Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 Jan 7;55:271–323. doi: 10.1016/S0065-3527(00)55006-4

Avsunviroidae family: Viroids containing hammerhead ribozymes

Ricardo Flores 1, Jose-Antonio Daròs 1, Carmen Hernández 1
PMCID: PMC7172441  PMID: 11050945

Abstract

This chapter focuses on the second viroid family, whose members are also referred to as hammerhead viroids, taking into account their most outstanding feature. If the word “small” is the first to come to mind when considering viroids, perhaps the second word is “hammerhead,” because this class of ribozymes, which because of its structural simplicity has an enormous biotechnological potential, is described in avocado sunblotch viroid (ASBVd) as well as in a viroid-like satellite RNA. The most outstanding feature of the Avsunviroidae members is their potential to adopt hammerhead structures in both polarity strands and to self-cleave in vitro accordingly. Viroids differ from viruses not only in their genome size but also in other fundamental aspects, prominent among which is the lack of messenger activity of both viroid RNAs and their complementary strands.

References

  1. Albanese G, Giunchedi L, La Rosa R, Pollini P.C. Peach latent mosaic viroid in Italy. Acta Hortic. 1992;309:331–338. [Google Scholar]
  2. Allison L.A, Simon L.D, Maliga P. Deletion of rpoB reveals a second distinct transcription system in plastid of higher plants. EMBO J. 1996;15:2802–2809. [PMC free article] [PubMed] [Google Scholar]
  3. Allen R.N, Dale J.L. Application of rapid biochemical methods for detecting avocado sunblotch disease. Ann. Appl. Biol. 1981;98:451–461. [Google Scholar]
  4. Allen R.N, Palukaitis P, Symons R.H. Purified avocado sunblotch viroid causes disease in avocado seedlings. Australas. Plant Pathol. 1981;10:31–32. [Google Scholar]
  5. Ambrós S, Flores R. In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Res. 1998;26:1877–1883. doi: 10.1093/nar/26.8.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ambrós S, Desvignes J.C, Llacer G, Flores R. Peach latent mosaic and pear blister canker viroids: Detection by molecular hybridization and relationships with specific maladies affecting peach and pear trees. Acta Hortic. 1995;386:515–519. [Google Scholar]
  7. Ambrós S, Hernández C, Desvignes J.C, Flores R. Genomic structure of three phenotypically different isolates of peach latent mosaic viroid: Implications of the existence of constraints limiting the heterogeneity of viroid quasi-species. J. Virol. 1998;72:7397–7406. doi: 10.1128/jvi.72.9.7397-7406.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ambrós S, Hernandez C, Flores R. Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host. J. Gen. Viral. 1999;80:2239–2252. doi: 10.1099/0022-1317-80-8-2239. [DOI] [PubMed] [Google Scholar]
  9. Badenes M.L, Llácer G. Occurence of peach latent mosaic viroid in American peach and nectarine cultivars in Valencia, Spain. Acta Hortic. 1998;472:565–570. [Google Scholar]
  10. Barba M, Cupidi A, Loreti S, Faggioli F, Martino L. In vitro micrografting: a technique to eliminate peach latent mosaic viroid from peach. Acta Hortic. 1995;386:531–535. [Google Scholar]
  11. Bar-Joseph M, Segev D, Twizer S, Rosner A. Detection of avocado sunblotch viroid by hybridization with synthetic oligonucleotide probes. J. Virol. Methods. 1985;10:69–73. doi: 10.1016/0166-0934(85)90090-4. [DOI] [PubMed] [Google Scholar]
  12. Baumstark T, Schröder A.R.W, Riesner D. Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. EMBO J. 1997;16:599–610. doi: 10.1093/emboj/16.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Beaudry D, Bussiere F, Laureau F, Lessard C, Perrault J.P. The RNA of both polarities of the peach latent mosaic viroid self-cleaving in vitro solely by single hammerhead structures. Nucleic Acids Res. 1995;23:745–752. doi: 10.1093/nar/23.5.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bonfiglioli R.G, McFadden G.I, Symons R.H. In situ hybridization localizes avocado sunblotch viroid on chloroplast thylakoid membranes and coconut cadang cadang viroid in the nucleus. Plant J. 1994;6:99–103. [Google Scholar]
  15. Bonfiglioli R.G, Webb D.R, Symons R.H. Tissue and intra-cellular distribution of coconut cadang cadang viroid and citrus exocortis viroid determined by in situ hybridization and confocal laser scanning and transmission electron microscopy. Plant J. 1996;9:457–465. [Google Scholar]
  16. Boyé R, Desvignes J.C. Biological techniques used for the study of new fruit virus diseases. Acta Hortic. 1986;193:261–268. [Google Scholar]
  17. Branch A.D, Dickson E. Tomato DNA contains no detectable regions complementary to potato spindle tuber viroid as assayed by Southern hybridization. Virology. 1980;104:10–26. doi: 10.1016/0042-6822(80)90362-1. [DOI] [PubMed] [Google Scholar]
  18. Branch A.D, Robertson H.D. Vol. 78. 1981. Longer-than-unit-length viroid minus strands are present in RNA from infected plants; pp. 6381–6385. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Branch A.D, Robertson H.D. A replication cycle for viroids and other small infectious RNAs. Science. 1984;223:450–454. doi: 10.1126/science.6197756. [DOI] [PubMed] [Google Scholar]
