Abstract
Aminopeptidase N (APN)/CD13 (EC 3.4.11.2) is a transmembrane protease present in a wide variety of human tissues and cell types (endothelial, epithelial, fibroblast, leukocyte). APN/CD13 expression is dysregulated in inflammatory diseases and in cancers (solid and hematologic tumors). APN/CD13 serves as a receptor for coronaviruses. Natural and synthetic inhibitors of APN activity have been characterized. These inhibitors have revealed that APN is able to modulate bioactive peptide responses (pain management, vasopressin release) and to influence immune functions and major biological events (cell proliferation, secretion, invasion, angiogenesis). Therefore, inhibition of APN/CD13 may lead to the development of anti‐cancer and anti‐inflammatory drugs. This review provides an update on the biological and pharmacological profiles of known natural and synthetic APN inhibitors. Current status on their potential use as therapeutic agents is discussed with regard to toxicity and specificity. © 2005 Wiley Periodicals, Inc. Med Res Rev
Keywords: aminopeptidase, ectoenzyme, natural inhibitor, synthetic inhibitor, bestatin, cancer, inflammation
REFERENCES
- 1. Antczak C, De Meester I, Bauvois B. Ectopeptidases in pathophysiology. Bioessays 2001; 23(3): 251–260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Rawlings ND, Barrett AJ. MEROPS: The peptidase database. Nucleic Acids Res 1999; 27(1): 325–331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Hooper NM. Families of zinc metalloproteases. FEBS Lett 1994; 354(1): 1–6. [DOI] [PubMed] [Google Scholar]
- 4. Olsen J, Cowell GM, Konigshofer E, Danielsen EM, Moller J, Laustsen L, Hansen OC, Welinder KG, Engberg J, Hunziker W, et al. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA. FEBS Lett 1988; 238(2): 307–314. [DOI] [PubMed] [Google Scholar]
- 5. Pfleiderer G, Celliers PG. Isolation of an aminopeptidase from kidney particles. Biochem Z 1963; 339: 186–189. [PubMed] [Google Scholar]
- 6. Look AT, Ashmun RA, Shapiro LH, Peiper SC. Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J Clin Invest 1989; 83(4): 1299–1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Shipp MA, Look AT. Hematopoietic differentiation antigens that are membrane‐associated enzymes: Cutting is the key! Blood 1993; 82(4): 1052–1070. [PubMed] [Google Scholar]
- 8. Jung K, Pergande M, Wischke UW. Characterization of particulate and soluble variants of the brush‐border enzymes alanine aminopeptidase, alkaline phosphatase and gamma‐glutamyltransferase in human urine. Biomed Biochim Acta 1984; 43(12): 1357–1364. [PubMed] [Google Scholar]
- 9. Favaloro EJ, Browning T, Facey D. CD13 (GP150; aminopeptidase‐N): Predominant functional activity in blood is localized to plasma and is not cell‐surface associated. Exp Hematol 1993; 21(13): 1695–1701. [PubMed] [Google Scholar]
- 10. Kawai M, Otake Y, Hara Y. High‐molecular‐mass isoform of aminopeptidase N/CD13 in serum from cholestatic patients. Clin Chim Acta 2003; 330(1‐2): 141–149. [DOI] [PubMed] [Google Scholar]
- 11. van Hensbergen Y, Broxterman HJ, Hanemaaijer R, Jorna AS, van Lent NA, Verheul HM, Pinedo HM, Hoekman K. Soluble aminopeptidase N/CD13 in malignant and nonmalignant effusions and intratumoral fluid. Clin Cancer Res 2002; 8(12): 3747–3754. [PubMed] [Google Scholar]
- 12. Antczak C, De Meester I, Bauvois B. Transmembrane proteases as disease markers and targets for therapy. J Biol Regul Homeost Agents 2001; 15(2): 130–139. [PubMed] [Google Scholar]
- 13. Jardinaud F, Banisadr G, Noble F, Melik‐Parsadaniantz S, Chen H, Dugave C, Laplace H, Rostene W, Fournie‐Zaluski MC, Roques BP, Popovici T. Ontogenic and adult whole body distribution of aminopeptidase N in rat investigated by in vitro autoradiography. Biochimie 2004; 86(2): 105–113. [DOI] [PubMed] [Google Scholar]
- 14. Razak K, Newland AC. The significance of aminopeptidases and haematopoietic cell differentiation. Blood Rev 1992; 6(4): 243–250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Razak K, Newland AC. Induction of CD13 expression on fresh myeloid leukaemia: Correlation of CD13 expression with aminopeptidase‐N activity. Leuk Res 1992; 16(6‐7): 625–630. [DOI] [PubMed] [Google Scholar]
- 16. Menrad A, Speicher D, Wacker J, Herlyn M. Biochemical and functional characterization of aminopeptidase N expressed by human melanoma cells. Cancer Res 1993; 53(6): 1450–1455. [PubMed] [Google Scholar]
- 17. Fujii H, Nakajima M, Saiki I, Yoneda J, Azuma I, Tsuruo T. Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13. Clin Exp Metastasis 1995; 13(5): 337–344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Kitamura Y, Watanabe M, Komatsubara S, Sakata Y. [Urinary excretion of glycine.prolile dipeptidile aminopeptidase, N‐acetyl‐beta‐d‐glucosaminidase, alanine aminopeptidase, and low molecular protein in patients with renal cell carcinoma]. Hinyokika Kiyo 1990; 36(5): 535–539. [PubMed] [Google Scholar]
- 19. Ikeda N, Nakajima Y, Tokuhara T, Hattori N, Sho M, Kanehiro H, Miyake M. Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin Cancer Res 2003; 9(4): 1503–1508. [PubMed] [Google Scholar]
- 20. Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, Yamaoka Y, Miyake M. Aminopeptidase N is involved in cell motility and angiogenesis: Its clinical significance in human colon cancer. Gastroenterology 2002; 122(2): 376–386. [DOI] [PubMed] [Google Scholar]
- 21. Ishii K, Usui S, Sugimura Y, Yamamoto H, Yoshikawa K, Hirano K. Inhibition of aminopeptidase N (AP‐N) and urokinase‐type plasminogen activator (uPA) by zinc suppresses the invasion activity in human urological cancer cells. Biol Pharm Bull 2001; 24(3): 226–230. [DOI] [PubMed] [Google Scholar]
- 22. Carl‐McGrath S, Lendeckel U, Ebert M, Wolter AB, Roessner A, Rocken C. The ectopeptidases CD10, CD13, CD26, and CD143 are upregulated in gastric cancer. Int J Oncol 2004; 25(5): 1223–1232. [PubMed] [Google Scholar]
- 23. Kehlen A, Lendeckel U, Dralle H, Langner J, Hoang‐Vu C. Biological significance of aminopeptidase N/CD13 in thyroid carcinomas. Cancer Res 2003; 63(23): 8500–8506. [PubMed] [Google Scholar]
- 24. Riemann D, Gohring B, Langner J. Expression of aminopeptidase N/CD13 in tumour‐infiltrating lymphocytes from human renal cell carcinoma. Immunol Lett 1994; 42(1–2): 19–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Riemann D, Kehlen A, Langner J. CD13—not just a marker in leukemia typing. Immunol Today 1999; 20(2): 83–88. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Balog T, Marotti T, Sverko V, Marotti M, Krolo I, Rocic B, Karapanda N. Enkephalin degradating enzymes in pheochromocytoma patients. Oncol Rep 2003; 10(1): 253–258. [PubMed] [Google Scholar]
- 27. Boldt DH, Kopecky KJ, Head D, Gehly G, Radich JP, Appelbaum FR. Expression of myeloid antigens by blast cells in acute lymphoblastic leukemia of adults. The Southwest Oncology Group experience. Leukemia 1994; 8(12): 2118–2126. [PubMed] [Google Scholar]
- 28. Tatsumi E. A mini‐review of CD13 antigen in AML: Easy induction or enhancement of expression in in vitro culture and necessary consideration for assessment . Southeast Asian J Trop Med Public Health 2002; 33(Suppl 2): 155–157. [PubMed] [Google Scholar]
- 29. Shao Z, Chen G, Lin Z, Zhang Y, Hao Y, Chu Y, Zheng Y, Qian L, Yang T, Yang C, Feng B. Immunophenotype of myeloid cells in myelodysplastic syndromes and its clinical implications. Chin Med J (Engl) 1998; 111(1): 28–31. [PubMed] [Google Scholar]
- 30. Popnikolov NK, Payne DA, Hudnall SD, Hawkins HK, Kumar M, Norris BA, Elghetany MT. CD13‐positive anaplastic large cell lymphoma of T‐cell origin—a diagnostic and histogenetic problem. Arch Pathol Lab Med 2000; 124(12): 1804–1808. [DOI] [PubMed] [Google Scholar]
- 31. Dunphy CH, Gardner LJ, Manes JL, Bee CS, Taysi K. CD30+ anaplastic large‐cell lymphoma with aberrant expression of CD13: Case report and review of the literature. J Clin Lab Anal 2000; 14(6): 299–304. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Dan H, Tani K, Hase K, Shimizu T, Tamiya H, Biraa Y, Huang L, Yanagawa H, Sone S. CD13/aminopeptidase N in collagen vascular diseases. Rheumatol Int 2003; 23(6): 271–276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Abe T, Yamamoto Y, Hazato T. [Changes in aminopeptidase N located on neutrophils derived from patients with chronic pain]. Masui 1998; 47(2): 151–155. [PubMed] [Google Scholar]
- 34. Shimizu T, Tani K, Hase K, Ogawa H, Huang L, Shinomiya F, Sone S. CD13/aminopeptidase N‐induced lymphocyte involvement in inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 2002; 46(9): 2330–2338. [DOI] [PubMed] [Google Scholar]
- 35. Ziaber J, Baj Z, Pasnik J, Chmielewski H, Tchorzewski H. Expression of aminopeptidase N (APN) on peripheral blood mononuclear cells' surface as a marker of these cells' transendothelial migration properties in the course of multiple sclerosis. Mediators Inflamm 2000; 9(1): 45–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36. Tani K, Ogushi F, Huang L, Kawano T, Tada H, Hariguchi N, Sone S. CD13/aminopeptidase N, a novel chemoattractant for T lymphocytes in pulmonary sarcoidosis. Am J Respir Crit Care Med 2000; 161(5): 1636–1642. [DOI] [PubMed] [Google Scholar]
- 37. Riemann D, Schwachula A, Hentschel M, Langner J. Demonstration of CD13/aminopeptidase N on synovial fluid T cells from patients with different forms of joint effusions. Immunobiology 1993; 187(1–2): 24–35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Hafler DA, Hemler ME, Christenson L, Williams JM, Shapiro HM, Strom TB, Strominger JL, Weiner HL. Investigation of in vivo activated T cells in multiple sclerosis and inflammatory central nervous system diseases. Clin Immunol Immunopathol 1985; 37(2): 163–171. [DOI] [PubMed] [Google Scholar]
- 39. Riemann D, Wollert HG, Menschikowski J, Mittenzwei S, Langner J. Immunophenotype of lymphocytes in pericardial fluid from patients with different forms of heart disease. Int Arch Allergy Immunol 1994; 104(1): 48–56. [DOI] [PubMed] [Google Scholar]
- 40. Lendeckel U, Kahne T, Riemann D, Neubert K, Arndt M, Reinhold D. Review: The role of membrane peptidases in immune functions. Adv Exp Med Biol 2000; 477: 1–24. [DOI] [PubMed] [Google Scholar]
- 41. Lendeckel U, Arndt M, Frank K, Wex T, Ansorge S. Role of alanyl aminopeptidase in growth and function of human T cells (review). Int J Mol Med 1999; 4(1): 17–27. [PubMed] [Google Scholar]
