Immunol 1990;86(6, pt 1):827–9. [DOI] [PubMed] [Google Scholar]
  • 7. Tos M, Sasaki Y, Ohnishi M, Larsen P, Drake LA. Pathogenesis of nasal polyps. Rhinol Suppl 1992;14:181–5. [PubMed] [Google Scholar]
  • 8. Tokushige E, Itoh K, Ushikai M, Katahira S, Fukuda K. Localization of IL‐ip mRNA and cell adhesion molecules in the maxillary sinus mucosa of patients with chronic sinusitis. Laryngoscope 1994;104:1245–50. [DOI] [PubMed] [Google Scholar]
  • 9. Lund VJ, Henderson B, Song Y. Involvement of cytokines and vascular adhesion molecules in the pathophysiology of fronto‐ethmoidal mucoceles. Acta Otolaryngol (Stockh) 1993;113:540–6. [DOI] [PubMed] [Google Scholar]
  • 10. Takeuchi K, Yuta A, Sakakura Y. Interleukin‐8 expression in chronic sinusitis. Am J Otolaryngol 1995;16:98–102. [DOI] [PubMed] [Google Scholar]
  • 11. Suzuki H, Takahashi Y, Wataya H et al. Mechanism of neutrophil recruitment induced by IL‐8 in chronic sinusitis. J Allergy Clin Immunol 1996;98:659–70. [DOI] [PubMed] [Google Scholar]
  • 12. Hamilos DL, Leung DY, Wood R et al. Chronic hyperplastic sinusitis: association of tissue eosinophilia with mRNA expression of granulocyte‐macrophage colony‐stimulating factor and interleukm‐3. J Allergy Clin Immunol 1993;92:39–48. [DOI] [PubMed] [Google Scholar]
  • 13. Costa JJ, Matossian K, Resnick MB et al. Human eosinophils can express the cytokines tumor necrosis factor‐alpha and macrophage inflammatory protein‐1 alpha. J Clin Invest 1993;91:2673–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Ohno I, Lea RG, Flanders KC et al. Eosinophils in chronically inflamed human upper airway tissues express transforming growth factor beta 1 gene (TGF beta 1). J Clin Invest 1992;89:1662–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Finotto S, Ohno I, Marshall JS et al. TNF‐alpha production by eosinophils in upper airways inflammation (nasal polyposis). J Immunol 1994;153:2278–89. [PubMed] [Google Scholar]
  • 16. Elovic A, Wong DT, Weller PF, Matossian K, Galli SJ. Expression of transforming growth factors‐alpha and beta 1 messenger RNA and product by eosinophils in nasal polyps. J Allergy Clin Immunol 1994;93:864–9. [DOI] [PubMed] [Google Scholar]
  • 17. Bachert C, Hauser U, Wagenmann M, Brandt A, Dater I, Prem B. Interleukin‐5 protein is detected in nasal polyps [Abstract]. J Allergy Clin Immunol 1995;95:389. [Google Scholar]
  • 18. Gwaltney JM, Phillips CD, Riker DK. Computerized tomography study of the common cold. N Engl J Med 1994;330:25–30. [DOI] [PubMed] [Google Scholar]
  • 19. Röseler S, Holtappels G, Wagenmann M, Bachert C. Elevated levels of IL‐1β. IL‐6 and IL‐8 in naturally acquired viral rhinitis. Eur Arch Otorhinolaryngol 1995;252:S61–3. [DOI] [PubMed] [Google Scholar]
  • 20. Proud D, Naclerio RM, Gwaltney JM, Hendley JO. Kinins are generated in nasal secretions during natural rhinovirus colds. J Infect Dis 1990;161:120–3. [DOI] [PubMed] [Google Scholar]
  • 21. Bachert C, Wagenmann M, Hauser U. Proinflammatory cytokines: measurement in nasal secretion and induction of adhesion receptor expression. Int Arch Allergy Immunol 1995;107:106–8. [DOI] [PubMed] [Google Scholar]
