Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2018 Dec 27;60(5):1429–1441. doi: 10.1002/tax.605018

Molecular delimitation of clades within New World species of the "spiny solanums" (Solanum subg. Leptostemonum)

Stephen Stern 1,3,, Maria de Fátima Agra 2, Lynn Bohs 1
PMCID: PMC7169808  PMID: 32327851

Abstract

Solanum subg. Leptostemonum contains approximately 350–450 species, including the cultivated eggplant, S. melongena. Most species placed in this subgenus form a monophyletic group, the Leptostemonum clade, characterized by the presence of stellate hairs and prickles, leading to the common name of "spiny solanums". Here we present a phylogenetic analysis that circumscribes the major clades within the spiny solanums and examines the relationships among them, with an emphasis on New World species. Of particular interest is the clarification of the clade limits and species composition of groups that have not been well‐sampled. We also increase sampling of taxa that have been previously analyzed in molecular studies, namely those in the Torva, Micracantha, and Erythrotrichum clades. These groups have convergent morphological characteristics that have challenged taxonomists, making classification difficult. Results from our study delimit 14 clades within the spiny solanums, including the newly designated Asterophorum, Gardneri, Sisymbriifolium, and Thomasiifolium clades. We also establish the placement of species not previously sampled, especially those endemic to Brazil. These results give an increased understanding of the evolution of the Leptostemonum clade by defining monophyletic groups within it and identify areas of the phylogenetic tree that remain unresolved and require further taxon sampling.

Keywords: Granule-bound starch synthase (gbssi), Its, Leptostemonum, Solanaceae, Solanum, Trnt-f, Waxy

Supporting information

Supplementary Material Figures S1–S3 are available in the free Electronic Supplement to the online version of this article.