- 42. Goette A, Arndt M, Rocken C, Spiess A, Staack T, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 2000; 101(23): 2678–2681. [DOI] [PubMed] [Google Scholar]
- 43. Sjostrom H, Noren O, Olsen J. Structure and function of aminopeptidase N. Adv Exp Med Biol 2000; 477: 25–34. [DOI] [PubMed] [Google Scholar]
- 44. Vlahovic P, Stefanovic V. Kidney ectopeptidases. Structure, functions, and clinical significance. Pathol Biol (Paris) 1998; 46(10): 779–786. [PubMed] [Google Scholar]
- 45. Breljak D, Gabrilovac J, Boranic M. Aminopeptidase N/CD13 and haematopoietic cells. Haema 2003; 6(4): 453–461. [Google Scholar]
- 46. Watt VM, Willard HF. The human aminopeptidase N gene: Isolation, chromosome localization, and DNA polymorphism analysis. Hum Genet 1990; 85(6): 651–654. [DOI] [PubMed] [Google Scholar]
- 47. Shapiro LH. Myb and Ets proteins cooperate to transactivate an early myeloid gene. J Biol Chem 1995; 270(15): 8763–8771. [DOI] [PubMed] [Google Scholar]
- 48. Olsen J, Kokholm K, Troelsen JT, Laustsen L. An enhancer with cell‐type dependent activity is located between the myeloid and epithelial aminopeptidase N (CD 13) promoters. Biochem J 1997; 322(Pt 3): 899–908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Lendeckel U, Wex T, Arndt M, Frank K, Franke A, Ansorge S. Identification of point mutations in the aminopeptidase N gene by SSCP analysis and sequencing. Hum Mutat 1998; Suppl 1: S158–S160. [DOI] [PubMed] [Google Scholar]
- 50. Shapiro LH, Ashmun RA, Roberts WM, Look AT. Separate promoters control transcription of the human aminopeptidase N gene in myeloid and intestinal epithelial cells. J Biol Chem 1991; 266(18): 11999–12007. [PubMed] [Google Scholar]
- 51. Hedge SP, Kumar A, Kurschner C, Shapiro LH. c‐Maf interacts with c‐Myb to regulate transcription of an early myeloid gene during differentiation. Mol Cell Biol 1998; 18(5): 2729–2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Firla B, Arndt M, Frank K, Thiel U, Ansorge S, Tager M, Lendeckel U. Extracellular cysteines define ectopeptidase (APN, CD13) expression and function. Free Radic Biol Med 2002; 32(7): 584–595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Luciani N, Marie‐Claire C, Ruffet E, Beaumont A, Roques BP, Fournie‐Zaluski MC. Characterization of Glu350 as a critical residue involved in the N‐terminal amine binding site of aminopeptidase N (EC 3.4.11.2): Insights into its mechanism of action. Biochemistry 1998; 37(2): 686–692. [DOI] [PubMed] [Google Scholar]
- 54. Giros B, Gros C, Solhonne B, Schwartz JC. Characterization of aminopeptidases responsible for inactivating endogenous (Met5)enkephalin in brain slices using peptidase inhibitors and anti‐aminopeptidase M antibodies. Mol Pharmacol 1986; 29(3): 281–287. [PubMed] [Google Scholar]
- 55. Furuhashi M, Mizutani S, Kurauchi O, Kasugai M, Narita O, Tomoda Y. In vitro degradation of opioid peptides by human placental aminopeptidase M. Exp Clin Endocrinol 1988; 92(2): 235–237. [DOI] [PubMed] [Google Scholar]
- 56. Miller BC, Thiele DL, Hersh LB, Cottam GL. Methionine enkephalin is hydrolyzed by aminopeptidase N on CD4+ and CD8+ spleen T cells. Arch Biochem Biophys 1994; 311(1): 174–179. [DOI] [PubMed] [Google Scholar]
- 57. Yamamoto Y, Kanazawa H, Shimamura M, Ueki M, Hazato T. Inhibitory action of spinorphin, an endogenous regulator of enkephalin‐degrading enzymes, on carrageenan‐induced polymorphonuclear neutrophil accumulation in mouse air‐pouches. Life Sci 1998; 62(19): 1767–1773. [DOI] [PubMed] [Google Scholar]
- 58. Wang LH, Ahmad S, Benter IF, Chow A, Mizutani S, Ward PE. Differential processing of substance P and neurokinin A by plasma dipeptidyl(amino)peptidase IV, aminopeptidase M and angiotensin converting enzyme. Peptides 1991; 12(6): 1357–1364. [DOI] [PubMed] [Google Scholar]
- 59. Lucius R, Sievers J, Mentlein R. Enkephalin metabolism by microglial aminopeptidase N (CD13). J Neurochem 1995; 64(4): 1841–1847. [DOI] [PubMed] [Google Scholar]
- 60. Robertson MJ, Cunoosamy MP, Clark KL. Effects of peptidase inhibition on angiotensin receptor agonist and antagonist potency in rabbit isolated thoracic aorta. Br J Pharmacol 1992; 106(1): 166–172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Zini S, Fournie‐Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens‐Cortes C. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: Predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA 1996; 93(21): 11968–11973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Chansel D, Czekalski S, Vandermeersch S, Ruffet E, Fournie‐Zaluski MC, Ardaillou R. Characterization of angiotensin IV‐degrading enzymes and receptors on rat mesangial cells. Am J Physiol 1998; 275(4 Pt 2): F535–F542. [DOI] [PubMed] [Google Scholar]
- 63. Mizutani S, Taira H, Kurauchi O, Ito Y, Imaizumi H, Furuhashi M, Narita O, Tomoda Y. Effect of microsomal leucine aminopeptidase from human placenta (microsomal P‐LAP) on pressor response to infused angiotensin II (A‐II) in rat. Exp Clin Endocrinol 1987; 90(2): 206–212. [DOI] [PubMed] [Google Scholar]
- 64. Montiel JL, Cornille F, Roques BP, Noble F. Nociceptin/orphanin FQ metabolism: Role of aminopeptidase and endopeptidase 24.15. J Neurochem 1997; 68(1): 354–361. [DOI] [PubMed] [Google Scholar]
- 65. Waksman G, Hamel E, Bouboutou R, Besselievre R, Fournie‐Zaluski MC, Roques BP. Regional distribution of enkephalinase in the rat brain by autoradiography. C R Acad Sci III 1984; 299(14): 613–615. [PubMed] [Google Scholar]
- 66. Llorens‐Cortes C. Identification of metabolic pathways of brain angiotensin II and angiotensin III: Predominant role of angiotensin III in the control of vasopressin secretion. C R Seances Soc Biol Fil 1998; 192(4): 607–618. [PubMed] [Google Scholar]
- 67. Ahmad S, Ward PE. Role of aminopeptidase activity in the regulation of the pressor activity of circulating angiotensins. J Pharmacol Exp Ther 1990; 252(2): 643–650. [PubMed] [Google Scholar]
- 68. Ahmad S, Wang L, Ward PE. Dipeptidyl(amino)peptidase IV and aminopeptidase M metabolize circulating substance P in vivo. J Pharmacol Exp Ther 1992; 260(3): 1257–1261. [PubMed] [Google Scholar]
- 69. Delmas B, Gelfi J, Kut E, Sjostrom H, Noren O, Laude H. Determinants essential for the transmissible gastroenteritis virus‐receptor interaction reside within a domain of aminopeptidase‐N that is distinct from the enzymatic site. J Virol 1994; 68(8): 5216–5224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70. Delmas B, Gelfi J, L'Haridon R, Vogel LK, Sjostrom H, Noren O, Laude H. Aminopeptidase N is a major receptor for the entero‐pathogenic coronavirus TGEV. Nature 1992; 357(6377): 417–420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Delmas B, Gelfi J, Sjostrom H, Noren O, Laude H. Further characterization of aminopeptidase‐N as a receptor for coronaviruses. Adv Exp Med Biol 1993; 342: 293–298. [DOI] [PubMed] [Google Scholar]
- 72. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 1992; 357(6377): 420–422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73. Xu Y, Wellner D, Scheinberg DA. Substance P and bradykinin are natural inhibitors of CD13/aminopeptidase N. Biochem Biophys Res Commun 1995; 208(2): 664–674. [DOI] [PubMed] [Google Scholar]
- 74. Huang K, Takahara S, Kinouchi T, Takeyama M, Ishida T, Ueyama H, Nishi K, Ohkubo I. Alanyl aminopeptidase from human seminal plasma: Purification, characterization, and immunohistochemical localization in the male genital tract. J Biochem (Tokyo) 1997; 122(4): 779–787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75. Yamamoto Y, Li YH, Ushiyama I, Nishimura A, Ohkubo I, Nishi K. Puromycin‐sensitive alanyl aminopeptidase from human liver cytosol: Purification and characterization. Forensic Sci Int 2000; 113(1–3): 143–146. [DOI] [PubMed] [Google Scholar]
- 76. Repic Lampret B, Kidric J, Kralj B, Vitale L, Pokorny M, Renko M. Lapstatin, a new aminopeptidase inhibitor produced by Streptomyces rimosus, inhibits autogenous aminopeptidases. Arch Microbiol 1999; 171(6): 397–404. [DOI] [PubMed] [Google Scholar]
- 77. Miyachi H, Kato M, Kato F, Hashimoto Y. Novel potent nonpeptide aminopeptidase N inhibitors with a cyclic imide skeleton. J Med Chem 1998; 41(3): 263–265. [DOI] [PubMed] [Google Scholar]
- 78. Shimazawa R, Takayama H, Fujimoto Y, Komoda M, Dodo K, Yamasaki R, Shirai R, Koiso Y, Miyata K, Kato F, Kato M, Miyachi H, Hashimoto Y. Novel small molecule nonpeptide aminopeptidase n inhibitors with a cyclic imide skeleton. J Enzyme Inhib 1999; 14(4): 259–275. [DOI] [PubMed] [Google Scholar]
- 79. Shimazawa R, Takayama H, Kato F, Kato M, Hashimoto Y. Nonpeptide small‐molecular inhibitors of dipeptidyl peptidase IV: N‐phenylphthalimide analogs. Bioorg Med Chem Lett 1999; 9(4): 559–562. [DOI] [PubMed] [Google Scholar]
- 80. Takahashi H, Komoda M, Kakuta H, Hashimoto Y. Preparation of novel specific aminopeptidase inhibitors with a cyclic imide skeleton. Yakugaku Zasshi 2000; 120(10): 909–921. [DOI] [PubMed] [Google Scholar]
- 81. Kagechika H, Komoda M, Fujimoto Y, Koiso Y, Takayama H, Kadoya S, Miyata K, Kato F, Kato M, Hashimoto Y. Potent homophthalimide‐type inhibitors of B16F10/L5 mouse melanoma cell invasion. Biol Pharm Bull 1999; 22(9): 1010–1012. [DOI] [PubMed] [Google Scholar]
- 82. Komoda M, Kakuta H, Takahashi H, Fujimoto Y, Kadoya S, Kato F, Hashimoto Y. Specific inhibitor of puromycin‐sensitive aminopeptidase with a homophthalimide skeleton: Identification of the target molecule and a structure–activity relationship study. Bioorg Med Chem 2001; 9(1): 121–131. [DOI] [PubMed] [Google Scholar]
- 83. Kakuta H, Tanatani A, Nagasawa K, Hashimoto Y. Specific nonpeptide inhibitors of puromycin‐sensitive aminopeptidase with a 2,4(1H,3H)‐quinazolinedione skeleton. Chem Pharm Bull (Tokyo) 2003; 51(11): 1273–1282. [DOI] [PubMed] [Google Scholar]
- 84. Grembecka J, Mucha A, Cierpicki T, Kafarski P. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure‐based design, chemistry, and activity. J Med Chem 2003; 46(13): 2641–2655. [DOI] [PubMed] [Google Scholar]
- 85. Georgiadis D, Vazeux G, Llorens‐Cortes C, Yiotakis A, Dive V. Potent and selective inhibition of zinc aminopeptidase A (EC 3.4.11.7, APA) by glutamyl aminophosphinic peptides: Importance of glutamyl aminophosphinic residue in the P1 position. Biochemistry 2000; 39(5): 1152–1155. [DOI] [PubMed] [Google Scholar]
- 86. Ocain TD, Rich DH. alpha‐Keto amide inhibitors of aminopeptidases. J Med Chem 1992; 35(3): 451–456. [DOI] [PubMed] [Google Scholar]