  • 22. Winther B, Brofeldt S, Christensen B, Mygind N. Light and scanning electron microscopy of nasal biopsy material from patients with naturally acquired common colds. Acta Otolaryngol 1984;97:309–18. [DOI] [PubMed] [Google Scholar]
  • 23. Proud B, Gwaltney JM, Hendley JO, Dinarello CA, Gillis S, Schleimer RP. Increased levels of interleukin‐1 are detected in nasal secretions of volunteers during experimental rhinovirus cold. J Infect Dis 1994;169:1007–13. [DOI] [PubMed] [Google Scholar]
  • 24. Noah TL, Henderson FW, Wortman IA et al. Nasal cytokine production in viral acute upper respiratory infection of childhood. J Infect Dis 1995;171:584–92. [DOI] [PubMed] [Google Scholar]
  • 25. Hussell T, Spender LC, Georgiou A, O'Garra A, Openshaw PJ. TH1 and TH2 cytokine induction in pulmonary T cells during infection with respiratory syncytial virus. J Gen Virol 1996;77:2447–55. [DOI] [PubMed] [Google Scholar]
  • 26. Linden M, Greiff L, Andersson M et al. Nasal cytokines in common cold and allergic rhinitis. Clin Exp Allergy 1995;25:166–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. De Maeyer E, De Maeyer‐Guignard J. Interferons In: Thomson AW. editor. The Cytokine handbook. London : Academic Press; 1994;265–88. [Google Scholar]
  • 28. Mosmann TR. Interleukin‐10 In: Thomson AW. editor. The cytokine handbook. London : Academic Press, 1994;223–38. [Google Scholar]
  • 29. Greve JM, Davis G, Meyer AM et al. The major human rhinovirus receptor is ICAM‐1. Cell 1989;56:839–47. [DOI] [PubMed] [Google Scholar]
  • 30. Marlin SD, Staunton DE, Springer TA, Stratowa C, Sommergruber W, Marluzzi VJ. A soluble form of intercellular adhesion molecule‐1 inhibits rhinovirus infection. Nature 1990;344:70–2. [DOI] [PubMed] [Google Scholar]
  • 31. Bachert C, Hauser U, Prem B, Rudack C, Ganzer U. Proinflammatory cytokines in allergic rhinitis. Eur Arch Otorhinolaryngol Suppl 1995;1:S44–9. [DOI] [PubMed] [Google Scholar]
  • 32. Baroody FM, Lee BJ, Lim MC, Bochner BS. Implicating adhesion molecules in nasal allergic inflammation. Eur Arch Otorhinolaryngol 1995;252:S50–8. [DOI] [PubMed] [Google Scholar]
  • 33. van Damme J. Interleukin‐8 and related molecules In: Thompson AW. editor. The cytokine handbook. London : Academic Press; 1991;201–14. [Google Scholar]
  • 34. Lund VJ, Kennedy DW. Quantification for staging sinusitis. Ann Otol Rhinol Laryngol 1995;104 Suppl 167:17–21. [PubMed] [Google Scholar]
  • 35. van Cauwenberge P Ingels K. Effects of viral and bacterial infection on nasal and sinus mucosa. Acta Otolaryngol (Stockh) 1996;116:316–21. [DOI] [PubMed] [Google Scholar]
  • 36. Stierna P, Carlsoo B. Histopathological observations in chronic maxillary sinusitis. Acta Otolaryngol (Stockh) 1990;110:450–8. [DOI] [PubMed] [Google Scholar]
  • 37. Nishimoto K, Kotaro U Teruhiko H, Shun JC, Sakakura Y. Lymphocyte subsets in maxillary mucosa in chronic inflammation. Acta Otolaryngol (Stockh) 1988;106:291–8. [DOI] [PubMed] [Google Scholar]
  • 38. Georgitis JW, Matthews BL, Stone B. Chronic sinusitis: characterization of cellular influx and inflammatory mediators in sinus lavage fluid. Int Arch Allergy Immunol 1995;106:416–21. [DOI] [PubMed] [Google Scholar]
  • 39. Harlin SL, Ansel DG, Lane SR et al. A clinical and pathologic study of chronic sinusitis: the role of the eosinophil. J Allergy Clin Immunol 1988;81:867–75. [DOI] [PubMed] [Google Scholar]
