Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2008 Mar 4;3(3):339–353. doi: 10.1002/biot.200700215

RNA interference: An emerging generation of biologicals

Neeta Shrivastava 1,, Anshu Srivastava 1
PMCID: PMC7161898  PMID: 18320564

Abstract

RNA interference (RNAi) is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double‐stranded RNA molecules. RNAi has now been demonstrated to function in mammalian cells to alter gene expression, and has been used as a means for genetic discovery as well as a possible strategy for genetic correction. RNAi was first described in animal cells by Fire and colleagues in the nematode, Caenorhabditis elegans. Knowledge of RNAi mechanism in mammalian cell in 2001 brought a storm in the field of drug discovery. During the past few years scientists all over the world are focusing on exploiting the therapeutic potential of RNAi for identifying a new class of therapeutics. The applications of RNAi in medicine are unlimited because all cells possess RNAi machinery and hence all genes can be potential targets for therapy. RNAi can be developed as an endogenous host defense mechanism against many infections and diseases. Several studies have demonstrated therapeutic benefits of small interfering RNAs and micro RNAs in animal models. This has led to the rapid advancement of the technique from research discovery to clinical trials.

Keywords: MicroRNA, RNA interference, Small interfering RNA, Therapeutic application

REFERENCES

  • 1. Napoli, C. , Lemieux, C. , Jorgensen, R. , Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co‐suppression of homologous genes in trans. Plant Cell 1990, 2, 279–289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Guo, S. , Kemphues, K. J. , par‐1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995, 81, 611–620. [DOI] [PubMed] [Google Scholar]
  • 3. Van Blokland, R. , Van der Geest, N. , Mol, J. N. M. , Kooter, J. M. , Transgene‐mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J. 1994, 6, 861–877. [Google Scholar]
  • 4. Cogoni, C. , Irelan, J. T. , Schumacher, M. , Schmidhauser, T. J. et al., Transgene silencing of al‐1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA‐DBA interaction or DNA methylation. EMBO J. 1996, 15, 3153–3163. [PMC free article] [PubMed] [Google Scholar]
  • 5. Covey, S. N. , Al‐Kaff, N. S. , Langara, A. , Turner, D. S. , Plants combat infection by gene silencing. Nature 1997, 385, 781–782. [Google Scholar]
  • 6. Ratcliff, F. , Harrison, B. D. , Baulcombe, D. C. , A similarity between viral defense and gene silencing in plants. Science 1997, 276, 1558–1560. [DOI] [PubMed] [Google Scholar]
  • 7. Fire, A. , Xu, S. , Montgomery, M. K. , Kostas, S. A. et al., Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [DOI] [PubMed] [Google Scholar]
  • 8. Ngo, H. , Tschudi, C. , Gull, K. , Ullu, E. , Double‐stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 1998, 95, 14687–14692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Kennerdell, J. R. , Carthew, R. W. , Use of dsRNA‐mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 1998, 95, 1017–1026. [DOI] [PubMed] [Google Scholar]
  • 10. Gil, J. , Esteban, M. , Induction of apoptosis by the dsRNA‐dependent protein kinase (PKR): Mechanism of action. Apoptosis 2000, 5, 107–114. [DOI] [PubMed] [Google Scholar]
  • 11. Elbashir, S. M. , Harborth, J. , Lendeckel, W. , Yalcin, A. et al., Duplexes of 21‐nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498. [DOI] [PubMed] [Google Scholar]