  20. Branch A.D, Robertson H.D, Greer C, Gegenheimer P, Peebles C, Abelson J. Cell-free circularization of viroid progeny RNA by an RNA ligase from wheat germ. Science. 1982;217:1147–1149. doi: 10.1126/science.217.4565.1147. [DOI] [PubMed] [Google Scholar]
  21. Branch A.D, Benenfeld B.J, Robertson H.D. Vol. 85. 1988. Evidence for a single rolling circle in the replication of potato spindle tuber viroid; pp. 9128–9132. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Branch A.D, Benenfeld B.J, Baroudy B.M, Wells F.V, Gerin J.L, Robertson H.D. An ultraviolet-sensitive RNA structural element in a viroid-like domain of the hepatitis delta virus. Science. 1989;243:649–652. doi: 10.1126/science.2492676. [DOI] [PubMed] [Google Scholar]
  23. Brown F, Martin S.J. A mew model for virus ribonucleic acid replication. Nature (London) 1965;208:861–863. doi: 10.1038/208861a0. [DOI] [PubMed] [Google Scholar]
  24. Bruening G. Compilation of self-cleaving sequences from plant virus satellite RNAs and other sources. Methods Enzymol. 1989;180:546–558. doi: 10.1016/0076-6879(89)80123-5. [DOI] [PubMed] [Google Scholar]
  25. Bruening G, Gould A.R, Murphy P.J, Symons R.H. Oligomers of avocado sunblotch viroid are found in infected avocado leaves. FEBS Lett. 1982;148:71–78. [Google Scholar]
  26. Bruening G, Feldstein P.A, Buzayan J.M, van Tol H, Debear J, Gough G.R, Gilham P.T, Eckstein F. Satellite tobacco ringspot virus RNA: Self-cleavage and ligation reactions in replication. In: Maramorosch K, editor. Viroids and Satellites, Molecular Parasites in the Frontiers of Life. CRC Press; Boca Raton: 1991. pp. 141–158. [Google Scholar]
  27. Bussière F, Lehoux J, Thompson D.A, Skrzeczkowski L.J, Perreault J.-P. Subcellular localization and rolling circle replication of peach latent mosaic viroid: Hallmarks of group A viroids. J. Virol. 1999;73:6353–6360. doi: 10.1128/jvi.73.8.6353-6360.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chela-Flores J. Are viroids molecular fossils of the RNA world? J. Theor. Biol. 1994;166:163–166. [Google Scholar]
  29. Coit J.E. Sunblotch of the avocado, a serious physiological disease. Calif. Avocado Soc. Yearb. 1928:27–32. [Google Scholar]
  30. Collins R.F, Gellatly D.L, Sehgal O.P, Abouhaidar M.G. Self-cleaving circular RNA associated with rice yellow mottle virus is the smallest viroid-like RNA. Virology. 1998;241:269–275. doi: 10.1006/viro.1997.8962. [DOI] [PubMed] [Google Scholar]
  31. Conejero V, Semancik J.S. Exocortis viroid: Alterations in the proteins of Gynura aurantiaca accompanying viroid infection. Virology. 1977;77:221–232. doi: 10.1016/0042-6822(77)90420-2. [DOI] [PubMed] [Google Scholar]
  32. Conejero V, Picazo I, Segado P. Citrus exocortis viroid (CEV): Protein alterations in different hosts following viroid infection. Virology. 1979;97:454–456. doi: 10.1016/0042-6822(79)90355-6. [DOI] [PubMed] [Google Scholar]
  33. Côte F, Perrault J.P. Peach latent mosaic viroid is locked by a 2′,5′-phosphodiester bond produced by in vitro self-ligation. J. Mol. Biol. 1997;273:533–543. doi: 10.1006/jmbi.1997.1355. [DOI] [PubMed] [Google Scholar]
  34. Da Graça J.V, Mattin M.M. Ultrastructural changes in avocado leaf tissue infected with avocado Sunblotch viroid. Phytopath. Z. 1981;102:185–194. [Google Scholar]
  35. Da Graça J.V, Moon T.E. Detection of avocado Sunblotch viroid in flower buds by polyacrylamide gel electrophoresis. Phytopath. Z. 1983;108:267–280. [Google Scholar]
  36. Da Graça J.V, van Vuuren S.P. Transmission of avocado Sunblotch disease to cinnamon. Plant Dis. 1980;64:475. [Google Scholar]
  37. Da Graça J.V, van Vuuren S.P. Use of high temperature to increase the rate of avocado Sunblotch symptom development in indicator seedlings. Plant Dis. 1981;65:46–47. [Google Scholar]
  38. Dale J.L, Allen R.N. Avocado affected by Sunblotch disease contains low molecular weight ribonucleic acid. Australas. Plant Pathol. 1979;8:3–4. [Google Scholar]
  39. Dale J.L, Symons R.H, Allen R.N. Avocado Sunblotch viroid. CMI/AAB Descrip. Plant Viruses. 1982;(No. 254) [Google Scholar]
  40. Daròs J.A, Flores R. Vol. 92. 1995. Identification of a retroviroid-like element from plants; pp. 6856–6860. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Daròs J.A, Marcos J.E, Hernández C, Flores R. Vol. 91. 1994. Replication of avocado Sunblotch viroid: Evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing; pp. 12813–12817. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Davies J.W, Kaesberg P, Diener T.O. Potato spindle tuber viroid. XII. An investigation of viroid RNA as a messenger for protein synthesis. Virology. 1974;61:281–286. doi: 10.1016/0042-6822(74)90262-1. [DOI] [PubMed] [Google Scholar]
  43. Davies C, Sheldom C.C, Symons R.H. Alternative hammerhead structures in the self-cleavage of avocado Sunblotch viroid RNAs. Nucleic Acids Res. 1991;19:1893–1898. doi: 10.1093/nar/19.8.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. De la Peña M, Navarro B, Flores R. Vol. 96. 1999. Mapping the molecular determinant of pathogenicity in a hammerhead viroid: A tetraloop within the in vivo branched RNA conformation; pp. 9960–9965. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Desjardins P.R. Avocado Sunblotch. In: Diener T.O, editor. The Viroids. Plenum; New York: 1987. pp. 299–313. [Google Scholar]