  • 40. Bazzoni F, Cassatella MA, Rossi F, Ceska M, Dewald B, Baggiolini M. Phagocytosing neutrophils produce and release high amoun'ts of NAP‐1/IL‐8. J Exp Med 1991;173:771–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Dubravec DB, Spriggs DR, Mannick JA, Rodrick ML. Circulating human peripheral blood granulocytes synthesize and secrete tumor necrosis factor a. Proc Natl Acad Sci U S A 1990;87:6758–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Lindemann A, Riedel D, Oster W, Meuer SC, Blohm D, Mertelsmann RH. Granulocyte/macrophage colonystimulating factor induces interleukin‐1 production by human polymorphonuclear neutrophils. J Immunol 1988;140:837–9. [PubMed] [Google Scholar]
  • 43. Schrader JW. Interleukin‐3 In: Thomson A, editor. The cytokine handbook. London : Academic Press; 1994;81–98. [Google Scholar]
  • 44. Persson CGA, Erjefalt JS, Andersson M et al. Epithelium, microcirculation and eosinophils ‐ new aspects of the allergic airway in vivo . Allergy 1997;52:241–55. [DOI] [PubMed] [Google Scholar]
  • 45. Bachert C. The role of allergy in chronic sinusitis In: van Cauwenberge P. Wang D, Ingels K, Bachert C, editors. The nose, Amsterdam : Kugler; 1997. (in press). [Google Scholar]
  • 46. Stoop AE. van der Heijden HA, Biewenga J, van der Baan S. Eosinophils in nasal polyps and nasal mucosa: an immunohistochemical study. J Allergy Clin Immunol 1993;91:616–22. [DOI] [PubMed] [Google Scholar]
  • 47. Jahnsen FL, Halstensen TS, Brandtzaeg P. Erroneous immunohistochemical application of monoclonal antibody EG2 to detect cellular activation. Lancet 1994;344:1514–15. [DOI] [PubMed] [Google Scholar]
  • 48. Liu CM, Shun CT, Hsu MM. Lymphocyte subsets and antigen‐specific igE antibody in nasal polyps. Ann Allergy 1994;72:19–24. [PubMed] [Google Scholar]
  • 49. Liu Y, Hamaguchi Y, Taya M, Sakakura Y. Ouantification of interlcukin‐1 in nasal polyps from patients with chronic sinusitis. Eur Arch Olorhinolaryngol 1993;230:1230. [DOI] [PubMed] [Google Scholar]
  • 50. Hamaguchi Y, Suzumura H, Arima S, Sakakura Y. Ouantitation and immunocytological identification of interleukin‐1 in nasal polyps from patients with chronic sinusitis. Int Arch Allergy Immunol 1994;104:155–9. [DOI] [PubMed] [Google Scholar]
  • 51. Ohno I, Lea R, Finotto S et al. Granulocyte/macrophage colony‐stimulating factor (GM‐CSF) gene expression by eosinophils in nas;il polyposis. Am J Respir Cell Mol Biol 1991;5:505–10. [DOI] [PubMed] [Google Scholar]
  • 52. Vanchieri C, Ohtoshi T, Cox G et al. Neutrophilic differentiation induced by human upper respiratory airway fibroblast‐derived granulocyte/macrophage colony‐stimulating factor (GM‐CSF). Am J Respir Cell Mol Biol 1991;4:11–17. [DOI] [PubMed] [Google Scholar]
  • 53. Bachert C, Prem B, Däter I. Zytokine in der Polyposisforschung ‐ eine neue Dimension. Allergologie 1994;12:578–81. [Google Scholar]
  • 54. Bachert C, Wagenmann M, Hauser U, Rudack C. IL‐5 synthesis is upregulated in human nasal polyp tissue. J Allergy Clin Immunol 1997;99:837–42. [DOI] [PubMed] [Google Scholar]
  • 55. Ebisawa M, Bochner BS, Georas SN, Schleimer RP. Eosinophil transendothelial migration induced by cytokines. I. Role of endothelial and eosinophil adhesion molecules in IL‐1 beta‐induced transendothelial migration. J Immunol 1992;149:4021–8. [PubMed] [Google Scholar]