  • 12. Elbashir, S. M. , Lendeckel, W. , Tuschl, T. , RNA interference is mediated by 21‐ and 22‐nucleotide RNAs. Genes Dev. 2001, 15, 188–200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Martinez, J. , Tuschl, T. , RISC is a 5'phosphomonoester‐producing RNA endonuclease. Genes Dev. 2004, 18, 975–980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Song, E. , Lee, S. K. , Wang, J. , Ince, N. et al., RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 2003, 9, 347–351. [DOI] [PubMed] [Google Scholar]
  • 15. Berns, K. , Hijmans, E. M. , Mullenders, J. , Brummelkamp, T. R. et al., A large‐scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004, 428, 431–437. [DOI] [PubMed] [Google Scholar]
  • 16. Paddison, P. J. , Silva, J. M. , Conklin, D. S. , Schlabach, M. et al., A resource for large‐scale RNA‐interference‐based screens in mammals. Nature 2004, 428, 427–431. [DOI] [PubMed] [Google Scholar]
  • 17. Lee, R. C. , Feinbaum, R. L. , Ambros, V. , The C. elegans heterochronic gene lin‐4 encodes small RNAs with antisense complementarity to lin‐14. Cell 1993, 75, 843–854. [DOI] [PubMed] [Google Scholar]
  • 18. Waterhouse, P. M. , Graham, M. W. , Wang, M. B. , Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA 1998, 95, 13959–13964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Hamilton, A. J. , Baulcombe, D. C. , A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286, 950–952. [DOI] [PubMed] [Google Scholar]
  • 20. Hammond, S. M. , Bernstein, E. , Beach, D. , Hannon, G. J. , An RNA‐directed nuclease mediates post‐transcriptional gene silencing in Drosophila cells. Nature 2000, 404, 293–296. [DOI] [PubMed] [Google Scholar]
  • 21. Zamore, P. D. , Tuschl, T. , Sharp, P. A. , Bartel, D. P. , RNAi: Double‐stranded RNA directs the ATP‐dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000, 101, 25–33. [DOI] [PubMed] [Google Scholar]
  • 22. Bernstein, E. , Caudy, A. A. , Hammond, S. M. , Hannon, G. J. , Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409, 363–366. [DOI] [PubMed] [Google Scholar]
  • 23. Lagos‐Quintana, M. , Rauhut, R. , Lendeckel, W. , Tuschl, T. , Identification of novel genes coding for small expressed RNAs. Science 2001, 294, 853–858. [DOI] [PubMed] [Google Scholar]
  • 24. Lau, N. C. , Lim, L. P. , Weinstein, E. G. , Bartel, D. P. , An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001, 294, 858–862. [DOI] [PubMed] [Google Scholar]
  • 25. Lee, R. C. , Ambros, V. , An extensive class of small RNAs in Caenorhabditis elegans. Science 2001, 294, 862–864. [DOI] [PubMed] [Google Scholar]
  • 26. Caplen, N. J. , Parrish, S. , Imani, F. , Fire, A. et al., Specific inhibition of gene expression by small double stranded RNAs in invertebrate and vertebrate systems. Proc. Natl. Acad. Sci. USA 2001, 98, 9742–9747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Elbashir, S. M. , Harborth, J. , Weber, K. , Tuschl, T. , Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2001, 26, 199–213. [DOI] [PubMed] [Google Scholar]
  • 28. Paddison, P. J. , Caudy, A. A. , Berstein, E. , Hannon, G. J. et al., Short hairpin RNAs (shRNAs) induce sequence‐specific silencing in mammalian cells. Genes Dev. 2002, 16, 948–958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Brummelkamp, T. R. , Bernards, R. , Agami, R. , A system for stable expression of short interfering RNAs in mammalian cells. Science 2002, 296, 550–553. [DOI] [PubMed] [Google Scholar]
  • 30. Rubinson, D. A. , Dillon, C. P. , Kwiatkowski, A. V. , Sievers, C. et al., A lentivirus‐based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 2003, 33, 401–406. [DOI] [PubMed] [Google Scholar]
  • 31. Schramke, V. , Allshire, R. , Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin‐based gene silencing. Science 2003, 301, 1069–1074. [DOI] [PubMed] [Google Scholar]