  46. Desjardins P.R, Drake R.J, Swiecki S.A. Infectivity studies of avocado Sunblotch disease causal agent, possibly a viroid rather than a virus. Plant Dis. 1980;64:313–315. [Google Scholar]
  47. Desjardins P.R, Drake R.J, Sasaki P.J, Atkins E.L, Bergh B.O. Pollen transmission of avocado sunblotch viroid and the rate of the pollen recipient tree. Phytopathology. 1984;74:845. [Google Scholar]
  48. Desvignes J.C. The virus diseases detected in greenhouse and field by the peach seedlings GF-305 indicator. Acta Hortic. 1976;67:315–323. [Google Scholar]
  49. Desvignes J.C. Different symptoms of the peach latent mosaic. Acta Phytopath. Acad. Sci. Hung. 1980;15:183–190. [Google Scholar]
  50. Desvignes J.C. Resistance of some Prunus species to peach latent mosaic virus disease (PLMV) Acta Hortic. 1982;130:89–91. [Google Scholar]
  51. Desvignes J.C. Peach latent mosaic and its relation to peach mosaic and peach yellow mosaic virus diseases. Acta Hortic. 1986;193:51–57. [Google Scholar]
  52. Diener T.O. Potato spindle tuber “virus”: A plant virus with properties of a free nucleic acid. III. Subcellular location of PSTV RNA and the question of whether virions exist in extracts or in situ. Virology. 1971;43:75–89. doi: 10.1016/0042-6822(71)90226-1. [DOI] [PubMed] [Google Scholar]
  53. Diener T.O. Potato spindle tuber “virus” IV. A replicating low molecular weight RNA. Virology. 1971;45:411–428. doi: 10.1016/0042-6822(71)90342-4. [DOI] [PubMed] [Google Scholar]
  54. Diener T.O. Potato spindle tuber viroid VIII. Correlation of infectivity with a UV-absorbing component and thermal denaturation properties of the RNA. Virology. 1972;50:606–609. doi: 10.1016/0042-6822(72)90412-6. [DOI] [PubMed] [Google Scholar]
  55. Diener T.O. Vol. 86. 1989. Circular RNAs: relics of precellular evolution? pp. 9370–9374. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Diener T.O. Origin and evolution of viroids and viroid-like satellite RNAs. Virus Genes. 1996;11:119–131. doi: 10.1007/BF01728653. [DOI] [PubMed] [Google Scholar]
  57. Diener T.O, Raymer W.B. Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. Science. 1967;158:378–381. doi: 10.1126/science.158.3799.378. [DOI] [PubMed] [Google Scholar]
  58. Dimock A.W, Geissinger C.M. A newly recognized disease of chrysanthemum caused by a graft-transmissible agent. Phytopathology. 1969;59:1024. [Google Scholar]
  59. Dimock A.W, Geissinger C.M, Horst R.K. Chlorotic mottle: A newly recognized disease of chrysanthemum. Phytopathology. 1971;61:415–419. [Google Scholar]
  60. Diener-Gottlieb G. Possible viroid origin: Viroids, virusoids, and group I introns. In: Diener T.O, editor. The Viroids. Plenum; New York: 1987. pp. 189–204. [Google Scholar]
  61. Di Serio F, Darbs J.A, Ragozzino A, Flores R. A 451-nucleotide circular RNA from cherry with hammerhead ribozymes in its strands of both polarities. J. Virol. 1997;71:6603–6610. doi: 10.1128/jvi.71.9.6603-6610.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Di Serio F, Malfitano M, Flores R, Randles J.W. Detection of PLMVd in Australia. Australas. Plant Pathol. 1999;28:80–81. [Google Scholar]
  63. Domingo E, Holland J.J. Mutation rates and rapid evolution of RNA viruses. In: Morse S.S, editor. Evolutionary Biology of Viruses. Raven Press; New York: 1994. pp. 171–180. [Google Scholar]
  64. Eigen M. Self-organization of matter and the evolution of biological macromrolecules. Naturwissenschaften. 1971;58:465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
  65. Eigen M. The origin of genetic information: Virus as models. Gene. 1993;135:37–47. doi: 10.1016/0378-1119(93)90047-7. [DOI] [PubMed] [Google Scholar]
  66. Eigen M, Schuster P. The hypercycle: A principle of self-organization. Part C: The realistic hypercycle. Naturwissenschaften. 1978;65:341–369. doi: 10.1007/BF00450633. [DOI] [PubMed] [Google Scholar]
  67. Elena S.F, Dopazo J, Flores R, Diener T.O, Moya A. Vol. 88. 1991. Phylogeny of viroids, viroid-like satellite RNAs, and the viroid like domain of hepatitis δ virus RNA; pp. 5631–5634. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Epstein L.M, Gall J.G. Self-cleaving transcripts of satellite DNA from the newt. Cell. 1987;48:535–543. doi: 10.1016/0092-8674(87)90204-2. [DOI] [PubMed] [Google Scholar]
  69. Faggioli F, Loreti S, Barba M. Occurrence of peach latent mosaic viroid (PLMVd) on plum in Italy. Plant Dis. 1997;81:423. doi: 10.1094/PDIS.1997.81.4.423C. [DOI] [PubMed] [Google Scholar]
  70. Feldstein P.A, Hu Y, Owens R.A. Vol. 95. 1998. Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid; pp. 6560–6565. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Ferbeyre G, Smith J.M, Cedergren R. Schistosome satellite DNA encodes active hammerhead ribozymes. Mol. Cell. Biol. 1998;18:3880–3888. doi: 10.1128/mcb.18.7.3880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Fernow K.H. Tomato as a test plant for detecting mild strains of potato spindle tuber virus. Phytopathology. 1967;57:1347–1352. [Google Scholar]
  73. Flores R, Llácer G. Isolation of a viroid-like RNA associated with peach latent mosaic disease. Acta Hortic. 1988;235:325–332. [Google Scholar]
  74. Flores R, Semancik J.S. Vol. 79. 1982. Properties of a cell-free system for synthesis of citrus exocortis viroid; pp. 6285–6288. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Flores R, Hernández C, Desvignes J.C, Llácer G. Some properties of the viroid inducing the peach latent mosaic disease. Res. Virol. 1990;141:109–118. doi: 10.1016/0923-2516(90)90060-v. [DOI] [PubMed] [Google Scholar]