  • 56. Sehmi R, Cromwell O, Wardlaw J, Moqbel R, Kay B. Interleukin‐8 is a chemoattractant for eosinophils purified from subjects with a blood eosinophilia but not from healthy subjects. Clin Exp Allergy 1994;23:1027–31. [DOI] [PubMed] [Google Scholar]
  • 57. Alam R, Stafford S, Forsythe P Harrison R, Faubion D, Lett Brown MA. RANTES is a chemotactic and activating factor for human eosinophils. J Immunol 1993;150:3442–8. [PubMed] [Google Scholar]
  • 58. Kapp A, Zeck‐Kapp G, Czech W, Schopf E. The chemokine RANTES is more than a chemoattractant: characterization of its effect on human eosinophil oxidative metabolism and morphology in comparison with IL‐5 and GM‐CSF. J Invest Dermatol 1994;102:906–14. [DOI] [PubMed] [Google Scholar]
  • 59. Ebisawa M, Liu MC, Yamada T et al. Eosinophil transendothelial migration induced by cytokines. II. Potentiation of eosinophil transendothelial migration by eosinophilactive cytokines. J Immunol 1994;152:4590–6. [PubMed] [Google Scholar]
  • 60. Ebisawa M, Yamada T, Bickel C, Klunk D, Schleimer RP. Eosinophil transendothelial migration induced by cytokines. III. Effect of the chemokine RANTES. J Immunol 1994;153:2153–60. [PubMed] [Google Scholar]
  • 61. Wegner CD, Gundel RH, Reilly P, Haynes N, Letts LG, Rothlein R. Intercellular adhesion molecule‐1 (ICAM‐1) in the pathogenesis of asthma. Science 1990;247 (4941):456–9. [DOI] [PubMed] [Google Scholar]
  • 62. Schleimer RP, Sterbinsky SA, Kaiser J et al. IL‐4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM‐1. J Immunol 1992;148:1086–92. [PubMed] [Google Scholar]
  • 63. Jose PJ, Griffiths‐Johnson DA, Collins PD et al. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med 1993;179:881–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Ponath PD, Qin S, Ringler DJ et al. Cloning of the human eosinophil chemoattractant. eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment ot eosinophils. J Clin Invest 1996;97:604–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Marfaing‐Koka A, Devergene O, Gorgone G et al. Regulation of the production of the RANTES chemokine by endothelial cells: synergistic induction by IFN‐gamma plus TNF‐α and inhibition by IL‐4 and IL‐13. J Immunol 1995;154:1870–8. [PubMed] [Google Scholar]
  • 66. Beck LA, Schall TJ, Beall LD, Leopold D, Bickel C, Baroody F. Detection of the chemokine RANTES and activation of vascular endothelium in nasal polyps [Abstract]. J Allergy Clin Immunol 1994;93:234. [DOI] [PubMed] [Google Scholar]
  • 67. Maune S, Meyer JE, Sticherling M, Fotster‐Holst P, Schroder JM. Eosinophilen‐chemotaktische Aktivitat in der Chemokinfraktion von Nasenpolypen. Allergologie 1996;19:230–3. [Google Scholar]
  • 68. Garcia‐Zepeda EA, Rothenberg ME, Ownbey RT, Celestin J, Leder P, Luster AD. Human eotaxin is a specific chemoattractant lor eosinophil cells and provides a new mechanism to explain tissue eosinophilia. Nat Med 1996;2:449–56. [DOI] [PubMed] [Google Scholar]