  • 32. Sledz, C. A. , Holko, M. , de Veer, M. J. , Silverman, R. H. et al., Activation of the interferon system by short‐interfering RNAs. Nat. Cell Biol. 2003, 5, 834–839. [DOI] [PubMed] [Google Scholar]
  • 33. Kamath, R. S. , Fraser, A. G. , Dong, Y. , Poulin, G. et al., Systematic functional analysis of Caenorhabditis elegans genome using RNAi. Nature 2003, 421, 231–237. [DOI] [PubMed] [Google Scholar]
  • 34. Zaehres, H. , Lensch, M. W. , Daheron, L. , Stewart, S. A. et al., High‐efficiency RNA interference in human embryonic stem cells. Stem Cells 2005, 23, 299–305. [DOI] [PubMed] [Google Scholar]
  • 35. Li, M. J. , Li, H. , Rossi, J. , RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Ann. N. Y. Acad. Sci. 2006, 1082, 172–179. [DOI] [PubMed] [Google Scholar]
  • 36. Vagin, V. V. , Sigova, A. , Li, C. , Seitz, H. , A distinct small RNA pathway silences selfish genetic elements in the germline. Science 2006, 313, 320–324. [DOI] [PubMed] [Google Scholar]
  • 37. Kuwabara, T. , Hsieh, J. , Nakashima, K. , Taira, K. et al., A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 2004, 116, 779–793. [DOI] [PubMed] [Google Scholar]
  • 38. Bartel, D. P. , MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [DOI] [PubMed] [Google Scholar]
  • 39. Baulcombe, D. , RNA silencing in plants. Nature 2004, 431, 356–363. [DOI] [PubMed] [Google Scholar]
  • 40. Meister, G. , Tuschl, T. , Mechanisms of gene silencing by double‐stranded RNA. Nature 2004, 431, 343–349. [DOI] [PubMed] [Google Scholar]
  • 41. Mello, C. C. , Conte, D. Jr. , Revealing the world of RNA interference. Nature 2004, 431, 338–342. [DOI] [PubMed] [Google Scholar]
  • 42. He, L. , Hannon, G. J. , MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [DOI] [PubMed] [Google Scholar]
  • 43. Tang, G. , siRNA and miRNA: An insight into RISCs. Trends Biochem. Sci. 2005, 30, 106–114. [DOI] [PubMed] [Google Scholar]
  • 44. Rhoades, M. W. , Reinhart, B. J. , Lim, L. P. , Burge, C. B. et al., Prediction of plant microRNA targets. Cell 2002, 110, 513–520. [DOI] [PubMed] [Google Scholar]
  • 45. Li, H. , Li, W. X. , Ding, S. W. , Induction and suppression of RNA silencing by an animal virus. Science 2002, 296, 1319–1321. [DOI] [PubMed] [Google Scholar]
  • 46. Tabara, H. , Sarkissian, M. , Kelly, W. G. , Fleenor, J. et al., The rde‐1 gene, RNA interference and transposon silencing in C. elegans. Cell 1999, 99, 123–132. [DOI] [PubMed] [Google Scholar]
  • 47. Sumimoto, H. , Miyagishi, M. , Miyoshi, H. , Yamagata, S. et al., Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus‐mediated RNA interference. Oncogene 2004, 21, 6031–6039. [DOI] [PubMed] [Google Scholar]
  • 48. Duxbury, M. S. , Ito, H. , Zinner, M. J. , Ashley, S. W. et al., EphA2: A determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 2004, 23, 1448–1456. [DOI] [PubMed] [Google Scholar]
  • 49. Brennecke, J. , Hipfner, D. R. , Stark, A. , Russell, R. B. et al., bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 2003, 113, 25–36. [DOI] [PubMed] [Google Scholar]
  • 50. Chen, C. Z. , Li, L. , Lodish, H. F. , Bartel, D. P. , MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83–86. [DOI] [PubMed] [Google Scholar]
  • 51. Esau, C. , Kang, X. , Peralta, E. , Hanson, E. et al., MicroRNA‐143 regulates adipocyte differentiation. J. Biol. Chem. 2004, 279, 52361–52365. [DOI] [PubMed] [Google Scholar]
  • 52. Poy, M. N. , Eliasson, L. , Krutzfeldt, J. , Kuwajima, S. et al., A pancreatic islet‐specific microRNA regulates insulin secretion. Nature 2004, 432, 226–230. [DOI] [PubMed] [Google Scholar]