  76. Flores R, Hernández C, Avinent L, Hermoso A, Llácer G, Juárez J, Arregui J.M, Navarro L, Desvignes J.C. Studies on the detection, transmission and distribution of peach latent mosaic viroid in peach trees. Acta Hortic. 1992;309:325–330. [Google Scholar]
  77. Flores R, Di Serio F, Hernández C. Viroids: The non-coding genomes. Semin. Virol. 1997;8:65–73. [Google Scholar]
  78. Flores R, Hernández C, Llácer G, Desvignes J.C. Peach latent mosaic viroid. AAB Descrip. Plant Viruses. 1998;(No. 362) [Google Scholar]
  79. Flores R, Randles J.W, Bar-Joseph M, Diener T.O. Viroids. In: van Regenmortel M.H.V, Fauquet C.M, Bishop D.H.L, Carstens E.B, Estes M.K, Lemon S.M, McGeoch D.J, Maniloff J, Mayo M.A, Pringle C.R, Wickner R.B, editors. Virus Taxonomy, Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press; San Diego: 2000. pp. 1009–1024. [Google Scholar]
  80. Forster A.C, Davies C, Sheldon C.C, Jeffries A.C, Symons R.H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature. 1988;334:265–267. doi: 10.1038/334265a0. [DOI] [PubMed] [Google Scholar]
  81. Forster A.C, Symons R.H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell. 1987;49:211–220. doi: 10.1016/0092-8674(87)90562-9. [DOI] [PubMed] [Google Scholar]
  82. Gilbert W. The RNA world. Nature (London) 1986;319:618. [Google Scholar]
  83. Gilbert W, Dressler D. Vol. 33. 1968. DNA replication: The rolling circle model; pp. 473–484. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
  84. Gispert C, Perring T.M, Creamer R. Purification and characterization of peach mosaic virus. Plant Dis. 1998;82:905–908. doi: 10.1094/PDIS.1998.82.8.905. [DOI] [PubMed] [Google Scholar]
  85. Gluck A, Endo Y, Wool I.G. Ribosomal-RNA identity elements for ricin Achain recognition and catalysis-analysis with tetraloops mutants. J. Mol. Biol. 1992;226:411–424. doi: 10.1016/0022-2836(92)90956-k. [DOI] [PubMed] [Google Scholar]
  86. Góra-Sochacka A, Kierzek A, Candresse T, Zagórski W. The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA. 1997;3:68–74. [PMC free article] [PubMed] [Google Scholar]
  87. Grill L.K, Semancik J.S. Vol. 75. 1978. RNA sequences complementary to citrus exocortis viroid in nucleic acid preparations from infected Gynura aurantiaca; pp. 896–900. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Gross H.J, Domdey H, Lossow C, Jank P, Raba M, Alberty H, Sänger H.L. Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature. 1978;273:203–208. doi: 10.1038/273203a0. [DOI] [PubMed] [Google Scholar]
  89. Gutell R.R, Larsen N, Woese C.R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 1994;58:10–26. doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Hadas R, Ashulin L, Bar-Joseph M. Transmission of a citrus viroid to avocado by heterologous grafting. Plant Dis. 1992;76:357–359. [Google Scholar]
  91. Hadidi A, Giunchedi L, Shamloul A.M, Poggi-Pollini C, Amer M.A. Occurrence of peach latent mosaic viroid in stone fruits and its transmission with contaminated blades. Plant Dis. 1997;81:154–158. doi: 10.1094/PDIS.1997.81.2.154. [DOI] [PubMed] [Google Scholar]
  92. Hall T.C, Wepprich R.K, Davies J.W, Weathers L.G, Semancik J.S. Functional distinctions between the ribonucleic acids from citrus exocortis viroid and plant viruses: Cell-free translation and aminoacylation reactions. Virology. 1974;61:486–492. doi: 10.1016/0042-6822(74)90284-0. [DOI] [PubMed] [Google Scholar]
  93. Harders J, Lukacs N, Robert-Nicoud M, Jovin J.M, Riesner D. Imaging of viroids in nuclei from tomato leaf tissue by in situ hybridization and confocal laser scanning microscopy. EMBO J. 1989;8:3941–3949. doi: 10.1002/j.1460-2075.1989.tb08577.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Hari V. Ultrastructure of potato spindle tuber viroid-infected tomato leaf tissue. Phytopathology. 1980;70:385–387. [Google Scholar]
  95. Haseloff J, Symons R.H. Chrysanthemum stunt viroid: Primary sequence and secondary structure. Nucleic Acids Res. 1981;9:2741–2752. doi: 10.1093/nar/9.12.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Hedtke B, Börner T, Weihe A. Mitochondrial and chloroplast phage-type RNA polymerase in Arabidopsis. Science. 1997;277:809–811. doi: 10.1126/science.277.5327.809. [DOI] [PubMed] [Google Scholar]
  97. Hernández C, Flores R. Vol. 89. 1992. Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures; pp. 3711–3715. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Hernández C, Daròs J.A, Elena S.F, Moya A, Flores R. The strands of both polarities of a small circular RNA from carnation self-cleave in vitro through alternative double- and single-hammerhead structures. Nucleic Acids Res. 1992;20:6323–6329. doi: 10.1093/nar/20.23.6323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Hertel K.J, Pardi A, Uhlenbeck O.K, Koizumi M, Ohtsuka E, Uesugi S, Cedergren R, Eckstein F, Gerlach W.L, Hodgson R, Symons R.H. Numbering system for the hammerhead. Nucleic Acids Res. 1992;20:3252. doi: 10.1093/nar/20.12.3252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Heus H.A, Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 1991;253:191–194. doi: 10.1126/science.1712983. [DOI] [PubMed] [Google Scholar]
