Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(1):69–92. doi: 10.1111/j.1750-3639.1999.tb00212.x

Demyelination: The Role of Reactive Oxygen and Nitrogen Species

Kenneth J Smith 1,, Raju Kapoor 1,2, Paul A Felts 1
PMCID: PMC7161906  PMID: 9989453

Abstract

This review summarises the role that reactive oxygen and nitrogen species play in demyelination, such as that occurring in the inflammatory demyelinating disorders multiple sclerosis and Guillain‐Barré syndrome. The concentrations of reactive oxygen and nitrogen species (e.g. superoxide, nitric oxide and peroxynitrite) can increase dramatically under conditions such as inflammation, and this can overwhelm the inherent antioxidant defences within lesions. Such oxidative and/or nitrative stress can damage the lipids, proteins and nucleic acids of cells and mitochondria, potentially causing cell death. Oligodendrocytes are more sensitive to oxidative and nitrative stress in vitro than are astrocytes and microglia, seemingly due to a diminished capacity for antioxidant defence, and the presence of raised risk factors, including a high iron content. Oxidative and nitrative stress might therefore result in vivo in selective oligodendrocyte death, and thereby demyelination. The reactive species may also damage the myelin sheath, promoting its attack by macrophages. Damage can occur directly by lipid peroxidation, and indirectly by the activation of proteases and phospholipase A2. Evidence for the existence of oxidative and nitrative stress within inflammatory demyelinating lesions includes the presence of both lipid and protein peroxides, and nitrotyrosine (a marker for peroxynitrite formation). The neurological deficit resulting from experimental autoimmune demyelinating disease has generally been reduced

Full Text

The Full Text of this article is available as a PDF (201.5 KB).

References

  • 1. QG AN, Baig SM, Parvez SH (1997) Neurotoxicity and possible roles of aspartic acid, glutamic acid and GABA in some neurologic disorders. Biogenic Amines 13: 565–578. [Google Scholar]
  • 2. Ali QG, Halawa A, Baig S, Siden A (1996) Multiple sclerosis and neurotransmission. Biogenic Amines 12: 353–376. [Google Scholar]
  • 3. Alvarez B, Rubbo H, Kirk M, Barnes S, Freeman BA, Radi R (1996) Peroxynitrite‐dependent tryptophan nitration. Chem Res Toxicol 9: 390–396. [DOI] [PubMed] [Google Scholar]
  • 4. Ansari KA, Wilson M, Slater GE (1986) Hyperbaric oxygenation and erythrocyte antioxidant enzymes in multiple sclerosis patients. Acta Neur Scand 74: 156–160. [DOI] [PubMed] [Google Scholar]
  • 5. Arnold G, Holtzman E (1978) Microperoxisomes in the central nervous system of the postnatal rat. Brain Res 155: 1–17. [DOI] [PubMed] [Google Scholar]
  • 6. Aschner M (1996) The functional significance of brain metallothioneins. FASEB J 10: 1129–1136. [DOI] [PubMed] [Google Scholar]
  • 7. Back SA, Gan X, Li. Y. , Rosenberg PA, Volpe JJ (1998) Maturation‐dependent vulnerability of oligodendrocytes to oxidative stress‐induced death caused by glutathione depletion. J Neurosci 18: 6241–6264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, Tawadros R, Koprowski H (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A 92: 12041–12045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Barnes D, Munro PM, Youl BD, Prineas JW, McDonald WI (1991) The longstanding MS lesion. A quantitative MRI and electron microscopic study. Brain 114: 1271–1280. [DOI] [PubMed] [Google Scholar]
  • 10. Bast A, Haenen GRMM, Doelman CJA (1991) Oxidants and antioxidants: State of the art. Am J Med 91: 2S–13S. [DOI] [PubMed] [Google Scholar]
  • 11. Beckman JS, Chen J, Crow JP, Ye YZ (1994) Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res 103: 371–380. [DOI] [PubMed] [Google Scholar]
  • 12. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271: C1424–C1437. [DOI] [PubMed] [Google Scholar]
  • 13. Bhat NR, Zhang P, Lee JC, Hogan EL (1998) Extracellular signal‐regulated kinase and p38 subgroups of mitogen‐activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor‐alpha gene expression in endotoxin‐stimulated primary glial cultures. J Neurosci 18: 1633–1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Billiar TR (1995) Nitric oxide. Novel biology with clinical relevance. Ann Surg 221: 339–349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Blaauwgeers HG, Sillevis SP, De Jong JM, Troost D (1993) Distribution of metallothionein in the human central nervous system. Glia 8: 62–70. [DOI] [PubMed] [Google Scholar]
  • 16. Blaauwgeers HG, Sillevis SP, De Jong JM, Troost D (1994) Localization of metallothionein in the mammalian central nervous system. Biological Signals 3: 181–187. [DOI] [PubMed] [Google Scholar]
  • 17. Bo L, Dawson TM, Wesselingh S, Mork S, Choi S, Kong PA, Hanley D, Trapp BD (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36: 778–786. [DOI] [PubMed] [Google Scholar]
  • 18. Boje KM, Arora PK (1992) Microglial‐produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587: 250–256. [DOI] [PubMed] [Google Scholar]
  • 19. Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJR (1997) Nitric oxide‐mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J Neurochem 68: 2227–2240. [DOI] [PubMed] [Google Scholar]
  • 20. Bolanos JP, Heales SJ, Peuchen S, Barker JE, Land JM, Clark JB (1996) Nitric oxide‐mediated mitochondrial damage: a potential neuroprotective role for glutathione. Free Radie Biol Med 21: 995–1001. [DOI] [PubMed] [Google Scholar]
  • 21. Bolanos JP, Peuchen S, Heales SJ, Land JM, Clark JB (1994) Nitric oxide‐mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J Neurochem 63: 910–916. [DOI] [PubMed] [Google Scholar]
  • 22. Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA (1994) Nitric oxide directly activates calcium‐dependent potassium channels in vascular smooth muscle. Nature 368: 850–853. [DOI] [PubMed] [Google Scholar]
  • 23. Bondy SC, LeBel CP (1993) The relationship between excitotoxicity and oxidative stress in the central nervous system. Free Radic Biol Med 14: 633–642. [DOI] [PubMed] [Google Scholar]
