Abstract
Severe acute respiratory syndrome (SARS) exhibits a high mortality rate and the potential for rapid epidemic spread. Additionally, it has a poorly defined clinical presentation, and no known treatment or prevention methods. Collectively, these factors underscore the need for early diagnosis. Molecular tests have been developed to detect SARS coronavirus (SARS‐CoV) RNA using real time reverse transcription polymerase chain reaction (RT‐PCR) with varying levels of sensitivity. However, RNA amplification methods have been demonstrated to be more sensitive for the detection of some RNA viruses. We therefore developed a real‐time nucleic acid sequence‐based amplification (NASBA) test for SARS‐CoV. A number of primer/beacon sets were designed to target different regions of the SARS‐CoV genome, and were tested for sensitivity and specificity. The performance of the assays was compared with RT‐PCR assays. A multi‐target real‐time NASBA application was developed for detection of SARS‐CoV polymerase (Pol) and nucleocapsid (N) genes. The N targets were found to be consistently more sensitive than the Pol targets, and the real‐time NASBA assay demonstrates equivalent sensitivity when compared to testing by real‐time RT‐PCR. A multi‐target real‐time NASBA assay has been successfully developed for the sensitive detection of SARS‐CoV. J. Med. Virol. 77:602–608, 2005. © 2005 Wiley‐Liss, inc.
Keywords: SARS, NASBA, RT‐PCR, coronavirus
REFERENCES
- Bressler AM, Nolte FS. 2004. Preclinical evaluation of two real‐time, reverse transcription‐PCR assays for detection of the severe acute respiratory syndrome coronavirus. J Clin Microbiol 42: 987–991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown EG, Tetro JA. 2003. Comparative analysis of the SARS coronavirus genome: A good start to a long journey. Lancet 361: 1756–1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan PK. 2003. Human metapneumovirus detection in patients with severe acute respiratory syndrome. Emerg Infect Dis 9: 1058–1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X, Zhou B, Li M, Liang X, Wang H, Yang G, Wang H, Le X. 2004. Serology of severe acute respiratory syndrome: Implications for surveillance and outcome. J Infect Dis 189: 1158–1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drosten C, Gunther S, Preiser W, van der WS, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348: 1967–1976. [DOI] [PubMed] [Google Scholar]
- Drosten C, Chiu L‐L, Panning M, Leong HN, Preiser W, Tam JS, Gunther S, Kramme S, Emmerich P, Ng WL, Schmitz H, Koay ESC. 2004. Evaluation of advanced reverse transcription‐PCR assays and an alternative PCR target region for detection of severe acute respiratory syndrome‐associated coronavirus. J Clin Microbiol 42: 2043–2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emery SL, Erdman DD, Bowen MD, Newton BR, Winchell JM, Meyer RF, Tong S, Cook BT, Holloway BP, McCaustland KA, Rota PA, Benkamp B, Lowe LE, Ksiazek TG, Bellini WJ, Anderson LJ. 2004. Real‐time reverse transcription‐polymerase chain reaction assay for SARS‐associated coronavirus. Emerg Infect Dis 10: 311–316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris M, Lim W, Stohr K, Osterhaus AD. 2003. Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423: 240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ginocchio CC, Kemper M, Stellrecht KA, Witt DJ. 2003. Multicenter evaluation of the performance characteristics of the NucliSens HIV‐1 QT assay used for quantitation of human immunodeficiency virus type 1 RNA. J Clin Microbiol 41: 164–173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang SS, Chen TC, Yang JY, Hsiung CA, Su IJ, Liu YL, Chen PC, Juang JL. 2004. Sensitive and quantitative detection of severe acute respiratory syndrome coronavirus infection by real‐time nested polymerase chain reaction. Clin Infect Dis 38: 293–296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348: 1953–1966. [DOI] [PubMed] [Google Scholar]