  101. Horne W.T. Progress in the study of certain diseases of avocado. Phytopathology. 1929;19:1144. [Google Scholar]
  102. Horne W.T, Parker E.R. The avocado disease called sunblotch. Phytopathology. 1931;21:235–238. [Google Scholar]
  103. Horne W.T, Parker E.R, Rounds M.B. The nature of sunblotch and its practical control. Calif. Avocado Soc. Yearb. 1941:35–38. [Google Scholar]
  104. Horst R.K. Detection of a latent infectious agent that protects against infection by chrysanthemum chlorotic mottle viroid. Phytopathology. 1975;65:1000–1003. [Google Scholar]
  105. Horst R.K. Chrysanthemum chlorotic mottle. In: Diener T.O, editor. The Viroids. Plenum; New York: 1987. pp. 291–295. [Google Scholar]
  106. Hutchins L.M. Peach mosaic-a new virus disease. Science. 1932;76:123. doi: 10.1126/science.76.1962.123. [DOI] [PubMed] [Google Scholar]
  107. Hutchins C.J, Keese P, Visvader J.E, Rathjen P.D, McInnes J.L, Symons R.H. Comparison of multimeric plus and minus forms of viroids and virusoids. Plant Mol. Biol. 1985;4:293–304. doi: 10.1007/BF02418248. [DOI] [PubMed] [Google Scholar]
  108. Hutchins C, Rathjen P.D, Forster A.C, Symons R.H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 1986;14:3627–3640. doi: 10.1093/nar/14.9.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Inoue T, Orgel L.E. A non-enzymatic RNA polymerase model. Science. 1983;219:859–862. doi: 10.1126/science.6186026. [DOI] [PubMed] [Google Scholar]
  110. James D, Howell W.E. Isolation and partial characterization of a filamentous virus associated to peach mosaic. Plant Dis. 1998;82:909–913. doi: 10.1094/PDIS.1998.82.8.909. [DOI] [PubMed] [Google Scholar]
  111. Joyce G.F. RNA evolution and the origins of life. Nature (London) 1989;338:217–224. doi: 10.1038/338217a0. [DOI] [PubMed] [Google Scholar]
  112. Kaper J.M, Tousignant M.E, Steger G. Nucleotide sequence predicts circularity and self-cleavage of 300-ribonucleotide satellite of arabis mosaic virus. Biochem. Biophys. Res. Comm. 1988;154:318–325. doi: 10.1016/0006-291x(88)90687-0. [DOI] [PubMed] [Google Scholar]
  113. Kapoor S, Suzuki J.Y, Sugiura M. Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J. 1997;11:327–337. doi: 10.1046/j.1365-313x.1997.11020327.x. [DOI] [PubMed] [Google Scholar]
  114. Kawamoto S.O, Horst R.K, Wong S.M. Solubility of chrysanthemum chlorotic mottle viroid in LiCl solutions. Acta Hortic. 1985;164:333–340. [Google Scholar]
  115. Keese P, Symons R.H. Vol. 82. 1985. Domains in viroids: Evidence of intermolecular RNA rearrangements and their contribution to viroid evolution; pp. 4582–4586. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Keese E, Symons R.H. The structure of viroids and virusoids. In: Semancik J.S, editor. Viroids and Viroid-like Pathogens. CRC Press; Boca Raton: 1987. pp. 1–47. [Google Scholar]
  117. Kiberstis P.A, Haseloff J, Zimmern D. 2′ Phosphomonoester, 3′-5′ phosphodiester bond at a unique site in a circular viral RNA. EMBO J. 1985;4:817–822. doi: 10.1002/j.1460-2075.1985.tb03703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Kiefer M.C, Owens R.A, Diener T.O. Vol. 80. 1983. Structural similarities between viroids and transposable elements; pp. 6234–6238. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Kishi K, Takanashi K, Abiko K. New virus diseases of peach, yellow mosaic, oil blotch and star mosaic. Bull. Hort. Res. Sta. Japan, Ser. A. 1973;12:197–208. [Google Scholar]
  120. Kofalvi S.A, Marcos J.F, Cañizares M.C, Pallás V, Candresse T. Hop stunt viroid (HSVd) sequence variants from Prunus species: Evidence for recombination between HSVd isolates. J. Gen. Virol. 1997;78:3177–3186. doi: 10.1099/0022-1317-78-12-3177. [DOI] [PubMed] [Google Scholar]
  121. Koltunow A.M, Rezaian M.A. Grapevine yellow speckle viroid: Structural features of a new viroid group. Nucleic Acids Res. 1988;16:849–864. doi: 10.1093/nar/16.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Konarska M, Filipowicz W, Domdey H, Gross H.J. Formation of a 2′phosphomonoester, 3′, 5′-phosphodiester linkage by a novel RNA ligase in wheat germ. Nature. 1981;293:112–116. doi: 10.1038/293112a0. [DOI] [PubMed] [Google Scholar]
  123. Lafontaine D, Beaudry D, Marquis P, Perrault J.P. Intra- and intermolecular non enzymatic ligations occur within transcripts derived from the peach latent mosaic viroid. Virology. 1995;212:705–709. doi: 10.1006/viro.1995.1528. [DOI] [PubMed] [Google Scholar]
  124. Lai M.C.C, Cavanagh D. The molecular biology of coronaviruses. Adv. Virus Res. 1997;48:1–100. doi: 10.1016/S0065-3527(08)60286-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Lakshman D.K, Tavantzis S.M. Primary and secondary structure of a 360-nucleotide isolate of potato spindle tuber viroid. Arch. Virol. 1993;128:319–331. doi: 10.1007/BF01309442. [DOI] [PubMed] [Google Scholar]
  126. Lerbs-Mache S. Vol. 90. 1993. The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: Single-subunit enzyme or catalytic core of multimeric enzyme complex? pp. 5509–5513. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Liere K, Maliga P. In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phage-type plastid and plant mitochondrial promoters. EMBO J. 1999;18:249–257. doi: 10.1093/emboj/18.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Lima M.I, Fonseca M.E.N, Flores R, Kitajima E.W. Detection of avocado sunblotch viroid in chloroplasts of avocado leaves by in situ hybridization. Arch. Virol. 1994;138:385–390. doi: 10.1007/BF01379142. [DOI] [PubMed] [Google Scholar]