  • 69. Collins PD, Marleau S, Griffiths‐Johnson DA, Jose PJ, Williams TJ. Cooperation between interleukin‐5 and the chemokine eotaxin to induce eosinophil accumulation in vivo . J Exp Med 1995;182:1169–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Kitaura M, Nakajama T, Imai T et al. Molecular cloning of human eotaxin. an eosinophil‐specific CC chemokine, and identification of a specific receptor. CC chemokine receptor 3. J Biol Chem 1996;271:7725–30. [DOI] [PubMed] [Google Scholar]
  • 71. Eisner J, Hochstetter R, Kimmig D, Kapp A. Human eotaxin represents a potent activator of the respiratory burst in human eosinophils. Eur J Immunol 1996;26:1919–25. [DOI] [PubMed] [Google Scholar]
  • 72. Jahnsen FL, Haraldsen G, Aanesen JP, Haye R, Brandtzaeg P. Eosinophil infiltration is related to increased expression of vascular cell adhesion molecule‐1 in nasal polyps. Am J Respir Cell Mol Biol 1995;12:624–32. [DOI] [PubMed] [Google Scholar]
  • 73. Nonaka M, Nonaka R, Wooley K et al. Distinct immunohistochemical localization of IL‐4 in human inflamed airway tissue. IL‐4 is localized to eosinophils in vivo and is released by peripheral blood eosinophils. J Immunol 1995;155:3234–44. [PubMed] [Google Scholar]
  • 74. Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J Immunol 1997;99:3902–8. [PubMed] [Google Scholar]
  • 75. Hamilos DL, Leung DY, Wood R et al. Eosinophil infiltration in nonallergic chronic hyperplastic sinusitis with nasal polyposis is associated with endothelial VCAM‐1 upregulation and expression of TNF‐alpha. Am J Respir Cell Mol Biol 1996;15:443–50. [DOI] [PubMed] [Google Scholar]
  • 76. Walker C, Bode E, Boer L, Hansel TT, Blaser K, Virchow JC. Allergic and nonallergic asthmatics have distinct patterns of T‐cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am Rev Respir Dis 1992;146:109–14. [DOI] [PubMed] [Google Scholar]
  • 77. Nakajima H, Sano H, Nishimura T, Yoshida S, Iwamoto I. Role of vascular cell adhesion molecule‐1/very late activation antigen‐4 and intercellular adhesion molecule‐1/lymphocyte function‐associated antigen‐1 interactions in antigen‐induced eosinophil and 1‐cell recruitment into the tissue. J Exp Med 1994;179:1145–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Montefort S, Feather IH, Wilson SJ et al. The expression of leucocyte‐endothelial adhesion molecules is increased in perennial allergic rhinitis. Am J Respir Cell Mol Biol 1992;7:393–8. [DOI] [PubMed] [Google Scholar]
  • 79. Symon FA, Walsh GM, Watson SR, Wardlaw AJ. Eosinophil adhesion to nasal polyp endothelium is P‐selectindependent. J Exp Med 1994;180:371–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Hamilos DL, Leung DJ, Wood R et al. Evidence for distinct cytokine expression in allergic versus nonallergic chronic sinusitis. J Allergy Clin Immunol 1995;96:537–44. [DOI] [PubMed] [Google Scholar]
  • 81. Min YG, Chung JW, Shin JS, Chi JG. Histologic structure of antrochoanal polyps. Acta Otolaryngol (Stockh) 1995;115:543–7. [DOI] [PubMed] [Google Scholar]
  • 82. Weiler PF. The immunobiology of eosinophils, N Engl J Med 1991;324:1110–18. [DOI] [PubMed] [Google Scholar]
  • 83. Her E, Frazer J, Austen KF, Owen WF. Eosinophil hematopoietins antagonize the programmed cell death of eosinophils. Cytokine and glueocorticoid effects on eosinophils maintained by endothelial cell‐conditioned medium. J Clin Invest 1991;88:1982–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Simon HU, Blaser K. Inhibition of programmed eosinophil death: a key pathogenic event for eosinophilia Immunol Today 1995;16:53–5. [DOI] [PubMed] [Google Scholar]