  • 24. Bongarzone ER, Pasquini JM, Soto EF (1995) Oxidative damage to proteins and lipids of CNS myelin produced by in vitro generated reactive oxygen species. J Neurosci Res 41: 213–221. [DOI] [PubMed] [Google Scholar]
  • 25. Bongarzone ER, Soto EF, Pasquini JM (1995) Increased susceptibility to degradation by trypsin and subtilisin of in vitro peroxidized myelin proteins. Neurochem Res 20: 421–426. [DOI] [PubMed] [Google Scholar]
  • 26. Borgerding RA, Murphy S (1995) Expression of inducible nitric oxide synthase in cerebral endothelial cells is regulated by cytokine‐activated astrocytes. J Neurochem 65: 1342–1347. [DOI] [PubMed] [Google Scholar]
  • 27. Boullerne AI, Petry KG, Meynard M, Geffard M (1995) Indirect evidence for nitric oxide involvement in multiple sclerosis by characterization of circulating antibodies directed against conjugated S‐nitrosocysteine. J Neuroimmunol 60: 117–124. [DOI] [PubMed] [Google Scholar]
  • 28. Bowern N, Ramshaw IA, Clark IA, Doherty PC (1984) Inhibition of autoimmune neuropathological process by treatment with an iron‐chelating agent. J Exp Med 160: 1532–1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Brenneisen P, Briviba K, Wlaschek M, Wenk J, Scharffetter‐Kochanek K (1997) Hydrogen peroxide (H2O2) increases the steady‐state mRNA levels of collagenase/MMP‐1 in human dermal fibroblasts. Free Radic Biol Med 22: 515–524. [DOI] [PubMed] [Google Scholar]
  • 30. Brenner T, Brocke S, Szafer F, Sobel RA, Parkinson JF, Perez DH, Steinman L (1997) Inhibition of nitric oxide synthase for treatment of experimental autoimmune encephalomyelitis. J Immunol 158: 2940–2946. [PubMed] [Google Scholar]
  • 31. Brosnan CF, Battistini L, Raine CS, Dickson DW, Casadevall A, Lee SC (1994) Reactive nitrogen intermediates in human neuropathology: an overview. Dev Neurosci 16: 152–161. [DOI] [PubMed] [Google Scholar]
  • 32. Brown GC, Bolanos JP, Heales SJ, Clark JB (1995) Nitric oxide produced by activated astrocytes rapidly and reversibly inhibits cellular respiration. Neurosci Lett 193: 201–204. [DOI] [PubMed] [Google Scholar]
  • 33. Bruck W, Schmied M, Suchanek G, Bruck Y, Breitschopf H, Poser S, Lassmann H (1994) Oligodendrocytes in the early course of multiple sclerosis. Ann Neurol 35: 65–73. [DOI] [PubMed] [Google Scholar]
  • 34. Burkart V, Gross‐Eick A, Bellmann K, Radons J, Kolb H (1995) Suppression of nitric oxide toxicity in islet cells by alpha‐tocopherol. FEBS Letters 364: 259–263. [DOI] [PubMed] [Google Scholar]
  • 35. Calabrese V, Raffaele R, Cosentino E, Rizza V (1995) Changes in cerebrospinal fluid levels of malondialdehyde and glutathione reductase activity in multiple sclerosis. Intern. J Clin Pharm Res 14: 119–123. [PubMed] [Google Scholar]
  • 36. Cannella B, Raine CS (1995) The adhesion molecule and cytokine profile of multiple sclerosis lesions. Ann Neurol 37: 424–435. [DOI] [PubMed] [Google Scholar]
  • 37. Caspary EA, Sewell F, Field EJ (1967) Red blood cell fragility in multiple sclerosis. Br Med J 2: 610–611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Chandler S, Coates R, Gearing A, Lury J, Wells G, Bone E (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 201: 223–226. [DOI] [PubMed] [Google Scholar]
  • 39. Chiamvimonvat N, O'Rourke B, Kamp TJ, Kallen RG, Hofmann F, Flockerzi V, Marban E (1995) Functional consequences of sulfhydryl modification in the pore‐forming subunits of cardiovascular Ca2+ and Na+ channels. Circ Res 76: 325–334. [DOI] [PubMed] [Google Scholar]
  • 40. Choo L‐P, Jackson M, Halliday WC, Mantsch HH (1993) Infrared spectroscopic characterisation of multiple sclerosis plaques in the human central nervous system. Biochim Biophys Acta 182: 333–337. [DOI] [PubMed] [Google Scholar]
  • 41. Clancy RM, Leszczynska‐Piziak J, Abramson SB (1992) Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J Clin Invest 90: 1116–1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Colasanti M, Persichini T, Di Pucchio T, Gremo F, Lauro GM (1995) Human ramified microglial cells produce nitric oxide upon Escherichia coli lipopolysaccharide and tumor necrosis factor alpha stimulation. Neurosci Lett 200: 144–146. [DOI] [PubMed] [Google Scholar]
  • 43. Colton C, Wilt S, Gilbert D, Chernyshev O, Snell J, Dubois‐Dalcq M (1996) Species differences in the generation of reactive oxygen species by microglia. Mole Chem Neuropathol 28: 15–20. [DOI] [PubMed] [Google Scholar]
  • 44. Colton CA (1995) Induction of nitric oxide in cultured microglia: evidence for a cytoprotective role. Adv Neuroimmunol 5: 491–503. [DOI] [PubMed] [Google Scholar]
  • 45. Colton CA, Jia M, Li MX, Gilbert DL (1994) K+ modulation of microglial superoxide production: Involvement of voltage‐gated Ca2+ channels. Am J Physiol 266: C1650–C1655. [DOI] [PubMed] [Google Scholar]
  • 46. Colton CA, Snell J, Chernyshev O, Gilbert DL (1994) Induction of superoxide anion and nitric oxide production in cultured microglia. Ann N Y Acad Sci 738: 54–63. [DOI] [PubMed] [Google Scholar]
  • 47. Colton CA, Snell J, Chernyshev O, Gilbert DL (1994) Induction of superoxide anion and nitric oxide production in cultured microglia. Ann N Y Acad Sci 738: 54–63. [DOI] [PubMed] [Google Scholar]
  • 48. Connor JR (1994) Iron acquisition and expression of iron regulatory proteins in the developing brain: Manipulation by ethanol exposure, iron deprivation and cellular dysfunction. Dev Neurosci 16: 233–247. [DOI] [PubMed] [Google Scholar]
  • 49. Connor JR, Fine RE (1987) Development of transferrin‐positive oligodendrocytes in the rat central nervous system. J Neurosci Res 17: 51–59. [DOI] [PubMed] [Google Scholar]
  • 50. Connor JR, Menzies SL, St Martin SM, Mufson EJ (1990) Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 27: 595–611. [DOI] [PubMed] [Google Scholar]
  • 51. Cooper RL (1997) Multiple sclerosis: an immune legacy Medical Hypotheses 49: 307–311. [DOI] [PubMed] [Google Scholar]
  • 52. Corkill DJ, Woolley K, Guard S, Wright A, Galloway WA, Thomas SW, Askew M, Beckett P, Davis MH, Miller K, Stabler G, Gearing A, Wood LM (1995) The effect of a novel inhibitor of tumour necrosis factor a (TNFα) processing, BB‐1101 in experimental autoimmune encephalomyelitis. Br J Pharmacol 8 P..