  129. Liu Y.-H, Symons R.H. Specific RNA self-cleavage in coconut cadang cadang viroid: Potential for a role in rolling circle replication. RNA. 1998;4:418–429. [PMC free article] [PubMed] [Google Scholar]
  130. Lomonossoff G.P. Pathogen-derived resistance of plant viruses. Annu. Rev. Phytopathol. 1995;33:323–343. doi: 10.1146/annurev.py.33.090195.001543. [DOI] [PubMed] [Google Scholar]
  131. López-Herrera C, Pliego F, Flores R. Detection of avocado sunblotch viroid (ASBV) in Spain by double polyacrylamide gel electrophoresis. J. Phytopathol. 1987;119:184–189. [Google Scholar]
  132. Loreti S, Faggioli F, Barba M. A rapid extraction method to detect peach latent mosaic viroid by molecular hybridization. Acta Hortic. 1995;386:560–564. [Google Scholar]
  133. Marcos J.F, Flores R. Characterization of RNAs specific to avocado sunblotch viroid synthesized in vitro by a cell-free system from infected avocado leaves. Virology. 1992;186:481–488. doi: 10.1016/0042-6822(92)90013-f. [DOI] [PubMed] [Google Scholar]
  134. Marcos J.F, Flores R. The 5′ end generated in the in vitro self-cleavage reaction of avocado sunblotch viroid RNAs is present in naturally occurring linear viroid molecules. J. Gen. Virol. 1993;74:907–910. doi: 10.1099/0022-1317-74-5-907. [DOI] [PubMed] [Google Scholar]
  135. Margulis L. 2nd ed. W.H. Freeman and Co; New York: 1993. Symbiosis in Cell Evolution. [Google Scholar]
  136. Matthews R.E.F. 3rd ed. Academic Press; New York: 1991. Plant Virology. [Google Scholar]
  137. Mathews D.E, Durbin R.D. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J. Biol. Chem. 1990;265:493–498. [PubMed] [Google Scholar]
  138. Miller W.A, Hercus T, Waterhouse P.M, Gerlach W.L. A satellite RNA of barley yellow dwarf virus contains a novel hammerhead structure in self-cleavage domain. Virology. 1991;183:711–720. doi: 10.1016/0042-6822(91)91000-7. [DOI] [PubMed] [Google Scholar]
  139. Mohamed N.A, Thomas W. Viroid-like properties of an RNA species associated with the sunblotch disease of avocados. J. Gen. Wrol. 1980;46:157–167. [Google Scholar]
  140. Monsion M, Bachelier J.C, Candresse T, Desvignes J.C, Macquaire G, Dunez J. Investigations on the infectious agent responsible for peach latent mosaic disease. Acta Hortic. 1988;235:247–255. [Google Scholar]
  141. Mühlbach H.P, Sänger H.L. Viroid replication is inhibited by α-amanitin. Nature. 1979;278:185–188. doi: 10.1038/278185a0. [DOI] [PubMed] [Google Scholar]
  142. Navarro B, Flores R. Vol. 94. 1997. Chrysanthemum chlorotic mottle viroid: Unusual structural properties of a subgroup of viroids with hammerhead ribozymes; pp. 11262–11267. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Navarro J.A, Darbs J.A, Flores R. Complexes containing both polarity strands of avocado sunblotch viroid: Identification in chloroplasts and characterization. Virology. 1999;253:77–85. doi: 10.1006/viro.1998.9497. [DOI] [PubMed] [Google Scholar]
  144. Navarro J.A, Flores R. Characterization of the initiation sites of both polarity strands of a viroid RNA reveals a motif conserved in sequence and structure. EMBO J. 2000;19:2662–2670. doi: 10.1093/emboj/19.11.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Navarro J.A, Vera A, Flores R. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology. 2000;268:218–225. doi: 10.1006/viro.1999.0161. [DOI] [PubMed] [Google Scholar]
  146. Niblett C.L, Dickson E, Fernow K.H, Horst R.K, Zaitlin M. Cross-protection among four viroids. Virology. 1978;91:198–203. doi: 10.1016/0042-6822(78)90368-9. [DOI] [PubMed] [Google Scholar]
  147. Owens R.A, Diener T.O. Vol. 79. 1982. RNA intermediates in potato spindle tuber viroid replication; pp. 113–117. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Pallás V, Garcia-Luque L, Domingo E, Flores R. Sequence variability in avocado sunblotch viroid (ASBV) Nucleic Acids Res. 1988;16:9864. doi: 10.1093/nar/16.20.9864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Palukaitis P, Hatta T, Alexander D.M, Symons R.H. Characterization of a viroid associated with avocado sunblotch disease. Virology. 1979;99:145–151. doi: 10.1016/0042-6822(79)90045-x. [DOI] [PubMed] [Google Scholar]
  150. Palukaitis P, Rakowski A.G, Alexander D.M, Symons R.H. Rapid indexing of the sunblotch disease of avocados using a complementary DNA probe to avocado sunblotch viroid. Ann. Appl. Biol. 1981;98:439–449. [Google Scholar]
  151. Perrota A.T, Been M.D. A pseudoknot-like structure required for efficient self-cleavage of hepatitis δ virus RNA. Nature. 1991;350:434–436. doi: 10.1038/350434a0. [DOI] [PubMed] [Google Scholar]
  152. Pine T.S. Peach blotch, peach calico, peach mosaic. USDA Agric. Handb. 1976;437:56–70. [Google Scholar]
  153. Pley H, Flaherty K.M, McKay D.B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994;372:68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  154. Pley H, Flaherty K.M, McKay D.B. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature. 1994;372:111–113. doi: 10.1038/372111a0. [DOI] [PubMed] [Google Scholar]