- 87. Shenvi AB. alpha‐Aminoboronic acid derivatives: Effective inhibitors of aminopeptidases. Biochemistry 1986; 25(6): 1286–1291. [DOI] [PubMed] [Google Scholar]
- 88. Andersson L, Isley TC, Wolfenden R. alpha‐aminoaldehydes: Transition state analogue inhibitors of leucine aminopeptidase. Biochemistry 1982; 21(17): 4177–4180. [DOI] [PubMed] [Google Scholar]
- 89. Parellada J, Suarez G, Guinea M. Inhibition of zinc metallopeptidases by flavonoids and related phenolic compounds: Structure–activity relationships. J Enzyme Inhib 1998; 13(5): 347–359. [DOI] [PubMed] [Google Scholar]
- 90. Bormann H, Melzig MF. Inhibition of metallopeptidases by flavonoids and related compounds. Pharmazie 2000; 55(2): 129–132. [PubMed] [Google Scholar]
- 91. Lendeckel U, Arndt M, Wolke C, Reinhold D, Kahne T, Ansorge S. Inhibition of human leukocyte function, alanyl aminopeptidase (APN, CD13) and dipeptidylpeptidase IV (DP IV, CD26) enzymatic activities by aqueous extracts of Cistus incanus L. ssp. incanus. J Ethnopharmacol 2002; 79(2): 221–227. [DOI] [PubMed] [Google Scholar]
- 92. Kiss A, Kowalski J, Melzig MF. Compounds from Epilobium angustifolium inhibit the specific metallopeptidases ACE, NEP, and APN. Planta Med 2004; 70(10): 919–923. [DOI] [PubMed] [Google Scholar]
- 93. Gordon JJ, Kelly BK, Miller GA. Actinonin: An antibiotic substance produced by an actinomycete. Nature 1962; 195: 701–702. [DOI] [PubMed] [Google Scholar]
- 94. Umezawa H, Aoyagi T, Tanaka T, Suda H, Okuyama A, Naganawa H, Hamada M, Takeuchi T. Production of actinonin, an inhibitor of aminopeptidase M, by actinomycetes. J Antibiot (Tokyo) 1985; 38(11): 1629–1630. [DOI] [PubMed] [Google Scholar]
- 95. Gordon JJ, Devlin JP, East AJ, Ollis WD, Wright DE, Ninet L. Studies concerning the antibiotic actinonin. Part I. The constitution of actinonin. A natural hydroxamic acid with antibiotic activity. J Chem Soc [Perkin 1] 1975; (9): 819–825. [PubMed] [Google Scholar]
- 96. Anderson NH, Ollis WD, Thorpe JE, Ward AD. Studies concerning the antibiotic actinonin. Part II. Total synthesis of actinonin and some structural analogues by the isomaleimide method. J Chem Soc [Perkin 1] 1975; (9): 825–830. [PubMed] [Google Scholar]
- 97. Devlin JP, Ollis WD, Thorpe JE, Wood RJ, Broughton BJ, Warren PJ, Wooldridge KRH, Wright DE. Studies concerning the antibiotic actinonin. Part III. Synthesis of structural analogues of actinonin by the anhydride–imide method. J Chem Soc [Perkin 1] 1975; (9): 830–842. [PubMed] [Google Scholar]
- 98. Broughton BJ, Warren PJ, Wooldridge KRH, Wright DE, Ollis WD, Wood RJ. Studies concerning the antibiotic actinonin. Part IV. Synthesis of structural analogues of actinonin by the mixed anhydride method. J Chem Soc [Perkin 1] 1975; (9): 842–846. [PubMed] [Google Scholar]
- 99. Devlin JP, Ollis WD, Thorpe JE. Studies concerning the antibiotic actinonin. Part V. Synthesis of structural analogues of actinonin by the anhydride–ester method. J Chem Soc [Perkin 1] 1975; (9): 846–848. [DOI] [PubMed] [Google Scholar]
- 100. Devlin JP, Ollis WD, Thorpe JE, Wright DE. Studies concerning the antibiotic actinonin. Part VI. Synthesis of structural analogues of actinonin by dicyclohexylcarbodiimide coupling reactions. J Chem Soc [Perkin 1] 1975; (9): 848–852. [PubMed] [Google Scholar]
- 101. Anderson NH, Devlin JP, Jones S, Ollis WD, Thorpe JE. Studies concerning the antibiotic actinonin. Part VII. Mass spectra of actinonin and related compounds. J Chem Soc [Perkin 1] 1975; (9): 852–857. [PubMed] [Google Scholar]
- 102. Bashiardes G, Bodwell GJ, Gxxxx DS. Asymmetric synthesis of (−)‐actinonin and (−)‐epi‐actinonin. J Chem Soc [Perkin Trans 1] 1993; (4): 459–469. [Google Scholar]
- 103. Broughton BJ, Chaplen P, Freeman WA, Warren PJ, Wooldridge KRH, Wright DE. Studies concerning the antibiotic actinonin. Part VIII. Structure–activity relationships in the actinonin series. J Chem Soc [Perkin 1] 1975; (9): 857–860. [PubMed] [Google Scholar]
- 104. Chung MC, Lee HJ, Chun HK, Lee CH, Kim SI, Kho YH. Bestatin analogue from Streptomyces neyagawaensis SL‐387. Biosci Biotechnol Biochem 1996; 60(5): 898–900. [DOI] [PubMed] [Google Scholar]
- 105. Chung MC, Chun HK, Han KH, Lee HJ, Lee CH, Kho YH. MR‐387A and B, new aminopeptidase N inhibitors, produced by Streptomyces neyagawaensis SL‐387. J Antibiot (Tokyo) 1996; 49(1): 99–102. [DOI] [PubMed] [Google Scholar]
- 106. Chung MC, Lee CH, Lee HJ, Kho YH, Chun HK. Biosynthesis of peptide inhibitor MR‐387 by Streptomyces neyagawaensis . Biotechnol Lett 1997; 19(7): 607–610. [Google Scholar]
- 107. Ma T, Xu W‐F, Wang J‐L, Yuan Y‐M. Design, synthesis and anti‐cancer activity of AHPA derivatives. Chinese J Med Chem 2003; 13(2): 70–75. [Google Scholar]
- 108. Rich DH, Moon BJ, Harbeson S. Inhibition of aminopeptidases by amastatin and bestatin derivatives. Effect of inhibitor structure on slow‐binding processes. J Med Chem 1984; 27(4): 417–422. [DOI] [PubMed] [Google Scholar]
- 109. Aoyagi T, Tobe H, Kojima F, Hamada M, Takeuchi T, Umezawa H. Amastatin, an inhibitor of aminopeptidase A, produced by actinomycetes. J Antibiot (Tokyo) 1978; 31(6): 636–638. [DOI] [PubMed] [Google Scholar]
- 110. Tobe H, Morishima H, Naganawa H, Takita T, Aoyagi T, Umezawa H. Structure and chemical synthesis of amastatin. Agric Biol Chem 1979; 43(3): 591–596. [Google Scholar]
- 111. Rich DH, Moon BJ, Boparai AS. Synthesis of (2S, 3R)‐3‐amino‐2‐hydroxy‐5‐methylhexanoic acid derivatives. Application to the synthesis of amastatin, an inhibitor of aminopeptidase. J Org Chem 1980; 45(12): 2288–2290. [Google Scholar]
- 112. Tobe H, Morishima H, Aoyagi T, Umezawa H, Ishiki K, Nakamura K, Yoshioka T, Shimauchi Y, Inui T. Synthesis and structure–activity relationships of amastatin analogues, inhibitors of aminopeptidase A. Agric Biol Chem 1982; 46(7): 1865–1872. [Google Scholar]
- 113. Burley SK, David PR, Lipscomb WN. Leucine aminopeptidase: Bestatin inhibition and a model for enzyme‐catalyzed peptide hydrolysis. Proc Natl Acad Sci USA 1991; 88(16): 6916–6920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114. Orning L, Krivi G, Fitzpatrick FA. Leukotriene A4 hydrolase. Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes. J Biol Chem 1991; 266(3): 1375–1378. [PubMed] [Google Scholar]
- 115. Evans JF, Kargman S. Bestatin inhibits covalent coupling of [3H]LTA4 to human leukocyte LTA4 hydrolase. FEBS Lett 1992; 297(1–2): 139–142. [DOI] [PubMed] [Google Scholar]
- 116. Baker JR, Kylstra TA, Bigby TD. Effects of metalloproteinase inhibitors on leukotriene A4 hydrolase in human airway epithelial cells. Biochem Pharmacol 1995; 50(7): 905–912. [DOI] [PubMed] [Google Scholar]
- 117. Andberg M, Wetterholm A, Medina JF, Haeggstrom JZ. Leukotriene A4 hydrolase: A critical role of glutamic acid‐296 for the binding of bestatin. Biochem J 2000; 345(Pt 3): 621–625. [PMC free article] [PubMed] [Google Scholar]
- 118. Scornik OA, Botbol V. Bestatin as an experimental tool in mammals. Curr Drug Metab 2001; 2(1): 67–85. [DOI] [PubMed] [Google Scholar]
- 119. Umezawa H, Aoyagi T, Suda H, Hamada M, Takeuchi T. Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J Antibiot (Tokyo) 1976; 29(1): 97–99. [DOI] [PubMed] [Google Scholar]
- 120. Suda H, Takita T, Aoyagi T, Umezawa H. The structure of bestatin. J Antibiot (Tokyo) 1976; 29(1): 100–101. [DOI] [PubMed] [Google Scholar]
- 121. Suda H, Takita T, Aoyagi T, Umezawa H. The chemical synthesis of bestatin. J Antibiot (Tokyo) 1976; 29(5): 600–601. [DOI] [PubMed] [Google Scholar]
- 122. Kobayashi S, Isobe T, Ohno M. A stereocontrolled synthesis of (−)‐bestatin from an acyclic allylamine by iodocyclocarbamation. Tetrahedron Lett 1984; 25(44): 5079–5082. [Google Scholar]
- 123. Pearson WH, Hines JV. Synthesis of [beta]‐amino‐[alplha]‐hydroxy acids via aldol condensation of a chiral glycolate enolate. Synthesis of (−)‐bestatin. J Org Chem 1989; 54(17): 4235–4237. [Google Scholar]
- 124. Norman BH, Morris ML. A stereospecific synthesis of (−)l‐Bestatin from ‐malic acid. Tetrahedron Lett 1992; 33(45): 6803–6806. [Google Scholar]
- 125. Wasserman HH, Xia M, Petersen AK, Jorgensen MR, Curtis EA. Synthesis of the peptidic [alpha]‐hydroxy amides phebestin, probestin, and bestatin from [alpha]‐keto amide precursors. Tetrahedron Lett 1999; 40(34): 6163–6166. [Google Scholar]
- 126. Bergmeier SC, Stanchina DM. Acylnitrene route to vicinal amino alcohols. Application to the synthesis of (−)‐bestatin and analogues. J Org Chem 1999; 64(8): 2852–2859. [DOI] [PubMed] [Google Scholar]
- 127. Nemoto H, Ma R, Suzuki I, Shibuya M. A new one‐pot method for the synthesis of [alpha]‐siloxyamides from aldehydes or ketones and its application to the synthesis of (−)‐bestatin. Org Lett 2000; 2(26): 4245–4247. [DOI] [PubMed] [Google Scholar]
- 128. Righi G, D'Achille C, Pescatore G, Bonini C. New stereoselective synthesis of the peptidic aminopeptidase inhibitors bestatin, phebestin and probestin. Tetrahedron Lett 2003; 44(37): 6999–7002. [Google Scholar]
- 129. Wasserman HH, Petersen AK, Xia M. Application of acyl cyanophosphorane methodology to the synthesis of protease inhibitors: Poststatin, eurystatin, phebestin, probestin, and bestatin. Tetrahedron 2003; 59(35): 6771–6784. [Google Scholar]
- 130. Lee JH, Lee BW, Jang KC, Jeong I‐Y, Yang MS, Lee SG, Park KH. Chirospecific synthesis of the(2S,3R)‐ and(2S,3S)‐3‐amino‐2‐hydroxy‐4‐phenylbutanoic acids from sugar: Application to (−)‐bestatin. Synthesis 2003; (6): 829–836. [Google Scholar]
- 131. Nishizawa R, Saino T, Takita T, Suda H, Aoyagi T. Synthesis and structure–activity relationships of bestatin analogues, inhibitors of aminopeptidase B. J Med Chem 1977; 20(4): 510–515. [DOI] [PubMed] [Google Scholar]
- 132. Saino T, Seya K, Nishizawa R, Takita T, Aoyagi T, Umezawa H. Synthesis of p‐hydroxyubenimex. J Antibiot (Tokyo) 1987; 40(8): 1165–1169. [DOI] [PubMed] [Google Scholar]
- 133. Ocain TD, Rich DH. Synthesis of sulfur‐containing analogues of bestatin. Inhibition of aminopeptidases by alpha‐thiolbestatin analogues. J Med Chem 1988; 31(11): 2193–2199. [DOI] [PubMed] [Google Scholar]
- 134. Gordon EM, Godfrey JD, Delaney NG, Asaad MM, Von Langen D, Cushman DW. Design of novel inhibitors of aminopeptidases. Synthesis of peptide‐derived diamino thiols and sulfur replacement analogues of bestatin. J Med Chem 1988; 31(11): 2199–2211. [DOI] [PubMed] [Google Scholar]