  • 53. Corradin SB, Buchmuller‐Rouiller Y, Mauel J (1991) Phagocytosis enhances murine macrophage activation by interferon‐gamma and tumor necrosis factor‐alpha. Eur J Immunol 21: 2553–2558. [DOI] [PubMed] [Google Scholar]
  • 54. Cowden WB, Cullen FA, Staykova MA, Willenborg DO (1998) Nitric oxide is a potential down‐regulating molecule in autoimmune disease: inhibition of nitric oxide production renders PVG rats highly susceptible to EAE. J Neuroimmunol 88: 1–8. [DOI] [PubMed] [Google Scholar]
  • 55. Cross AH, Keeling RM, Goorha S, San M, Rodi C, Wyatt PS, Manning PT, Misko TP (1996) Inducible nitric oxide synthase gene expression and enzyme activity correlate with disease activity in murine experimental autoimmune encephalomyelitis. J Neuroimmunol 71: 145–153. [DOI] [PubMed] [Google Scholar]
  • 56. Cross AH, Manning PT, Keeling RM, Schmidt RE, Misko TP (1998) Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 88: 45–56. [DOI] [PubMed] [Google Scholar]
  • 57. Cross AH, Manning PT, Stern MK, Misko TP (1997) Evidence for the production of peroxynitrite in inflammatory CNS demyelination. J Neuroimmunol 80: 121–130. [DOI] [PubMed] [Google Scholar]
  • 58. Cross AH, Misko TP, Lin RF, Hickey WF, Trotter JL, Tilton RG (1994) Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest 93: 2684–2690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Crow JP, Beckman JS (1996) The importance of superoxide in nitric oxide‐dependent toxicity: evidence for peroxynitrite‐mediated injury. Adv Exp Med Biol 387: 147–161. [DOI] [PubMed] [Google Scholar]
  • 60. Dalton T, Pazdernik TL, Wagner J, Samson F, Andrews GK (1995) Temporalspatial patterns of expression of metallothionein‐I and ‐III and other stress related genes in rat brain after kainic acid‐induced seizures. Neurochem Int 27: 59–71. [DOI] [PubMed] [Google Scholar]
  • 61. Dawson TM, Hung K, Dawson VL, Steiner JP, Snyder SH (1995) Neuroprotective effects of gangliosides may involve inhibition of nitric oxide synthase. Ann Neurol 37: 115–118. [DOI] [PubMed] [Google Scholar]
  • 62. De Groot CJ, Ruuls SR, Theeuwes JW, Dijkstra CD, van der Valk P (1997) Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 56: 10–20. [DOI] [PubMed] [Google Scholar]
  • 63. De Vries HE, Kuiper J, De Boer AG, Van Berkel TJC, Breimer DD (1997) The blood‐brain barrier in neuroinflammatory diseases. Pharmacol Rev 49: 143–155. [PubMed] [Google Scholar]
  • 64. Delanty N, Reilly M, Pratico D, Fitzgerald DJ, Lawson JA, Fitzgerald, GA (1996) 8‐Epi PGF(2alpha): Specific analysis of an isoeicosanoid as an index of oxidant stress in vivo. Br J Clin Pharmacol 42: 15–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Denham S, Rowland IJ (1992) Inhibition of the reactive proliferation of lymphocytes by activated macrophages: the role of nitric oxide. Clin Exp Immunol 87: 157–162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Dhaunsi GS, Singh B, Singh AK, Kirschner DA, Singh I (1993) Thioridazine induces lipid peroxidation in myelin of rat brain. Neuropharmacol 32: 157–167. [DOI] [PubMed] [Google Scholar]
  • 67. Ding M, Zhang M, Wong JL, Rogers NE, Ignarro LJ, Voskuhl RR (1998) Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice. J Immunol 160: 2560–2564. [PubMed] [Google Scholar]
  • 68. Dobashi K, Pahan K, Chahal A, Singh I (1997) Modulation of endogenous antioxidant enzymes by nitric oxide in rat C6 glial cells. J Neurochem 68: 1896–1903. [DOI] [PubMed] [Google Scholar]
  • 69. Dugas B, Mossalayi MD, Damais C, Kolb JP (1995) Nitric oxide production by human monocytes: evidence for a role of CD23. Immunol Today 16: 574–580. [DOI] [PubMed] [Google Scholar]
  • 70. Ebadi M, Iversen PL, Hao R, Cerutis DR, Rojas P, Happe HK, Murrin, LC , Pfeiffer RF (1995) Expression and regulation of brain metallothionein. Neurochem Int 27: 1–22. [DOI] [PubMed] [Google Scholar]
  • 71. Fagni L, Bockaert J (1996) Effects of nitric oxide on glutamate‐gated channels and other ionic channels. J Chem Neuroanat 10: 231–240. [DOI] [PubMed] [Google Scholar]
  • 72. Fenyk‐Melody JE, Garrison AE, Brunnert SR, Weidner JR, Shen F, Shelton BA, Mudgett JS (1998) Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J Immunol 160: 2940–2946. [PubMed] [Google Scholar]
  • 73. Fisher M, Levine PH, Weiner BH, Vaudreuil CH, Natale A, Johnson MH, Hoogasian JJ (1988) Monocyte and polymorphonuclear leukocyte toxic oxygen metabolite production in multiple sclerosis. Inflammation 12: 123–131. [DOI] [PubMed] [Google Scholar]
  • 74. Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Ann Rev Physiol 57: 683–706. [DOI] [PubMed] [Google Scholar]
  • 75. Gerber MR, Connor JR (1989) Do oligodendrocytes mediate iron regulation in the human brain Ann Neurol 26: 95–98. [DOI] [PubMed] [Google Scholar]
  • 76. Gijbels K, Galardy RE, Steinman L (1994) Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J Clin Invest 94: 2177–2182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Gijbels K, Proost P, Masure S, Carton H, Billiau A, Opdenakker G (1993) Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J Neurosci Res 36: 432–440. [DOI] [PubMed] [Google Scholar]
  • 78. Ginsberg MD (1979) Delayed neurological deterioration following hypoxia. Adv Neurol 26: 21–44. [PubMed] [Google Scholar]
  • 79. Ginsberg MD, Hedley‐Whyte ET, Richardson EP, Jr. (1976) Hypoxic‐ischemic leukoencephalopathy in man. Arch Neurol 33: 5–14. [DOI] [PubMed] [Google Scholar]
  • 80. Giovannoni G (1998) Cerebrospinal fluid and serum nitric oxide metabolites in patients with multiple sclerosis. Multiple Sclerosis 4: 27–30. [DOI] [PubMed] [Google Scholar]
  • 81. Glabinski A, Tawsek NS, Bartosz G (1993) Increased generation of superoxide radicals in the blood of MS patients. Acta Neur Scand 88: 174–177. [DOI] [PubMed] [Google Scholar]
  • 82. Gold R, Zielasek J, Kiefer R, Toyka KV, Hartung HP (1996) Secretion of nitrite by Schwann cells and its effect on T‐cell activation in vitro. Cell Immunol 168: 69–77. [DOI] [PubMed] [Google Scholar]
  • 83. Gopalakrishna R, Zhen HC, Gundimeda U (1993) Nitric oxide and nitric oxide‐generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J Biol Chem 268: 27180–27185. [PubMed] [Google Scholar]
  • 84. Graham A, Hogg N, Kalyanaraman B, O'Leary V, Darley‐Usmar V, Moncada S (1993) Peroxynitrite modification of low‐density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Letters 330: 181–185. [DOI] [PubMed] [Google Scholar]
  • 85. Graziewicz M, Wink DA, Laval F (1996) Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO‐mediated DNA damage. Carcinogenesis 17: 2501–2505. [DOI] [PubMed] [Google Scholar]
  • 86. Griot C, Burge T, Brigger S, Richard A, Peterhans E, Vandevelde M (1989) Makrophagen bei der zentralnervosen Hundestaupe: Freunde Oder Feinde Schweizer Archiv Tierheilk 131: 351–359. [PubMed] [Google Scholar]
  • 87. Griot C, Burge T, Vandevelde M, Peterhans E (1989) Antibody‐induced generation of reactive oxygen radicals by brain macrophages in canine distemper encephalitis: a mechanism for bystander demyelination. Acta Neuropath 78: 396–403. [DOI] [PubMed] [Google Scholar]
  • 88. Griot C, Vandevelde M, Richard A, Peterhans E, Stocker R (1990) Selective degeneration of oligodendrocytes mediated by reactive oxygen species. Free Rad Res Commun 11: 181–193. [DOI] [PubMed] [Google Scholar]