  • 53. Gregory, R. I. , Shiekhattar, R. , MicroRNA biogenesis and cancer. Cancer Res. 2005, 65, 3509–3512. [DOI] [PubMed] [Google Scholar]
  • 54. Dostie, J. , Mourelatos, Z. , Yang, M. , Sharma, A. et al., Numerous microRNPs in neuronal cells containing novel micro RNAs. RNA 2003, 9, 180–186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Pfeffer, S. , Zavolan, M. , Grasser, F. A. , Chien, M. et al., Identification of virus‐encoded microRNAs. Science 2004, 304, 734–736. [DOI] [PubMed] [Google Scholar]
  • 56. Calin, G. A. , Dumitru, C. D. , Shimizu, M. , Bichi, R. et al., Frequent deletions and down‐regulation of micro‐RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Takamizawa, J. , Konishi, H. , Yanagisawa, K. , Tomida, S. et al., Reduced expression of the let‐7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004, 64, 3753–3756. [DOI] [PubMed] [Google Scholar]
  • 58. Metzler, M. , Wilda, M. , Busch, K. , Viehmann, S. et al., High expression of precursor microRNA‐155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004, 39, 167–169. [DOI] [PubMed] [Google Scholar]
  • 59. Jin, P. , Alisch, R. S. , Warren, S. T. , RNA and microRNAs in fragile X mental retardation. Nat. Cell. Biol. 2004, 6, 1048–1053. [DOI] [PubMed] [Google Scholar]
  • 60. Landthaler, M. , Yalcin, A. , Tuschl, T. , The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 2004, 14, 2162–2167. [DOI] [PubMed] [Google Scholar]
  • 61. Pfeffer, S. , Sewer, A. , Lagos‐Quintana, M. , Sheridan, R. et al., Identification of microRNAs of the herpesvirus family. Nat. Methods 2005, 2, 269–276. [DOI] [PubMed] [Google Scholar]
  • 62. Omoto, S. , Fujii, Y. R. , Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J. Gen. Virol. 2005, 86, 751–755. [DOI] [PubMed] [Google Scholar]
  • 63. Weiler, J. , Hunziker, J. , Hall, J. , Anti‐miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Ther. 2006, 13, 496–502. [DOI] [PubMed] [Google Scholar]
  • 64. Grimm, D. , Streetz, K. L. , Jopling, C. L. , Storm, T. A. et al., Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006, 441, 537–541. [DOI] [PubMed] [Google Scholar]
  • 65. Braasch, D. A. , Paroo, Z. , Constantinescu, A. , Ren, G. et al., Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 2004, 14, 1139–1143. [DOI] [PubMed] [Google Scholar]
  • 66. Pai, S. I. , Lin, Y. Y. , Macaes, B. , Meneshian, A. et al., Prospects of RNA interference therapy for cancer. Gene Ther. 2006, 13, 464–477. [DOI] [PubMed] [Google Scholar]
  • 67. Landen, C. N. , Chavez‐Reyes, A. , Bucana, C. , Schmandt, R. et al., Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 2005, 65, 6910–6918. [DOI] [PubMed] [Google Scholar]
  • 68. Pichler, A. , Zelcer, N. , Prior, J. L. , Kuil, A. J. et al., In vivo RNA interference‐mediated ablation of MDR1 P‐glycoprotein. Clin. Cancer Res. 2005, 11, 4487–4494. [DOI] [PubMed] [Google Scholar]
  • 69. Wilda, M. , Fuchs, U. , Wossmann, W. , Borkhardt, A. , Killing of leukamic cells with BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002, 21, 5716–5724. [DOI] [PubMed] [Google Scholar]
  • 70. Tuschl, T. , Borkhardt, A. , Small interfering RNAs: A revolutionary tool for the analysis of gene function and gene therapy. Mol. Interv. 2002, 2, 158–167. [DOI] [PubMed] [Google Scholar]
  • 71. Diaz‐Hernandez, M. , Torres‐Peraza, J. , Salvatori‐Abarca, A. , Moran, M. A. et al., Full motor recovery despite striatal neuron loss and formation of irreversible amyloid‐like inclusions in a conditional mouse model of Huntington's disease. J. Neurosci. 2005, 25, 9773–9781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Gonzalez‐Alegre, P. , Therapeutic RNA interference for neurodegenerative diseases: From promise to progress. Pharmacol. Ther. 2007, 114, 34–55. [DOI] [PubMed] [Google Scholar]
