Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2004 May 12;183(2):731–738. doi: 10.1016/0042-6822(91)91002-X

Complementation and recombination between Alfalfa Mosaic Virus RNA3 mutants in tobacco plants

Antoinette C van der Kuyl 1, Lyda Neeleman 1, John F Bol 1,1
PMCID: PMC7173233  PMID: 1853571

Abstract

Deletions were made in an infectious cDNA clone of alfalfa mosaic virus (AIMV) RNA3 and the replication of RNA transcripts of these cDNAs was studied in tobacco plants transformed with AIMV replicase genes (P12 plants). Previously, we found that deletions in the P3 gene did not affect accumulation of RNA3 in P12 protoplasts whereas deletions in the coat protein (CP) gene reduced accumulation 100-fold (A. C. van der Kuyl, L. Neeleman, and J. F. Bol, 1991, Virology 183, 687–694). In P12 plants deletions in the P3 gene reduced accumulation by about 200-fold and accumulation of CP deletion mutants was not detectable. When P12 plants were inoculated with a mixture of P3- and CP-deletion mutants, both mutants replicated efficiently and various amounts of full-length RNA3 molecules were formed by recombination. The observation that some P3 and CP mutants did not recombine at a detectable level after several passages in P12 plants demonstrated that mutations in the AIMV P3 and CP genes can be complemented in trans.

References

  1. Allison R., Thompson C., Ahlquist P. Vol. 87. 1990. Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection; pp. 1820–1824. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beck D.L., Dawson W.O. Deletion of repeated sequences from tobacco mosaic virus mutants with two coat protein genes. Virology. 1990;177:462–469. doi: 10.1016/0042-6822(90)90510-x. [DOI] [PubMed] [Google Scholar]
  3. Bol J.F., Van Vloten-Doting L., Jaspars E.M.J. A functional equivalence of top component a RNA and coat protein in the initiation of infection by alfalfa mosaic virus. Virology. 1971;46:73–85. doi: 10.1016/0042-6822(71)90007-9. [DOI] [PubMed] [Google Scholar]
  4. Bujarski J.J., Kaesberg P. Genetic recombination between RNA components of a multipartite plant virus. Nature (London) 1986;321:528–531. doi: 10.1038/321528a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawson W.O., Bubrick P., Grantham G.L. Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology. 1988;78:783–789. [Google Scholar]
  6. Dawson W.O., Levandowsky D.J., Hilf M.E., Bubrick P., Raffo A.J., Shaw J.J., Grantham G.L., Desjardins P.R. A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology. 1989;172:285–292. doi: 10.1016/0042-6822(89)90130-x. [DOI] [PubMed] [Google Scholar]
  7. Deom C.M., Oliver M.J., Beachy R.N. The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science. 1987;237:389–394. doi: 10.1126/science.237.4813.389. [DOI] [PubMed] [Google Scholar]
  8. Dore J.-M., Van Dun C.M.P., Pinck L., Bol J.F. Alfalfa mosaic virus RNA3 mutants do not replicate in transgenic plants expressing RNA3-specific genes. J. Gen. Virol. 1991;72:253–258. doi: 10.1099/0022-1317-72-2-253. [DOI] [PubMed] [Google Scholar]
  9. Feinberg A.P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 1984;137:266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  10. French R., Ahlquist P. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3. J. Virol. 1987;61:1457–1465. doi: 10.1128/jvi.61.5.1457-1465.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrison B.D., Robinson D.J. The tobraviruses. Adv. Virus Res. 1978;23:25–77. doi: 10.1016/s0065-3527(08)60097-4. [DOI] [PubMed] [Google Scholar]
  12. Hull R. The movement of viruses in plants. Annu. Rev. Phytophatol. 1989;27:213–240. [Google Scholar]
  13. Keck J.G., Matsushima G.K., Makino S., Fleming J.O., Vannier D.M., Stohlman S.A., Lai M.M.C. In vivo RNA-RNA recombination of coronavirus in mouse brain. J. Virol. 1988;62:1810–1813. doi: 10.1128/jvi.62.5.1810-1813.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. King A.M.Q., McCahon D., Slade W.R., Newman J.W.I. Recombination in RNA. Cell. 1982;29:921–928. doi: 10.1016/0092-8674(82)90454-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lai M.M.C., Baric R.S., Makino S., Keck J.G., Egbert J., Leibowitz J.L., Stohlman S.A. Recombination between nonsegmental RNA genomes of murine coronaviruses. J. Virol. 1985;56:449–456. doi: 10.1128/jvi.56.2.449-456.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lehto K., Dawson W.O. Replication, stability, and gene expression of tobacco mosaic virus mutants with a second 30K ORF. Virology. 1990;175:30–40. doi: 10.1016/0042-6822(90)90183-r. [DOI] [PubMed] [Google Scholar]
  17. Meshi T., Watanabe Y., Saito T., Sugimoto A., Maeda T., Okada Y. Function of the 30 kD protein of tobacco mosaic virus: Involvement in cell-to-cell movement and dispensability for replication. EMBO J. 1987;6:2557–2563. doi: 10.1002/j.1460-2075.1987.tb02544.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neeleman L., Van Der Kuyl A.C., Bol J.F. Role of alfalfa mosaic virus coat protein gene in symptom formation. Virology. 1991;181:687–693. doi: 10.1016/0042-6822(91)90902-n. [DOI] [PubMed] [Google Scholar]
  19. Pacha R.F., Allison R.F., Ahlquist P. cis-Acting sequences required for in vivo amplification of genomic RNA3 are organized differently in related bromoviruses. Virology. 1990;174:436–443. doi: 10.1016/0042-6822(90)90097-b. [DOI] [PubMed] [Google Scholar]
  20. Petty I.T.D., Jackson A.O. Mutational analysis of barley stripe mosaic virus RNA β. Virology. 1990;179:712–718. doi: 10.1016/0042-6822(90)90138-h. [DOI] [PubMed] [Google Scholar]
  21. Quadt R., Rosdorff H.J.M., Hunt T.W., Jaspars E.M.J. Analysis of the protein composition of alfalfa mosaic virus RNA-dependent RNA polymerase. Virology. 1991;182:309–315. doi: 10.1016/0042-6822(91)90674-z. [DOI] [PubMed] [Google Scholar]
  22. Rao A.L.N., Hall T.C. Requirement for a viral trans-acting factor encoded by brome mosaic virus RNA-2 provides strong selection in vivo for functional recombinants. J. Virol. 1990;64:2437–2441. doi: 10.1128/jvi.64.5.2437-2441.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sacher R., Ahlquist P. Effects of deletions in the N-terminal basic arm of brome mosaic virus coat protein on RNA packaging and systemic infection. J. Virol. 1989;63:4545–4552. doi: 10.1128/jvi.63.11.4545-4552.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saito T., Yamanaka K., Okada Y. Long-distance movement and viral assembly of tobacco mosaic virus mutants. Virology. 1990;176:329–336. doi: 10.1016/0042-6822(90)90002-9. [DOI] [PubMed] [Google Scholar]
  25. Shanks M., Tomenius K., Clapham D., Huskisson N.S., Barker P.J., Wilson I.G., Maule A.J., Lomonossoff G.P. Identification and subcellular localization of a putative cell-to-cell transport protein from red clover mottle virus. Virology. 1989;173:400–407. doi: 10.1016/0042-6822(89)90552-7. [DOI] [PubMed] [Google Scholar]
  26. Stussi-Garaud C., Garaud J.-C., Berna A., Godefroy-Colburn T. In situ location of an alfalfa mosaic virus non-structural protein in plant cell walls: correlation with virus transport. J. Gen. Virol. 1987;68:1779–1784. [Google Scholar]
  27. Taschner P.E.M., Van Der Kuyl A.C., Neeleman L., Bol J.F. Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology. 1991;181:445–450. doi: 10.1016/0042-6822(91)90876-d. [DOI] [PubMed] [Google Scholar]
  28. Towbin H., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van Der Kuyl A.C., Neeleman L., Bol J.F. Deletion analysis of cis- and trans-acting elements involved in replication of alfalfa mosaic virus RNA3 in vivo. Virology. 1991;183:687–694. doi: 10.1016/0042-6822(91)90997-p. [DOI] [PubMed] [Google Scholar]
  30. Van Dun C.M.p., Bol J.F., Van Vloten-Doting L. Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants. Virology. 1987;159:299–305. doi: 10.1016/0042-6822(87)90467-3. [DOI] [PubMed] [Google Scholar]
  31. Van Dun C.M.P., Van Vloten-Doting L., Bol J.F. Expression of alfalfa mosaic virus cDNA 1 and 2 in transgenic tobacco plants. Virology. 1988;163:572–578. doi: 10.1016/0042-6822(88)90298-x. [DOI] [PubMed] [Google Scholar]
  32. Van Lent J., Wellink J., Goldbach R. Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of cowpea mosaic virus. J. Gen. Virol. 1990;71:219–223. [Google Scholar]
  33. Van Vloten-Doting L., Jaspars E.M.J. The uncoating of alfalfa mosaic virus by its own RNA. Virology. 1972;48:699–708. doi: 10.1016/0042-6822(72)90154-7. [DOI] [PubMed] [Google Scholar]
  34. Wellink J., Van Kammen A. Cell-to-cell transport of cowpea mosaic virus requires both the 58K/48K proteins and capsid proteins. J. Gen. Virol. 1989;70:2279–2286. [Google Scholar]
  35. Wolf S., Deom C.M., Beachy R.N., Lucas W.J. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989;246:377–379. doi: 10.1126/science.246.4928.377. [DOI] [PubMed] [Google Scholar]

Articles from Virology are provided here courtesy of Elsevier

RESOURCES