  • 89. Grzybicki DM, Kwack KB, Perlman S, Murphy SP (1997) Nitric oxide synthase type II expression by different cell types in MHV‐JHM encephalitis suggests distinct roles for nitric oxide in acute versus persistent virus infection. J Neuroimmunol 73: 15–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Guthikonda P, Baker J, Mattson DH (1998) Interferonbeta‐1‐b (IFN‐β) decreases induced nitric oxide (NO) production by a human astrocytoma cell line. J Neuroimmunol 82: 133–139. [DOI] [PubMed] [Google Scholar]
  • 91. Gutowski NJ, Pinkham JM, Akanmu D, Chirico S, Murphy RP (1998) Free radicals in inflammatory neurological disease: Increased lipid peroxidation and haptoglobin levels in Guillain‐Barré syndrome. Irish J Med Sci 167: 43–46. [DOI] [PubMed] [Google Scholar]
  • 92. Gutteridge JMC (1986) Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Letters 201: 291–295. [DOI] [PubMed] [Google Scholar]
  • 93. Guy J, Ellis EA, Marnes R, Rao NA (1993) Role of hydrogen peroxide in experimental optic neuritis. A serial quantitative ultrastructural study. Ophthalmic Res 25: 253–264. [DOI] [PubMed] [Google Scholar]
  • 94. Guy J, McGorray S, Qi X, Fitzsimmons J, Mancuso A, Rao N (1994) Conjugated deferoxamine reduces blood‐brain barrier disruption in experimental optic neuritis. Ophthalmic Res 26: 310–323. [DOI] [PubMed] [Google Scholar]
  • 95. Hall ED (1992) Novel inhibitors of iron‐dependent lipid peroxidation for neurodegenerative disorders. Ann Neurol 32:S137–S142. [DOI] [PubMed] [Google Scholar]
  • 96. Hall ED, Travis MA (1988) Inhibition of arachidonic acid‐induced vasogenic brain edema by the non‐glucocorticoid 21‐aminosteroid U74006F. Brain Res 451: 350–352. [DOI] [PubMed] [Google Scholar]
  • 97. Hall GL, Compston A, Scolding NJ (1997) Beta‐interferon and multiple sclerosis. Trends Neurosci 20: 63–67. [DOI] [PubMed] [Google Scholar]
  • 98. Halliwell B, Gutteridge JMC (1998) Free Radicals in Biology and Medicine. 3rd Edition, Oxford University Press: Oxford . [Google Scholar]
  • 99. Hansen LA, Willenborg DO, Cowden WB (1995) Suppression of hyperacute and passively transferred experimental autoimmune encephalomyelitis by the antioxidant, butylated hydroxyanisole. J Neuroimmunol 62: 69–77. [DOI] [PubMed] [Google Scholar]
  • 100. Hartung H‐P, Schafer B, Heininger K, Toyka KV (1988) Suppression of experimental autoimmune neuritis by the oxygen radical scavengers superoxide dismutase and catalase. Ann Neurol 23: 453–460. [DOI] [PubMed] [Google Scholar]
  • 101. Hattori H, Takeda M, Kudo T, Nishimura T, Hashimoto S (1992) Cumulative white matter changes in the gerbil brain under chronic cerebral hypoperfusion. Acta Neuropath 84: 437–442. [DOI] [PubMed] [Google Scholar]
  • 102. Hewett SJ, Corbett JA, McDaniel ML, Choi DW (1993) Interferon‐gamma and interleukin‐1 beta induce nitric oxide formation from primary mouse astrocytes. Neurosci Lett 164: 229–232. [DOI] [PubMed] [Google Scholar]
  • 103. Hewson AK, Smith T, Leonard JP, Cuzner ML (1995) Suppression of experimental allergic encephalomyelitis in the Lewis rat by the matrix metalloproteinase inhibitor Ro31–9790. Inflamm Res 44: 345–349. [DOI] [PubMed] [Google Scholar]
  • 104. Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170: 607–612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Hooper DC, Bagasra O, Marini JC, Zborek A, Ohnishi ST, Kean R, Champion JM, Sarker AB, Bobroski L, Farber JL, Akaike T, Maeda H, Koprowski H (1997) Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 94: 2528–2533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Hooper DC, Ohnishi ST, Kean R, Numagami Y, Dietzschold B, Koprowski H. (1995) Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc Natl Acad Sci U S A 92: 5312–5316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I, Koprowski H (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95: 675–680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Hu S, Sheng WS, Peterson PK, Chao CC (1995) Differential regulation by cytokines of human astrocyte nitric oxide production. Glia 15: 491–494. [DOI] [PubMed] [Google Scholar]
  • 109. Hua LL, Liu JSH, Brosnan CF, Lee SC (1998) Selective inhibition of human glial inducible nitric oxide synthase by interferon‐beta: Implications for multiple sclerosis. Ann Neurol 43: 384–387. 9506556 [Google Scholar]
  • 110. Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Rad Res Communi 18: 195–199. [DOI] [PubMed] [Google Scholar]
  • 111. Hunter MIS, Nlemadim BC, Davidson DLW (1985) Lipid peroxidation products and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients. Neurochem Res 10: 1645–1652. [DOI] [PubMed] [Google Scholar]
  • 112. Husain J, Juurlink BH (1995) Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res 698: 86–94. [DOI] [PubMed] [Google Scholar]
  • 113. Hutter C (1993) On the causes of multiple sclerosis. Medical Hypotheses 41: 93–96. [DOI] [PubMed] [Google Scholar]
  • 114. Ikeda M, Sato I, Matsunaga T, Takahashi M, Yuasa T, Murota S (1995) Cyclic guanosine monophosphate (cGMP), nitrite and nitrate in the cerebrospinal fluid in meningitis, multiple sclerosis and Guillain‐Barre syndrome. Intern Med 34: 734–737. [DOI] [PubMed] [Google Scholar]
  • 115. Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman, JS (1992) Peroxynitrite‐mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298: 431–437. [DOI] [PubMed] [Google Scholar]
  • 116. Janabi N, Chabrier S, Tardieu M (1996) Endogenous nitric oxide activates prostaglandin F2 alpha production in human microglial cells but not in astrocytes: a study of interactions between eicosanoids, nitric oxide, and superoxide anion (O2‐) regulatory pathways. J Immunol 157: 2129–2135. [PubMed] [Google Scholar]
  • 117. Jaworowicz DJ, Korytko PJ, Lakhman SS, Boje KMK (1998) Nitric oxide and prostaglandin E2 formation parallels blood‐brain barrier disruption in an experimental rat model of bacterial meningitis. Brain Res Bull 46: 541–546. [DOI] [PubMed] [Google Scholar]
  • 118. Jensen GE, Clausen J (1986) Glutathione peroxidase activity, associated enzymes and substrates in blood cells from patients with multiple sclerosis ‐ effects of antioxidant supplementation. Acta Pharmacol Toxicol (suppl 7) 59: 450–453. [DOI] [PubMed] [Google Scholar]
  • 119. Johnson AW, Land JM, Thompson EJ, Bolanos JP, Clark JB, Heales SJ (1995) Evidence for increased nitric oxide production in multiple sclerosis. J Neurol Neurosurg Psychiat 58: 107–107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Juurlink BHJ (1997) Response of glial cells to ischemia: Roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev 21: 151–166. [DOI] [PubMed] [Google Scholar]
  • 121. Juurlink BHJ, Thorburne SK, Hertz L (1998) Peroxide‐scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22: 371–378. [DOI] [PubMed] [Google Scholar]
  • 122. Kapoor R, Li YG, Smith KJ (1997) Slow sodium‐dependent potential oscillations contribute to ectopic firing in mammalian demyelinated axons. Brain 120: 647–652. [DOI] [PubMed] [Google Scholar]
  • 123. Kikuchi Y, Irie M, Kasahara T, Sawada J, Terao T (1993) Induction of metallothionein in a human astrocytoma cell line by interleukin‐1 and heavy metals. FEBS Letters 317: 22–26. [DOI] [PubMed] [Google Scholar]