  • 73. McManus, M. T. , Sharp, P. A. , Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 2002, 3, 737–747. [DOI] [PubMed] [Google Scholar]
  • 74. Bitko, V. , Barik, S. , Phenotypic silencing of cytoplasmic genes with sequence specific double‐stranded short interfering RNA and its application in the reverse genetics of wild‐type negative strand RNA virus. BMC Microbiol. 2001, 1, 34–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Haasnoot, J. , Westerhout, E. M. , Berkhout, B. , RNA interference against viruses: Strike and counterstrike. Nat. Biotechnol. 2007, 25, 1435–1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Boden, D. , Pusch, O. , Lee, F. , Tucker, L. et al., Efficient gene transfer of HIV‐1‐specific short hairpin RNA into human lymphocytic cells using recombinant adeno‐associated virus vectors. Mol. Ther. 2004, 9, 396–402. [DOI] [PubMed] [Google Scholar]
  • 77. Das, A. T. , Brummelkamp, T. R. , Westerhout, E. M. , Vink, M. et al., Human immunodeficiency virus type 1 escapes from RNA interference‐mediated inhibition. J. Virol. 2004, 78, 2601–2605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. Lee, N. S. , Dohjima, T. , Bauer, G. , Li, H. et al., Expression of small interfering RNAs targeted against HIV‐1 rev transcripts in human cells. Nat. Biotechnol. 2002, 20, 500–505. [DOI] [PubMed] [Google Scholar]
  • 79. Park, W. S. , Miyano‐Kurosaki, N. , Hayafune, M. , Nakajima, E. et al., Prevention of HIV‐1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Res. 2002, 30, 4830–4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Giladi, H. , Ketzinel‐Gilad, M. , Rivkin, L. , Felig, Y. et al., Small interfering RNA inhibits hepatitis B virus replication in mice. Mol. Ther. 2003, 8, 769–776. [DOI] [PubMed] [Google Scholar]
  • 81. McCaffrey, A. P. , Nakai, H. , Pandey, K. , Huang, Z. et al., Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol. 2003, 21, 639–644. [DOI] [PubMed] [Google Scholar]
  • 82. Ge, Q. , McManus, M. T. , Nguyen, T. , Shen, C. H. et al., RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. USA 2003, 100, 2718–2723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Tolentino, M. J. , Brucker, A. J. , Fosnot, J. , Ying, G. S. et al., Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser‐induced model of choroidal neovascularization. Retina 2004, 24, 132–138, 660‐661. [DOI] [PubMed] [Google Scholar]
  • 84. de Fougerolles, A. , Vornlocher, H. P. , Maraganore, J. , Lieberman, J. , Interfering with disease: A progress report on siRNA‐based therapeutics. Nat. Rev. Drug Discov. 2007, 6, 443–453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Shen, J. , Samul, R. , Silva, R. L. , Akiyama, H. et al., Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006, 13, 225–234. [DOI] [PubMed] [Google Scholar]
  • 86. Bitko, V. , Musiyenko, A. , Shulyayeva, O. , Barik, S. , Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 2005, 11, 50–55. [DOI] [PubMed] [Google Scholar]
  • 87. Li, B. J. , Tang, Q. , Cheng, D. , Qin, C. et al., Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 2005, 11, 944–951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Thakker, D. R. , Natt, F. , Husken, D. , Maier, R. et al., Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc. Natl. Acad. Sci. USA 2004, 101, 17270–17275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Soutschek, J. , Akinc, A. , Bramlage, B. , Charisse, K. et al., Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432, 173–178. [DOI] [PubMed] [Google Scholar]