  155. Polivka H, Staub U, Gross H.J. Variation of viroid profiles in individual grapevine plants: Novel grapevine yellow specke viroid 1 mutants show alteration of hairpin I. J. Gen. Virol. 1996;77:155–161. doi: 10.1099/0022-1317-77-1-155. [DOI] [PubMed] [Google Scholar]
  156. Prody G.A, Bakos J.T, Buzayan J.M, Schneider I.R, Bruening G. Autolytic processing of dimeric plant virus satellite RNA. Science. 1986;231:1577–1580. doi: 10.1126/science.231.4745.1577. [DOI] [PubMed] [Google Scholar]
  157. Querci M, Owens R.A, Vargas C, Salazar L.F. Detection of potato spindle tuber viroid in avocado growing in Peru. Plant Dis. 1995;79:196–202. [Google Scholar]
  158. Rakowski A.G, Symons R.H. Comparative sequence studies of variants of avocado sunblotch viroid. Virology. 1989;173:352–356. doi: 10.1016/0042-6822(89)90256-0. [DOI] [PubMed] [Google Scholar]
  159. Riesner D, Henco K, Rokohl U, Klootz G, Kleinschmidt, Domedey H, Jank P, Gross H.J, Sänger H.L. Structure and structure formation of viroids. J. Mol. Biol. 1979;133:85–115. doi: 10.1016/0022-2836(79)90252-3. [DOI] [PubMed] [Google Scholar]
  160. Rohde W, Sänger H.L. Detection of complementary RNA intermediates of viroid replication by Northern blot hybridization. Biosci. Rep. 1981;1:327–336. doi: 10.1007/BF01114872. [DOI] [PubMed] [Google Scholar]
  161. Romaine C.P, Horst R.K. Suggested viroid etiology for chrysanthemum chlorotic mottle disease. Virology. 1975;64:86–95. doi: 10.1016/0042-6822(75)90081-1. [DOI] [PubMed] [Google Scholar]
  162. Rosenstein S.P, Been M.D. Evidence that genomic and antigenomic RNA self-cleaving elements from hepatitis 6 virus have similar secondary structures. Nucleic Acids Res. 1991;19:5409–5416. doi: 10.1093/nar/19.19.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Rosner A, Spiegel S, Alper M, Bar-Joseph M. Detection of avocado sunblotch viroid (ASBV) by dot-spot self-hybridization with a 32P-labelled ASBV RNA. Plant Mol. Biol. 1983;2:15–18. doi: 10.1007/BF00187571. [DOI] [PubMed] [Google Scholar]
  164. Sänger H.L. Viroids and viroid diseases. Acta Hortic. 1988;234:79–87. [Google Scholar]
  165. Sänger H.L, Klotz G, Riesner D, Gross H.J, Kleinschmidt A. Vol. 73. 1976. Viroids are single-stranded covalently closed circular RNA molecules existing as highly basepaired rod-like structures; pp. 3852–3856. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Schindler I.M, Mühlbach H.P. Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: A reevaluation. Plant Sci. 1992;84:221–229. [Google Scholar]
  167. Schnell R.J, Kuhn D.N, Ronning C.M, Harkins D. Application of RT PCR for indexing avocado sunblotch viroid. Plant Dis. 1997;81:1023–1026. doi: 10.1094/PDIS.1997.81.9.1023. [DOI] [PubMed] [Google Scholar]
  168. Schnölzer M, Haas B, Ramm K, Hofmann H, Sänger H.L. Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV) EMBO J. 1985;4:2181–2190. doi: 10.1002/j.1460-2075.1985.tb03913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Semancik J.S, Desjardins P.R. Multiple small RNA species and the viroid hypothesis for the sunblotch disease of avocado. Virology. 1980;104:117–121. doi: 10.1016/0042-6822(80)90370-0. [DOI] [PubMed] [Google Scholar]
  170. Semancik J.S, Szychowski J.A. Avocado sunblotch disease: A persistent viroid infection in which variants are associated with differential symptoms. J. Gen. Virol. 1994;75:1543–1549. doi: 10.1099/0022-1317-75-7-1543. [DOI] [PubMed] [Google Scholar]
  171. Semancik J.S, Weathers L.G. Exocortis virus: An infectious free-nucleic acid plant virus with unusual properties. Virology. 1972;47:456–466. doi: 10.1016/0042-6822(72)90281-4. [DOI] [PubMed] [Google Scholar]
  172. Semancik J.S, Weathers L.G. Exocortis disease: Evidence for a new species of “infectious” low molecular weight RNA in plants. Nature New Biol. 1972;237:242–244. doi: 10.1038/newbio237242a0. [DOI] [PubMed] [Google Scholar]
  173. Semancik J.S, Conejero V, Gerhart J. Citrus exocortis viroid: Survey of protein synthesis in Xenopus laevis oocytes following addition of viroid RNA. Virology. 1977;80:218–221. doi: 10.1016/0042-6822(77)90395-6. [DOI] [PubMed] [Google Scholar]
  174. Shamloul A.M, Minafra A, Hadidi A, Waterworth H.E, Giunchedi L, Allam E.K. Peach latent mosaic viroid: Nucleotide sequence of an Italian isolate, sensitive detection using RTPCR and geographic distribution. Acta Hortic. 1995;386:522–530. [Google Scholar]
  175. Sharmeen L, Kuo M.Y.P, Dinter-Gottlieb G, Taylor J. Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J. Virol. 1988;62:2674–2679. doi: 10.1128/jvi.62.8.2674-2679.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Skrezeczkowski L.J, Howell W.E, Mink G.I. Occurrence of peach latent mosaic viroid in commercial peach and nectarine cultivars in the US. Plant Dis. 1996;80:823. [Google Scholar]
  177. Sogo J.M, Koller T, Diener T.O. Potato spindle tuber viroid. X. Visualization and size determination by electron microscopy. Virology. 1973;55:70–80. doi: 10.1016/s0042-6822(73)81009-8. [DOI] [PubMed] [Google Scholar]
  178. Spiesmacher E, Mühlbach H.P, Schnölzer M, Haas B, Sänger H.L. Oligomeric forms of potato spindle tuber viroid (PSTV) and of its complementary RNA are present in nuclei isolated from viroid-infected potato cells. Biosci. Rep. 1983;3:767–774. doi: 10.1007/BF01120988. [DOI] [PubMed] [Google Scholar]
