Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021 Feb;25(15):1–190. doi: 10.3310/hta25150

Universal late pregnancy ultrasound screening to predict adverse outcomes in nulliparous women: a systematic review and cost-effectiveness analysis.

Gordon Cs Smith, Alexandros A Moraitis, David Wastlund, Jim G Thornton, Aris Papageorghiou, Julia Sanders, Alexander Ep Heazell, Stephen C Robson, Ulla Sovio, Peter Brocklehurst, Edward Cf Wilson
PMCID: PMC7958245  PMID: 33656977

Abstract

BACKGROUND

Currently, pregnant women are screened using ultrasound to perform gestational aging, typically at around 12 weeks' gestation, and around the middle of pregnancy. Ultrasound scans thereafter are performed for clinical indications only.

OBJECTIVES

We sought to assess the case for offering universal late pregnancy ultrasound to all nulliparous women in the UK. The main questions addressed were the diagnostic effectiveness of universal late pregnancy ultrasound to predict adverse outcomes and the cost-effectiveness of either implementing universal ultrasound or conducting further research in this area.

DESIGN

We performed diagnostic test accuracy reviews of five ultrasonic measurements in late pregnancy. We conducted cost-effectiveness and value-of-information analyses of screening for fetal presentation, screening for small for gestational age fetuses and screening for large for gestational age fetuses. Finally, we conducted a survey and a focus group to determine the willingness of women to participate in a future randomised controlled trial.

DATA SOURCES

We searched MEDLINE, EMBASE and the Cochrane Library from inception to June 2019.

REVIEW METHODS

The protocol for the review was designed a priori and registered. Eligible studies were identified using keywords, with no restrictions for language or location. The risk of bias in studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Health economic modelling employed a decision tree analysed via Monte Carlo simulation. Health outcomes were from the fetal perspective and presented as quality-adjusted life-years. Costs were from the perspective of the public sector, defined as NHS England, and the costs of special educational needs. All costs and quality-adjusted life-years were discounted by 3.5% per annum and the reference case time horizon was 20 years.

RESULTS

Umbilical artery Doppler flow velocimetry, cerebroplacental ratio, severe oligohydramnios and borderline oligohydramnios were all either non-predictive or weakly predictive of the risk of neonatal morbidity (summary positive likelihood ratios between 1 and 2) and were all weakly predictive of the risk of delivering a small for gestational age infant (summary positive likelihood ratios between 2 and 4). Suspicion of fetal macrosomia is strongly predictive of the risk of delivering a large infant, but it is only weakly, albeit statistically significantly, predictive of the risk of shoulder dystocia. Very few studies blinded the result of the ultrasound scan and most studies were rated as being at a high risk of bias as a result of treatment paradox, ascertainment bias or iatrogenic harm. Health economic analysis indicated that universal ultrasound for fetal presentation only may be both clinically and economically justified on the basis of existing evidence. Universal ultrasound including fetal biometry was of borderline cost-effectiveness and was sensitive to assumptions. Value-of-information analysis indicated that the parameter that had the largest impact on decision uncertainty was the net difference in cost between an induced delivery and expectant management.

LIMITATIONS

The primary literature on the diagnostic effectiveness of ultrasound in late pregnancy is weak. Value-of-information analysis may have underestimated the uncertainty in the literature as it was focused on the internal validity of parameters, which is quantified, whereas the greatest uncertainty may be in the external validity to the research question, which is unquantified.

CONCLUSIONS

Universal screening for presentation at term may be justified on the basis of current knowledge. The current literature does not support universal ultrasonic screening for fetal growth disorders.

FUTURE WORK

We describe proof-of-principle randomised controlled trials that could better inform the case for screening using ultrasound in late pregnancy.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42017064093.

FUNDING

This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 25, No. 15. See the NIHR Journals Library website for further project information.

Plain language summary

Ultrasound scans allow doctors to check on the health of an unborn infant. Usually, all pregnant women receive a scan at about 3 months and about 5 months of pregnancy. After that, women are offered a scan during birth only if they have risk factors or if a problem develops. Problems can arise in the later stages of pregnancy, including issues with the infant’s growth or whether or not the infant is breech. Some of these problems may be prevented if a scan is carried out, but scans can also be inaccurate. When they are, a woman may receive unnecessary treatment, which could even harm her or her infant. In this study we set out to review previous research about how good ultrasound scanning is at detecting infants who may be born with a condition. This study focused on detecting if the infant was too big or too small. Unfortunately, much of the previous research was not carried out to a high standard. Scanning can detect the size of a infant relatively well, but it is much less clear if scanning can predict complications that may harm the infant during birth. We also studied the costs and outcomes of scanning. We calculated the extra cost required to scan every woman and compared this with the extra benefits from preventing complications. One thing that ultrasound scans detect is whether the infant is presenting head first or bottom first (a ‘breech presentation’), as infants presenting breech have high risks of complications. Scanning all women to check whether or not their infant is presenting breech seems to be cost-effective and the cost savings may even be higher than the cost of implementation, although this depends on how much the scan would cost. Whether or not it is worthwhile scanning all infants to see if they are above or below the thresholds for normal size is less clear. A larger research study could provide more reliable numbers from which to draw a conclusion. We show how such a study could be designed, so that a single study could tell us both how well scans can predict adverse outcomes and how helpful this information is.