- Lanciotti RS, Kerst AJ. 2001. Nucleic acid sequence‐based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses. J Clin Microbiol 39: 4506–4513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau SK, Woo PC, Wong BH, Tsoi HW, Woo GK, Poon RW, Chan KH, Wei WI, Peiris JS, Yuen KY. 2004. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in SARS patients by enzyme‐linked immunosorbent assay. J Clin Microbiol 42: 2884–2889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahony JB, Petrich A, Louie L, Song X, Chong S, Smieja M, Chernesky M, Loeb M, Richardson S. 2004. Performance and Cost evaluation of one commercial and six in‐house conventional and real‐time reverse transcription‐PCR assays for detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol 42: 1471–1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marra MA, Jones SJ, Astell CR, Holt RA, Brooks‐Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL. 2003. The Genome sequence of the SARS‐associated coronavirus. Science 300: 1399–1404. [DOI] [PubMed] [Google Scholar]
- Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, Law KI, Tang BS, Hon TY, Chan CS, Chan KH, Ng JS, Zheng BJ, Ng WL, Lai RW, Guan Y, Yuen KY. 2003. Clinical progression and viral load in a community outbreak of coronavirus‐associated SARS pneumonia: A prospective study. Lancet 361: 1767–1772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poon LL, Chan KH, Wong OK, Cheung TK, Ng I, Zheng B, Seto WH, Yuen KY, Guan Y, Peiris JS. 2004. Detection of SARS coronavirus in patients with severe acute respiratory syndrome by conventional and real‐time quantitative reverse transcription‐PCR assays. Clin Chem 50: 67–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, Green K, Tellier R, Draker R, Adachi D, Ayers M, Chan AK, Skowronski DM, Salit I, Simor AE, Slutsky AS, Doyle PW, Krajden M, Petric M, Brunham RC, McGeer AJ. 2003. Identification of severe acute respiratory syndrome in Canada. N Engl J Med 348: 1995–2005. [DOI] [PubMed] [Google Scholar]
- Rest JS, Mindell DP. 2003. SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host‐shifting. Infect Genet Evol 3: 219–225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen‐Rasmussen M, Fouchier R, Gunther S, Osterhaus AD, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300: 1394–1399. [DOI] [PubMed] [Google Scholar]
- Ruan YJ, Wei CL, Ee AL, Vega VB, Thoreau H, Su ST, Chia JM, Ng P, Chiu KP, Lim L, Zhang T, Peng CK, Lin EO, Lee NM, Yee SL, Ng LF, Chee RE, Stanton LW, Long PM, Liu ET. 2003. Comparative full‐length genome sequence analysis of 14 SARS coronavirus isolates and common mutations associated with putative origins of infection. Lancet 361: 1779–1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- World Health Organization Multicentre Collaborative Network for Severe Acute Respiratory Syndrome Diagnosis . 2003. A multicentre collaboration to investigate the cause of severe acute respiratory syndrome. Lancet 361: 1730–1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu HS, Chiu SC, Tseng TC, Lin SF, Lin JH, Hsu YH, Wang MC, Lin TL, Yang WZ, Ferng TL, Huang KH, Hsu LC, Lee LL, Yang JY, Chen HY, Su SP, Yang SY, Lin SY, Lin TH, Su IS. 2004. Serologic and Molecular Biologic Methods for SARS‐associated Coronavirus Infection, Taiwan. Emerg Infect Dis 10: 304–310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yam WC, Chan KH, Poon LL, Guan Y, Yuen KY, Seto WH, Peiris JS. 2003. Evaluation of reverse transcription‐PCR assays for rapid diagnosis of severe acute respiratory syndrome associated with a novel coronavirus. J Clin Microbiol 41: 4521–4524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang F, van der Laar S, Zimmerman D, Sillekens P, Ginocchio CC. 2004. Real time detection of SARS related coronavirus using nucleic acid sequence based amplification (NASBA) and molecular beacons. Abstract M10 20th Annual Clinical Virology Symposium, PASCV.