  • 124. Kim YS, Kim SU (1991) Oligodendroglial cell death induced by oxygen radicals and its protection by catalase. J Neurosci Res 29: 100–106. [DOI] [PubMed] [Google Scholar]
  • 125. Kindwall EP, McQuillen MR Khatri BO, Gruchow HW, Kindwall ML (1991) Treatment of multiple sclerosis with hyperbaric oxygen. Results of a national registry. Arch Neurol 48: 195–199. [DOI] [PubMed] [Google Scholar]
  • 126. Kiprianova I, Schwab S, Fandrey J, Spranger M (1997) Suppression of the oxidative burst in murine microglia by nitric oxide. Neurosci Lett 226: 75–78. [DOI] [PubMed] [Google Scholar]
  • 127. Klivenyi P, Kekesi K, Juhasz G, Vecsei L (1997) Amino acid concentrations in cerebrospinal fluid of patients with multiple sclerosis. Acta Neur Scand 95: 96–98. [DOI] [PubMed] [Google Scholar]
  • 128. Klocker N, Cellerino A, Bahr M (1998) Free radical scavenging and inhibition of nitric oxide synthase potentiates the neurotrophic effects of brain‐derived neurotrophic factor on axotomized retinal ganglion cells In vivo. J Neurosci 18: 1038–1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129. Konat GW, Wiggins RC (1985) Effect of reactive oxygen species on myelin membrane proteins. J Neurochem 45: 1113–1118. [DOI] [PubMed] [Google Scholar]
  • 130. Koprowski H, Zheng YM, Heber‐Katz E, Fraser N, Rorke L, Fu ZF, Dietzschold B (1993) In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proc Natl Acad Sci U S A 90: 3024–3027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88: 4651–4655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132. Langemann H, Kabiersch A, Newcombe J (1992) Measurement of low‐molecular‐weight antioxidants, uric acid, tyrosine and tryptophan in plaques and white matter from patients with multiple sclerosis. Eur Neurol 32: 248–252. [DOI] [PubMed] [Google Scholar]
  • 133. LeVine SM (1997) Iron deposits in multiple sclerosis and Alzheimer's disease brains. Brain Res 760: 298–303. [DOI] [PubMed] [Google Scholar]
  • 134. LeVine SM, Wetzel DL (1998) Chemical analysis of multiple sclerosis lesions by FT‐IR microspectroscopy Free Radic Biol Med 25: 33–41. [DOI] [PubMed] [Google Scholar]
  • 135. Li Z, Chapleau MW, Bates JN, Bielefeldt K, Lee H‐C, Abboud FM (1998) Nitric oxide as an autocrine regulator of sodium currents in baroreceptor neurons. Neuron 20: 1039–1049. [DOI] [PubMed] [Google Scholar]
  • 136. Lin RF, Lin TS, Tilton RG, Cross AH (1993) Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic resonance study. J Exp Med 178: 643–648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137. Link J, Soderstrom M, Olsson T, Hojeberg B, Ljungdahl A, Link H (1994) Increased transforming growth factor‐beta, interleukin‐4, and interferon‐gamma in multiple sclerosis. Ann Neurol 36: 379–386. [DOI] [PubMed] [Google Scholar]
  • 138. Liu J, Zhao ML, Brosnan CF, Lee SC (1996) Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of IL‐1 beta and IL‐1 receptor antagonist. J Immunol 157: 3569–3576. [PubMed] [Google Scholar]
  • 139. MacEvilly CJ, Muller DPR (1996) Lipid peroxidation in neural tissues and fractions from vitamin E‐ deficient rats. Free Radic Biol Med 20: 639–648. [DOI] [PubMed] [Google Scholar]
  • 140. Maeda H, Okamoto T, Akaike T (1998) Human matrix metalloprotease activation by insults of bacterial infection involving proteases and free radicals. Biol Chem 379: 193–200. [DOI] [PubMed] [Google Scholar]
  • 141. Malfroy B, Doctrow SR, Orr PL, Tocco G, Fedoseyeva EV, Benichou G (1997) Prevention and suppression of autoimmune encephalomyelitis by EUK‐8, a synthetic catalytic scavenger of oxygen‐reactive metabolites. Cell Immunol 177: 62–68. [DOI] [PubMed] [Google Scholar]
  • 142. Marchetti P, Hirsch T, Zamzami N, Castedo M, Decaudin D, Susin SA, Masse B, Kroemer G (1996) Mitochondrial permeability transition triggers lymphocyte apoptosis. J Immunol 157: 4830–4836. [PubMed] [Google Scholar]
  • 143. Matsuda T, Bates JN, Lewis SJ, Abboud FM, Chapleau MW (1995) Modulation of baroreceptor activity by nitric oxide and S‐nitrosocysteine. Circ Res 76: 426–433. [DOI] [PubMed] [Google Scholar]
  • 144. Mayer M, Noble M (1994) N‐acetyl‐L‐cysteine is a pluripotent protector against cell death and enhancer of trophic factor‐mediated cell survival in vitro. Proc Natl Acad Sci U S A 91: 7496–7500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145. Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151: 2132–2141. [PubMed] [Google Scholar]
  • 146. Merrill JE, Kono DH, Clayton J, Ando DG, Hinton DR, Hofman FM (1992) Inflammatory leukocytes and cytokines in the peptide‐induced disease of experimental allergic encephalomyelitis in SJL and B10.PL mice. Proc Natl Acad Sci U S A 89: 574–578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147. Merrill JE, Murphy SP (1997) Inflammatory events at the blood brain barrier: Regulation of adhesion molecules, cytokines, and chemokines by reactive nitrogen and oxygen species. Brain Behav Immun 11: 245–263. [DOI] [PubMed] [Google Scholar]
  • 148. Merrill JE, Murphy SP, Mitrovic B, MacKenzie‐Graham A, Dopp JC, Ding M, Griscavage J, Ignarro LJ, Lowenstein CJ (1997) Inducible nitric oxide synthase and nitric oxide production by oligodendrocytes. J Neurosci Res 48: 372–384. [PubMed] [Google Scholar]
  • 149. Merrill JE, Strom SR, Ellison GW, Myers LW (1989) In vitro study of mediators of inflammation in multiple sclerosis. J Clin Immunol 9: 84–96. [DOI] [PubMed] [Google Scholar]
  • 150. Mickel HS, Kempski O, Feuerstein G, Parisi JE, Webster H de F (1990) Prominent white matter lesions develop in Mongolian gerbils treated with 100% normobaric oxygen after global brain ischemia. Acta Neuropath 79: 465–472. [DOI] [PubMed] [Google Scholar]
  • 151. Minghetti L, Levi G (1998) Microglia as effector cells in brain damage and repair: Focus on prostanoids and nitric oxide. Prog Neurobiol 54: 99–125. [DOI] [PubMed] [Google Scholar]
  • 152. Minghetti L, Nicolini A, Polazzi E, Creminon C, Maclouf J, Levi G (1997) Inducible nitric oxide synthase expression in activated rat microglial cultures is downregulated by exogenous prostaglandin E2 and by cyclooxygenase inhibitors. Glia 19: 152–160. [PubMed] [Google Scholar]
  • 153. Mitrovic B, Ignarro LJ, Montestruque S, Smoll A, Merrill JE (1994) Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience 61: 575–585. [DOI] [PubMed] [Google Scholar]
  • 154. Mitrovic B, Ignarro LJ, Vinters HV, Akers M‐A, Schmid I, Uittenbogaart C, Merrill JE (1995) Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neuroscience 65: 531–539. [DOI] [PubMed] [Google Scholar]
  • 155. Mollace V, Colasanti M, Rodino P, Massoud R, Lauro GM, Nistico G (1993) Cytokine‐induced nitric oxide generation by cultured astrocytoma cells involves Ca(++)‐calmodulin‐independent NO‐synthase. Biochem Biophys Res Commun 191: 327–334. [DOI] [PubMed] [Google Scholar]
  • 156. Moreau T, Coles A, Wing M, Isaacs J, Hale G, Waldmann H, Compston A (1996) Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 119: 225–237. [DOI] [PubMed] [Google Scholar]
  • 157. Mosley K, Cuzner ML (1996) Receptor‐mediated phagocytosis of myelin by macrophages and microglia: effect of opsonization and receptor blocking agents. Neurochem Res 21: 481–487. [DOI] [PubMed] [Google Scholar]