- 135. Yuan W, Miunoz B, Wong C‐H, Haeggström JZ, Wetterholm A, Samuelsson B. Development of selective tight‐binding inhibitors of leukotriene A4 hydrolase. J Med Chem 1993; 36(2): 211–220. [DOI] [PubMed] [Google Scholar]
- 136. Harbeson SL, Rich DH. Inhibition of arginine aminopeptidase by bestatin and arphamenine analogues. Evidence for a new mode of binding to aminopeptidases. Biochemistry 1988; 27(19): 7301–7310. [DOI] [PubMed] [Google Scholar]
- 137. Nagai M, Kojima F, Naganawa H, Hamada M, Aoyagi T, Takeuchi T. Phebestin, a new inhibitor of aminopeptidase N, produced by Streptomyces sp. MJ716‐m3. J Antibiot (Tokyo) 1997; 50(1): 82–84. [DOI] [PubMed] [Google Scholar]
- 138. Aoyagi T, Yoshida S, Nakamura Y, Shigihara Y, Hamada M, Takeuchi T. Probestin, a new inhibitor of aminopeptidase M, produced by Streptomyces azureus MH663‐2F6. I. Taxonomy, production, isolation, physico‐chemical properties, and biological activities. J Antibiot (Tokyo) 1990; 43(2): 143–148. [DOI] [PubMed] [Google Scholar]
- 139. Yoshida S, Nakamura Y, Naganawa H, Aoyagi T, Takeuchi T. Probestin, a new inhibitor of aminopeptidase M, produced by Streptomyces azureus MH663‐2F6. II. Structure determination of probestin. J Antibiot (Tokyo) 1990; 43(2): 149–153. [DOI] [PubMed] [Google Scholar]
- 140. Nakamura H, Suda H, Takita T, Aoyagi T, Umezawa H. X‐ray structure determination of (2S, 3R)‐3‐amino‐2‐hydroxy‐4‐phenylbutanoic acid, a new amino acid component of bestatin. J Antibiot (Tokyo) 1976; 29(1): 102–103. [DOI] [PubMed] [Google Scholar]
- 141. Kato K, Saino T, Nishizawa R, Takita T, Umezawa H. Regio‐ and stereo‐specific synthesis of threo‐3‐amino‐2‐hydroxy‐acids, novelamino‐acids contained in aminopeptidase inhibitors of microbial origin. J Chem Soc Perkin I 1980; (7): 1618–1621. [PubMed] [Google Scholar]
- 142. Johnson RL. Renin inhibitors. Substitution of the leucyl residues of Leu‐Leu‐Val‐Phe‐OCH3 with 3‐amino‐2‐hydroxy‐5‐methylhexanoic acid. J Med Chem 1982; 25(5): 605–610. [DOI] [PubMed] [Google Scholar]
- 143. Reetz MT, Drewes MW, Harms K, Reif W. Stereoselective cyanohydrin‐forming reactions of chiral [alpha]‐amino aldehydes. Tetrahedron Lett 1988; 29(27): 3295–3298. [Google Scholar]
- 144. Herranz R, Castro‐Pichel J, Garcia‐Lopez T. Tributyltin cyanide, a novel reagent for the stereoselective preparation of 3‐amino‐2‐hydroxy acids via cyanohydrin intermediates. Synthesis 1989; (9) 703–706. [Google Scholar]
- 145. Angelastro RA, Peet NP, Bey P. An efficient synthesis of novel [alpha]‐diketone and [alpha]‐keto ester derivatives of N‐protected amino acids and peptides. J Org Chem 1989; 54(16): 3913–3916. [DOI] [PubMed] [Google Scholar]
- 146. Herranz R, Castro‐Pichel J, Vinuesa S, Garcia‐Lopez MT. Stereoselection in the synthesis of threo‐ and erythro‐3‐amino‐2‐hydroxy‐4‐phenylbutanoic acid using chiral acetal templates. J Chem Soc Chem Commun 1989; (14): 938–939. [Google Scholar]
- 147. Palomo C, Arrieta A, Cossio FP, Aizpurua JM, Mielgo A, Aurrekoetxea N. Highly stereoselective synthesis of [alpha]‐hydroxy [beta]‐amino acids through [beta]‐lactams: Application to the synthesis of the taxol and bestatin side chains and related systems. Tetrahedron Lett 1990; 31(44): 6429–6432. [Google Scholar]
- 148. Matsuda F, Matsumoto T, Ohsaki M, Ito Y, Terashima S. An expedious synthesis of the (2R, 3S)‐ and (2S, 3R)‐3‐amino‐2‐hydroxycarboxylic acids. Chem Lett 1990: XX: 723–724. [Google Scholar]
- 149. Kobayashi Y, Takemoto Y, Ito Y, Terashima S. A novel synthesis of the (2R,3S)‐ and (2S3R)‐3‐amino‐2‐hydroxycarboxylic acid derivatives, the key components of a renin inhibitor and bestatin, from methyl (R)‐ and (S)‐mandelate. Tetrahedron Lett 1990; 31(21): 3031–3034. [Google Scholar]
- 150. Iizuka K, Kamijo T, Harada H, Akahane K, Kubota T, Umeyama H, Ishida T, Kiso Y. Orally potent human renin inhibitors derived from angiotensinogen transition state: Design, synthesis, and mode of interaction. J Med Chem 1990; 33(10): 2707–2714. [DOI] [PubMed] [Google Scholar]
- 151. Herranz R, Castro‐Pichel J, Vinuesa S, Garcia‐Lopez MT. An improved one‐pot method for the stereoselective synthesis of the (2S,3R)‐3‐amino‐2‐hydroxy acids: Key intermediates for bestatin and amastatin. J Org Chem 1990; 55(7): 2232–2234. [Google Scholar]
- 152. Inokuchi T, Tanigawa S, Kanazaki M, Torii S. A concise conversion of glucose to a chiral erythrose derivative and astereospecific synthesis of 3‐amino‐4‐cyclohexyl‐2‐hydroxybutanoates. Synlett 1991; (10): 707–708. [Google Scholar]
- 153. Ishibuchi A, Nagatani T, Ishizuka T, Kunieda T. Facile synthesis of (2S,3R)‐3‐amino‐2‐hydroxycarboxylic acids, the key components of amastatin and bestatin. Nat Product Lett 1992; 1(1): 21–24. [Google Scholar]
- 154. Kobayashi Y, Takemoto Y, Kamijo T, Harada H, Ito Y, Terashima S. A stereoselective synthesis of the (2R, 3S)‐ and (2S, 3R)‐3‐amino‐2‐hydroxybutyric acid derivatives, the key components of a renin inhibitor and bestatin. Tetrahedron 1992; 48(10): 1853–1868. [Google Scholar]
- 155. Ishizuka T, Ishibuchi S, Kunieda T. Chiral synthons for 2‐amino alcohols. Facile preparation of optically active amino hydroxy acids of biological interest. Tetrahedron 1993; 49(9): 1841–1852. [Google Scholar]
- 156. Kawabata T, Kiryu Y, Sugiura Y, Fuji K. An enantiodivergent synthesis of threo [beta]‐amino alcohols: Preparation of key intermediates for bestatin and the related peptides. Tetrahedron Lett 1993; 34(32): 5127–5130. [Google Scholar]
- 157. Jefford CW, Jian Bo Wang, Zhi‐Hui Lu. A concise diastereospecific synthesis of 3‐amino‐2‐hydroxy acids. Tetrahedron Lett 1993; 34(47): 7557–7560. [Google Scholar]
- 158. Patel RN, Ramesh N, Banerjee A, Howell JM, McNamee CG, Brozozowski D, Mirfakhrae D, Nanduri V, Thottathil JK, Szarka LJ. Microbial synthesis of (2R,3S)‐(−)‐N‐benzoyl‐3‐phenyl isoserine ethyl ester‐a taxol side‐chain synthon. Tetrahedron Asymmetry 1993; 4(9): 2069–2084. [Google Scholar]
- 159. Dondoni A, Perrone D. 2‐Thiazolyl [alpha]‐amino ketones: A new class of reactive intermediates for the stereocontrolled synthesis of unusual amino acids. Synthesis 1993; (11): 1162–1176. [Google Scholar]
- 160. Bunnage ME, Davies SG, Goodwin CJ. Asymmetric synthesis of allophenylnorstatine. Synlett 1993; (10): 731–732. [Google Scholar]
- 161. Kearns J, Kayser MM. Application of yeast‐catalyzed reductions to synthesis of (2R,3S)‐phenylisoserine. Tetrahedron Lett 1994; 35(18): 2845–2848. [Google Scholar]
- 162. Sasai H, Kim W‐S, Suzuki T, Shibasaki M, Mitsuda M, Hasegawa J, Ohashi T. Diastereoselective catalytic asymmetric nitroaldol reaction utilizing rare earth‐Li‐(R)‐BINOL complex. A highly efficient synthesis of norstatine. Tetrahedron Lett 1994; 35(33): 6123–6126. [Google Scholar]
- 163. Slee DH, Laslo KL, Elder JH, Ollmann IR, Gustchina JK, Zdanov A, Wlodawer A, Wong C‐H. Selectivity in the inhibition of HIV and FIV protease: Inhibitory and mechanistic studies of pyrrolidine‐containing [alpha]‐keto amides and hydroxymethylamine core structures. J Am Chem Soc 1995; 117(48): 11867–11878. [Google Scholar]
- 164. Enders D, Reinhold U. Diastereo‐ and enantioselective synthesis of 1,2‐amino alcohols from glycol aldehyde hydrazones; asymmetric synthesis of (R,R)‐statin. Angew Chem Int Ed Engl 1995; 34(11): 1219–1222. [Google Scholar]
- 165. Kang SH, Ryu DH. Versatile synthetic routes to threo‐[beta]‐amino hydroxy carboxylic acids, statine and its analogues. Bioorganic Med Chem Lett 1995; 5(24): 2959–2962. [Google Scholar]
- 166. Dondoni A, Perrone D, Semola T. Synthesis of taxol and taxotere side chains by 2‐(trimethylsilyl)thiazole based homologation of l‐phenylglycine. Synthesis 1995; (2): 181–186. [Google Scholar]
- 167. Pasto M, Casterjon P, Moyano A, Pericas MA, Riera A. A catalytic asymmetric synthesis of cyclohexylnorstatine. J Org Chem 1996; 61(17): 6033–6037. [Google Scholar]
- 168. Li G, Chang H‐T, Sharpless KB. Catalytic asymmetric aminohydroxylation (AA) of olefins. Angew Chem Int Ed Engl 1996; 35(4): 451–454. [Google Scholar]
- 169. Li G, Angert HH, Sharpless KB. N‐halocarbamate salts lead to more efficient catalytic assymetric aminohydroxylation. Angew Chem Int Ed Engl 1996; 35(23/24): 2813–2817. [Google Scholar]
- 170. Jefford CW, McNulty J, Lu Z‐H, Wang JB. The enantioselective synthesis of [beta]‐aminoacids, their [alpha]‐hydroxy derivatives, and the N‐terminal components of bestatin and microginin. Helv Chim Acta 1996; 79(IV): 1203–1216. [Google Scholar]
- 171. Pasto M, Moyano A, Pericas MA, Riera A. An enantioselective, stereodivergent approach to anti‐ and syn‐[alpha]‐hydroxy‐[beta]‐amino acids from anti‐3‐amino‐1,2‐diols. Synthesis of the ready for coupling taxotere(R) side chain. Tetrahedron Asymmetry 1996; 7(1): 243–262. [Google Scholar]
- 172. Veeresha G, Datta A. Stereoselective synthesis of (−)‐N‐Boc‐statine and (−)‐N‐Boc‐Norstatine. Tetrahedron Lett 1997; 38(29): 5223–5224. [Google Scholar]
- 173. Righi G, Chionne A, D'Achille R, Bonini C. Metal halide‐mediated opening of three membered rings: Enantioselective synthesis of (2S,3R)‐3‐amino‐2‐hydroxydecanoic acid and (3R)‐3‐aminodecanoic acid. Tetrahedron Asymmetry 1997; 8(6): 903–907. [Google Scholar]
- 174. Sugimura H, Miura M, Yamada N. Enantiospecific and diastereoselective synthesis of syn‐[beta]‐amino‐[alpha]‐hydroxy acids. Tetrahedron Asymmetry 1997; 8(24): 4089–4099. [Google Scholar]
- 175. Shibata N, Itoh E, Terashima S. Practical synthesis of (2S, 3S)‐3‐amino‐2‐hydroxy‐4‐phenylbutyric acid, a key component of HIV protease inhibitors. Chem Pharm Bull (Tokyo) 1998; 46(4): 733–735. [DOI] [PubMed] [Google Scholar]
- 176. May BCH, Abell AD. A convenient preparation of (2SR, 3S)‐3amino‐2‐hydroxy‐4‐phenylbutanoic acid; an important peptide bond isostere. Synth Commun 1999; 29(14): 2515–2525. [Google Scholar]
- 177. Seki M, Matsumoto K. A novel synthesis of allophenylnorstatine from (R)‐aspartic acid. Synthesis 1999; (6): 924–926. [Google Scholar]
- 178. Ha H‐J, Ahn Y‐G, Lee GS. Asymmetric synthesis of 3‐amino‐2‐hydroxy‐4‐phenylbutanoate. Tetrahedron: Asymmetry 1999; 10(12): 2327–2336. [Google Scholar]
- 179. Audin P, Pothion C, Fehrentz J‐A., Loffet A, Martinez J, Paris J. Diastereoselective synthesis of N‐protected [beta]‐amino‐[alpha]‐hydroxyacids (norstatines) from urethane N‐carboxyanhydrides (UNCAs). J Chem Res (S) 1999. (3): 282–283. [Google Scholar]
- 180. Hinoue K, Furukawa Y, Yaegashi K. Daisow Co., LTD , assignee. Process for producing erythro‐3‐amino‐2‐hydroxybutyric acid derivatives. 2000.