Full text of this article can be found in Bookshelf.

References

  1. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1151–210. https://doi.org/10.1016/s0140-6736(17)32152-9 doi: 10.1016/s0140-6736(17)32152-9. [DOI] [PMC free article] [PubMed]
  2. NICE. NICE CG62: Antenatal Care for Uncomplicated Pregnancies. London; 2008.
  3. Public Health England. NHS Fetal Anomaly Screening Programme (FASP). URL: www.gov.uk/topic/population-screening-programmes/fetal-anomaly (accessed June 2019).
  4. American College of Obstetricians and Gynecologists. Practice Bulletin No. 175: Ultrasound in Pregnancy. Obstet Gynecol 2016;128:e241–e56. https://doi.org/10.1097/aog.0000000000001815 doi: 10.1097/aog.0000000000001815. [DOI] [PubMed]
  5. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK. Estimation of fetal weight with the use of head, body, and femur measurements – a prospective study. Am J Obstet Gynecol 1985;151:333–7. https://doi.org/10.1016/0002-9378(85)90298-4 doi: 10.1016/0002-9378(85)90298-4. [DOI] [PubMed]
  6. Hadlock FP, Harrist RB, Martinez-Poyer J. In utero analysis of fetal growth: a sonographic weight standard. Radiology 1991;181:129–33. https://doi.org/10.1148/radiology.181.1.1887021 doi: 10.1148/radiology.181.1.1887021. [DOI] [PubMed]
  7. Kiserud T, Piaggio G, Carroli G, Widmer M, Carvalho J, Neerup Jensen L, et al. The World Health Organization Fetal Growth Charts: a multinational longitudinal study of ultrasound biometric measurements and estimated fetal weight. PLOS Med 2017;14:e1002220. https://doi.org/10.1371/journal.pmed.1002220 doi: 10.1371/journal.pmed.1002220. [DOI] [PMC free article] [PubMed]
  8. Sovio U, White IR, Dacey A, Pasupathy D, Smith GCS. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: a prospective cohort study. Lancet 2015;386:2089–97. https://doi.org/10.1016/S0140-6736(15)00131-2 doi: 10.1016/S0140-6736(15)00131-2. [DOI] [PMC free article] [PubMed]
  9. Hoffman C, Galan HL. Assessing the ‘at-risk’ fetus: Doppler ultrasound. Curr Opin Obstet Gynecol 2009;21:161–6. https://doi.org/10.1097/GCO.0b013e3283292468 doi: 10.1097/GCO.0b013e3283292468. [DOI] [PubMed]
  10. Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 1996;175:1534–42. https://doi.org/10.1016/S0002-9378(96)70103-5 doi: 10.1016/S0002-9378(96)70103-5. [DOI] [PubMed]
  11. Wastlund D, Moraitis AA, Dacey A, Sovio U, Wilson ECF, Smith GCS. Screening for breech presentation using universal late-pregnancy ultrasonography: a prospective cohort study and cost effectiveness analysis. PLOS Med 2019;16:e1002778. https://doi.org/10.1371/journal.pmed.1002778 doi: 10.1371/journal.pmed.1002778. [DOI] [PMC free article] [PubMed]
  12. Thorpe-Beeston JG, Banfield PJ, Saunders NJ. Outcome of breech delivery at term. BMJ 1992;305:746–7. https://doi.org/10.1136/bmj.305.6856.746 doi: 10.1136/bmj.305.6856.746. [DOI] [PMC free article] [PubMed]
  13. Impey LWM, Murphy DJ, Griffiths M, Penna LK on behalf of the Royal College of Obstetricians and Gynaecologists. External cephalic version and reducing the incidence of term breech presentation. BJOG 2017;124:e178–e92. https://doi.org/10.1111/1471-0528.14466 doi: 10.1111/1471-0528.14466. [DOI]
  14. Hofmeyr GJ, Hannah M, Lawrie TA. Planned caesarean section for term breech delivery. Cochrane Database Syst Rev 2015;7:CD000166. https://doi.org/10.1002/14651858.CD000166.pub2 doi: 10.1002/14651858.CD000166.pub2. [DOI] [PMC free article] [PubMed]
  15. Smith GC, Fretts RC. Stillbirth. Lancet 2007;370:1715–25. https://doi.org/10.1016/s0140-6736(07)61723-1 doi: 10.1016/s0140-6736(07)61723-1. [DOI] [PubMed]