  • 158. Naidoo R, Knapp ML (1992) Studies of lipid peroxidation products in cerebrospinal fluid and serum in multiple sclerosis and other conditions. Clin Chem 38: 2449–2454. [PubMed] [Google Scholar]
  • 159. Nakajima K, Suzuki K (1995) Immunochemical detection of metallothionein in brain. Neurochem Int 27: 73–87. [DOI] [PubMed] [Google Scholar]
  • 160. Nakajima K, Suzuki K, Otaki N, Kimura M (1991) Detection of metallothionein in brain. Meth Enzymol 205: 387–395. [DOI] [PubMed] [Google Scholar]
  • 161. Nathan C, Xie Q‐W (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269: 13725–13728. [PubMed] [Google Scholar]
  • 162. Navikas V, He B, Link J, Haglund M, Soderstrom M, Fredrikson S, Ljungdahl A, Hojeberg J, Qiao J, Olsson T, Link H (1996) Augmented expression of tumour necrosis factor‐alpha and lymphotoxin in mononuclear cells in multiple sclerosis and optic neuritis. Brain 119: 213–223. [DOI] [PubMed] [Google Scholar]
  • 163. Neal JW, Singhrao SK, Jasani B, Newman GR (1996) Immunocytochemically detectable metallothionein is expressed by astrocytes in the ischaemic human brain. Neuropathol Appl Neurobiol 22: 243–247. [PubMed] [Google Scholar]
  • 164. Newcombe J, Li H, Cuzner ML (1994) Low density lipoprotein uptake by macrophages in multiple sclerosis plaques: Implications for pathogenesis. Neuropathol Appl Neurobiol 20: 152–162. [DOI] [PubMed] [Google Scholar]
  • 165. Noble PG, Antel JP, Yong VW (1994) Astrocytes and catalase prevent the toxicity of catecholamines to oligodendrocytes. Brain Res 633: 83–90. [DOI] [PubMed] [Google Scholar]
  • 166. Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 13: 1441–1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167. Okuda Y, Nakatsuji Y, Fujimura H, Esumi H, Ogura T, Yanagihara T, Sakoda S (1995) Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J Neuroimmunol 62: 103–112. [DOI] [PubMed] [Google Scholar]
  • 168. Oswald IP, Wynn TA, Sher A, James SL (1992) Interleukin 10 inhibits macrophage microbicidal activity by blocking the endogenous production of tumor necrosis factor alpha required as a costimulatory factor for interferon gamma‐induced activation. Proc Natl Acad Sci U S A 89: 8676–8680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169. Owens MW, Milligan SA, Jourd'heuil D, Grisham MB (1997) Effects of reactive metabolites of oxygen and nitrogen on gelatinase A activity. Am J Physiol 273: L445–L450. [DOI] [PubMed] [Google Scholar]
  • 170. Park SK, Lin HL, Murphy S (1994) Nitric oxide limits transcriptional induction of nitric oxide synthase in CNS glial cells. Biochem Biophys Res Commun 201: 762–768. [DOI] [PubMed] [Google Scholar]
  • 171. Parkinson JF, Mitrovic B, Merrill JE (1997) The role of nitric oxide in multiple sclerosis. J Molec Med 75: 174–186. [DOI] [PubMed] [Google Scholar]
  • 172. Pedchenko TV, LeVine SM (1998) Desferrioxamine suppresses experimental allergic encephalomyelitis induced by MBP in SJL mice. J Neuroimmunol 84: 188–197. [DOI] [PubMed] [Google Scholar]
  • 173. Peuchen S, Bolanos JP, Heales SJR, Almeida A, Duchen MR, Clark JB (1997) Interrelationships between astrocyte function, oxidative stress and antioxidant status within the central nervous system. Prog Neurobiol 52: 261–281. [DOI] [PubMed] [Google Scholar]
  • 174. Piantadosi CA, Tatro L, Zhang J (1995) Hydroxyl radical production in the brain after CO hypoxia in rats. Free Radie Biol Med 18: 603–609. [DOI] [PubMed] [Google Scholar]
  • 175. Pinteaux E, Perraut M, Tholey G (1998) Distribution of mitochondrial manganese superoxide dismutase among rat glial cells in culture. Glia 22: 408–414. [PubMed] [Google Scholar]
  • 176. Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33: 137–151. [DOI] [PubMed] [Google Scholar]
  • 177. Prineas JW, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5: 22–31. [DOI] [PubMed] [Google Scholar]
  • 178. Qureshi GA, Baig SM (1993) Role of neurotransmitter amino acids in multiple sclerosis in exacerbation, remission and chronic progressive course. Biogenic Amines 10: 39–48. [Google Scholar]
  • 179. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite‐induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487. [DOI] [PubMed] [Google Scholar]
  • 180. Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls: The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266: 4244–4250. [PubMed] [Google Scholar]
  • 181. Raine CS, Wu E (1993) Multiple sclerosis: remyelination in acute lesions. J Neuropathol Exp Neurol 52: 199–204. [PubMed] [Google Scholar]
  • 182. Reder AT, Thapar M, Sapugay AM, Jensen MA (1994) Prostaglandins and inhibitors of arachidonate metabolism suppress experimental allergic encephalomyelitis. J Neuroimmunol 54: 117–127. [DOI] [PubMed] [Google Scholar]
  • 183. Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 120: 2149–2157. [DOI] [PubMed] [Google Scholar]
  • 184. Redford EJ, Smith KJ, Gregson NA, Davies M, Hughes P, Gearing AJ, Miller K, Hughes RA (1997) A combined inhibitor of matrix metalloproteinase activity and tumour necrosis factor‐alpha processing attenuates experimental autoimmune neuritis. Brain 120: 1895–1905. [DOI] [PubMed] [Google Scholar]
  • 185. Reilly MR Barry P, Lawson JA, Fitzgerald G (1997) Urinary 8‐EPI PGF(2alpha): An index of oxidant stress in vivo . Fibrinolysis Proteolysis 11: 81–84. [Google Scholar]
  • 186. Rice‐Evans CA (1994) Formation of free radicals and mechanisms of action in normal biochemical processes and pathological states. In: Free radical damage and its control, Rice‐Evans CA, Burdon R H, (Eds.), pp. 131–153, Elsevier Science: Amsterdam . [Google Scholar]
  • 187. Robb SJ, Connor JR (1998) An in vitro model for analysis of oxidative death in primary mouse astrocytes. Brain Res 788: 125–132. [DOI] [PubMed] [Google Scholar]
  • 188. Romero FJ (1996) Antioxidants in peripheral nerve. Free Radic Biol Med 20: 925–932. [DOI] [PubMed] [Google Scholar]
  • 189. Rose JW, Hill KE, Wada Y, Kurtz CIB, Tsunoda I, Fujinami RS, Cross, AH (1998) Nitric oxide synthase inhibitor, aminoguanidine, reduces inflammation and demyelination produced by Theiler's virus infection. J Neuroimmunol 81: 82–89. [DOI] [PubMed] [Google Scholar]
  • 190. Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA (1994) Nitric oxide regulation of superoxide and peroxynitrite‐dependent lipid peroxidation. Formation of novel nitrogen‐containing oxidized lipid derivatives. J Biol Chem 269: 26066–26075. [PubMed] [Google Scholar]
  • 191. Rudick RA, Goodkin DE, Jacobs LD, Cookfair DL, Herndon RM, Richert, JR , Salazar AM, Fischer JS, Granger CV, Simon JH, Alam JJ, Simonian, NA , Campion MK, Bartoszak DM, Bourdette DN, Braiman J, Brownscheidle, CM , Coats ME, Cohan SL, Dougherty DS, Kinkel RP, Mass MK, Munschauer, FE , Priore RL, Whitham RH (1997) Impact of interferon beta‐1a on neurologic disability in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Neurol 49: 358–363. [DOI] [PubMed] [Google Scholar]
  • 192. Ruuls SR, Bauer J, Sontrop K, Huitinga I, Hart BA, Dijkstra CD (1995) Reactive oxygen species are involved in the pathogenesis of experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 56: 207–217. [DOI] [PubMed] [Google Scholar]