- 181. Benaglia M, Cinquini M, Cozzi F. The S‐thioester enolate/imine condensation: A shortcut to [beta]‐lactams. Eur J Org Chem 2000; (4): 563–593. [Google Scholar]
- 182. Semple JE, Owens TD, Nguyen K, Levy OE. New synthetic technology for efficient construction of [alpha]‐hydroxy‐[beta]‐amino amides via the Passerini reaction. Org Lett 2000; 2(18): 2769–2772. [DOI] [PubMed] [Google Scholar]
- 183. Hayashi Y, Kinoshita Y, Hidaka K, Kiso A, Uchibori H, Kimura T, Kiso Y. Analysis of amide bond formation with an [alpha]‐hydroxy‐[beta]‐amino acid derivative, 3‐amino‐2‐hydroxy‐4‐phenylbutanoic acid, as an acyl component: Byproduction of homobislactone. J Org Chem 2001; 66(16): 5537–5544. [DOI] [PubMed] [Google Scholar]
- 184. Phukan P. A short and enantioselective synthesis of N‐terminal components of bestatin, amastatin, and microginin. Indian J Chem 2002; 41B(5): 1015–1018. [Google Scholar]
- 185. Tasic G, Matovic R, Saicic RN. Stereoselective synthesis of [alpha]‐hydroxy‐[beta]‐amino acids: The chiral pool approach. J Serb Chem Soc 2004; 69(11): 981–990. [Google Scholar]
- 186. Aoyagi T, Yoshida S, Matsuda N, Ikeda T, Hamada M, Takeuchi T. Leuhistin, a new inhibitor of aminopeptidase M, produced by Bacillus laterosporus BMI156‐14F1. I. Taxonomy, production, isolation, physico‐chemical properties, and biological activities. J Antibiot (Tokyo) 1991; 44(6): 573–578. [DOI] [PubMed] [Google Scholar]
- 187. Yoshida S, Aoyagi T, Takeuchi T. Biosynthetic study of leuhistin, a new inhibitor of aminopeptidase M. J Antibiot (Tokyo) 1991; 44(6): 683–684. [DOI] [PubMed] [Google Scholar]
- 188. Yoshida S, Naganawa H, Aoyagi T, Takeuchi T, Takeuchi Y, Kodama Y. Leuhistin, a new inhibitor of aminopeptidase M, produced by Bacillus laterosporus BMI156‐14F1. II. Structure determination of leuhistin. J Antibiot (Tokyo) 1991; 44(6): 579–581. [DOI] [PubMed] [Google Scholar]
- 189. Sedo A, Vlasicova K, Bartak P, Vespalec R, Vicar J, Simanek V, Ulrichova J. Quaternary benzo[c]phenanthridine alkaloids as inhibitors of aminopeptidase N and dipeptidyl peptidase IV. Phytother Res 2002; 16(1): 84–87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 190. Shim JS, Kim JH, Cho HY, Yum YN, Kim SH, Park HJ, Shim BS, Choi SH, Kwon HJ. Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chem Biol 2003; 10(8): 695–704. [DOI] [PubMed] [Google Scholar]
- 191. Surh Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 1999; 428(1–2): 305–327. [DOI] [PubMed] [Google Scholar]
- 192. Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer therapy. Cancer Lett 2004; 215(2): 129–140. [DOI] [PubMed] [Google Scholar]
- 193. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 2003; 23(1A): 363–398. [PubMed] [Google Scholar]
- 194. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. Molecular mechanisms underlying chemopreventive activities of anti‐inflammatory phytochemicals: Down‐regulation of COX‐2 and iNOS through suppression of NF‐kappa B activation. Mutat Res 2001; 480‐481: 243–268. [DOI] [PubMed] [Google Scholar]
- 195. Chauhan DP. Chemotherapeutic potential of curcumin for colorectal cancer. Curr Pharm Des 2002; 8(19): 1695–1706. [DOI] [PubMed] [Google Scholar]
- 196. Sarkar FH, Li Y. Cell signaling pathways altered by natural chemopreventive agents. Mutat Res 2004; 555(1‐2): 53–64. [DOI] [PubMed] [Google Scholar]
- 197. Leu TH, Maa MC. The molecular mechanisms for the antitumorigenic effect of curcumin. Curr Med Chem Anti‐Canc Agents 2002; 2(3): 357–370. [DOI] [PubMed] [Google Scholar]
- 198. Sui Z, Salto R, Li J, Craik C, Ortiz de Montellano PR. Inhibition of the HIV‐1 and HIV‐2 proteases by curcumin and curcumin boron complexes. Bioorg Med Chem 1993; 1(6): 415–422. [DOI] [PubMed] [Google Scholar]
- 199. De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med Res Rev 2000; 20(5): 323–349. [DOI] [PubMed] [Google Scholar]
- 200. Jagetia GC, Rajanikant GK. Effect of curcumin on radiation‐impaired healing of excisional wounds in mice. J Wound Care 2004; 13(3): 107–109. [DOI] [PubMed] [Google Scholar]
- 201. Jagetia GC, Rajanikant GK. Role of curcumin, a naturally occurring phenolic compound of turmeric in accelerating the repair of excision wound, in mice whole‐body exposed to various doses of gamma‐radiation. J Surg Res 2004; 120(1): 127–138. [DOI] [PubMed] [Google Scholar]
- 202. Pabon HJJ. Synthesis of curcumin and related compounds. Recl Trav Chim Pays‐Bas 1964; 83: 379–386. [Google Scholar]
- 203. Pedersen U, Rasmussen PB, Lawesson S‐O. Synthesis of naturally occuring curcuminoids and related compounds. Liebigs Ann Chem 1985; (8): 1557–1569. [Google Scholar]
- 204. Babu KVD, Rajasekharan KN. Simplified condition for synthesis of curcumin I and other curcuminoids. Org Prep Proced Int 1994; 26(6): 674–677. [Google Scholar]
- 205. Mazumder A, Neamati N, Sunder S, Schulz J, Pertz H, Eich E, Pommier Y. Curcumin analogs with altered potencies against HIV‐1 integrase as probes for biochemical mechanisms of drug action. J Med Chem 1997; 40(19): 3057–3063. [DOI] [PubMed] [Google Scholar]
- 206. Baar BLMv, Rozendal J, Goot Hvd. Electron ionization mass spectrometry of curcumin analogues: An olefin metathesis reaction in the fragmentation of radical cations. J Mass Spectrom 1998; 33(4): 319–327. [Google Scholar]
- 207. Robinson TP, Ehlers T, Hubbard IR, Bai X, Arbiser JL, Goldsmith DJ, Bowen JP. Design, synthesis, and biological evaluation of angiogenesis inhibitors: Aromatic enone and dienone analogues of curcumin. Bioorg Med Chem Lett 2003; 13(1): 115–117. [DOI] [PubMed] [Google Scholar]
- 208. Shim JS, Kim DH, Jung HJ, Kim JH, Lim D, Lee SK, Kim KW, Ahn JW, Yoo JS, Rho JR, Shin J, Kwon HJ. Hydrazinocurcumin, a novel synthetic curcumin derivative, is a potent inhibitor of endothelial cell proliferation. Bioorg Med Chem 2002; 10(8): 2439–2444. [DOI] [PubMed] [Google Scholar]
- 209. Dräger B, Galgon T, Neubert R, Wohlrab W. Method of producing betulinic acid. Jan. 16, 2001; US Patent No 6,175,035 B1
- 210. Melzig MF, Bormann H. Betulinic acid inhibits aminopeptidase N activity. Planta Med 1998; 64(7): 655–657. [DOI] [PubMed] [Google Scholar]
- 211. Baglin I, Mitaine‐Offer AC, Nour M, Tan K, Cave C, Lacaille‐Dubois MA. A review of natural and modified betulinic, ursolic and echinocystic acid derivatives as potential antitumor and anti‐HIV agents. Mini Rev Med Chem 2003; 3(6): 525–539. [DOI] [PubMed] [Google Scholar]
- 212. Eiznhamer DA, Xu ZQ. Betulinic acid: A promising anticancer candidate. IDrugs 2004; 7(4): 359–373. [PubMed] [Google Scholar]
- 213. Cichewicz RH, Kouzi SA. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 2004; 24(1): 90–114. [DOI] [PubMed] [Google Scholar]
- 214. Kim DSHL, Chen Z, Nguyen VT, Pezzuto JM, Qiu S, Lu Z‐Z. A concise semi‐synthetic approach to betulinic acid from betulin. Synth Commun 1997; 27(9): 1607–1612. [Google Scholar]
- 215. Son LB, Kaplun AP, Shpilevskii AA, Andiya‐Pravdivyi YE, Alekseeva SG, Grigor'ev VB, Shvets VI. The synthesis of betulinic acid from betulin and its solubilization with liposomes. Russ Rev Bioorg Chem 1998; 24(10): 700–705. [PubMed] [Google Scholar]
- 216. Kim DS, Pezzuto JM, Pisha E. Synthesis of betulinic acid derivatives with activity against human melanoma. Bioorg Med Chem Lett 1998; 8(13): 1707–1712. [DOI] [PubMed] [Google Scholar]
- 217. Baltina LA, Flekhter OB, Nigmatullina LR, Boreko EI, Pavlova NI, Nikolaeva SN, Savinova OV, Tolstikov GA. Lupane triterpenes and derivatives with antiviral activity. Bioorg Med Chem Lett 2003; 13(20): 3549–3552. [DOI] [PubMed] [Google Scholar]
- 218. Tiwari KP, Minocha PK. Pavophylline, a new saponin from the stem of Pavonia zeylanica . Phytochemistry 1980; 19: 701–704. [Google Scholar]
- 219. Tiwari KP, Srivastava SD, Srivastava SK. [alpha]‐|‐rhamnopyranosyl‐3[beta]‐hydroxy‐lup‐20(29)‐en‐28‐oic acid from the stem of Dillenia pentagyna . Phytochemistry 1980; 19: 980–981. [Google Scholar]
- 220. Mandloi D, Sant PG. A saponin from Asparagus gonocladus . Phytochemistry 1981; 20(7): 1687–1688. [Google Scholar]
- 221. Purohit MC, Pant G, Rawat MS. A betulinic acid glycoside from Schefflera venulosa . Phytochemistry 1991; 30(7): 2419. [DOI] [PubMed] [Google Scholar]
- 222. Kitajima J, Shindo M, Tanaka Y. Two new triterpenoid sulfates from the leaves of Schefflera octophylla . Chem Pharm Bull 1990; 38(3): 714–716. [Google Scholar]
- 223. Otsuka H, Fujioka S, Komiya T, Goto M, Hiramatsu Y, Fujimura H. Studies on anti‐inflammatory agents. V. A new anti‐inflammatory constituent of Pyracantha crenulata roem. Chem Pharm Bull 1981; 29(11): 3099–3104. [DOI] [PubMed] [Google Scholar]
- 224. Arabshahi L, Schmitz FJ. Brominated tyrosine metabolites from an unidentified sponge. J Org Chem 1987; 52(16): 3584–3586. [Google Scholar]
- 225. Quinoà E, Crews P. Phenolic constituents of Psammaplysilla . Tetrahedron Lett 1987; 28(28): 3229–3232. [Google Scholar]
- 226. Rodriguez AD, Akee RK, Schuer PJ. Two bromotyrosine‐cysteine derived metabolites from a sponge. Tetrahedron Lett 1987; 28(42): 4989–4992. [Google Scholar]
- 227. Jiménez C, Crews P. Novel marine sponge derived amino acids 13. Additional psammaplin derivatives from Psammaplysilla purpurea . Tetrahedron 1991; 47(12–13): 2097–2102. [Google Scholar]
- 228. Suzuki A, Matsunaga K, Shin H, Tabudrav J, Shizuri Y, Ohizumi Y. Bisprasin, a novel Ca(2+) releaser with caffeine‐like properties from a marine sponge, Dysidea spp., acts on Ca(2+)‐induced Ca(2+) release channels of skeletal muscle sarcoplasmic reticulum. J Pharmacol Exp Ther 2000; 292(2): 725–730. [PubMed] [Google Scholar]
- 229. Shin J, Lee H‐S, Seo Y, Rho JR, Cho KW, Paul VJ. New bromotyrosine metabolites from the sponge Aplysinella rhax . Tetrahedron 2000; 56(46): 9071–9077. [Google Scholar]
- 230. Pham NB, Butler MS, Quinn RJ. Isolation of psammaplin A 11¢‐sulfate and bisaprasin 11¢‐sulfate from the marine sponge Aplysinella rhax . J Nat Prod 2000; 63(3): 393–395. [DOI] [PubMed] [Google Scholar]
- 231. Tabudravu JN, Eijsink VG, Gooday GW, Jaspars M, Komander D, Legg M, Synstad B, van Aalten DM. Psammaplin A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax . Bioorg Med Chem 2002; 10(4): 1123–1128. [DOI] [PubMed] [Google Scholar]
- 232. Pina IC, Gautschi JT, Wang GY, Sanders ML, Schmitz FJ, France D, Cornell‐Kennon S, Sambucetti LC, Remiszewski SW, Perez LB, Bair KW, Crews P. Psammaplins from the sponge Pseudoceratina purpurea: Inhibition of both histone deacetylase and DNA methyltransferase. J Org Chem 2003; 68(10): 3866–3873. [DOI] [PubMed] [Google Scholar]
- 233. Jung JH, Sim CJ, Lee CO. Cytotoxic compounds from a two‐sponge association. J Nat Prod 1995; 58(11): 1722–1726. [DOI] [PubMed] [Google Scholar]
- 234. Park Y, Liu Y, Hong J, Lee CO, Cho H, Kim DK, Im KS, Jung JH. New bromotyrosine derivatives from an association of two sponges, Jaspis wondoensis and Poecillastra wondoensis . J Nat Prod 2003; 66(11): 1495–1498. [DOI] [PubMed] [Google Scholar]
- 235. Nicolaou KC, Hughes R, Pfefferkorn JA, Barluenga S, Roecker AJ. Combinatorial synthesis through disulfide exchange: Discovery of potent psammaplin A type antibacterial agents active against methicillin‐resistant Staphylococcus aureus (MRSA). Chemistry 2001; 7(19): 4280–4295. [DOI] [PubMed] [Google Scholar]
- 236. Nicolaou KC, Hughes R, Pfefferkorn JA, Barluenga S. Optimization and mechanistic studies of psammaplin A type antibacterial agents active against methicillin‐resistant Staphylococcus aureus (MRSA). Chemistry 2001; 7(19): 4296–4310. [DOI] [PubMed] [Google Scholar]