  • 90. Chu, T. C. , Twu, K. Y. , Ellington, A. D. , Levy, M. , Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006, 34, e73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Khoury, M. , Louis‐Plence, P. , Escriou, V. , Noel, D. et al., Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor‐α in experimental arthritis. Arthritis Rheum. 2006, 54, 1867–1877. [DOI] [PubMed] [Google Scholar]
  • 92. Reich, S. J. , Fosnot, J. , Kuroki, A. , Tang, W. et al., Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vision 2003, 9, 210–216. [PubMed] [Google Scholar]
  • 93. Kumar, P. , Lee, S. K. , Shankar, P. , Manjunath, N. et al., A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PloS Med. 2006, 3, 505–514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Niu, X. Y. , Peng, Z. L. , Duan, W. Q. , Wang, H. et al., Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int. J. Gynecol. Cancer 2006, 16, 743–751. [DOI] [PubMed] [Google Scholar]
  • 95. Ge, Q. , Filip, L. , Bai, A. , Nguyen, T. et al., Inhibition of influenza virus production in virus‐infected mice by RNA interference. Proc. Natl Acad. Sci. USA 2004, 101, 8676–8681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Urban‐Klein, B. , Werth, S. , Abuharbeid, S. , Czubayko, F. et al., RNAi‐mediated gene‐targeting through systemic application of polyethylenimine (PEI)‐complexed siRNA in vivo. Gene Ther. 2005, 12, 461–466. [DOI] [PubMed] [Google Scholar]
  • 97. Torchilin, V. P. , Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng. 2006. 8, 343–375. [DOI] [PubMed] [Google Scholar]
  • 98. Li, W. , Szoka, F. C. , Lipid‐based nanoparticles for nucleic acid delivery. Pharm. Res. Adv. Drug Deliv. Rev. 2007, 24, 438–449. [DOI] [PubMed] [Google Scholar]
  • 99. Song, E. , Zhu, P. , Lee, S. K. , Chowdhury, D. et al., Antibody mediated in vivo delivery of small interfering RNAs via cell‐surface receptors. Nat. Biotechnol. 2005, 23, 709–717. [DOI] [PubMed] [Google Scholar]
  • 100. Peer, D. , Zhu, P. , Carman, C. V. , Lieberman, J. et al., Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function‐associated antigen 1. Proc. Natl Acad. Sci. USA 2007, 104, 4095–4100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Pei, Y. , Tuschl, T. , On the art of identifying effective and specific siRNAs. Nat. Methods 2006, 3, 670–676. [DOI] [PubMed] [Google Scholar]
  • 102. Kim, D. H. , Behlke, M. A. , Rose, S. D. , Chang, M. S. et al., Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 2005, 23, 222–226. [DOI] [PubMed] [Google Scholar]
  • 103. Schwarz, D. S. , Hutvagner, G. , Du, T. , Xu, Z. et al., Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115, 199–208. [DOI] [PubMed] [Google Scholar]
  • 104. Jackson, A. L. , Bartz, S. R. , Schelter, J. , Kobayashi, S. V. et al., Expression profiling reveals offtarget gene regulation by RNAi. Nat. Biotechnol. 2003, 21, 635–637. [DOI] [PubMed] [Google Scholar]
  • 105. Lin, X. , Ruan, X. , Anderson, M. G. , McDowell, J. A. et al., siRNA‐mediated off‐target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 2005, 33, 4527–4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Jackson, A. L. , Burchard, J. , Leake, D. , Reynolds, A. et al., Position‐specific chemical modification of siRNAs reduces off‐target transcript silencing. RNA 2006, 12, 1197–1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Schlee, M. , Hornung, V. , Hartmann, G. et al., siRNA and is‐RNA: Two edges of one sword. Mol. Ther. 2006, 14, 463–470. [DOI] [PubMed] [Google Scholar]