  • 193. Ruuls SR, Van der Linden S, Sontrop K, Huitinga I, Dijkstra CD (1996) Aggravation of experimental allergic encephalomyelitis (EAE) by administration of nitric oxide (NO) synthase inhibitors. Clin Exp Immunol 103: 467–474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194. Sagara JI, Miura K, Bannai S (1993) Maintenance of neuronal glutathione by glial cells. J Neurochem 61: 1672–1676. [DOI] [PubMed] [Google Scholar]
  • 195. Sahrbacher UC, Lechner F, Eugster H‐P, Frei K, Lassmann H, Fontana A (1998) Mice with an inactivation of the inducible nitric oxide synthase gene are susceptible to experimental autoimmune encephalomyelitis. Eur. J Immunol 28:1330–1336. [DOI] [PubMed] [Google Scholar]
  • 196. Sankarapandi S, Zweier JL, Mukherjee G, Quinn MT, Huso, DL (1998) Measurement and characterization of superoxide generation in microglial cells: evidence for an NADPH oxidase‐dependent pathway. Arch Biochem Biophys 353: 312–321. [DOI] [PubMed] [Google Scholar]
  • 197. Sarchielli P, Orlacchio A, Vicinanza F, Pelliccioli GP, Tognoloni M, Saccardi C, Gallai V (1997) Cytokine secretion and nitric oxide production by mononuclear cells of patients with multiple sclerosis. J Neuroimmunol 80: 76–86. [DOI] [PubMed] [Google Scholar]
  • 198. Schauf CL, Frischer H, Davis FA (1980) Mechanical fragility of erythrocytes in multiple sclerosis. Neurol 30: 323–325. [DOI] [PubMed] [Google Scholar]
  • 199. Schulze‐Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene‐inductive effects of TNF. EMBO J 12: 3095–3104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200. Scott GS, Williams KI, Bolton C (1997) Reactive oxygen species in experimental allergic encephalomyelitis. Biochem Soc Trans 25: 166S. [DOI] [PubMed] [Google Scholar]
  • 201. Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87: 949–954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202. Shafer RA, Murphy S (1997) Activated astrocytes induce nitric oxide synthase‐2 in cerebral endothelium via tumor necrosis factor alpha. Glia 21: 370–379. [DOI] [PubMed] [Google Scholar]
  • 203. Sherman MR Loro ML, Wong VZ, Tashkin DP (1991) Cytokine‐ and Pneumocystis carinii‐ induced L‐arginine oxidation by murine and human pulmonary alveolar macrophages. J Protozool 38: 234S–236S. [PubMed] [Google Scholar]
  • 204. Shrager P, Custer AW, Kazarinova K, Rasband MN, Mattson D (1998) Nerve conduction block by nitric oxide that is mediated by the axonal environment. J Neurophysiol 79: 529–536. [DOI] [PubMed] [Google Scholar]
  • 205. Shukla VK, Jensen GE, Clausen J (1977) Erythrocyte glutathione perioxidase deficiency in multiple sclerosis. Acta Neur Scand 56: 542–550. [DOI] [PubMed] [Google Scholar]
  • 206. Simmons ML, Murphy S (1992) Induction of nitric oxide synthase in glial cells. J Neurochem 59: 897–905. [DOI] [PubMed] [Google Scholar]
  • 207. Simmons ML, Murphy S (1993) Cytokines regulate L‐arginine‐dependent cyclic GMP production in rat glial cells. Eur J Neurosci 5: 825–831. [DOI] [PubMed] [Google Scholar]
  • 208. Siushansian R, Dixon SJ, Wilson JX (1996) Osmotic swelling stimulates ascorbate efflux from cerebral astrocytes. J Neurochem 66: 1227–1233. [DOI] [PubMed] [Google Scholar]
  • 209. Siushansian R, Wilson JX (1995) Ascorbate transport and intracellular concentration in cerebral astrocytes. J Neurochem 65: 41–49. [DOI] [PubMed] [Google Scholar]
  • 210. Slivka A, Mytilineou C, Cohen G (1987) Histochemical evaluation of glutathione in brain. Brain Res 409: 275–284. [DOI] [PubMed] [Google Scholar]
  • 211. Smith KJ (1994) Conduction properties of central demyelinated and remyelinated axons, and their relation to symptom production in demyelinating disorders. Eye 8: 224–237. [DOI] [PubMed] [Google Scholar]
  • 212. Smith KJ, Felts PA, Kapoor R (1997) Axonal hyperexcitability: mechanisms and role in symptom production in demyelinating diseases. Neuroscientist 3: 237–246. [Google Scholar]
  • 213. Smith KJ, Kapoor R, Hall SM, Davies M (1998) Nitric oxide donors cause persistent axonal damage: electrically active axons are especially susceptible. Soc Neurosci Abstr 737.2. [Google Scholar]
  • 214. Smith KJ, McDonald WI (1982) Spontaneous and evoked electrical discharges from a central demyelinating lesion. J neurol Sci 55: 39–47. [DOI] [PubMed] [Google Scholar]
  • 215. Springfield JR, Levitt MD (1994) Pitfalls in the use of breath pentane measurements to assess lipid peroxidation. J Lipid Res 35: 1497–1504. [PubMed] [Google Scholar]
  • 216. Stadler J, Billiar TR, Curran RD, Stuehr DJ, Ochoa JB, Simmons RL (1991) Effect of exogenous and endogenous nitric oxide on mitochondrial respiration of rat hepatocytes. Am J Physiol 260: C910–C916. [DOI] [PubMed] [Google Scholar]
  • 217. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S‐nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89: 444–448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218. Stewart VC, Giovannoni G, Land JM, McDonald WI, Clark JB, Heales SJ (1997) Pretreatment of astrocytes with interferon‐alpha/beta impairs interferon‐gamma induction of nitric oxide synthase. J Neurochem 68: 2547–2551. [DOI] [PubMed] [Google Scholar]
  • 219. Stewart VC, Land JM, Clark JB, Heales SJ (1998) Pretreatment of astrocytes with interferon‐alpha/beta prevents neuronal mitochondrial respiratory chain damage. J Neurochem 70: 432–434. [DOI] [PubMed] [Google Scholar]
  • 220. Stoll G, Jung S, Jander S, van der Meide P, Hartung HP (1993) Tumor necrosis factor‐alpha in immune‐mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. J Neuroimmunol 45: 175–182. [DOI] [PubMed] [Google Scholar]
  • 221. Stover JF, Pleines UE, Morganti‐Kossmann MC, Kossmann T, Lowitzsch K, Kempski OS (1997) Neurotransmitters in cerebrospinal fluid reflect pathological activity. Eur J Clin Invest 27: 1038–1043. [DOI] [PubMed] [Google Scholar]
  • 222. Sugaya K, Chouinard M, McKinney M (1997) Immunostimulation protects microglial cells from nitric oxide‐mediated apoptosis. Neuroreport 8: 2241–2245. [DOI] [PubMed] [Google Scholar]
  • 223. Sun D, Coleclough C, Cao L, Hu X, Sun S, Whitaker JN (1998) Reciprocal stimulation between TNF‐alpha and nitric oxide may exacerbate CNS inflammation in experimental autoimmune encephalomyelitis. J Neuroimmunol 89: 122–130. [DOI] [PubMed] [Google Scholar]
  • 224. Sun N, Grzybicki D, Castro RF, Murphy S, Perlman S (1995) Activation of astrocytes in the spinal cord of mice chronically infected with a neurotropic coronavirus. Virology 213: 482–493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225. Szabo C (1996) DNA strand breakage and activation of poly‐ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med 21: 855–869. [DOI] [PubMed] [Google Scholar]
  • 226. Szabo C (1996) Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Res Bull 41: 131–141. [DOI] [PubMed] [Google Scholar]
  • 227. Tanaka M, Sotomatsu A, Yoshida T, Hirai S, Nishida A (1994) Detection of superoxide production by activated microglia using a sensitive and specific chemiluminescence assay and microglia‐mediated PC12h cell death. J Neurochem 63: 266–270. [DOI] [PubMed] [Google Scholar]
  • 228. Taylor‐Robinson AW, Liew FY, Severn A, Xu D, McSorley SJ, Garside P, Padron J, Phillips RS (1994) Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol 24: 980–984. [DOI] [PubMed] [Google Scholar]