  179. Stern D.B, Higgs D.C, Yang J. Transcription and translation in chloroplasts. Trends Plant Sci. 1997;2:308–315. [Google Scholar]
  180. Sugiura M. The chloroplast genome. Plant Mol. Biol. 1992;19:149–168. doi: 10.1007/BF00015612. [DOI] [PubMed] [Google Scholar]
  181. Symons R.H. Avocado sunblotch viroid: Primary sequence and proposed secondary structure. Nucleic Acids Res. 1981;9:6527–6537. doi: 10.1093/nar/9.23.6527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Tabler M, Tzortzakaki S, Tsagris M. Processing of linear longer-thanunit-length potato spindle tuber viroid RNAs into infectious monomeric circular molecules by a G-specific endoribonuclease. Virology. 1992;190:746–753. doi: 10.1016/0042-6822(92)90912-9. [DOI] [PubMed] [Google Scholar]
  183. Tanaka K, Oikawa K, Ohta N, Kuroiwa H, Kuroiwa T, Takahashi H. Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science. 1996;272:1932–1935. doi: 10.1126/science.272.5270.1932. [DOI] [PubMed] [Google Scholar]
  184. Tanaka K, Tozawa Y, Mochizuki N, Shinozaki K, Nagatani A, Wakasa K, Takahashi H. Characterization of three cDNA species encoding plastid RNA polymerase sigma factors in Arabidopsis thaliana: Evidence for the sigma heterogeneity in higher plant plastid. FEBS Lett. 1997;413:309–313. doi: 10.1016/s0014-5793(97)00906-x. [DOI] [PubMed] [Google Scholar]
  185. Taylor J.M. Organization and expression of the hepatitis delta virus genome. Semin. Virol. 1997;8:59–64. [Google Scholar]
  186. Thomas W, Mohamed N.A. Avocado sunblotch — a viroid disease? Australas. Plant Pathol. 1979;8:1–3. [Google Scholar]
  187. Tsagris M, Tabler M, Mühlbach H.P, Sänger H.L. Linear oligomeric potato spindle tuber viroid (PSTV) RNAs are accurately processed in vitro to the monomeric circular viroid proper when incubated with a nuclear extract from healthy potato cells. EMBO J. 1987;6:2173–2183. doi: 10.1002/j.1460-2075.1987.tb02488.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Uhlenbeck O.C. Tetraloops and RNA folding. Nature. 1990;346:613–614. doi: 10.1038/346613a0. [DOI] [PubMed] [Google Scholar]
  189. Utermohlen J.G, Drake R.J, Desjardins P.R, Semancik J.S. The transmission of sunblotch disease with a purified RNA species. Phytopathology. 1981;71:909. [Google Scholar]
  190. Vera A, Sugiura M. Chloroplast rRNA transcription from structurally different tandem promoters: An additional novel-type promoter. Curr. Genet. 1995;27:280–284. doi: 10.1007/BF00326161. [DOI] [PubMed] [Google Scholar]
  191. Vera A, Hirose T, Sugiura M. A ribosomal protein gene (rp132) from tobacco chloroplast DNA is transcribed from alternative promoters in non-photosynthetic plastids: Similar promoter region organization in plastid housekeeping genes. Mol. Gen. Genet. 1996;251:518–525. doi: 10.1007/BF02173640. [DOI] [PubMed] [Google Scholar]
  192. Visvader J.E, Symons R.H. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res. 1985;13:2907–2920. doi: 10.1093/nar/13.8.2907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Visvader J.E, Symons R.H. Replication of in vitro constructed viroid mutants: Location of the pathogenicity-modulating domain in citrus exocortis viroid. EMBO J. 1986;13:2051–2055. doi: 10.1002/j.1460-2075.1986.tb04465.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Wallace J.M. The sunblotch disease of avocados. J. Rio Grande Val. Hortic. Soc. 1958;12:67–74. [Google Scholar]
  195. Wallace J.M, Drake R.J. A high rate of seed transmission of avocado sunblotch virus from symptomless trees and the origin of such trees. Phytopathology. 1962;52:237–241. [Google Scholar]
  196. Whitsell R. Sunblotch disease of avocado. Calif Avocado Soc. Yearb. 1952;37:217–240. [Google Scholar]
  197. Woese C.R, Winker S, Gutell R.R. Vol. 87. 1990. Architecture of ribosomal RNA: Constraints on the sequence of tetraloops; pp. 8467–8471. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Woo Y.-M, Itaya A, Owens R.A, Tang L, Hammons R.W, Chou H.-C, Lai M.M.C, Ding B. Characterization of nuclear import of potato spindle tuber viroid RNA in permeabilized protoplasts. Plant J. 1999;17:627–635. [Google Scholar]
  199. Wu H.-N, Lin Y.-J, Lin F.-P, Makino S, Chang M.-F, Lai M.M.C. Vol. 86. 1989. Human hepatitis 8 virus RNA subfragments contain an autocleavage activity; pp. 1831–1835. (Proc. Natl. Acad. Sci. U.S.A.). [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Zaitlin M, Niblet C.L, Dickson E, Goldberg R.B. Tomato DNA contains no detectable regions complementary to potato spindle tuber viroid as assayed by solution and filter hybridization. Virology. 1980;104:1–9. doi: 10.1016/0042-6822(80)90361-x. [DOI] [PubMed] [Google Scholar]
  201. Zentmeyer G.A. Avocado diseases in Latin America. Plant Dis. Rep. 1959;43:1229–1230. [Google Scholar]
  202. Zhang Y, Epstein L.M. Cloning and characterization of extended hammerheads from a diverse set of caudate amphibians. Gene. 1996;172:183–190. doi: 10.1016/0378-1119(96)00126-6. [DOI] [PubMed] [Google Scholar]
  203. Zimmern D. Do viroids and RNA viruses derive from a system that exchanges genetic information between eukaryotic cells? Trends Biochem. Sci. 1982;7:205–207. [Google Scholar]
  204. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989;244:48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from Advances in Virus Research are provided here courtesy of Elsevier

RESOURCES