Abstract
BACKGROUND
Androgen‐sensitive prostate cancer cell‐line LNCaP‐FGC and androgen‐resistant line LNCaP‐r constitute a model for development of androgen resistance in prostate cancer.
METHODS
Proteins differently expressed in the two cell‐lines were identified by two‐dimensional (2‐D) electrophoresis and mass spectrometry. HSP60, more abundant in LNCaP‐r, was studied by RT‐PCR and immunohistochemistry in specimens of human prostate cancer.
RESULTS
HSP60 was upregulated in LNCaP‐r, nm23 in LNCaP‐FGC, and titin (two isoforms) in either LNCaP‐r or LNCaP‐FGC. In non‐malignant prostate, HSP60‐staining was in the glandular compartment, particularly basal epithelial cells. In prostate cancer, most epithelial cells showed moderate‐strong staining without apparent correlation between staining intensity and Gleason grade.
CONCLUSIONS
The LNCaP‐FGC/LNCaP‐r model, characterized by 2‐D electrophoresis, reveals distinct proteomic alterations. With HSP60, results from cell‐lines correlated with clinical results, indicating that this model can be used for dissection of mechanisms involved in transformation to androgen resistance and assignment of protein markers in prostate cancer. Prostate © 2006 Wiley‐Liss, Inc.
Keywords: androgen resistance, immunohistochemistry, two‐dimensional gel electrophoresis, mass spectrometry
REFERENCES
- 1. Mettlin C. Recent developments in the epidemiology of prostate cancer. Eur J Cancer 1997; 33(3): 340–347. [DOI] [PubMed] [Google Scholar]
- 2. Scardino PT, Weaver R, Hudson MA. Early detection of prostate cancer. Hum Pathol 1992; 23(3): 211–222. [DOI] [PubMed] [Google Scholar]
- 3. Grönberg H. Prostate cancer epidemiology. Lancet 2003; 361 (9360): 859–864. [DOI] [PubMed] [Google Scholar]
- 4. Reid P, Kantoff P, Oh W. Antiandrogens in prostate cancer. Invest New Drugs 1999; 17(3): 271–284. [DOI] [PubMed] [Google Scholar]
- 5. Parczyk K. Schneider MR. The future of antihormone therapy: Innovations based on an established principle. J Cancer Res Clin Oncol 1996; 122(7): 383–396. [DOI] [PubMed] [Google Scholar]
- 6. Cher ML, Bova GS, Moore DH, Small EJ, Carroll PR, Pin SS, Epstein JI, Isaacs WB, Jensen RH. Genetic alterations in untreated metastases and androgen‐independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res 1996; 56(13): 3091–3102. [PubMed] [Google Scholar]
- 7. Nupponen NN, Hyytinen ER, Kallioniemi AH, Visakorpi T. Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization. Cancer Genet Cytogenet 1998; 101: 53–57. [DOI] [PubMed] [Google Scholar]
- 8. Nupponen NN. Visakorpi T. Molecular cytogenetics of prostate cancer. Microsc Res Tech 2000; 51(5): 456–463. [DOI] [PubMed] [Google Scholar]
- 9. Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP. LNCaP model of human prostatic carcinoma. Cancer Res 1983; 43(4): 1809–1818. [PubMed] [Google Scholar]
- 10. Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, Papsidero L, Kim U, Chai LS, Kakati S, Arya SK, Sandberg AA. The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 1980; 37: 115–132. [PubMed] [Google Scholar]
- 11. Hasenson M, Hartley‐Asp B, Kihlfors C, Lundin A, Gustafsson JA, Pousette A. Effect of hormones on growth and ATP content of a human prostatic carcinoma cell line, LNCaP‐r. Prostate 1985; 7(2): 183–194. [DOI] [PubMed] [Google Scholar]
- 12. Pousette A, Carlstrom K, Henriksson P, Grande M, Stege R. Use of a hormone‐sensitive (LNCaP) and a hormone‐resistant (LNCaP‐r) cell line in prostate cancer research. Prostate 1997; 31(3): 198–203. [DOI] [PubMed] [Google Scholar]
- 13. Zhao X, van Steenbrugge GJ, Schröder FH. Differential sensitivity of hormone‐responsive and unresponsive human prostate cancer cells (LNCaP) to tumor necrosis factor. Urol Res 1992: 20(3): 193–197. [DOI] [PubMed] [Google Scholar]