  • 85. Yamaguchi Y, Hayashi Y, Sugama Y et al. Highly purified murine interleukin‐5 (IL‐5) stimulates eosinophil function and prolongs in vitro survival. J Exp Med 1988;167:1737–42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Broide DH, Paine MM, Firestein G. Eosinophils express IL‐5 and GM‐CSF mRNA at sites of allergic inflammation in asthmatics. J Clin Invest 1992;90:1414–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Desreumaux P, Janin A, Dubucquoi S et al. Synthesis of interleukin‐5 by activated eosinophils in patients with eosinophilic heart diseases. Blood 1991;82:1553–60. [PubMed] [Google Scholar]
  • 88. Devos R, Guiscz Y, van der Heyden J, Tavernier J. Interleukin‐5 and its receptor: a drug target for eosinophilia associated with chronic disease. J Leukoc Biol 1995;57:813–19. [DOI] [PubMed] [Google Scholar]
  • 89. Mauser PJ, Pitman AM, Fernandez X et al. Effects of an antibody to interleukin‐5 in a monkey model of asthma. Am J Respir Crit Care Med 1995;152:467–72. [DOI] [PubMed] [Google Scholar]
  • 90. Okudaira H, Mori A, Kaminuma O, Suko M. IL‐5 regulation – a new approach to allergy therapy. Allergy Clin Immunol Int 1995;8:172–9. [Google Scholar]
  • 91. Devos R, Plaetnick G, van der Heyden J et al. Molecular basis of a high affinity murine interleukin‐5 receptor. EMBO J 1991;10:2133–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Tavernier J, Devos R, Tuypens T et al. Human high affinity interleukin‐5 receptor (IL‐5R) is composed of an IL‐5‐specific α chain and a β chain shared with the receptor for GM‐CSF. Cell 1991;66:1175–84. [DOI] [PubMed] [Google Scholar]
  • 93. Tavernier J, Tuypens T, Plaetnick G, Cornelis S, Verhee A, Devos R. Molecular basis of the membrane‐anchored and two soluble isoforms of the human interleukin‐5 receptor α‐subunit, Proc Natl Acad Sci U S A 1992;89:7041–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Venge P. Soluble markers of allergic inflammation. Allergy 1994;49:1–8. [DOI] [PubMed] [Google Scholar]
  • 95. Bousquet J, Chanez P Lacoste JY et al. Eosinophilic inflammation in asthma, N Engl J Med 1990;323:1033–9. [DOI] [PubMed] [Google Scholar]
  • 96. Gleich GJ, Abu‐Ghazaleh RI, Glitz DG. Eosinophil granule proteins: structure and function In: Gleich GJ, Kay AB. editors, Eosinophils in allergy and inflammation. New York : Marcel Dekker; 1994;1–20. [Google Scholar]
  • 97. Flavahan NA, Slifman NR, Gleich GJ, Vanhoutte PM. Human eosinophil major basic protein causes hyperreactivity of respiratory smooth muscle. Role of the epithelium, Am Rev Respir Dis 1988;138:685–8. [DOI] [PubMed] [Google Scholar]
  • 98. Hastie AT Loegering DA, Gleich GJ, Kueppers F. The effect of purified human eosinophil cationic protein on mammalian ciliary activity. Am Rev Respir Dis 1987;135:848–55. [DOI] [PubMed] [Google Scholar]
  • 99. Tottrup A, Fredens K, Funch‐Jensen P, Aggestrup S, Dahl R. Eosinophil infiltration in primary esophageal achalasia. A possible pathogenic role. Dig Dis Sci 1989;34:1894–9. [DOI] [PubMed] [Google Scholar]

Articles from Allergy are provided here courtesy of Wiley

RESOURCES