- 237. Shim JS, Lee HS, Shin J, Kwon HJ. Psammaplin A, a marine natural product, inhibits aminopeptidase N and suppresses angiogenesis in vitro. Cancer Lett 2004; 203(2): 163–169. [DOI] [PubMed] [Google Scholar]
- 238. Kim D, Lee IS, Jung JH, Yang SI. Psammaplin A, a natural bromotyrosine derivative from a sponge, possesses the antibacterial activity against methicillin‐resistant Staphylococcus aureus and the DNA gyrase‐inhibitory activity. Arch Pharm Res 1999; 22(1): 25–29. [DOI] [PubMed] [Google Scholar]
- 239. Kim D, Lee IS, Jung JH, Lee CO, Choi SU. Psammaplin A, a natural phenolic compound, has inhibitory effect on human topoisomerase II and is cytotoxic to cancer cells. Anticancer Res 1999; 19(5B): 4085–4090. [PubMed] [Google Scholar]
- 240. Nicholas GM, Eckman LL, Ray S, Hughes RO, Pfefferkorn JA, Barluenga S, Nicolaou KC, Bewley CA. Bromotyrosine‐derived natural and synthetic products as inhibitors of mycothiol‐S‐conjugate amidase. Bioorg Med Chem Lett 2002; 12(17): 2487–2490. [DOI] [PubMed] [Google Scholar]
- 241. Jiang Y, Ahn EY, Ryu SH, Kim DK, Park JS, Yoon HJ, You S, Lee BJ, Lee DS, Jung JH. Cytotoxicity of psammaplin A from a two‐sponge association may correlate with the inhibition of DNA replication. BMC Cancer 2004; 4(1): 70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 242. FIttkau S, Jahreis G, Peters K. [alpha]‐aminoketone‐Ein beitrag zur synthese optish aktiver derivate von aminosäuren und peptiden. J Prakt Chem 1986; 328(4): 529–538. [Google Scholar]
- 243. Jahreis G, Fittkau S, Aurich H. [alpha‐Aminomethylketones as inhibitors of a membrane‐bound alanine aminopeptidase]. Biomed Biochim Acta 1987; 46(10): 683–686. [PubMed] [Google Scholar]
- 244. Bergin JD, Clapp CH. Inhibition of aminopeptidase M by alkyl d‐cysteinates. J Enzyme Inhib 1989; 3(2): 127–131. [DOI] [PubMed] [Google Scholar]
- 245. Schalk C, d'Orchymont H, Jauch MF, Tarnus C. 3‐Amino‐2‐tetralone derivatives: Novel potent and selective inhibitors of aminopeptidase‐M (EC 3.4.11.2). Arch Biochem Biophys 1994; 311(1): 42–46. [DOI] [PubMed] [Google Scholar]
- 246. Tarnus C, Remy JM, d'Orchymont H. 3‐Amino‐2‐hydroxy‐propionaldehyde and 3‐amino‐1‐hydroxy‐propan‐2‐one derivatives: New classes of aminopeptidase inhibitors. Bioorg Med Chem 1996; 4(8): 1287–1297. [DOI] [PubMed] [Google Scholar]
- 247. Lindsay CK, Gomez DE, Thorgeirsson UP. Effect of flavone acetic acid on endothelial cell proliferation: Evidence for antiangiogenic properties. Anticancer Res 1996; 16(1): 425–431. [PubMed] [Google Scholar]
- 248. Bauvois B, Puiffe ML, Bongui JB, Paillat S, Monneret C, Dauzonne D. Synthesis and biological evaluation of novel flavone‐8‐acetic acid derivatives as reversible inhibitors of aminopeptidase N/CD13. J Med Chem 2003; 46(18): 3900–3913. [DOI] [PubMed] [Google Scholar]
- 249. Lee J, Shim JS, Jung SA, Lee ST, Kwon HJ. N‐hydroxy‐2‐(naphthalene‐2‐ylsulfanyl)‐acetamide, a novel hydroxamic acid‐based inhibitor of aminopeptidase N and its anti‐angiogenic activity. Bioorg Med Chem Lett 2005; 15(1): 181–183. [DOI] [PubMed] [Google Scholar]
- 250. Holden HM, Matthews BW. The binding of l‐valyl‐l‐tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis. J Biol Chem 1988; 263(7): 3256–3260. [DOI] [PubMed] [Google Scholar]
- 251. Fournie‐Zaluski MC, Coric P, Turcaud S, Bruetschy L, Lucas E, Noble F, Roques BP. Potent and systemically active aminopeptidase N inhibitors designed from active‐site investigation. J Med Chem 1992; 35(7): 1259–1266. [DOI] [PubMed] [Google Scholar]
- 252. Chen H, Noble F, Mothe A, Meudal H, Coric P, Danascimento S, Roques BP, George P, Fournie‐Zaluski MC. Phosphinic derivatives as new dual enkephalin‐degrading enzyme inhibitors: Synthesis, biological properties, and antinociceptive activities. J Med Chem 2000; 43(7): 1398–1408. [DOI] [PubMed] [Google Scholar]
- 253. Chen H, Roques BP, Fournie‐Zaluski MC. Design of the first highly potent and selective aminopeptidase N (EC 3.4.11.2) inhibitor. Bioorg Med Chem Lett 1999; 9(11): 1511–1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 254. Chen H, Bischoff L, Fournie‐Zaluski MC, Roques BP. Synthesis of 2(S)‐benzyl‐3‐[hydroxy(1¢(R)‐aminoethyl)phosphinyl]propanoyl‐L‐3‐[125I]‐iodotyrosine: A radiolabelled inhibitor of aminopeptidase N. J Labelled Compd Radiopharm 2000; 43: 103–111. [Google Scholar]
- 255. Noble F, Luciani N, Da Nascimento S, Lai‐Kuen R, Bischoff L, Chen H, Fournie‐Zaluski MC, Roques BP. Binding properties of a highly potent and selective iodinated aminopeptidase N inhibitor appropriate for radioautography. FEBS Lett 2000; 467(1): 81–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 256. Noble F, Banisadr G, Jardinaud F, Popovici T, Lai‐Kuen R, Chen H, Bischoff L, Parsadaniantz SM, Fournie‐Zaluski MC, Roques BP. First discrete autoradiographic distribution of aminopeptidase N in various structures of rat brain and spinal cord using the selective iodinated inhibitor [125I]RB 129. Neuroscience 2001; 105(2): 479–488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 257. Gros C, Giros B, Schwartz JC, Vlaiculescu A, Costentin J, Lecomte JM. Potent inhibition of cerebral aminopeptidases by carbaphethiol, a parenterally active compound. Neuropeptides 1988; 12(3): 111–118. [DOI] [PubMed] [Google Scholar]
- 258. Chauvel EN, Coric P, Llorens‐Cortes C, Wilk S, Roques BP, Fournie‐Zaluski MC. Investigation of the active site of aminopeptidase A using a series of new thiol‐containing inhibitors. J Med Chem 1994; 37(9): 1339–1346. [DOI] [PubMed] [Google Scholar]
- 259. Chauvel EN, Llorens‐Cortes C, Coric P, Wilk S, Roques BP, Fournie‐Zaluski MC. Differential inhibition of aminopeptidase A and aminopeptidase N by new beta‐amino thiols. J Med Chem 1994; 37(18): 2950–2957. [DOI] [PubMed] [Google Scholar]
- 260. Reaux A, de Mota N, Zini S, Cadel S, Fournie‐Zaluski MC, Roques BP, Corvol P, Llorens‐Cortes C. PC18, a specific aminopeptidase N inhibitor, induces vasopressin release by increasing the half‐life of brain angiotensin III. Neuroendocrinology 1999; 69(5): 370–376. [DOI] [PubMed] [Google Scholar]
- 261. Reaux A, Iturrioz X, Vazeux G, Fournie‐Zaluski MC, David C, Roques BP, Corvol P, Llorens‐Cortes C. Aminopeptidase A, which generates one of the main effector peptides of the brain rennin–angiotensin system, angiotensin III, has a key role in central control of arterial blood pressure. Biochem Soc Trans 2000; 28(4): 435–440. [PubMed] [Google Scholar]
- 262. Fournie‐Zaluski MC, Chaillet P, Bouboutou R, Coulaud A, Cherot P, Waksman G, Costentin J, Roques BP. Analgesic effects of kelatorphan, a new highly potent inhibitor of multiple enkephalin degrading enzymes. Eur J Pharmacol 1984; 102(3–4): 525–528. [DOI] [PubMed] [Google Scholar]
- 263. Fournie‐Zaluski MC, Coric P, Turcaud S, Lucas E, Noble F, Maldonado R, Roques BP. Mixed inhibitor‐prodrug as a new approach toward systemically active inhibitors of enkephalin‐degrading enzymes. J Med Chem 1992; 35(13): 2473–2481. [DOI] [PubMed] [Google Scholar]
- 264. Roques BP, Noble F. Dual inhibitors of enkephalin‐degrading enzymes (neutral endopeptidase 24.11 and aminopeptidase N) as potential new medications in the management of pain and opioid addiction. NIDA Res Monogr 1995; 147: 104–145. [PubMed] [Google Scholar]
- 265. Roques BP, Noble F, Crine P, Fournie‐Zaluski MC. Inhibitors of neprilysin: Design, pharmacological and clinical applications. Methods Enzymol 1995; 248: 263–283. [DOI] [PubMed] [Google Scholar]
- 266. Schmidt C, Peyroux J, Noble F, Fournie‐Zaluski MC, Roques BP. Analgesic responses elicited by endogenous enkephalins (protected by mixed peptidase inhibitors) in a variety of morphine‐sensitive noxious tests. Eur J Pharmacol 1991; 192(2): 253–262. [DOI] [PubMed] [Google Scholar]
- 267. Noble F, Soleilhac JM, Soroca‐Lucas E, Turcaud S, Fournie‐Zaluski MC, Roques BP. Inhibition of the enkephalin‐metabolizing enzymes by the first systemically active mixed inhibitor prodrug RB 101 induces potent analgesic responses in mice and rats. J Pharmacol Exp Ther 1992; 261(1): 181–190. [PubMed] [Google Scholar]
- 268. Penning TD, Askonas LJ, Djuric SW, Haak RA, Yu SS, Michener ML, Krivi GG, Pyla EY. Kelatorphan and related analogs: Potent and selective inhibitors of leukotriene A4 hydrolase. Bioorg Med Chem Lett 1995; 5(21): 2517–2522. [Google Scholar]
- 269. Turner AJ, Murphy LJ. Molecular pharmacology of endothelin converting enzymes. Biochem Pharmacol 1996; 51(2): 91–102. [DOI] [PubMed] [Google Scholar]
- 270. Roques BP. Zinc metallopeptidases: Active site structure and design of selective and mixed inhibitors: new approaches in the search for analgesics and anti‐hypertensives. Biochem Soc Trans 1993; 21(Pt 3): 678–685. [DOI] [PubMed] [Google Scholar]
- 271. Roques BP. Peptidomimetics as receptors agonists or peptidase inhibitors: A structural approach in the field of enkephalins, ANP, and CCK. Biopolymers 1992; 32(4): 407–410. [DOI] [PubMed] [Google Scholar]
- 272. Chen H, Noble F, Coric P, Fournie‐Zaluski MC, Roques BP. Aminophosphinic inhibitors as transition state analogues of enkephalin‐degrading enzymes: A class of central analgesics. Proc Natl Acad Sci USA 1998; 95(20): 12028–12033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 273. Sakurada K, Imamura M, Kobayashi M, Tachibana N, Abe K, Tanaka M, Okabe M, Morioka M, Kasai M, Sugiura T, Miyazaki T. Inhibitory effect of bestatin on the growth of human leukemic cells. Acta Oncol 1990; 29(6): 799–802. [DOI] [PubMed] [Google Scholar]
- 274. Sekine K, Fujii H, Abe F. Induction of apoptosis by bestatin (ubenimex) in human leukemic cell lines. Leukemia 1999; 13(5): 729–734. [DOI] [PubMed] [Google Scholar]
- 275. Rosenzwajg M, Tailleux L, Gluckman JC. CD13/N‐aminopeptidase is involved in the development of dendritic cells and macrophages from cord blood CD34(+) cells. Blood 2000; 95(2): 453–460. [PubMed] [Google Scholar]
- 276. Ino K, Isobe K, Goto S, Nakashima I, Tomoda Y. Inhibitory effect of bestatin on the growth of human lymphocytes. Immunopharmacology 1992; 23(3): 163–171. [DOI] [PubMed] [Google Scholar]
- 277. Morikawa K, Morikawa S, Nakano A, Oseko F. Bestatin, an inhibitor of aminopeptidase B, suppresses the proliferation and differentiation of human B‐cells in vitro. Int J Immunopharmacol 1989; 11(8): 905–913. [DOI] [PubMed] [Google Scholar]
- 278. Lendeckel U, Scholz B, Arndt M, Frank K, Spiess A, Chen H, Roques BP, Ansorge S. Inhibition of alanyl‐aminopeptidase suppresses the activation‐dependent induction of glycogen synthase kinase‐3beta (GSK‐3beta) in human T cells. Biochem Biophys Res Commun 2000; 273(1): 62–65. [DOI] [PubMed] [Google Scholar]
- 279. Lendeckel U, Kahne T, Arndt M, Frank K, Ansorge S. Inhibition of alanyl aminopeptidase induces MAP‐kinase p42/ERK2 in the human T cell line KARPAS‐299. Biochem Biophys Res Commun 1998; 252(1): 5–9. [DOI] [PubMed] [Google Scholar]
- 280. Murata M, Kubota Y, Tanaka T, Iida‐Tanaka K, Takahara J, Irino S. Effect of ubenimex on the proliferation and differentiation of U937 human histiocytic lymphoma cells. Leukemia 1994; 8(12): 2188–2193. [PubMed] [Google Scholar]
- 281. Lohn M, Mueller C, Langner J. Cell cycle retardation in monocytoid cells induced by aminopeptidase N (CD13). Leuk Lymphoma 2002; 43(2): 407–413. [DOI] [PubMed] [Google Scholar]