- 14. Berkelman T, Stenstedt T. 2‐D Electrophoresis using immobilized pH gradients. Pisentaway NJ: Amersham Pharmacia Biotech Inc. 1998. [Google Scholar]
- 15. Oppermann M, Cols N, Nyman T, Helin J, Saarinen J, Byman I, Toran N, Alaiya AA, Bergman T, Kalkkinen N, Gonzalez‐Duarte R, Jörnvall H. Identification of foetal brain proteins by two‐dimensional gel electrophoresis and mass spectrometry comparison of samples from individuals with or without chromosome 21 trisomy. Eur J Biochem 2000; 267(15): 4713–4719. [DOI] [PubMed] [Google Scholar]
- 16. Qi H, Labrie Y, Grenier J, Fournier A, Fillion C, Labrie C. Androgens induce expression of SPAK, a STE20/SPS1‐related kinase, in LNCaP human prostate cancer cells. Mol Cell Endocrinol 2001; 182(2): 181–192. [DOI] [PubMed] [Google Scholar]
- 17. Jollès P, Jörnvall H, editors. Proteomics in functional genomics. Basel‐Boston‐Berlin: Birkhäuser, 2000. [PubMed] [Google Scholar]
- 18. Pappin DJC, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide‐mass fingerprinting. Current Biol 1993; 3(6): 327–332. [DOI] [PubMed] [Google Scholar]
- 19. Meri S, Baumann M. Proteomics: Posttranslational modifications, immune responses and current analytical tools. Biomol Eng 2001; 18(5): 213–220. [DOI] [PubMed] [Google Scholar]
- 20. Cheng MY, Hartl FU, Horwich AL. The mitochondrial chaperonin hsp60 is required for its own assembly. Nature 2000; 348(6300): 455–458. [DOI] [PubMed] [Google Scholar]
- 21. Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 1995; 270(5234): 293–296. [DOI] [PubMed] [Google Scholar]
- 22. Gergely F, Draviam VM, Raff JW. The ch‐TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev 2003; 17(3): 336–341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Charrasse S, Mazel M, Taviaux S, Berta P, Chow T, Larroque C. Characterization of the cDNA and pattern of expression of a new gene over‐expressed in human hepatomas and colonic tumors. Eur J Biochem 1995; 234(2): 406–413. [DOI] [PubMed] [Google Scholar]
- 24. Christians ES, Zhou Q, Renard J, Benjamin IJ. Heat shock proteins in mammalian development. Semin Cell Dev Biol. 2003; 14(5): 283–290. [DOI] [PubMed] [Google Scholar]
- 25. Multhoff G. Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 2002; 18(6): 576–585. [DOI] [PubMed] [Google Scholar]
- 26. van Eden W, van der Zee R, Prakken B. Heat‐shock proteins induce T‐cell regulation of chronic inflammation. Nat Rev Immunol. 2005; 5(4): 318–330. [DOI] [PubMed] [Google Scholar]
- 27. Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M, Neoptolemos JP, Ke Y, Foster CS. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 2000; 60(24): 7099–7105. [PubMed] [Google Scholar]
- 28. Cappello F, Rappa F, David S, Anzalone R, Zummo G. Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC‐2 presence and expression in prostate carcinogenesis. Anticancer Res 2003; 23(2B): 1325–1331. [PubMed] [Google Scholar]
- 29. Lee CS, Clarke RA, Tran KT, Kearsly JH, Chou ST. nm23 protein expression and p53 immunoreactivity in cutaneous fibrohistocytic tumors. Pathology 1999; 31(2): 123–126. [DOI] [PubMed] [Google Scholar]
- 30. Nosaka K, Kawahara M, Masuda M, Satomi Y, Nishino H. Association of nucleoside diphosphate kinase nm23‐H2 with human telomeres. Biochem Biophys Res Commun 1998; 243(2): 342–348. [DOI] [PubMed] [Google Scholar]
- 31. Ouatas T, Salerno M, Palmieri D, Steeg PS. Basic and translational advances in cancer metastasis: nm 23. J Bioener Biomemb 2003; 35(1): 73–79. [DOI] [PubMed] [Google Scholar]
- 32. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: Coordinate mRNA expression in normal tissues and overexpression in tumors. Nucl Acids Res 1999; 27(11): 2291–2298. [DOI] [PMC free article] [PubMed] [Google Scholar]