  16. Middleton P, Shepherd E, Crowther CA. Induction of labour for improving birth outcomes for women at or beyond term. Cochrane Database Syst Rev 2018;5:CD004945. https://doi.org/10.1002/14651858.CD004945.pub4 doi: 10.1002/14651858.CD004945.pub4. [DOI] [PMC free article] [PubMed]
  17. Smith GC. Life-table analysis of the risk of perinatal death at term and post term in singleton pregnancies. Am J Obstet Gynecol 2001;184:489–96. https://doi.org/10.1067/mob.2001.109735 doi: 10.1067/mob.2001.109735. [DOI] [PubMed]
  18. Smith GCS. The risk of perinatal death at term. BJOG 2019;126:1258. https://doi.org/10.1111/1471-0528.15827 doi: 10.1111/1471-0528.15827. [DOI] [PubMed]
  19. Smith GCS. Should we implement universal screening with late pregnancy ultrasound to prevent stillbirth? BJOG 2018;125:101–3. https://doi.org/10.1111/1471-0528.14782 doi: 10.1111/1471-0528.14782. [DOI] [PubMed]
  20. Alfirevic Z, Stampalija T, Dowswell T. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev 2017;6:CD007529. https://doi.org/10.1002/14651858.CD007529.pub4 doi: 10.1002/14651858.CD007529.pub4. [DOI] [PMC free article] [PubMed]
  21. Bricker L, Medley N, Pratt JJ. Routine ultrasound in late pregnancy (after 24 weeks’ gestation). Cochrane Database Syst Rev 2015;6:CD001451. https://doi.org/10.1002/14651858.CD001451.pub4 doi: 10.1002/14651858.CD001451.pub4. [DOI] [PMC free article] [PubMed]
  22. Monier I, Blondel B, Ego A, Kaminiski M, Goffinet F, Zeitlin J. Poor effectiveness of antenatal detection of fetal growth restriction and consequences for obstetric management and neonatal outcomes: a French national study. BJOG 2015;122:518–27. https://doi.org/10.1111/1471-0528.13148 doi: 10.1111/1471-0528.13148. [DOI] [PubMed]
  23. Heazell AE, Hayes DJ, Whitworth M, Takwoingi Y, Bayliss SE, Davenport C. Biochemical tests of placental function versus ultrasound assessment of fetal size for stillbirth and small-for-gestational-age infants. Cochrane Database Syst Rev 2019;5:CD012245. https://doi.org/10.1002/14651858.CD012245.pub2 doi: 10.1002/14651858.CD012245.pub2. [DOI] [PMC free article] [PubMed]
  24. Brouwers L, van der Meiden-van Roest AJ, Savelkoul C, Vogelvang TE, Lely AT, Franx A, van Rijn BB. Recurrence of pre-eclampsia and the risk of future hypertension and cardiovascular disease: a systematic review and meta-analysis. BJOG 2018;125:1642–54. https://doi.org/10.1111/1471-0528.15394 doi: 10.1111/1471-0528.15394. [DOI] [PMC free article] [PubMed]
  25. Phillips C, Velji Z, Hanly C, Metcalfe A. Risk of recurrent spontaneous preterm birth: a systematic review and meta-analysis. BMJ Open 2017;7:e015402. https://doi.org/10.1136/bmjopen-2016-015402 doi: 10.1136/bmjopen-2016-015402. [DOI] [PMC free article] [PubMed]
  26. Lamont K, Scott NW, Jones GT, Bhattacharya S. Risk of recurrent stillbirth: systematic review and meta-analysis. BMJ 2015;350:h3080. https://doi.org/10.1136/bmj.h3080 doi: 10.1136/bmj.h3080. [DOI] [PubMed]
  27. Kinzler WL, Kaminsky L. Fetal growth restriction and subsequent pregnancy risks. Semin Perinatol 2007;31:126–34. https://doi.org/10.1053/j.semperi.2007.03.004 doi: 10.1053/j.semperi.2007.03.004. [DOI] [PubMed]
  28. Brocklehurst P, Hardy P, Hollowell J, Linsell L, Macfarlane A, McCourt C, et al. Perinatal and maternal outcomes by planned place of birth for healthy women with low risk pregnancies: the Birthplace in England national prospective cohort study. BMJ 2011;343:d7400. https://doi.org/10.1136/bmj.d7400 doi: 10.1136/bmj.d7400. [DOI] [PMC free article] [PubMed]
  29. The Stillbirth Collaborative Research Network Writing Group. Association between stillbirth and risk factors known at pregnancy confirmation. JAMA 2011;306:2469–79. https://doi.org/10.1001/jama.2011.1798 doi: 10.1001/jama.2011.1798. [DOI] [PMC free article] [PubMed]
  30. Haas DM, Parker CB, Wing DA, Parry S, Grobman WA, Mercer BM, et al. A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b). Am J Obstet Gynecol 2015;212:539.e1–539.e24. https://doi.org/10.1016/j.ajog.2015.01.019 doi: 10.1016/j.ajog.2015.01.019. [DOI] [PMC free article] [PubMed]
  31. Revicki DA, Lenderking WR. Methods and issues associated with the use of quality-adjusted life-years. Expert Rev Pharmacoecon Outcomes Res 2012;12:105–14. https://doi.org/10.1586/erp.11.100 doi: 10.1586/erp.11.100. [DOI] [PubMed]
  32. Smith GC. Researching new methods of screening for adverse pregnancy outcome: lessons from pre-eclampsia. PLOS Med 2012;9:e1001274. https://doi.org/10.1371/journal.pmed.1001274 doi: 10.1371/journal.pmed.1001274. [DOI] [PMC free article] [PubMed]
  33. Morris RK, Meller CH, Tamblyn J, Malin GM, Riley RD, Kilby MD, et al. Association and prediction of amniotic fluid measurements for adverse pregnancy outcome: systematic review and meta-analysis. BJOG 2014;121:686–99. https://doi.org/10.1111/1471-0528.12589 doi: 10.1111/1471-0528.12589. [DOI] [PubMed]
  34. Alfirevic Z, Stampalija T, Medley N. Fetal and umbilical Doppler ultrasound in normal pregnancy. Cochrane Database Syst Rev 2015;4:CD001450. https://doi.org/10.1002/14651858.CD001450.pub4 doi: 10.1002/14651858.CD001450.pub4. [DOI] [PMC free article] [PubMed]
  35. Moraitis AA, Bainton T, Sovio U, Brocklehurst P, Heazell AEP, Thornton JG, et al. The fetal umbilical artery Doppler as a tool for universal third trimester screening: a systematic review and meta-analysis of diagnostic test accuracy. Placenta 2021; in press. doi: 10.1016/j.placenta.2021.03.011. [DOI] [PubMed]
  36. Pasupathy D, Dacey A, Cook E, Charnock-Jones DS, White IR, Smith GC. Study protocol. A prospective cohort study of unselected primiparous women: the pregnancy outcome prediction study. BMC Pregnancy Childbirth 2008;8:51. https://doi.org/10.1186/1471-2393-8-51 doi: 10.1186/1471-2393-8-51. [DOI] [PMC free article] [PubMed]
  37. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009 doi: 10.7326/0003-4819-155-8-201110180-00009. [DOI] [PubMed]
  38. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 2001;20:2865–84. https://doi.org/10.1002/sim.942 doi: 10.1002/sim.942. [DOI] [PubMed]
  39. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005;58:982–90. https://doi.org/10.1016/j.jclinepi.2005.02.022 doi: 10.1016/j.jclinepi.2005.02.022. [DOI] [PubMed]
  40. Deeks JJ. Systematic reviews in health care: systematic reviews of evaluations of diagnostic and screening tests. BMJ 2001;323:157–62. https://doi.org/10.1136/bmj.323.7305.157 doi: 10.1136/bmj.323.7305.157. [DOI] [PMC free article] [PubMed]
  41. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 2005;58:882–93. https://doi.org/10.1016/j.jclinepi.2005.01.016 doi: 10.1016/j.jclinepi.2005.01.016. [DOI] [PubMed]
  42. Akolekar R, Ciobanu A, Zingler E, Syngelaki A, Nicolaides KH. Routine assessment of cerebroplacental ratio at 35-37 weeks’ gestation in the prediction of adverse perinatal outcome. Am J Obstet Gynecol 2019;221:65.e1–65.e18. doi: 10.1016/j.ajog.2019.03.002. [DOI] [PubMed]