- 282. Sawafuji K, Miyakawa Y, Weisberg E, Griffin JD, Ikeda Y, Kizaki M. Aminopeptidase inhibitors inhibit proliferation and induce apoptosis of K562 and STI571‐resistant K562 cell lines through the MAPK and GSK‐3beta pathways. Leuk Lymphoma 2003; 44(11): 1987–1996. [DOI] [PubMed] [Google Scholar]
- 283. Gabrilovac J, Cupic B, Breljak D, Zekusic M, Boranic M. Expression of CD13/aminopeptidase N and CD10/neutral endopeptidase on cultured human keratinocytes. Immunol Lett 2004; 91(1): 39–47. [DOI] [PubMed] [Google Scholar]
- 284. Thielitz A, Bukowska A, Wolke C, Vetter R, Lendeckel U, Wrenger S, Hashimoto Y, Ansorge S, Gollnick H, Reinhold D. Identification of extra‐ and intracellular alanyl aminopeptidases as new targets to modulate keratinocyte growth and differentiation. Biochem Biophys Res Commun 2004; 321(4): 795–801. [DOI] [PubMed] [Google Scholar]
- 285. Ino K, Goto S, Okamoto T, Nomura S, Nawa A, Isobe K, Mizutani S, Tomoda Y. Expression of aminopeptidase N on human choriocarcinoma cells and cell growth suppression by the inhibition of aminopeptidase N activity. Jpn J Cancer Res 1994; 85(9): 927–933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 286. Ino K, Goto S, Kosaki A, Nomura S, Asada E, Misawa T, Furuhashi Y, Mizutani S, Tomoda Y. Growth inhibitory effect of bestatin on choriocarcinoma cell lines in vitro. Biotherapy 1991; 3(4): 351–357. [DOI] [PubMed] [Google Scholar]
- 287. Xu Y, Lai LT, Gabrilove JL, Scheinberg DA. Antitumor activity of actinonin in vitro and in vivo. Clin Cancer Res 1998; 4(1): 171–176. [PubMed] [Google Scholar]
- 288. Santos AN, Langner J, Herrmann M, Riemann D. Aminopeptidase N/CD13 is directly linked to signal transduction pathways in monocytes. Cell Immunol 2000; 201(1): 22–32. [DOI] [PubMed] [Google Scholar]
- 289. Lohn M, Mueller C, Thiele K, Kahne T, Riemann D, Langner J. Aminopeptidase N‐mediated signal transduction and inhibition of proliferation of human myeloid cells. Adv Exp Med Biol 1997; 421: 85–91. [DOI] [PubMed] [Google Scholar]
- 290. Lendeckel U, Arndt M, Frank K, Spiess A, Reinhold D, Ansorge S. Modulation of WNT‐5A expression by actinonin: Linkage of APN to the WNT‐pathway? Adv Exp Med Biol 2000; 477: 35–41. [DOI] [PubMed] [Google Scholar]
- 291. Sekine K, Fujii H, Abe F, Nishikawa K. Augmentation of death ligand‐induced apoptosis by aminopeptidase inhibitors in human solid tumor cell lines. Int J Cancer 2001; 94(4): 485–491. [DOI] [PubMed] [Google Scholar]
- 292. Shibuya K, Chiba S, Hino M, Kitamura T, Miyagawa K, Takaku F, Miyazano K. Enhancing effect of ubenimex (bestatin) on proliferation and differentiation of hematopoietic progenitor cells, and the suppressive effect on proliferation of leukemic cell lines via peptidase regulation. Biomed Pharmacother 1991; 45(2‐3): 71–80. [DOI] [PubMed] [Google Scholar]
- 293. Blazsek I, Comisso M, Misset JL. Modulation of bone marrow cell functions in vitro by bestatin (ubenimex). Biomed Pharmacother 1991; 45(2–3): 81–86. [DOI] [PubMed] [Google Scholar]
- 294. Hirano T, Kizaki M, Kato K, Abe F, Masuda N, Umezawa K. Enhancement of sensitivity by bestatin of acute promyelocytic leukemia NB4 cells to all‐trans retinoic acid. Leuk Res 2002; 26(12): 1097–1103. [DOI] [PubMed] [Google Scholar]
- 295. Mishima Y, Matsumoto‐Mishima Y, Terui Y, Katsuyama M, Yamada M, Mori M, Ishizaka Y, Ikeda K, Watanabe J, Mizunuma N, Hayasawa H, Hatake K. Leukemic cell‐surface CD13/aminopeptidase N and resistance to apoptosis mediated by endothelial cells. J Natl Cancer Inst 2002; 94(13): 1020–1028. [DOI] [PubMed] [Google Scholar]
- 296. Shibuya K, Hayashi E, Abe F, Takahashi K, Horinishi H, Ishizuka M, Takeuchi T, Umezawa H. Enhancement of interleukin 1 and interleukin 2 releases by ubenimex. J Antibiot (Tokyo) 1987; 40(3): 363–369. [DOI] [PubMed] [Google Scholar]
- 297. Lendeckel U, Arndt M, Bukowska A, Tadje J, Wolke C, Kahne T, Neubert K, Faust J, Ittenson A, Ansorge S, Reinhold D. Synergistic action of DPIV and APN in the regulation of T cell function. Adv Exp Med Biol 2003; 524: 123–131. [DOI] [PubMed] [Google Scholar]
- 298. Lin M, He J, Cai Z, Qian W. Aminopeptidase inhibitor Bestatin induces HL‐60 cell apoptosis through activating caspase 3. Zhonghua Xue Ye Xue Za Zhi 2001; 22(7): 348–350. [PubMed] [Google Scholar]
- 299. Ezawa K, Minato K, Dobashi K. Induction of apoptosis by ubenimex (Bestatin) in human non‐small‐cell lung cancer cell lines. Biomed Pharmacother 1996; 50(6–7): 283–289. [DOI] [PubMed] [Google Scholar]
- 300. Ehrhardt H, Fulda S, Fuhrer M, Debatin KM, Jeremias I. Betulinic acid‐induced apoptosis in leukemia cells. Leukemia 2004; 18(8): 1406–1412. [DOI] [PubMed] [Google Scholar]
- 301. Matsuda N, Katsuragi Y, Saiga Y, Tanaka T, Nakamura M. Effects of aminopeptidase inhibitors actinonin and amastatin on chemotactic and phagocytic responses of human neutrophils. Biochem Int 1988; 16(2): 383–390. [PubMed] [Google Scholar]
- 302. Braun RK, Foerster M, Workalemahu G, Haefner D, Kroegel C, Walker C. Differential regulation of aminopeptidase N (CD13) by transendothelial migration and cytokines on human eosinophils. Exp Lung Res 2003; 29(2): 59–77. [DOI] [PubMed] [Google Scholar]
- 303. Saiki I, Fujii H, Yoneda J, Abe F, Nakajima M, Tsuruo T, Azuma I. Role of aminopeptidase N (CD13) in tumor‐cell invasion and extracellular matrix degradation. Int J Cancer 1993; 54(1): 137–143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 304. Yoneda J, Saiki I, Fujii H, Abe F, Kojima Y, Azuma I. Inhibition of tumor invasion and extracellular matrix degradation by ubenimex (bestatin). Clin Exp Metastasis 1992; 10(1): 49–59. [DOI] [PubMed] [Google Scholar]
- 305. Ishii K, Usui S, Sugimura Y, Yoshida S, Hioki T, Tatematsu M, Yamamoto H, Hirano K. Aminopeptidase N regulated by zinc in human prostate participates in tumor cell invasion. Int J Cancer 2001; 92(1): 49–54. [PubMed] [Google Scholar]
- 306. Fujii H, Nakajima M, Aoyagi T, Tsuruo T. Inhibition of tumor cell invasion and matrix degradation by aminopeptidase inhibitors. Biol Pharm Bull 1996; 19(1): 6–10. [DOI] [PubMed] [Google Scholar]
- 307. Kido A, Krueger S, Haeckel C, Roessner A. Possible contribution of aminopeptidase N (APN/CD13) to invasive potential enhanced by interleukin‐6 and soluble interleukin‐6 receptor in human osteosarcoma cell lines. Clin Exp Metastasis 1999; 17(10): 857–863. [DOI] [PubMed] [Google Scholar]
- 308. Huang L, Tani K, Ogushi F, Ogawa H, Shimizu T, Motoki Y, Moriguchi H, Sone S. Role of CD13/aminopeptidase N in rat lymphocytic alveolitis caused by thoracic irradiation. Radiat Res 2002; 157(2): 191–198. [DOI] [PubMed] [Google Scholar]
- 309. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E. Aminopeptidase N is a receptor for tumor‐homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000; 60(3): 722–727. [PMC free article] [PubMed] [Google Scholar]
- 310. Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 2001; 97(3): 652–659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 311. Aozuka Y, Koizumi K, Saitoh Y, Ueda Y, Sakurai H, Saiki I. Anti‐tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16–BL6 melanoma cells orthotopically implanted into syngeneic mice. Cancer Lett 2004; 216(1): 35–42. [DOI] [PubMed] [Google Scholar]
- 312. Kwon HJ, Shim JS, Kim JH, Cho HY, Yum YN, Kim SH, Yu J. Betulinic acid inhibits growth factor‐induced in vitro angiogenesis via the modulation of mitochondrial function in endothelial cells. Jpn J Cancer Res 2002; 93(4): 417–425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 313. van Hensbergen Y, Broxterman HJ, Peters E, Rana S, Elderkamp YW, van Hinsbergh VW, Koolwijk P. Aminopeptidase inhibitor bestatin stimulates microvascular endothelial cell invasion in a fibrin matrix. Thromb Haemost 2003; 90(5): 921–929. [DOI] [PubMed] [Google Scholar]
- 314. Ribatti D, Vacca A, Roncali L, Dammacco F. The chick embryo chorioallantoic membrane as a model for in vivo research on anti‐angiogenesis. Curr Pharm Biotechnol 2000; 1(1): 73–82. [DOI] [PubMed] [Google Scholar]
- 315. Murata Y, Ohno Y, Itakura A, Takeuchi M, Nakashima Y, Kuno N, Mizutani S. Bestatin results in pathophysiological changes similar to preeclampsia in rats via induction of placental apoptosis. Horm Metab Res 2003; 35(6): 343–348. [DOI] [PubMed] [Google Scholar]
- 316. Furuhashi M, Mizutani S, Kurauchi O, Kasugai M, Tomoda Y. Effects of bestatin on intrauterine growth of rat fetuses. Horm Metab Res 1989; 21(7): 366–368. [DOI] [PubMed] [Google Scholar]
- 317. Ishizuka M, Masuda T, Mizutani S, Takeuchi T, Umezawa H. Antitumor cells found in tumor‐bearing mice given ubenimex. J Antibiot (Tokyo) 1987; 40(5): 697–701. [DOI] [PubMed] [Google Scholar]
- 318. Abe F, Shibuya K, Uchida M, Takahashi K, Horinishi H, Matsuda A, Ishizuka M, Takeuchi T, Umezawa H. Effect of bestatin on syngeneic tumors in mice. Gann 1984; 75(1): 89–94. [PubMed] [Google Scholar]
- 319. Abe F, Yamashita T, Takahashi K, Matsuda A, Ichikawa T, Umezawa H. Antitumor effect of bestatin combined with bleomycin against hepatoma AH 66 subcutaneously transplanted in rats. Jpn J Antibiot 1984; 37(4): 589–592. [PubMed] [Google Scholar]
- 320. Talmadge JE. Preclinical approaches to the development of effective immunotherapeutic protocols for the treatment of metastasis. Prog Clin Biol Res 1986; 212: 197–215. [PubMed] [Google Scholar]
- 321. Tsuruo T, Naganuma K, Iida H, Yamori T, Tsukagoshi S, Sakurai Y. Inhibition of lymph node metastasis of P388 leukemia by bestatin in mice. J Antibiot (Tokyo) 1981; 34(9): 1206–1209. [DOI] [PubMed] [Google Scholar]
- 322. Pisha E, Chai H, Lee IS, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown DM, et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1995; 1(10): 1046–1051. [DOI] [PubMed] [Google Scholar]
- 323. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti‐Passerini C, Formelli F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 2002; 175(1): 17–25. [DOI] [PubMed] [Google Scholar]
- 324. Yasukawa K, Takido M, Matsumoto T, Takeuchi M, Nakagawa S. Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two‐stage carcinogenesis. Oncology 1991; 48(1): 72–76. [DOI] [PubMed] [Google Scholar]
- 325. Yasukawa K, Yu SY, Kakinuma S, Takido M. Inhibitory effect of rikkunshi‐to, a traditional Chinese herbal prescription, on tumor promotion in two‐stage carcinogenesis in mouse skin. Biol Pharm Bull 1995; 18(5): 730–733. [DOI] [PubMed] [Google Scholar]
- 326. Abe F, Shibuya K, Ashizawa J, Takahashi K, Horinishi H, Matsuda A, Ishizuka M, Takeuchi T, Umezawa H. Enhancement of antitumor effect of cytotoxic agents by bestatin. J Antibiot (Tokyo) 1985; 38(3): 411–414. [DOI] [PubMed] [Google Scholar]
- 327. Ebihara K, Abe F, Yamashita T, Shibuya K, Hayashi E, Takahashi K, Horinishi H, Enomoto M, Ishizuka M, Umezawa H. The effect of ubenimex on N‐methyl‐N¢‐nitro‐N‐nitrosoguanidine‐induced stomach tumor in rats. J Antibiot (Tokyo) 1986; 39(7): 966–970. [DOI] [PubMed] [Google Scholar]
- 328. Yamamoto Y, Ono H, Ueda A, Shimamura M, Nishimura K, Hazato T. Spinorphin as an endogenous inhibitor of enkephalin‐degrading enzymes: Roles in pain and inflammation. Curr Protein Pept Sci 2002; 3(6): 587–599. [DOI] [PubMed] [Google Scholar]
- 329. Wright JW, Amir HZ, Murray CE, Roberts KA, Harding JW, Mizutani S, Ward PE. Use of aminopeptidase M as a hypotensive agent in spontaneously hypertensive rats. Brain Res Bull 1991; 27(5): 545–551. [DOI] [PubMed] [Google Scholar]
- 330. Schorlemmer HU, Bosslet K, Dickneite G, Luben G, Sedlacek HH. Studies on the mechanisms of action of the immunomodulator bestatin in various screening test systems. Behring Inst Mitt 1984; (74): 157–173. [PubMed] [Google Scholar]