Tables

References

Literature Cited

  1. Agra, M.F. 1992. A new species of Solanum section Micracantha (So-lanaceae) from northeastern Brazil. Novon 2: 179–181. [Google Scholar]
  2. Agra, M.F. 2004. Sinopse taxonómica de Solanum sect. Erythrotri-chum (Solanaceae) Pp. 192–211 in: Rangel-Ch., J.O. , Aguirre, C.J. , Andrade-C. M.G. & Cañas, D.G. (eds.), Memorias Octavo Congresso Latinoamericano e Segundo Colombiano de Botánica. Bogotá: Universidad Nacional de Colombia. [Google Scholar]
  3. Agra, M.F. 2007. Diversity and distribution of Solanum subg. Lepto-stemonum in Brazil. Acta Hort. 745: 31–42. [Google Scholar]
  4. Agra, M.F. 2008. Four new species of Solanum section Erythrotrichum (Solanaceae) from Brazil and Peru, and a key to the species of the section. Syst. Bot. 33: 556–565. [Google Scholar]
  5. Bohs, L. 2004. A chloroplast DNA phylogeny of Solanum section Lasio-carpa . Syst. Bot. 29: 177–187. [Google Scholar]
  6. Bohs, L. 2005. Major clades in Solanum based on ndhF sequence data Pp. 27–49 in: Keating, R.C. , Hollowell, V.C. & Croat, T.B. (eds.), A festschrift for William G. D’Arcy: The legacy of a taxonomist. St. Louis: Missouri Botanical Garden Press. [Google Scholar]
  7. Bohs, L. & Olmstead, R.G. 2001. A reassessment of Normania and Triguera (Solanaceae). Pl. Syst. Evol. 228: 33–48. [Google Scholar]
  8. Bohs, L. , Weese, T. , Myers, N. , Lefgren, V. , Thomas, N. , Van Wa-genen, A. & Stern, S. 2007. Zygomorphy and heterandry in Solanum in a phylogenetic context. Acta Hort. 745: 201–223. [Google Scholar]
  9. Cummings, M.P. , Handley, S.A. , Myers, D.S. , Reed, D.L. , Rokas, A. & Winka, K. 2003. Comparing bootstrap and posterior probability values in the four-taxon case. Syst. Biol. 52: 477–487. [DOI] [PubMed] [Google Scholar]
  10. D’Arcy, W.G. 1972. Solanaceae studies II: Typification of subdivisions of Solanum . Ann. Missouri Bot. Gard. 59: 262–278. [Google Scholar]
  11. Erixon, P. , Svennblad, B. , Britton, T. & Oxelman, B. 2003. Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst. Biol. 52: 665–673. [DOI] [PubMed] [Google Scholar]
  12. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. [DOI] [PubMed] [Google Scholar]
  13. Frodin, D.G. 2004. History and concepts of big plant genera. Taxon 53: 753–776. [Google Scholar]
  14. Goloboff, P. , Farris, J. & Nixon, K. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786. [Google Scholar]
  15. Huelsenbeck, J.P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. [DOI] [PubMed] [Google Scholar]
  16. Hunziker, A.T. 1979. Estudios sobre Solanaceae. IX. Solanum mor-tonii, especie nueva del noroeste de Argentina. Kurtziana 12-13: 133–138. [Google Scholar]
  17. Knapp, S. 2002. Tobacco to tomatoes: A phylogenetic perspective on fruit diversity in the Solanaceae. J. Exp. Bot. 53: 2001–2022. [DOI] [PubMed] [Google Scholar]
  18. Knapp, S. , Bohs, L. , Nee, M. & Spooner, D.M. 2004. Solanaceae -A model for linking genomics with biodiversity. Comp. Funct. Genomics 5: 285–291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lester, R.N. & Symon, D.E. 1989. A Mexican Solanum with splash-cup or censer fruits. Solanaceae Newsl. 3(1): 72–73. [Google Scholar]
  20. Levin, R.A. , Myers, N.R. & Bohs, L. 2006. Phylogenetic relationships among the “spiny solanums” (Solanum subgenus Leptostemonum, Solanaceae). Amer. J. Bot. 93: 157–169. [Google Scholar]
  21. Levin, R.A. , Watson, K. & Bohs, L. 2005. A four-gene study of evolutionary relationships in Solanum section Acanthophora . Amer. J. Bot. 92: 603–612. [DOI] [PubMed] [Google Scholar]
  22. Martine, C.T. , Anderson, G.J. & Les, D.H. 2009. Gender-bending aubergines: Molecular phylogenetics of cryptically dioecious Solanum in Australia. Austral. Syst. Bot. 22: 107–120. [Google Scholar]
  23. Martine, C.T. , Vanderpool, D. , Anderson, G.J. & Les, D.H. 2006. Phylogenetic relationships of andromonoecious and dioecious Australian species of Solanum subgenus Leptostemonum sectionMel-ongena: Inferences from ITS sequence data. Syst. Bot. 31: 410–420. [Google Scholar]
  24. Mentz, L.A. & Oliveira, P.L. 2004. Solanum (Solanaceae) na regiao sul do Brasil. Pesq., Bot. 54: 1–327. [Google Scholar]
  25. Miller, J.S. , Kamath, A. & Levin, R.A. 2009. Do multiple tortoises equal a hare? The utility of nine noncoding plastid regions for species-level phylogenetics in tribe Lycieae (Solananceae). Syst. Bot. 34: 796–804. [Google Scholar]
  26. Nee, M. 1979. A revision of Solanum section Acanthophora Ph.D. dissertation, University of Wisconsin, Madison, Wisconsin, U.S.A. [Google Scholar]
  27. Nee, M. 1999. Synopsis of Solanum in the New World. Pp. 285–333 in: Nee M., Symon D.E., Lester R.N. & Jesops J.P. (eds.), Solanaceae IV: Advances in biology and utilization. Kew: Royal Botanic Gardens. [Google Scholar]
  28. Nee, M. , Knapp, S. & Bohs, L. 2006. New species of Solanum and Capsicum (Solanaceae) from Bolivia, with clarification of nomenclature in some Bolivian Solanum . Brittonia 58: 322–356. [Google Scholar]
  29. Posada, D. & Crandall, K.A. 1998. MODELTEST: Testing the model of DNA substitution. Bioinformatics 14: 817–818. [DOI] [PubMed] [Google Scholar]
  30. Rambaut, A. 1996. Se-Al: Sequence alignment editor http://evolve.zoo.ox.ac.uk/. Department of Zoology, University of Oxford, Oxford, U. K. [Google Scholar]
  31. Rodríguez, F. , Wu, F. , Ané, C. , Tanksley, S. & Spooner, D.M. 2009. Do potatoes and tomatoes have a single evolutionary history, and what proportion of the genome supports this history? B.M.C. Evol. Biol. 9: 191. DOI: 10.1186/1471-2148-9-191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shaw, J. , Lickey, E.B. , Schilling, E.E. & Small, R.L. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Amer. J. Bot. 94: 275–288. [DOI] [PubMed] [Google Scholar]
  33. Simmons, M.P. , Pickett, K.M. & Miya, M. 2004. How meaningful are Bayesian support values? Molec. Biol. Evol. 21: 188–199. [DOI] [PubMed] [Google Scholar]
  34. Stern, S. , Weese, T. & Bohs, L. 2010. A three-gene phylogeny of Solanum section Androceras . Syst. Bot. 33: 885–893. [Google Scholar]
  35. Strickland-Constable, R. , Schneider, H. , Ansell, S.W. , Russell, S.J. & Knapp, S. 2010. Species identity in the Solanum bahamense species group (Solanaceae, Solanum subgenus Leptostemonum) . Taxon 59: 209–226. [Google Scholar]
  36. Swofford, D.L. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sunderland, Massachusetts: Sinauer. [Google Scholar]
  37. Taberlet, P. , Gielly, L. , Pautou, G. & Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1110. [DOI] [PubMed] [Google Scholar]
  38. Weese, T.L. & Bohs, L. 2007. A three-gene phylogeny of the genus Solanum (Solanaceae). Syst. Bot. 32: 445–463. [Google Scholar]
  39. Weese, T.L. & Bohs, L. 2010. Eggplant origins: Out of Africa, into the Orient. Taxon 59: 49–56. [Google Scholar]
  40. Whalen, M.D. 1984. Conspectus of species groups in Solanum subgenus Leptostemonum . Gentes Herb. 12: 179–282. [Google Scholar]
  41. Whalen, M.D. , Costich, D.E. & Heiser, C.B. 1981. Taxonomy of So- lanum section Lasiocarpa . Gentes Herb. 12: 41–129. [Google Scholar]
  42. White, T.J. , Bruns, T. , Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322 in: Innis, M. , Gelfand, D. , Sninsky, J. & White, T. (eds.), PCR protocols: A guide to methods and applications. San Diego: Academic Press. [Google Scholar]
  43. Wiens, J.J. 1998. Combining data sets with different phylogenetic histories. Syst. Biol. 47: 568–581. [DOI] [PubMed] [Google Scholar]
  44. Wu, F. , Mueller, L.A. , Crouzillat, D. , Pétiard, V. & Tanksley, S.D. 2006. Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: A test case in the Euaste -rid plant clade. Genetics 174: 1407–1420. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Material Figures S1–S3 are available in the free Electronic Supplement to the online version of this article.

Tables


Articles from Taxon are provided here courtesy of Wiley

RESOURCES