  • 108. Hornung, V. , Guenthner‐Biller, M. , Bourquin, C. , Ablasser, A. et al., Sequence‐specific potent induction of IFN‐α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 2005, 11, 263–270. [DOI] [PubMed] [Google Scholar]
  • 109. Judge, A. D. , Bola, G. , Lee, A. C. H. , MacLachlan, I. et al., Design of non‐inflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 2006, 13, 494–505. [DOI] [PubMed] [Google Scholar]
  • 110. Choung, S. , Kim, Y. J. , Kim, S. , Park, H. O. et al., Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 2006, 342, 919–927. [DOI] [PubMed] [Google Scholar]
  • 111. Allerson, C. R. , Sioufi, N. , Jarres, R. , Thazha, P. et al., Fully 2'‐modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 2005, 48, 901–904. [DOI] [PubMed] [Google Scholar]
  • 112. Morrissey, D. V. , Blanchard, K. , Shaw, L. , Jensen, K. et al., Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 2005, 41, 1349–1356. [DOI] [PubMed] [Google Scholar]
  • 113. Manoharan, M. , RNA interference and chemically modified small interfering RNAs. Curr. Opin. Chem. Biol. 2004, 8, 570–579. [DOI] [PubMed] [Google Scholar]
  • 114. Kurreck, J. , Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 2003, 270, 1628–1644. [DOI] [PubMed] [Google Scholar]
  • 115. Braasch, D. A. , Jensen, S. , Liu, Y. , Kaur, K. et al., RNA interference in mammalian cells by chemically‐modified RNA. Biochemistry 2003, 42, 7967–7975. [DOI] [PubMed] [Google Scholar]
  • 116. Prakash, T. P. , Allerson, C. R. , Dande, P. , Vickers, T. A. et al., Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 2005, 48, 4247–4253. [DOI] [PubMed] [Google Scholar]
  • 117. Layzer, J. M. , McCaffrey, A. P. , Tanner, A. K. , Huang, Z. et al., In vivo activity of nuclease‐resistant siRNAs. RNA 2004, 10, 766–771. 766‐771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Lewis, D. L. , Hagstrom, J. E. , Loomis, A. G. , Wolff, J. A. et al., Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat. Genet. 2002, 32, 107–108. [DOI] [PubMed] [Google Scholar]
  • 119. Kinoshita, M. , Hynynen, K. , A novel method for the intracellular delivery of siRNA using microbubble‐enhanced focused ultrasound. Biochem. Biophys. Res. Commun. 2005, 335, 393–399. [DOI] [PubMed] [Google Scholar]
  • 120. Akaneya, Y. , Jiang, B. , Tsumoto, T. , RNAi‐induced gene silencing by local electroporation in targeting brain region. J. Neurophysiol. 2005, 93, 594–602. [DOI] [PubMed] [Google Scholar]
  • 121. Tsunoda, S. , Mazda, O. , Oda, Y. , Iida, Y. et al., Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochem. Biophys. Res. Commun. 2005, 336, 118–127. [DOI] [PubMed] [Google Scholar]
  • 122. Golzio, M. , Mazzolini, L. , Moller, P. , Rols, M. P. et al., Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Ther. 2005, 12, 246–251. [DOI] [PubMed] [Google Scholar]
  • 123. Jabs, D. A. , Griffiths, P. D. , Fomivirsen for the treatment of cytomegalovirus retinitis. Am. J. Ophthalmol. 2002, 133, 552–556. [DOI] [PubMed] [Google Scholar]
  • 124. Gragoudas, E. S. , Adamis, A. P. , Cunningham, E. T. Jr. , Feinsod, M. et al., Pegaptanib for neovascular age‐related macular degeneration. N. Engl. J. Med. 2004. 351, 2805–2816. [DOI] [PubMed] [Google Scholar]
  • 125. Siolas, D. , Lerner, C. , Burchard, J. , Ge, W. et al., Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol. 2005, 23, 227–231. [DOI] [PubMed] [Google Scholar]
  • 126. Corey, D. R. , Chemical modification: The key to clinical application of RNA interference? J. Clin. Invest. 2007, 117, 3615–3622. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biotechnology Journal are provided here courtesy of Wiley

RESOURCES