  • 229. Thorn SR (1990) Carbon monoxide‐mediated brain lipid peroxidation in the rat. J Appl Physiol 68: 997–1003. [DOI] [PubMed] [Google Scholar]
  • 230. Thorburne SK, Juurlink BHJ (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67: 1014–1022. [DOI] [PubMed] [Google Scholar]
  • 231. Toshniwal PK, Zarling EJ (1992) Evidence for increased lipid peroxidation in multiple sclerosis. Neurochem Res 17:205–207. [DOI] [PubMed] [Google Scholar]
  • 232. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. New Eng J Med 338: 278–285. [DOI] [PubMed] [Google Scholar]
  • 233. Traugott U, Lebon P (1988) Interferon‐gamma and la antigen are present on astrocytes in active chronic multiple sclerosis lesions. J neurol Sci 84: 257–264. [DOI] [PubMed] [Google Scholar]
  • 234. van den Bosch H, Schutgens RBH, Wanders RJA, Tager JM (1992) Biochemistry of peroxisomes. Ann Rev Biochem 61: 157–197. [DOI] [PubMed] [Google Scholar]
  • 235. van der Veen RC, Hinton DR, Incardonna F, Hofman FM (1997) Extensive peroxynitrite activity during progressive stages of central nervous system inflammation. J Neuroimmunol 77: 1–7. [DOI] [PubMed] [Google Scholar]
  • 236. Vigne P, Damais C, Frelin C (1993) IL1 and TNF alpha induce cGMP formation in C6 astrocytoma cells via the nitridergic pathway. Brain Res 606: 332–334. [DOI] [PubMed] [Google Scholar]
  • 237. Vincent VA, Tilders FJ, Van Dam AM (1997) Inhibition of endotoxin‐induced nitric oxide synthase production in microglial cells by the presence of astroglial cells: a role for transforming growth factor beta. Glia 19: 190–198. [DOI] [PubMed] [Google Scholar]
  • 238. Vodovotz Y, Bogdan C, Paik J, Xie QW, Nathan C (1993) Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med 178:605–613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 239. Wakita H, Tomimoto H, Akiguchi I, Kimura J (1994) Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol 87: 484–492. [DOI] [PubMed] [Google Scholar]
  • 240. Warren J, Sacksteder MR, Thuning CA (1978) Oxygen immunosuppression: modification of experimental allergic encephalomyelitis in rodents. J Immunol 121: 315–320. [PubMed] [Google Scholar]
  • 241. Waugh RJ, Murphy RC (1996) Mass spectrometric analysis of four regioisomers of F2‐isoprostanes formed by free radical oxidation of arachidonic acid. J Am Soc Mass Spectrometry 7: 490–499. [DOI] [PubMed] [Google Scholar]
  • 242. Weber GF (1994) The pathophysiology of reactive oxygen intermediates in the central nervous system. Medical Hypotheses 43: 223–230. [DOI] [PubMed] [Google Scholar]
  • 243. Westall FC, Hawkins A, Ellison GW, Myers LW (1980) Abnormal glutamic acid metabolism in multiple sclerosis. J neurol Sci 47: 353–364. [DOI] [PubMed] [Google Scholar]
  • 244. Willenborg DO, Bowern NA, Danta G, Doherty PC (1988) Inhibition of allergic encephalomyelitis by the iron chelating agent desferrioxamine: differential effect depending on type of sensitizing encephalitogen. J Neuroimmunol 17: 127–135. [DOI] [PubMed] [Google Scholar]
  • 245. Wilson JX (1997) Antioxidant defense of the brain: A role for astrocytes. Can J Physiol Pharmacol 75: 1149–1163. [PubMed] [Google Scholar]
  • 246. Wink DA, Cook JA, Kim SY, Vodovotz Y, Pacelli R, Krishna MC, Russo A, Mitchell JB, Jourd'heuil D, Miles AM, Grisham MB (1997) Superoxide modulates the oxidation and nitrosation of thiols by nitric oxide‐derived reactive intermediates. Chemical aspects involved in the balance between oxidative and nitrosative stress. J Biol Chem 272: 11147–11151. [DOI] [PubMed] [Google Scholar]
  • 247. Wink DA, Hanbauer I, Krishna MC, DeGraff W, Gamson J, Mitchell JB (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc Natl Acad Sci U S A 90: 9813–9817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248. Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001–1003. [DOI] [PubMed] [Google Scholar]
  • 249. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25: 434–456. [DOI] [PubMed] [Google Scholar]
  • 250. Wong GHW, Elwell JH, Oberly LW, Goeddel DV (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58: 923–931. [DOI] [PubMed] [Google Scholar]
  • 251. Woodroofe MN, Hayes GM, Cuzner ML (1989) Fc receptor density, MHC antigen expression and superoxide production are increased in interferon‐gamma‐treated microglia isolated from adult rat brain. Immunology 68: 421–426. [PMC free article] [PubMed] [Google Scholar]
  • 252. Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine‐ depleted cells leading to peroxynitrite‐mediated cellular injury. Proc Natl Acad Sci U S A 93: 6770–6774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253. Xiao B‐G, Zhang G‐X, Ma C‐G, Link H (1996) The cerebrospinal fluid from patients with multiple sclerosis promotes neuronal and oligodendrocyte damage by delayed production of nitric oxide in vitro. J neurol Sci 142: 114–120. [DOI] [PubMed] [Google Scholar]
  • 254. Yamashita T, Ando Y, Obayashi K, Uchino M, Ando M (1997) Changes in nitrite and nitrate (NO2/‐/NO3/‐) levels in cerebrospinal fluid of patients with multiple sclerosis. J neurol Sci 153: 32–34. [DOI] [PubMed] [Google Scholar]
  • 255. Ye Z‐C, Sontheimer H (1996) Cytokine modulation of glial glutamate uptake: A possible involvement of nitric oxide. Neuroreport 7: 2181–2185. [DOI] [PubMed] [Google Scholar]
  • 256. Yonezawa M, Back SA, Gan X, Rosenberg PA, Volpe JJ (1996) Cystine deprivation induces oligodendroglial death: Rescue by free radical scavengers and by a diffusible glial factor. J Neurochem 67: 566–573. [DOI] [PubMed] [Google Scholar]
  • 257. Yoshida T, Tanaka M, Sotomatsu A, Hirai S (1995) Activated microglia cause superoxide‐mediated release of iron from ferritin. Neurosci Lett 190: 21–24. [DOI] [PubMed] [Google Scholar]
  • 258. Youl BD, Turano G, Miller DH, Towell AD, Macmanus DG, Moore SG, Barrett G, Kendall BE, Moseley IF, Tofts PS, Halliday AM, McDonald WI (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114: 2437–2450. [DOI] [PubMed] [Google Scholar]
  • 259. Yun HY, Dawson VL, Dawson TM (1996) Neurobiology of nitric oxide. Crit Rev Neurobiol 10: 291–316. [DOI] [PubMed] [Google Scholar]
  • 260. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T, Susin SA, Petit PX, Mignotte B, Kroemer G (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182: 367–377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261. Zhao W, Tilton RG, Corbett JA, McDaniel ML, Misko TR Williamson JR, Cross AH, Hickey WF (1996) Experimental allergic encephalomyelitis in the rat is inhibited by aminoguanidine, an inhibitor of nitric oxide synthase. J Neuroimmunol 64: 123–133. [DOI] [PubMed] [Google Scholar]
  • 262. Zielasek J, Jung S, Gold R, Liew FY, Toyka KV, Hartung HP (1995) Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalomyelitis. J Neuroimmunol 58: 81–88. [DOI] [PubMed] [Google Scholar]
  • 263. Zielasek J, Reichmann H, Kunzig H, Jung S, Hartung H‐R Toyka KV (1995) Inhibition of brain macrophage/microgial respiratory chain enzyme activity in experimental autoimmune encephalomyelitis of the Lewis rat. Neurosci Lett 184: 129–132. [DOI] [PubMed] [Google Scholar]
  • 264. Zielasek J, Tausch M, Toyka KV, Hartung HP (1992) Production of nitrite by neonatal rat microglial cells/brain macrophages. Cell Immunol 141: 111–120. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES