Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2020 Jul 24;63(8):1025–1053. [Article in German] doi: 10.1007/s00103-020-03183-y

Wissenschaftliche Erläuterungen zur Stellungnahme Transfusionsassoziierte Immunmodulation (TRIM) des Arbeitskreises Blut vom 13. Februar 2020

Bei der 88. Sitzung des Arbeitskreises Blut am 13. Februar 2020 wurde folgende Ergänzung zu Stellungnahme (S 22) verabschiedet

PMCID: PMC7384277  PMID: 32719887

The content is available as a PDF (414.7 KB).

Literatur

  • 1.Bernard AC, Davenport DL, Chang PK, Vaughan TB, Zwischenberger JB (2009) Intraoperative transfusion of 1 U to 2 U packed red blood cells is associated with increased 30-day mortality, surgical-site infection, pneumonia, and sepsis in general surgery patients. J Am Coll Surg 208:931–937 [DOI] [PubMed]
  • 2.Glance LG, Dick AW, Mukamel DB, Fleming FJ, Zollo RA, Wissler R, Salloum R, Meredith UW, Osler TM. Association between intraoperative blood transfusion and mortality and morbidity in patients undergoing noncardiac surgery. Anesthesiology. 2011;114:283–292. doi: 10.1097/ALN.0b013e3182054d06. [DOI] [PubMed] [Google Scholar]
  • 3.Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, Muszynski JA. Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion. 2018;58:804–815. doi: 10.1111/trf.14488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Youssef LA, Spitalnik SL. Transfusion-related immunomodulation: a reappraisal. Curr Opin Hematol. 2017;24:551–557. doi: 10.1097/MOH.0000000000000376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Baumgartner JM, Nydam TL, Clarke JH, Banerjee A, Silliman CC, McCarter MD. Red blood cell supernatant potentiates LPS-induced proinflammatory cytokine response from peripheral blood mononuclear cells. J Interferon Cytokine Res. 2009;29:333–338. doi: 10.1089/jir.2008.0072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hart S, Cserti-Gazdewich CM, McCluskey SA. Red cell transfusion and the immune system. Anaesthesia. 2015;70(Suppl 1: 38–45):e13–36. doi: 10.1111/anae.12892. [DOI] [PubMed] [Google Scholar]
  • 7.Sparrow RL. Red blood cell storage and transfusion-related immunomodulation. Blood Transfus. 2010;8(Suppl 3):s26–30. doi: 10.2450/2010.005S. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Baumgartner JM, Silliman CC, Moore EE, Banerjee A, McCarter MD. Stored red blood cell transfusion induces regulatory T cells. J Am Coll Surg. 2009;208:110–119. doi: 10.1016/j.jamcollsurg.2008.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Anniss AM, Sparrow RL. Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions. Transfusion. 2006;46:1561–1567. doi: 10.1111/j.1537-2995.2006.00944.x. [DOI] [PubMed] [Google Scholar]
  • 10.Sparrow RL, Healey G, Patton KA, Veale MF. Red blood cell age determines the impact of storage and leukocyte burden on cell adhesion molecules, glycophorin A and the release of annexin V. Transfus Apher Sci. 2006;34:15–23. doi: 10.1016/j.transci.2005.09.006. [DOI] [PubMed] [Google Scholar]
  • 11.Muszynski JA, Spinella PC, Cholette JM, Acker JP, Hall MW, Juffermans NP, Kelly DP, Blumberg N, Nicol K, Liedel J, Doctor A, Remy KE, Tucci M, Lacroix J, Norris PJ. Transfusion-related immunomodulation: review of the literature and implications for pediatric critical illness. Transfusion. 2017;57:195–206. doi: 10.1111/trf.13855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O’Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW, Jr., Zaza S. Grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490. doi: 10.1136/bmj.328.7454.1490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Stang A. Randomized controlled trials—an indispensible part of clinical research. Dtsch Arztebl Int. 2011;108:661–662. doi: 10.3238/arztebl.2011.0661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hrobjartsson A, Emanuelsson F, Skou Thomsen AS, Hilden J, Brorson S. Bias due to lack of patient blinding in clinical trials. A systematic review of trials randomizing patients to blind and nonblind sub-studies. Int J Epidemiol. 2014;43:1272–1283. doi: 10.1093/ije/dyu115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hrobjartsson A, Thomsen AS, Emanuelsson F, Tendal B, Hilden J, Boutron I, Ravaud P, Brorson S. Observer bias in randomised clinical trials with binary outcomes: systematic review of trials with both blinded and non-blinded outcome assessors. BMJ. 2012;344:e1119. doi: 10.1136/bmj.e1119. [DOI] [PubMed] [Google Scholar]
  • 16.Sedgwick P. Intention to treat analysis versus per protocol analysis of trial data. BMJ. 2015;350:h681. doi: 10.1136/bmj.h681. [DOI] [PubMed] [Google Scholar]
  • 17.Schulz KF, Grimes DA. Multiplicity in randomised trials I: endpoints and treatments. Lancet. 2005;365:1591–1595. doi: 10.1016/S0140-6736(05)66461-6. [DOI] [PubMed] [Google Scholar]
  • 18.Schulz KF, Grimes DA. Multiplicity in randomised trials II: subgroup and interim analyses. Lancet. 2005;365:1657–1661. doi: 10.1016/S0140-6736(05)66516-6. [DOI] [PubMed] [Google Scholar]
  • 19.Assmann SF, Pocock SJ, Enos LE, Kasten LE. Subgroup analysis and other (mis)uses of baseline data in clinical trials. Lancet. 2000;355:1064–1069. doi: 10.1016/S0140-6736(00)02039-0. [DOI] [PubMed] [Google Scholar]
  • 20.ISIS-Colaboration Group Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet. 1988;2:349–360. [PubMed] [Google Scholar]
  • 21.Chan AW, Hrobjartsson A, Haahr MT, Gotzsche PC, Altman DG. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA. 2004;291:2457–2465. doi: 10.1001/jama.291.20.2457. [DOI] [PubMed] [Google Scholar]
  • 22.Middelburg RA, van de Watering LM, van der Bom JG. Blood transfusions: good or bad? Confounding by indication, an underestimated problem in clinical transfusion research. Transfusion. 2010;50:1181–1183. doi: 10.1111/j.1537-2995.2010.02675.x. [DOI] [PubMed] [Google Scholar]
  • 23.Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000;342:1887–1892. doi: 10.1056/NEJM200006223422507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Anglemyer A, Horvath HT, Bero L (2014) Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database Syst Rev .10.1002/14651858.MR000034.pub2 [DOI] [PMC free article] [PubMed]
  • 25.Jick H, Garcia Rodriguez LA, Perez-Gutthann S. Principles of epidemiological research on adverse and beneficial drug effects. Lancet. 1998;352:1767–1770. doi: 10.1016/S0140-6736(98)04350-5. [DOI] [PubMed] [Google Scholar]
  • 26.Feinstein AR. Meta-analysis: statistical alchemy for the 21st century. J Clin Epidemiol. 1995;48:71–79. doi: 10.1016/0895-4356(94)00110-C. [DOI] [PubMed] [Google Scholar]
  • 27.Stegenga J. Is meta-analysis the platinum standard of evidence? Stud Hist Philos Biol Biomed Sci. 2011;42:497–507. doi: 10.1016/j.shpsc.2011.07.003. [DOI] [PubMed] [Google Scholar]
  • 28.Kjaergard LL, Villumsen J, Gluud C. Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med. 2001;135:982–989. doi: 10.7326/0003-4819-135-11-200112040-00010. [DOI] [PubMed] [Google Scholar]
  • 29.LeLorier J, Gregoire G, Benhaddad A, Lapierre J, Derderian F. Discrepancies between meta-analyses and subsequent large randomized, controlled trials. N Engl J Med. 1997;337:536–542. doi: 10.1056/NEJM199708213370806. [DOI] [PubMed] [Google Scholar]
  • 30.Cochrane Collaboration: Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration and John Wiley & Sons Ltd; 2008.
  • 31.Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. doi: 10.1136/bmj.b2700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Greco T, Zangrillo A, Biondi-Zoccai G, Landoni G. Meta-analysis: pitfalls and hints. Heart Lung Vessel. 2013;5:219–225. [PMC free article] [PubMed] [Google Scholar]
  • 33.Walker E, Hernandez AV, Kattan MW. Meta-analysis: Its strengths and limitations. Cleve Clin J Med. 2008;75:431–439. doi: 10.3949/ccjm.75.6.431. [DOI] [PubMed] [Google Scholar]
  • 34.Ioannidis JPA. The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. Milbank Q. 2016;94:485–514. doi: 10.1111/1468-0009.12210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research. Lancet. 1991;337:867–872. doi: 10.1016/0140-6736(91)90201-Y. [DOI] [PubMed] [Google Scholar]
  • 36.Turner RM, Bird SM, Higgins JP. The impact of study size on meta-analyses: examination of underpowered studies in Cochrane reviews. Plos One. 2013;8:e59202. doi: 10.1371/journal.pone.0059202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Sedgwick P. Meta-analyses: what is heterogeneity? BMJ. 2015;350:h1435. doi: 10.1136/bmj.h1435. [DOI] [PubMed] [Google Scholar]
  • 38.Weed DL. Interpreting epidemiological evidence: how meta-analysis and causal inference methods are related. Int J Epidemiol. 2000;29:387–390. doi: 10.1093/ije/29.3.387. [DOI] [PubMed] [Google Scholar]
  • 39.Hill AB. The environment and disease: Association or causation? Proc R Soc Med. 1965;58:295–300. doi: 10.1177/003591576505800503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sparrow RL. Red blood cell components: time to revisit the sources of variability. Blood Transfus. 2017;15:116–125. doi: 10.2450/2017.0326-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Musallam KM, Tamim HM, Richards T, Spahn DR, Rosendaal FR, Habbal A, Khreiss M, Dahdaleh FS, Khavandi K, Sfeir PM, Soweid A, Hoballah JJ, Taher AT, Jamali FR. Preoperative anaemia and postoperative outcomes in non-cardiac surgery: a retrospective cohort study. Lancet. 2011;378:1396–1407. doi: 10.1016/S0140-6736(11)61381-0. [DOI] [PubMed] [Google Scholar]
  • 42.Richards T, Musallam KM, Nassif J, Ghazeeri G, Seoud M, Gurusamy KS, Jamali FR. Impact of Preoperative Anaemia and Blood Transfusion on Postoperative Outcomes in Gynaecological Surgery. Plos One. 2015;10:e0130861. doi: 10.1371/journal.pone.0130861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Izaks GJ, Westendorp RG, Knook DL. The definition of anemia in older persons. JAMA. 1999;281:1714–1717. doi: 10.1001/jama.281.18.1714. [DOI] [PubMed] [Google Scholar]
  • 44.Martinsson A, Andersson C, Andell P, Koul S, Engstrom G, Smith JG. Anemia in the general population: prevalence, clinical correlates and prognostic impact. Eur J Epidemiol. 2014;29:489–498. doi: 10.1007/s10654-014-9929-9. [DOI] [PubMed] [Google Scholar]
  • 45.Toft-Petersen AP, Torp-Pedersen C, Weinreich UM, Rasmussen BS. Association between hemoglobin and prognosis in patients admitted to hospital for COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2813–2820. doi: 10.2147/COPD.S116269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Holst LB, Petersen MW, Haase N, Perner A, Wetterslev J. Restrictive versus liberal transfusion strategy for red blood cell transfusion: systematic review of randomised trials with meta-analysis and trial sequential analysis. BMJ. 2015;350:h1354. doi: 10.1136/bmj.h1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Gregersen M (2016) Postoperative red blood cell transfusion strategy in frail anemic elderly with hip fracture. A randomized controlled trial. Dan Med J 63:B5221 [PubMed]
  • 48.Gregersen M, Damsgaard EM, Borris LC. Blood transfusion and risk of infection in frail elderly after hip fracture surgery: the TRIFE randomized controlled trial. Eur J Orthop Surg Traumatol. 2015;25:1031–1038. doi: 10.1007/s00590-015-1609-2. [DOI] [PubMed] [Google Scholar]
  • 49.Vandenbroucke JP. Observational research, randomised trials, and two views of medical science. PLoS Med. 2008;5:e67. doi: 10.1371/journal.pmed.0050067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Kuss O, Blettner M, Borgermann J. Propensity Score: an Alternative Method of Analyzing Treatment Effects. Dtsch Arztebl Int. 2016;113:597–603. doi: 10.3238/arztebl.2016.0597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Ziemann M, Rink L, Frietsch T, Spannagl M. Schuler: Immunmodulation durch Transfusion von Erythrozytenkonzentraten. Transfusionsmedizin. 2017;7:40–58. doi: 10.1055/s-0042-123247. [DOI] [Google Scholar]
  • 52.Glance LG, Mukamel DB, Blumberg N, Fleming FJ, Hohmann SF, Dick AW. Association between surgical resident involvement and blood use in noncardiac surgery. Transfusion. 2014;54:691–700. doi: 10.1111/trf.12350. [DOI] [PubMed] [Google Scholar]
  • 53.Petersen ML, van der Laan MJ. Causal models and learning from data: integrating causal modeling and statistical estimation. Epidemiology. 2014;25:418–426. doi: 10.1097/EDE.0000000000000078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009;20:488–495. doi: 10.1097/EDE.0b013e3181a819a1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Holm C, Thomsen LL, Norgaard A, Langhoff-Roos J. Single-dose intravenous iron infusion versus red blood cell transfusion for the treatment of severe postpartum anaemia: a randomized controlled pilot study. Vox Sang. 2017;112:122–131. doi: 10.1111/vox.12475. [DOI] [PubMed] [Google Scholar]
  • 56.Prick BW, Jansen AJ, Steegers EA, Hop WC, Essink-Bot ML, Uyl-de Groot CA, Akerboom BM, van Alphen M, Bloemenkamp KW, Boers KE, Bremer HA, Kwee A, van Loon AJ, Metz GC, Papatsonis DN, van der Post JA, Porath MM, Rijnders RJ, Roumen FJ, Scheepers HC, Schippers DH, Schuitemaker NW, Stigter RH, Woiski MD, Mol BW, van Rhenen DJ, Duvekot JJ. Transfusion policy after severe postpartum haemorrhage: a randomised non-inferiority trial. Bjog. 2014;121:1005–1014. doi: 10.1111/1471-0528.12531. [DOI] [PubMed] [Google Scholar]
  • 57.Carson JL, Terrin ML, Noveck H, Sanders DW, Chaitman BR, Rhoads GG, Nemo G, Dragert K, Beaupre L, Hildebrand K, Macaulay W, Lewis C, Cook DR, Dobbin G, Zakriya KJ, Apple FS, Horney RA, Magaziner J. Liberal or restrictive transfusion in high-risk patients after hip surgery. N Engl J Med. 2011;365:2453–2462. doi: 10.1056/NEJMoa1012452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Carson JL, Sieber F, Cook DR, Hoover DR, Noveck H, Chaitman BR, Fleisher L, Beaupre L, Macaulay W, Rhoads GG, Paris B, Zagorin A, Sanders DW, Zakriya KJ, Magaziner J. Liberal versus restrictive blood transfusion strategy: 3-year survival and cause of death results from the FOCUS randomised controlled trial. Lancet. 2015;385:1183–1189. doi: 10.1016/S0140-6736(14)62286-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Parker MJ. Randomised trial of blood transfusion versus a restrictive transfusion policy after hip fracture surgery. Injury. 2013;44:1916–1918. doi: 10.1016/j.injury.2013.04.033. [DOI] [PubMed] [Google Scholar]
  • 60.Gregersen M, Borris LC, Damsgaard EM. Blood transfusion and overall quality of life after hip fracture in frail elderly patients—the transfusion requirements in frail elderly randomized controlled trial. J Am Med Dir Assoc. 2015;16:762–766. doi: 10.1016/j.jamda.2015.03.022. [DOI] [PubMed] [Google Scholar]
  • 61.Gregersen M, Borris LC, Damsgaard EM. Postoperative blood transfusion strategy in frail, anemic elderly patients with hip fracture: the TRIFE randomized controlled trial. Acta Orthop. 2015;86:363–372. doi: 10.3109/17453674.2015.1006980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Blandfort S, Gregersen M, Borris LC, Damsgaard EM. Blood transfusion strategy and risk of postoperative delirium in nursing homes residents with hip fracture. A post hoc analysis based on the TRIFE randomized controlled trial. Aging Clin Exp Res. 2017;29:459–466. doi: 10.1007/s40520-016-0587-5. [DOI] [PubMed] [Google Scholar]
  • 63.Grover M, Talwalkar S, Casbard A, Boralessa H, Contreras M, Boralessa H, Brett S, Goldhill DR, Soni N. Silent myocardial ischaemia and haemoglobin concentration: a randomized controlled trial of transfusion strategy in lower limb arthroplasty. Vox Sang. 2006;90:105–112. doi: 10.1111/j.1423-0410.2006.00730.x. [DOI] [PubMed] [Google Scholar]
  • 64.Nielsen K, Johansson PI, Dahl B, Wagner M, Frausing B, Borglum J, Jensen K, Sturup J, Hvolris J, Rasmussen LS. Perioperative transfusion threshold and ambulation after hip revision surgery—a randomized trial. BMC Anesthesiol. 2014;14:89. doi: 10.1186/1471-2253-14-89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Webert KE, Cook RJ, Couban S, Carruthers J, Lee KA, Blajchman MA, Lipton JH, Brandwein JM, Heddle NM. A multicenter pilot-randomized controlled trial of the feasibility of an augmented red blood cell transfusion strategy for patients treated with induction chemotherapy for acute leukemia or stem cell transplantation. Transfusion. 2008;48:81–91. doi: 10.1111/j.1537-2995.2007.01485.x. [DOI] [PubMed] [Google Scholar]
  • 66.Robitaille N, Lacroix J, Alexandrov L, Clayton L, Cortier M, Schultz KR, Bittencourt H, Duval M. Excess of veno-occlusive disease in a randomized clinical trial on a higher trigger for red blood cell transfusion after bone marrow transplantation: a canadian blood and marrow transplant group trial. Biol Blood Marrow Transplant. 2013;19:468–473. doi: 10.1016/j.bbmt.2012.12.002. [DOI] [PubMed] [Google Scholar]
  • 67.de Almeida JP, Vincent JL, Galas FR, de Almeida EP, Fukushima JT, Osawa EA, Bergamin F, Park CL, Nakamura RE, Fonseca SM, Cutait G, Alves JI, Bazan M, Vieira S, Sandrini AC, Palomba H, Ribeiro U, Jr., Crippa A, Dalloglio M, Diz Mdel P, Kalil Filho R, Auler JO, Jr., Rhodes A, Hajjar LA. Transfusion requirements in surgical oncology patients: a prospective, randomized controlled trial. Anesthesiology. 2015;122:29–38. doi: 10.1097/ALN.0000000000000511. [DOI] [PubMed] [Google Scholar]
  • 68.DeZern AE, Williams K, Zahurak M, Hand W, Stephens RS, King KE, Frank SM, Ness PM. Red blood cell transfusion triggers in acute leukemia: a randomized pilot study. Transfusion. 2016;56:1750–1757. doi: 10.1111/trf.13658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Bergamin FS, Almeida JP, Landoni G, Galas F, Fukushima JT, Fominskiy E, Park CHL, Osawa EA, Diz MPE, Oliveira GQ, Franco RA, Nakamura RE, Almeida EM, Abdala E, Freire MP, Filho RK, Auler JOC, Jr., Hajjar LA. Liberal Versus Restrictive Transfusion Strategy in Critically Ill Oncologic Patients: The Transfusion Requirements in Critically Ill Oncologic Patients Randomized Controlled Trial. Crit Care Med. 2017;45:766–773. doi: 10.1097/CCM.0000000000002283. [DOI] [PubMed] [Google Scholar]
  • 70.Yakymenko D, Frandsen KB, Christensen IJ, Norgaard A, Johansson PI, Daugaard G, Mau-Sorensen M. Randomised feasibility study of a more liberal haemoglobin trigger for red blood cell transfusion compared to standard practice in anaemic cancer patients treated with chemotherapy. Transfus Med. 2018;28:208–215. doi: 10.1111/tme.12439. [DOI] [PubMed] [Google Scholar]
  • 71.Naidech AM, Shaibani A, Garg RK, Duran IM, Liebling SM, Bassin SL, Bendok BR, Bernstein RA, Batjer HH, Alberts MJ. Prospective, randomized trial of higher goal hemoglobin after subarachnoid hemorrhage. Neurocrit Care. 2010;13:313–320. doi: 10.1007/s12028-010-9424-4. [DOI] [PubMed] [Google Scholar]
  • 72.Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC, Tilley BC, Baldwin A, Rivera LL, Saucedo-Crespo H, Ahmed O, Sadasivan S, Ponce L, Cruz-Navarro J, Shahin H, Aisiku IP, Doshi P, Valadka A, Neipert L, Waguspack JM, Rubin ML, Benoit JS, Swank P. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial. JAMA. 2014;312:36–47. doi: 10.1001/jama.2014.6490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Leal-Noval SR, Arellano-Orden V, Munoz-Gomez M, Cayuela A, Marin-Caballos A, Rincon-Ferrari MD, Garcia-Alfaro C, Amaya-Villar R, Casado-Mendez M, Dusseck R, Murillo-Cabezas F. Red Blood Cell Transfusion Guided by Near Infrared Spectroscopy in Neurocritically Ill Patients with Moderate or Severe Anemia: A Randomized, Controlled Trial. J Neurotrauma. 2017;34:2553–2559. doi: 10.1089/neu.2016.4794. [DOI] [PubMed] [Google Scholar]
  • 74.Villanueva C, Colomo A, Bosch A, Concepcion M, Hernandez-Gea V, Aracil C, Graupera I, Poca M, Alvarez-Urturi C, Gordillo J, Guarner-Argente C, Santalo M, Muniz E, Guarner C. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368:11–21. doi: 10.1056/NEJMoa1211801. [DOI] [PubMed] [Google Scholar]
  • 75.Jairath V, Kahan BC, Gray A, Dore CJ, Mora A, James MW, Stanley AJ, Everett SM, Bailey AA, Dallal H, Greenaway J, Le Jeune I, Darwent M, Church N, Reckless I, Hodge R, Dyer C, Meredith S, Llewelyn C, Palmer KR, Logan RF, Travis SP, Walsh TS, Murphy MF. Restrictive versus liberal blood transfusion for acute upper gastrointestinal bleeding (TRIGGER): a pragmatic, open-label, cluster randomised feasibility trial. Lancet. 2015;386:137–144. doi: 10.1016/S0140-6736(14)61999-1. [DOI] [PubMed] [Google Scholar]
  • 76.Shehata N, Burns LA, Nathan H, Hebert P, Hare GM, Fergusson D, Mazer CD. A randomized controlled pilot study of adherence to transfusion strategies in cardiac surgery. Transfusion. 2012;52:91–99. doi: 10.1111/j.1537-2995.2011.03236.x. [DOI] [PubMed] [Google Scholar]
  • 77.Murphy GJ, Pike K, Rogers CA, Wordsworth S, Stokes EA, Angelini GD, Reeves BC. Liberal or restrictive transfusion after cardiac surgery. N Engl J Med. 2015;372:997–1008. doi: 10.1056/NEJMoa1403612. [DOI] [PubMed] [Google Scholar]
  • 78.Mazer CD, Whitlock RP, Fergusson DA, Hall J, Belley-Cote E, Connolly K, Khanykin B, Gregory AJ, de Medicis E, McGuinness S, Royse A, Carrier FM, Young PJ, Villar JC, Grocott HP, Seeberger MD, Fremes S, Lellouche F, Syed S, Byrne K, Bagshaw SM, Hwang NC, Mehta C, Painter TW, Royse C, Verma S, Hare GMT, Cohen A, Thorpe KE, Juni P, Shehata N. Restrictive or Liberal Red-Cell Transfusion for Cardiac Surgery. N Engl J Med. 2017;377:2133–2144. doi: 10.1056/NEJMoa1711818. [DOI] [PubMed] [Google Scholar]
  • 79.Koch CG, Sessler DI, Mascha EJ, Sabik JF, 3rd, Li L, Duncan AI, Zimmerman NM, Blackstone EH. A Randomized Clinical Trial of Red Blood Cell Transfusion Triggers in Cardiac Surgery. Ann Thorac Surg. 2017;104:1243–1250. doi: 10.1016/j.athoracsur.2017.05.048. [DOI] [PubMed] [Google Scholar]
  • 80.Carson JL, Stanworth SJ, Alexander JH, Roubinian N, Fergusson DA, Triulzi DJ, Goodman SG, Rao SV, Doree C, Hebert PC. Clinical trials evaluating red blood cell transfusion thresholds: An updated systematic review and with additional focus on patients with cardiovascular disease. Am Heart J. 2018;200:96–101. doi: 10.1016/j.ahj.2018.04.007. [DOI] [PubMed] [Google Scholar]
  • 81.Chen QH, Wang HL, Liu L, Shao J, Yu J, Zheng RQ. Effects of restrictive red blood cell transfusion on the prognoses of adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care. 2018;22:142. doi: 10.1186/s13054-018-2062-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Laine A, Niemi T, Schramko A. Transfusion Threshold of Hemoglobin 80 g/L Is Comparable to 100 g/L in Terms of Bleeding in Cardiac Surgery: A Prospective Randomized Study. J Cardiothorac Vasc Anesth. 2018;32:131–139. doi: 10.1053/j.jvca.2017.08.039. [DOI] [PubMed] [Google Scholar]
  • 83.Cooper HA, Rao SV, Greenberg MD, Rumsey MP, McKenzie M, Alcorn KW, Panza JA. Conservative versus liberal red cell transfusion in acute myocardial infarction (the CRIT Randomized Pilot Study) Am J Cardiol. 2011;108:1108–1111. doi: 10.1016/j.amjcard.2011.06.014. [DOI] [PubMed] [Google Scholar]
  • 84.Carson JL, Brooks MM, Abbott JD, Chaitman B, Kelsey SF, Triulzi DJ, Srinivas V, Menegus MA, Marroquin OC, Rao SV, Noveck H, Passano E, Hardison RM, Smitherman T, Vagaonescu T, Wimmer NJ, Williams DO. Liberal versus restrictive transfusion thresholds for patients with symptomatic coronary artery disease. Am Heart J. 2013;165(61):964–971.e9. doi: 10.1016/j.ahj.2013.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Walsh TS, Boyd JA, Watson D, Hope D, Lewis S, Krishan A, Forbes JF, Ramsay P, Pearse R, Wallis C, Cairns C, Cole S, Wyncoll D. Restrictive versus liberal transfusion strategies for older mechanically ventilated critically ill patients: a randomized pilot trial. Crit Care Med. 2013;41:2354–2363. doi: 10.1097/CCM.0b013e318291cce4. [DOI] [PubMed] [Google Scholar]
  • 86.Holst LB, Haase N, Wetterslev J, Wernerman J, Guttormsen AB, Karlsson S, Johansson PI, Aneman A, Vang ML, Winding R, Nebrich L, Nibro HL, Rasmussen BS, Lauridsen JR, Nielsen JS, Oldner A, Pettila V, Cronhjort MB, Andersen LH, Pedersen UG, Reiter N, Wiis J, White JO, Russell L, Thornberg KJ, Hjortrup PB, Muller RG, Moller MH, Steensen M, Tjader I, Kilsand K, Odeberg-Wernerman S, Sjobo B, Bundgaard H, Thyo MA, Lodahl D, Maerkedahl R, Albeck C, Illum D, Kruse M, Winkel P, Perner A. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371:1381–1391. doi: 10.1056/NEJMoa1406617. [DOI] [PubMed] [Google Scholar]
  • 87.Palmieri TL, Holmes JHt AB, Peck M, Potenza B, Cochran A, King BT, Dominic W, Cartotto R, Bhavsar D, Kemalyan N, Tredget E, Stapelberg F, Mozingo D, Friedman B, Greenhalgh DG, Taylor SL, Pollock BH. Transfusion Requirement in Burn Care Evaluation (TRIBE): A Multicenter Randomized Prospective Trial of Blood Transfusion in Major Burn Injury. Ann Surg. 2017;266:595–602. doi: 10.1097/SLA.0000000000002408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Carson JL, Stanworth SJ, Roubinian N, Fergusson DA, Triulzi D, Doree C, Hebert PC. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst Rev. 2016;10:Cd002042. doi: 10.1002/14651858.CD002042.pub4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Rohde JM, Dimcheff DE, Blumberg N, Saint S, Langa KM, Kuhn L, Hickner A, Rogers MA. Health care-associated infection after red blood cell transfusion: a systematic review and meta-analysis. JAMA. 2014;311:1317–1326. doi: 10.1001/jama.2014.2726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.AlFaleh K, Al-Jebreen A, Baqays A, Al-Hallali A, Bedaiwi K, Al-Balahi N, AlGhamdi A, AlKharfi T, Alzahem A. Association of packed red blood cell transfusion and necrotizing enterocolitis in very low birth weight infants. J Neonatal Perinatal Med. 2014;7:193–198. doi: 10.3233/NPM-14814048. [DOI] [PubMed] [Google Scholar]
  • 91.Dame C, Sciesielski LK, Rau C, Badur CA, Buhrer C. The Erythropoietin Promoter Variant rs1617640 Is Not Associated with Severe Retinopathy of Prematurity, Independent of Treatment with Erythropoietin. J Pediatr. 2018;199:256–259. doi: 10.1016/j.jpeds.2018.03.014. [DOI] [PubMed] [Google Scholar]
  • 92.Gephart SM. Transfusion-associated necrotizing enterocolitis: evidence and uncertainty. Adv Neonatal Care. 2012;12:232–236. doi: 10.1097/ANC.0b013e31825e20ee. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Knee D, Knoop S, Davis AT, Rawson B, DiCarlo A, Olivero R. Outcomes after implementing restrictive blood transfusion criteria in extremely premature infants. J Perinatol. 2019;39:1089–1097. doi: 10.1038/s41372-019-0408-8. [DOI] [PubMed] [Google Scholar]
  • 94.Mohamed A, Shah PS. Transfusion associated necrotizing enterocolitis: a meta-analysis of observational data. Pediatrics. 2012;129:529–540. doi: 10.1542/peds.2011-2872. [DOI] [PubMed] [Google Scholar]
  • 95.Keir AK, Yang J, Harrison A, Pelausa E, Shah PS. Temporal changes in blood product usage in preterm neonates born at less than 30 weeks’ gestation in Canada. Transfusion. 2015;55:1340–1346. doi: 10.1111/trf.12998. [DOI] [PubMed] [Google Scholar]
  • 96.Keir A, Pal S, Trivella M, Lieberman L, Callum J, Shehata N, Stanworth SJ. Adverse effects of red blood cell transfusions in neonates: a systematic review and meta-analysis. Transfusion. 2016;56:2773–2780. doi: 10.1111/trf.13785. [DOI] [PubMed] [Google Scholar]
  • 97.Haiden N, Schwindt J, Cardona F, Berger A, Klebermass K, Wald M, Kohlhauser-Vollmuth C, Jilma B, Pollak A. Effects of a combined therapy of erythropoietin, iron, folate, and vitamin B12 on the transfusion requirements of extremely low birth weight infants. Pediatrics. 2006;118:2004–2013. doi: 10.1542/peds.2006-1113. [DOI] [PubMed] [Google Scholar]
  • 98.Fergusson DA, Hebert P, Hogan DL, LeBel L, Rouvinez-Bouali N, Smyth JA, Sankaran K, Tinmouth A, Blajchman MA, Kovacs L, Lachance C, Lee S, Walker CR, Hutton B, Ducharme R, Balchin K, Ramsay T, Ford JC, Kakadekar A, Ramesh K, Shapiro S. Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial. JAMA. 2012;308:1443–1451. doi: 10.1001/2012.jama.11953. [DOI] [PubMed] [Google Scholar]
  • 99.Goodman AM, Pollack MM, Patel KM, Luban NL. Pediatric red blood cell transfusions increase resource use. J Pediatr. 2003;142:123–127. doi: 10.1067/mpd.2003.14. [DOI] [PubMed] [Google Scholar]
  • 100.Kneyber MC, Grotenhuis F, Berger RF, Ebels TW, Burgerhof JG, Albers MJ. Transfusion of leukocyte-depleted RBCs is independently associated with increased morbidity after pediatric cardiac surgery. Pediatr Crit Care Med. 2013;14:298–305. doi: 10.1097/PCC.0b013e3182745472. [DOI] [PubMed] [Google Scholar]
  • 101.Lacroix J, Hebert PC, Hutchison JS, Hume HA, Tucci M, Ducruet T, Gauvin F, Collet JP, Toledano BJ, Robillard P, Joffe A, Biarent D, Meert K, Peters MJ. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356:1609–1619. doi: 10.1056/NEJMoa066240. [DOI] [PubMed] [Google Scholar]
  • 102.Cholette JM, Rubenstein JS, Alfieris GM, Powers KS, Eaton M, Lerner NB. Children with single-ventricle physiology do not benefit from higher hemoglobin levels post cavopulmonary connection: results of a prospective, randomized, controlled trial of a restrictive versus liberal red-cell transfusion strategy. Pediatr Crit Care Med. 2011;12:39–45. doi: 10.1097/PCC.0b013e3181e329db. [DOI] [PubMed] [Google Scholar]
  • 103.de Gast-Bakker DH, de Wilde RB, Hazekamp MG, Sojak V, Zwaginga JJ, Wolterbeek R, de Jonge E. Gesink-van der Veer BJ: Safety and effects of two red blood cell transfusion strategies in pediatric cardiac surgery patients: a randomized controlled trial. Intensive Care Med. 2013;39:2011–2019. doi: 10.1007/s00134-013-3085-7. [DOI] [PubMed] [Google Scholar]
  • 104.Cholette JM, Swartz MF, Rubenstein J, Henrichs KF, Wang H, Powers KS, Daugherty LE, Alfieris GM, Gensini F, Blumberg N. Outcomes Using a Conservative Versus Liberal Red Blood Cell Transfusion Strategy in Infants Requiring Cardiac Operation. Ann Thorac Surg. 2017;103:206–214. doi: 10.1016/j.athoracsur.2016.05.049. [DOI] [PubMed] [Google Scholar]
  • 105.Dhabangi A, Ainomugisha B, Cserti-Gazdewich C, Ddungu H, Kyeyune D, Musisi E, Opoka R, Stowell CP, Dzik WH. Effect of Transfusion of Red Blood Cells With Longer vs Shorter Storage Duration on Elevated Blood Lactate Levels in Children With Severe Anemia: The TOTAL Randomized Clinical Trial. JAMA. 2015;314:2514–2523. doi: 10.1001/jama.2015.13977. [DOI] [PubMed] [Google Scholar]
  • 106.Spinella PC, Tucci M, Fergusson DA, Lacroix J, Hebert PC, Leteurtre S, Schechtman KB, Doctor A, Berg RA, Bockelmann T, Caro JJ, Chiusolo F, Clayton L, Cholette JM, Guerra GG, Josephson CD, Menon K, Muszynski JA, Nellis ME, Sarpal A, Schafer S, Steiner ME, Turgeon AF. Effect of Fresh vs Standard-issue Red Blood Cell Transfusions on Multiple Organ Dysfunction Syndrome in Critically Ill Pediatric Patients: A Randomized Clinical Trial. JAMA. 2019;322:2179–2190. doi: 10.1001/jama.2019.17478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J. 1957;1:779–786. doi: 10.1136/bmj.1.5022.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957;18:769–778. [PubMed] [Google Scholar]
  • 109.Jonkman-Berk BM, van den Berg JM, Ten Berge IJ, Bredius RG, Driessen GJ, Dalm VA, van Dissel JT, van Deuren M, Ellerbroek PM, van der Flier M, van Hagen PM, van Montfrans JM, Rutgers A, Scholvinck EH, de Vries E, van Beem RT, Kuijpers TW. Primary immunodeficiencies in the Netherlands: national patient data demonstrate the increased risk of malignancy. Clin Immunol. 2015;156:154–162. doi: 10.1016/j.clim.2014.10.003. [DOI] [PubMed] [Google Scholar]
  • 110.Kinlen LJ. Incidence of cancer in rheumatoid arthritis and other disorders after immunosuppressive treatment. Am J Med. 1985;78:44–49. doi: 10.1016/0002-9343(85)90245-1. [DOI] [PubMed] [Google Scholar]
  • 111.Mayor PC, Eng KH, Singel KL, Abrams SI, Odunsi K, Moysich KB, Fuleihan R, Garabedian E, Lugar P, Ochs HD, Bonilla FA, Buckley RH, Sullivan KE, Ballas ZK, Cunningham-Rundles C, Segal BH. Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry. J Allergy Clin Immunol. 2018;141:1028–1035. doi: 10.1016/j.jaci.2017.05.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Opelz G, Terasaki PI. Poor kidney-transplant survival in recipients with frozen-blood transfusions or no transfusions. Lancet. 1974;2:696–698. doi: 10.1016/S0140-6736(74)93268-1. [DOI] [PubMed] [Google Scholar]
  • 113.Opelz G, Terasaki PI. Dominant effect of transfusions on kidney graft survival. Transplantation. 1980;29:153–158. doi: 10.1097/00007890-198002000-00013. [DOI] [PubMed] [Google Scholar]
  • 114.Gantt CL. Red blood cells for cancer patients. Lancet. 1981;2:363. doi: 10.1016/S0140-6736(81)90673-5. [DOI] [PubMed] [Google Scholar]
  • 115.Bordin JO, Bardossy L, Blajchman MA. Growth enhancement of established tumors by allogeneic blood transfusion in experimental animals and its amelioration by leukodepletion: the importance of the timing of the leukodepletion. Blood. 1994;84:344–348. doi: 10.1182/blood.V84.1.344.344. [DOI] [PubMed] [Google Scholar]
  • 116.Goubran H, Sheridan D, Radosevic J, Burnouf T, Seghatchian J. Transfusion-related immunomodulation and cancer. Transfus Apher Sci. 2017;56:336–340. doi: 10.1016/j.transci.2017.05.019. [DOI] [PubMed] [Google Scholar]
  • 117.Madeddu C, Gramignano G, Astara G, Demontis R, Sanna E, Atzeni V, Maccio A. Pathogenesis and Treatment Options of Cancer Related Anemia: Perspective for a Targeted Mechanism-Based Approach. Front Physiol. 2018;9:1294. doi: 10.3389/fphys.2018.01294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Ludwig H, Van Belle S, Barrett-Lee P, Birgegard G, Bokemeyer C, Gascon P, Kosmidis P, Krzakowski M, Nortier J, Olmi P, Schneider M, Schrijvers D. The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. Eur J Cancer. 2004;40:2293–2306. doi: 10.1016/j.ejca.2004.06.019. [DOI] [PubMed] [Google Scholar]
  • 119.Edgren G, Bagnardi V, Bellocco R, Hjalgrim H, Rostgaard K, Melbye M, Reilly M, Adami HO, Hall P, Nyren O. Pattern of declining hemoglobin concentration before cancer diagnosis. Int J Cancer. 2010;127:1429–1436. doi: 10.1002/ijc.25122. [DOI] [PubMed] [Google Scholar]
  • 120.Riedl R, Engels EA, Warren JL, Berghold A, Ricker W, Pfeiffer RM. Blood transfusions and the subsequent risk of cancers in the United States elderly. Transfusion. 2013;53:2198–2206. doi: 10.1111/trf.12071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Hjalgrim H, Edgren G, Rostgaard K, Reilly M, Tran TN, Titlestad KE, Shanwell A, Jersild C, Adami J, Wikman A, Gridley G, Wideroff L, Nyren O, Melbye M. Cancer incidence in blood transfusion recipients. J Natl Cancer Inst. 2007;99:1864–1874. doi: 10.1093/jnci/djm248. [DOI] [PubMed] [Google Scholar]
  • 122.Yang TO, Cairns BJ, Reeves GK, Green J, Beral V. Cancer risk among 21st century blood transfusion recipients. Ann Oncol. 2017;28:393–399. doi: 10.1093/annonc/mdw555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Cerhan JR, Wallace RB, Folsom AR, Potter JD, Munger RG, Prineas RJ. Transfusion history and cancer risk in older women. Ann Intern Med. 1993;119:8–15. doi: 10.7326/0003-4819-119-1-199307010-00002. [DOI] [PubMed] [Google Scholar]
  • 124.Fujino Y, Tamakoshi A, Hoshiyama Y, Mikami H, Okamoto N, Ohno Y, Yoshimura T. Prospective study of transfusion history and thyroid cancer incidence among females in Japan. Int J Cancer. 2004;112:722–725. doi: 10.1002/ijc.20440. [DOI] [PubMed] [Google Scholar]
  • 125.Chang CM, Quinlan SC, Warren JL, Engels EA. Blood transfusions and the subsequent risk of hematologic malignancies. Transfusion. 2010;50:2249–2257. doi: 10.1111/j.1537-2995.2010.02692.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Blomberg J, Moller T, Olsson H, Anderson H, Jonsson M. Cancer morbidity in blood recipients—results of a cohort study. Eur J Cancer. 1993;29a:2101–2105. doi: 10.1016/0959-8049(93)90042-E. [DOI] [PubMed] [Google Scholar]