- 331. Aoyagi K, Itoh N, Abe F, Abe S, Uchida K, Ishizuka M, Takeuchi T, Yamaguchi H. Enhancement by ubenimex (bestatin) of host resistance to Candida albicans infection. J Antibiot (Tokyo) 1992; 45(11): 1778–1784. [DOI] [PubMed] [Google Scholar]
- 332. Knoblich A, Muller WE, Harle‐Grupp V, Falke D. Enhancement of antibody formation against herpes simplex virus in mice by the T‐cell mitogen bestatin. J Gen Virol 1984; 65(Pt 10): 1675–1686. [DOI] [PubMed] [Google Scholar]
- 333. Dickneite G, Kaspereit F, Sedlacek HH. Stimulation of cell‐mediated immunity by bestatin correlates with reduction of bacterial persistence in experimental chronic Salmonella typhimurium infection. Infect Immunol 1984; 44(1): 168–174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 334. Tanaka N, Kumamoto Y, Hirose T, Yokoo A. Study of the prophylactic effect of ubenimex on experimental pyelonephritis induced by Pseudomonas in neutropenic mice. Kansenshogaku Zasshi 1989; 63(7): 748–756. [DOI] [PubMed] [Google Scholar]
- 335. Harada Y, Kajiki A, Higuchi K, Ishibashi T, Takamoto M. The mode of immunopotentiating action of bestatin: enhanced resistance to Listeria monocytogenes infection. J Antibiot (Tokyo) 1983; 36(10): 1411–1414. [DOI] [PubMed] [Google Scholar]
- 336. Hachisu M, Hiranuma T, Murata S, Aoyagi T, Umezawa H. Analgesic effect of actinonin, a new potent inhibitor of multiple enkephalin degrading enzymes. Life Sci 1987; 41(2): 235–240. [DOI] [PubMed] [Google Scholar]
- 337. Noble F, Turcaud S, Fournie‐Zaluski MC, Roques BP. Repeated systemic administration of the mixed inhibitor of enkephalin‐degrading enzymes, RB101, does not induce either antinociceptive tolerance or cross‐tolerance with morphine. Eur J Pharmacol 1992; 223(1): 83–89. [DOI] [PubMed] [Google Scholar]
- 338. Noble F, Smadja C, Valverde O, Maldonado R, Coric P, Turcaud S, Fournie‐Zaluski MC, Roques BP. Pain‐suppressive effects on various nociceptive stimuli (thermal, chemical, electrical and inflammatory) of the first orally active enkephalin‐metabolizing enzyme inhibitor RB 120. Pain 1997; 73(3): 383–391. [DOI] [PubMed] [Google Scholar]
- 339. Chen H, Noble F, Roques BP, Fournie‐Zaluski MC. Long lasting antinociceptive properties of enkephalin degrading enzyme (NEP and APN) inhibitor prodrugs. J Med Chem 2001; 44(21): 3523–3530. [DOI] [PubMed] [Google Scholar]
- 340. Benoist JM, Keime F, Montagne J, Noble F, Fournie‐Zaluski MC, Roques BP, Willer JC, Le Bars D. Depressant effect on a C‐fibre reflex in the rat, of RB101, a dual inhibitor of enkephalin‐degrading enzymes. Eur J Pharmacol 2002; 445(3): 201–210. [DOI] [PubMed] [Google Scholar]
- 341. Nieto MM, Wilson J, Walker J, Benavides J, Fournie‐Zaluski MC, Roques BP, Noble F. Facilitation of enkephalins catabolism inhibitor‐induced antinociception by drugs classically used in pain management. Neuropharmacology 2001; 41(4): 496–506. [DOI] [PubMed] [Google Scholar]
- 342. Ota K, Kurita S, Yamada K, Masaoka T, Uzuka Y, Ogawa N. Immunotherapy with bestatin for acute nonlymphocytic leukemia in adults. Cancer Immunol Immunother 1986; 23(1): 5–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 343. Ota K, Kurita S, Yamada K, Masaoka T, Uzuka Y, Ogawa N. Results of follow‐up studies on prognosis after immunotherapy with bestatin in acute nonlymphocytic leukemia. Gan To Kagaku Ryoho 1986; 13(4 Pt 1): 1017–1025. [PubMed] [Google Scholar]
- 344. Ino K, Bierman PJ, Varney ML, Heimann DG, Kuszynski CA, Walker SA, Talmadge JE. Monocyte activation by an oral immunomodulator (bestatin) in lymphoma patients following autologous bone marrow transplantation. Cancer Immunol Immunother 1996; 43(4): 206–212. [DOI] [PubMed] [Google Scholar]
- 345. Arimori S, Nagao T, Shimizu Y, Watanabe K, Komatsuda M. The effect of bestatin on patients with acute and chronic leukemia and malignant lymphoma. Tokai J Exp Clin Med 1980; 5(1): 63–71. [PubMed] [Google Scholar]
- 346. Usuka Y, Saito Y. Bestatin treatment of myelodysplastic syndromes and chronic myelogenous leukemia. Biomed Pharmacother 1991; 45(2‐3): 87–93. [DOI] [PubMed] [Google Scholar]
- 347. Kurita S, Ota K, Yamada K, Massaoka T, Uzuka Y, Ogawa N. [Immunotherapy with bestatin for acute non‐lymphocytic leukemia (ANLL) in adults]. Gan To Kagaku Ryoho 1984; 11(12 Pt 2): 2742–2750. [PubMed] [Google Scholar]
- 348. Hiraoka A, Shibata H, Masaoka T. Immunopotentiation with Ubenimex for prevention of leukemia relapse after allogeneic BMT. The Study Group of Ubenimex for BMT. Transplant Proc 1992; 24(6): 3047–3048. [PubMed] [Google Scholar]
- 349. Bierman PJ, Abe F, Buyukberber S, Ino K, Talmadge JE. Partial review of immunotherapeutic pharmacology in stem cell transplantation. In Vivo 2000; 14(1): 221–236. [PubMed] [Google Scholar]
- 350. Ichinose Y, Genka K, Koike T, Kato H, Watanabe Y, Mori T, Iioka S, Sakuma A, Ohta M. Randomized double‐blind placebo‐controlled trial of bestatin in patients with resected stage I squamous‐cell lung carcinoma. J Natl Cancer Inst 2003; 95(8): 605–610. [DOI] [PubMed] [Google Scholar]
- 351. Yasumitsu T, Ohshima S, Nakano N, Kotake Y, Tominaga S. Bestatin in resected lung cancer. A randomized clinical trial. Acta Oncol 1990; 29(6): 827–831. [DOI] [PubMed] [Google Scholar]
- 352. Wex T, Lendeckel U, Reinhold D, Kahne T, Arndt M, Frank K, Ansorge S. Antisense‐mediated inhibition of aminopeptidase N (CD13) markedly decreases growth rates of hematopoietic tumour cells. Adv Exp Med Biol 1997; 421: 67–73. [DOI] [PubMed] [Google Scholar]
- 353. Suda H, Aoyagi T, Takeuchi T, Umezawa H. Inhibition of aminopeptidase B and leucine aminopeptidase by bestatin and its stereoisomer. Arch Biochem Biophys 1976; 177(1): 196–200. [DOI] [PubMed] [Google Scholar]
- 354. Kuramochi H, Motegi A, Iwabuchi M, Takahashi K, Horinishi H, Umezawa H. Action of ubenimex on aminopeptidase activities in spleen cells and peritoneal macrophages from mice. J Antibiot (Tokyo) 1987; 40(11): 1605–1611. [DOI] [PubMed] [Google Scholar]
- 355. Tieku S, Hooper NM. Inhibition of aminopeptidases N, A and W. A re‐evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochem Pharmacol 1992; 44(9): 1725–1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 356. Umezawa H, Ishizuka M, Aoyagi T, Takeuchi T. Enhancement of delayed‐type hypersensitivity by bestatin, an inhibitor of aminopeptidase B and leucine aminopeptidase. J Antibiot (Tokyo) 1976; 29(8): 857–859. [DOI] [PubMed] [Google Scholar]
- 357. Wilkes SH, Prescott JM. The slow, tight binding of bestatin and amastatin to aminopeptidases. J Biol Chem 1985; 260(24): 13154–13162. [PubMed] [Google Scholar]
- 358. Lee MD, Antczak C, Li Y, Sirotnak FM, Bornmann WG, Scheinberg DA. A new human peptide deformylase inhibitable by actinonin. Biochem Biophys Res Commun 2003; 312(2): 309–315. [DOI] [PubMed] [Google Scholar]
- 359. Lee MD, She Y, Soskis MJ, Borella CP, Gardner JR, Hayes PA, Dy BM, Heaney ML, Philips MR, Bornmann WG, Sirotnak FM, Scheinberg DA. Human mitochondrial peptide deformylase, a new anticancer target of actinonin‐based antibiotics. J Clin Invest 2004; 114(8): 1107–1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 360. Kruse MN, Becker C, Lottaz D, Kohler D, Yiallouros I, Krell HW, Sterchi EE, Stocker W. Human meprin alpha and beta homo‐oligomers: Cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors. Biochem J 2004; 378(Pt 2): 383–389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 361. Lee SJ, Jang JW, Kim YM, Lee HI, Jeon JY, Kwon YG, Lee ST. Endostatin binds to the catalytic domain of matrix metalloproteinase‐2. FEBS Lett 2002; 519(1–3): 147–152. [DOI] [PubMed] [Google Scholar]
- 362. Leyhausen G, Schuster DK, Vaith P, Zahn RK, Umezawa H, Falke D, Muller WE. Identification and properties of the cell membrane bound leucine aminopeptidase interacting with the potential immunostimulant and chemotherapeutic agent bestatin. Biochem Pharmacol 1983; 32(6): 1051–1057. [DOI] [PubMed] [Google Scholar]
- 363. Ray S, Chattopadhyay N, Mitra A, Siddiqi M, Chatterjee A. Curcumin exhibits antimetastatic properties by modulating integrin receptors, collagenase activity, and expression of Nm23 and E‐cadherin. J Environ Pathol Toxicol Oncol 2003; 22(1): 49–58. [PubMed] [Google Scholar]
- 364. Shishodia S, Potdar P, Gairola CG, Aggarwal BB. Curcumin (diferuloylmethane) down‐regulates cigarette smoke‐induced NF‐kappaB activation through inhibition of IkappaBalpha kinase in human lung epithelial cells: Correlation with suppression of COX‐2, MMP‐9, and cyclin D1. Carcinogenesis 2003; 24(7): 1269–1279. [DOI] [PubMed] [Google Scholar]
- 365. Takada Y, Aggarwal BB. Betulinic acid suppresses carcinogen‐induced NF‐kappa B activation through inhibition of I kappa B alpha kinase and p65 phosphorylation: Abrogation of cyclooxygenase‐2 and matrix metalloprotease‐9. J Immunol 2003; 171(6): 3278–3286. [DOI] [PubMed] [Google Scholar]
- 366. Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor‐kappaB signaling. Int J Cancer 2004; 111(5): 679–692. [DOI] [PubMed] [Google Scholar]
- 367. Mohan R, Sivak J, Ashton P, Russo LA, Pham BQ, Kasahara N, Raizman MB, Fini ME. Curcuminoids inhibit the angiogenic response stimulated by fibroblast growth factor‐2, including expression of matrix metalloproteinase gelatinase B. J Biol Chem 2000; 275(14): 10405–10412. [DOI] [PubMed] [Google Scholar]
- 368. Hua G, Tsukamoto K, Taguchi R, Tomita M, Miyajima S, Ikezawa H. Characterization of aminopeptidase N from the brush border membrane of the larvae midgut of silkworm, Bombyx mori as a zinc enzyme. Biochim Biophys Acta 1998; 1383(2): 301–310. [DOI] [PubMed] [Google Scholar]
- 369. Hooper NM, Hesp RJ, Tieku S. Metabolism of aspartame by human and pig intestinal microvillar peptidases. Biochem J 1994; 298(Pt 3): 635–639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 370. Chen DZ, Patel DV, Hackbarth CJ, Wang W, Dreyer G, Young DC, Margolis PS, Wu C, Ni ZJ, Trias J, White RJ, Yuan Z. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 2000; 39(6): 1256–1262. [DOI] [PubMed] [Google Scholar]
- 371. Matsas R, Stephenson SL, Hryszko J, Kenny AJ, Turner AJ. The metabolism of neuropeptides. Phase separation of synaptic membrane preparations with Triton X‐114 reveals the presence of aminopeptidase N. Biochem J 1985; 231(2): 445–449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 372. Murray H, Turner AJ, Kenny AJ. The aminopeptidase activity in the human T‐cell lymphoma line (Jurkat) is not at the cell surface and is not aminopeptidase N (CD‐13). Biochem J 1994; 298(Pt 2): 353–360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 373. Ward PE, Benter IF, Dick L, Wilk S. Metabolism of vasoactive peptides by plasma and purified renal aminopeptidase M. Biochem Pharmacol 1990; 40(8): 1725–1732. [DOI] [PubMed] [Google Scholar]
- 374. Tobe H, Kojima F, Aoyagi T, Umezawa H. Purification by affinity chromatography using amastatin and properties of aminopeptidase A from pig kidney. Biochim Biophys Acta 1980; 613(2): 459–468. [DOI] [PubMed] [Google Scholar]
- 375. Gee NS, Kenny AJ. Proteins of the kidney microvillar membrane. Enzymic and molecular properties of aminopeptidase W. Biochem J 1987; 246(1): 97–102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 376. Roques BP. Insights into peptide and protein function: A convergent approach. J Pept Sci 2001; 7(2): 63–73. [DOI] [PubMed] [Google Scholar]