  • 127.Inoue Y, Wada Y, Motohashi Y, Koizumi A. History of blood transfusion before 1990 is associated with increased risk for cancer mortality independently of liver disease: a prospective long-term follow-up study. Environ Health Prev Med. 2010;15:180–187. doi: 10.1007/s12199-009-0125-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Castillo JJ, Dalia S, Pascual SK. Association between red blood cell transfusions and development of non-Hodgkin lymphoma: a meta-analysis of observational studies. Blood. 2010;116:2897–2907. doi: 10.1182/blood-2010-03-276683. [DOI] [PubMed] [Google Scholar]
  • 129.Morton LM, Slager SL, Cerhan JR, Wang SS, Vajdic CM, Skibola CF, Bracci PM, de Sanjose S, Smedby KE, Chiu BC, Zhang Y, Mbulaiteye SM, Monnereau A, Turner JJ, Clavel J, Adami HO, Chang ET, Glimelius B, Hjalgrim H, Melbye M, Crosignani P, di Lollo S, Miligi L, Nanni O, Ramazzotti V, Rodella S, Costantini AS, Stagnaro E, Tumino R, Vindigni C, Vineis P, Becker N, Benavente Y, Boffetta P, Brennan P, Cocco P, Foretova L, Maynadie M, Nieters A, Staines A, Colt JS, Cozen W, Davis S, de Roos AJ, Hartge P, Rothman N, Severson RK, Holly EA, Call TG, Feldman AL, Habermann TM, Liebow M, Blair A, Cantor KP, Kane EV, Lightfoot T, Roman E, Smith A, Brooks-Wilson A, Connors JM, Gascoyne RD, Spinelli JJ, Armstrong BK, Kricker A, Holford TR, Lan Q, Zheng T, Orsi L, Dal Maso L, Franceschi S, La Vecchia C, Negri E, Serraino D, Bernstein L, Levine A, Friedberg JW, Kelly JL, Berndt SI, Birmann BM, Clarke CA, Flowers CR, Foran JM, Kadin ME, Paltiel O, Weisenburger DD, Linet MS, Sampson JN (2014) Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr 48:130–144 [DOI] [PMC free article] [PubMed]
  • 130.Memon A, Doll R. A search for unknown blood-borne oncogenic viruses. Int J Cancer. 1994;58:366–368. doi: 10.1002/ijc.2910580310. [DOI] [PubMed] [Google Scholar]
  • 131.Anderson H, Brandt L, Ericson A, Olsson H, Moller T. Blood transfusion at delivery and risk of subsequent malignant lymphoma in the mother. Vox Sang. 1998;75:145–148. doi: 10.1046/j.1423-0410.1998.7520145.x. [DOI] [PubMed] [Google Scholar]
  • 132.Skanberg J, Frisk B. Blood transfusion does not influence the development of malignant tumours. Eur J Surg. 1999;165:528–534. doi: 10.1080/110241599750006406. [DOI] [PubMed] [Google Scholar]
  • 133.Waymack JP, Chance WT. Effect of blood transfusions on immune function: IV. Effect on tumor growth. J Surg Oncol. 1988;39:159–164. doi: 10.1002/jso.2930390305. [DOI] [PubMed] [Google Scholar]
  • 134.Busch OR, Hop WC, Hoynck van Papendrecht MA, Marquet RL, Jeekel J. Blood transfusions and prognosis in colorectal cancer. N Engl J Med. 1993;328:1372–1376. doi: 10.1056/NEJM199305133281902. [DOI] [PubMed] [Google Scholar]
  • 135.Heiss MM, Mempel W, Delanoff C, Jauch KW, Gabka C, Mempel M, Dieterich HJ, Eissner HJ, Schildberg FW. Blood transfusion-modulated tumor recurrence: first results of a randomized study of autologous versus allogeneic blood transfusion in colorectal cancer surgery. J Clin Oncol. 1994;12:1859–1867. doi: 10.1200/JCO.1994.12.9.1859. [DOI] [PubMed] [Google Scholar]
  • 136.Harlaar JJ, Gosselink MP, Hop WC, Lange JF, Busch OR, Jeekel H: Blood transfusions and prognosis in colorectal cancer: long-term results of a randomized controlled trial. Ann Surg 2012; 256: 681–686; discussion 686–687. [DOI] [PubMed]
  • 137.Cao L, Selby LV, Hu X, Zhang Y, Janjigian YY, Tang L, Coit DG, Brennan MF, Strong VE. Risk factors for recurrence in T1-2N0 gastric cancer in the United States and China. J Surg Oncol. 2016;113:745–749. doi: 10.1002/jso.24228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Donohue JH, Williams S, Cha S, Windschitl HE, Witzig TE, Nelson H, Fitzgibbons RJ, Jr., Wieand HS, Moertel CG. Perioperative blood transfusions do not affect disease recurrence of patients undergoing curative resection of colorectal carcinoma: a Mayo/North Central Cancer Treatment Group study. J Clin Oncol. 1995;13:1671–1678. doi: 10.1200/JCO.1995.13.7.1671. [DOI] [PubMed] [Google Scholar]
  • 139.Edna TH, Bjerkeset T. Perioperative blood transfusions reduce long-term survival following surgery for colorectal cancer. Dis Colon Rectum. 1998;41:451–459. doi: 10.1007/BF02235758. [DOI] [PubMed] [Google Scholar]
  • 140.Jagoditsch M, Pozgainer P, Klingler A, Tschmelitsch J. Impact of blood transfusions on recurrence and survival after rectal cancer surgery. Dis Colon Rectum. 2006;49:1116–1130. doi: 10.1007/s10350-006-0573-7. [DOI] [PubMed] [Google Scholar]
  • 141.Talukder Y, Stillwell AP, Siu SK, Ho YH. Comparing survival and recurrence in curative stage I to III colorectal cancer in transfused and nontransfused patients. Int Surg. 2014;99:8–16. doi: 10.9738/INTSURG-D-13-00141.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Warschkow R, Guller U, Koberle D, Muller SA, Steffen T, Thurnheer M, Schmied BM, Tarantino I. Perioperative blood transfusions do not impact overall and disease-free survival after curative rectal cancer resection: a propensity score analysis. Ann Surg. 2014;259:131–138. doi: 10.1097/SLA.0b013e318287ab4d. [DOI] [PubMed] [Google Scholar]
  • 143.Mörner ME, Edgren G, Martling A, Gunnarsson U, Egenvall M. Preoperative anaemia and perioperative red blood cell transfusion as prognostic factors for recurrence and mortality in colorectal cancer-a Swedish cohort study. Int J Colorectal Dis. 2017;32:223–232. doi: 10.1007/s00384-016-2678-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Amri R, Dinaux AM, Leijssen LGJ, Kunitake H, Bordeianou LG, Berger DL. Do packed red blood cell transfusions really worsen oncologic outcomes in colon cancer? Surgery. 2017;162:586–591. doi: 10.1016/j.surg.2017.03.024. [DOI] [PubMed] [Google Scholar]
  • 145.Wu HL, Tai YH, Lin SP, Chan MY, Chen HH, Chang KY. The Impact of Blood Transfusion on Recurrence and Mortality Following Colorectal Cancer Resection: A Propensity Score Analysis of 4,030 Patients. Sci Rep. 2018;8:13345. doi: 10.1038/s41598-018-31662-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Choi GH, Kim DH, Choi SB, Kang CM, Kim KS, Choi JS, Lee WJ, Han KH, Chon CY, Kim BR. The preoperative positivity for serum hepatitis B e antigen did not affect overall survival after curative resection of hepatitis B virus-related hepatocellular carcinoma. J Gastroenterol Hepatol. 2009;24:391–398. doi: 10.1111/j.1440-1746.2008.05637.x. [DOI] [PubMed] [Google Scholar]
  • 147.Wang CC, Iyer SG, Low JK, Lin CY, Wang SH, Lu SN, Chen CL. Perioperative factors affecting long-term outcomes of 473 consecutive patients undergoing hepatectomy for hepatocellular carcinoma. Ann Surg Oncol. 2009;16:1832–1842. doi: 10.1245/s10434-009-0448-y. [DOI] [PubMed] [Google Scholar]
  • 148.Harada N, Shirabe K, Maeda T, Kayashima H, Ishida T, Maehara Y. Blood transfusion is associated with recurrence of hepatocellular carcinoma after hepatectomy in Child-Pugh class A patients. World J Surg. 2015;39:1044–1051. doi: 10.1007/s00268-014-2891-6. [DOI] [PubMed] [Google Scholar]
  • 149.Yang T, Lu JH, Lau WY, Zhang TY, Zhang H, Shen YN, Alshebeeb K, Wu MC, Schwartz M, Shen F. Perioperative blood transfusion does not influence recurrence-free and overall survivals after curative resection for hepatocellular carcinoma: A Propensity Score Matching Analysis. J Hepatol. 2016;64:583–593. doi: 10.1016/j.jhep.2015.10.012. [DOI] [PubMed] [Google Scholar]
  • 150.Linder BJ, Frank I, Cheville JC, Tollefson MK, Thompson RH, Tarrell RF, Thapa P, Boorjian SA. The impact of perioperative blood transfusion on cancer recurrence and survival following radical cystectomy. Eur Urol. 2013;63:839–845. doi: 10.1016/j.eururo.2013.01.004. [DOI] [PubMed] [Google Scholar]
  • 151.Abel EJ, Linder BJ, Bauman TM, Bauer RM, Thompson RH, Thapa P, Devon ON, Tarrell RF, Frank I, Jarrard DF, Downs TM, Boorjian SA. Perioperative blood transfusion and radical cystectomy: does timing of transfusion affect bladder cancer mortality? Eur Urol. 2014;66:1139–1147. doi: 10.1016/j.eururo.2014.08.051. [DOI] [PubMed] [Google Scholar]
  • 152.Kluth LA, Xylinas E, Rieken M, El Ghouayel M, Sun M, Karakiewicz PI, Lotan Y, Chun FK, Boorjian SA, Lee RK, Briganti A, Roupret M, Fisch M, Scherr DS, Shariat SF. Impact of peri-operative blood transfusion on the outcomes of patients undergoing radical cystectomy for urothelial carcinoma of the bladder. BJU Int. 2014;113:393–398. doi: 10.1111/bju.12439. [DOI] [PubMed] [Google Scholar]
  • 153.Moschini M, Dell’ Oglio P, Capogrosso P, Cucchiara V, Luzzago S, Gandaglia G, Zattoni F, Briganti A, Damiano R, Montorsi F, Salonia A, Colombo R. Effect of Allogeneic Intraoperative Blood Transfusion on Survival in Patients Treated With Radical Cystectomy for Nonmetastatic Bladder Cancer: Results From a Single High-Volume Institution. Clin Genitourin Cancer. 2015;13:562–567. doi: 10.1016/j.clgc.2015.04.009. [DOI] [PubMed] [Google Scholar]
  • 154.Vetterlein MW, Gild P, Kluth LA, Seisen T, Gierth M, Fritsche HM, Burger M, Protzel C, Hakenberg OW, von Landenberg N, Roghmann F, Noldus J, Nuhn P, Pycha A, Rink M, Chun FK, May M, Fisch M, Aziz A. Peri-operative allogeneic blood transfusion does not adversely affect oncological outcomes after radical cystectomy for urinary bladder cancer: a propensity score-weighted European multicentre study. BJU Int. 2018;121:101–110. doi: 10.1111/bju.14012. [DOI] [PubMed] [Google Scholar]
  • 155.Uccella S, Ghezzi F, Cromi A, Bogani G, Formenti G, Donadello N, Serati M, Bolis P. Perioperative allogenic blood transfusions and the risk of endometrial cancer recurrence. Arch Gynecol Obstet. 2013;287:1009–1016. doi: 10.1007/s00404-012-2668-9. [DOI] [PubMed] [Google Scholar]
  • 156.Lopez-Aguiar AG, Ethun CG, McInnis MR, Pawlik TM, Poultsides G, Tran T, Idrees K, Isom CA, Fields RC, Krasnick BA, Weber SM, Salem A, Martin RCG, Scoggins CR, Shen P, Mogal HD, Schmidt C, Beal EW, Hatzaras I, Shenoy R, Cardona K, Maithel SK. Association of perioperative transfusion with survival and recurrence after resection of gallbladder cancer: A 10-institution study from the US Extrahepatic Biliary Malignancy Consortium. J Surg Oncol. 2018;117:1638–1647. doi: 10.1002/jso.25086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Abu-Ghanem Y, Dotan Z, Zilberman DE, Kaver I, Ramon J. Intraoperative but not postoperative blood transfusion adversely affect cancer recurrence and survival following nephrectomy for renal cell carcinoma. Sci Rep. 2019;9:1160. doi: 10.1038/s41598-018-37691-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Linder BJ, Boorjian SA (2013) Reply to Samuel Bishara and Jim Adshead’s letter to the editor re: Brian J. Linder, Igor Frank, John C. Cheville, et al. The impact of perioperative blood transfusion on cancer recurrence and survival following radical cystectomy. Eur Urol 63:839–845. Eur Urol 64:e49–50 [DOI] [PubMed]
  • 159.Ito Y, Kanda M, Ito S, Mochizuki Y, Teramoto H, Ishigure K, Murai T, Asada T, Ishiyama A, Matsushita H, Tanaka C, Kobayashi D, Fujiwara M, Murotani K, Kodera Y. Intraoperative Blood Loss is Associated with Shortened Postoperative Survival of Patients with Stage II/III Gastric Cancer: Analysis of a Multi-institutional Dataset. World J Surg. 2019;43:870–877. doi: 10.1007/s00268-018-4834-0. [DOI] [PubMed] [Google Scholar]

Articles from Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz are provided here courtesy of Nature Publishing Group

RESOURCES