  43. Bolz N, Kalache KD, Proquitte H, Slowinski T, Hartung JP, Henrich W, et al. Value of Doppler sonography near term: can umbilical and uterine artery indices in low-risk pregnancies predict perinatal outcome? J Perinat Med 2013;41:165–70. https://doi.org/10.1515/jpm-2012-0042 doi: 10.1515/jpm-2012-0042. [DOI] [PubMed]
  44. Cooley SM, Donnelly JC, Walsh T, MacMahon C, Gillan J, Geary MP. The impact of umbilical and uterine artery Doppler indices on antenatal course, labor and delivery in a low-risk primigravid population. J Perinat Med 2011;39:143–9. https://doi.org/10.1515/JPM.2010.130 doi: 10.1515/JPM.2010.130. [DOI] [PubMed]
  45. Filmar G, Panagopoulos G, Minior V, Barnhard Y, Divon MY. Elevated umbilical artery systolic/diastolic ratio in the absence of fetal growth restriction. Arch Gynecol Obstet 2013;288:279–85. https://doi.org/10.1007/s00404-013-2764-5 doi: 10.1007/s00404-013-2764-5. [DOI] [PubMed]
  46. Fischer RL, Kuhlman KA, Depp R, Wapner RJ. Doppler evaluation of umbilical and uterine-arcuate arteries in the postdates pregnancy. Obstet Gynecol 1991;78:363–8. [PubMed]
  47. Goffinet F, Paris J, Heim N, Nisand I, Breart G. Predictive value of Doppler umbilical artery velocimetry in a low risk population with normal fetal biometry. A prospective study of 2016 women. Eur J Obstet Gynecol Reprod Biol 1997;71:11–19. https://doi.org/10.1016/S0301-2115(96)02606-1 doi: 10.1016/S0301-2115(96)02606-1. [DOI] [PubMed]
  48. Hanretty KP, Primrose MH, Neilson JP, Whittle MJ. Pregnancy screening by Doppler uteroplacental and umbilical artery waveforms. Br J Obstet Gynaecol 1989;96:1163–7. https://doi.org/10.1111/j.1471-0528.1989.tb03191.x doi: 10.1111/j.1471-0528.1989.tb03191.x. [DOI] [PubMed]
  49. Schulman H, Winter D, Farmakides G, Ducey J, Guzman E, Coury A, Penny B. Pregnancy surveillance with Doppler velocimetry of uterine and umbilical arteries. Am J Obstet Gynecol 1989;160:192–6. https://doi.org/10.1016/0002-9378(89)90118-X doi: 10.1016/0002-9378(89)90118-X. [DOI] [PubMed]
  50. Sijmons EA, Reuwer PJ, van Beek E, Bruinse HW. The validity of screening for small-for-gestational-age and low-weight-for-length infants by Doppler ultrasound. Br J Obstet Gynaecol 1989;96:557–61. https://doi.org/10.1111/j.1471-0528.1989.tb03255.x doi: 10.1111/j.1471-0528.1989.tb03255.x. [DOI] [PubMed]
  51. Valino N, Giunta G, Gallo DM, Akolekar R, Nicolaides KH. Biophysical and biochemical markers at 30–34 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 2016;47:194–202. https://doi.org/10.1002/uog.14928 doi: 10.1002/uog.14928. [DOI] [PubMed]
  52. Valino N, Giunta G, Gallo DM, Akolekar R, Nicolaides KH. Biophysical and biochemical markers at 35–37 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 2016;47:203–9. https://doi.org/10.1002/uog.15663 doi: 10.1002/uog.15663. [DOI] [PubMed]
  53. Weiner Z, Reichler A, Zlozover M, Mendelson A, Thaler I. The value of Doppler ultrasonography in prolonged pregnancies. Eur J Obstet Gynecol Reprod Biol 1993;48:93–7. https://doi.org/10.1016/0028-2243(93)90246-9 doi: 10.1016/0028-2243(93)90246-9. [DOI] [PubMed]
  54. Moraitis AA, Wood AM, Fleming M, Smith GC. Birth weight percentile and the risk of term perinatal death. Obstet Gynecol 2014;124:274–83. https://doi.org/10.1097/aog.0000000000000388 doi: 10.1097/aog.0000000000000388. [DOI] [PubMed]
  55. Flenady V, Wojcieszek AM, Middleton P, Ellwood D, Erwich JJ, Coory M, et al. Stillbirths: recall to action in high-income countries. Lancet 2016;387:691–702. https://doi.org/10.1016/S0140-6736(15)01020-X doi: 10.1016/S0140-6736(15)01020-X. [DOI] [PubMed]
  56. Giussani DA. The fetal brain sparing response to hypoxia: physiological mechanisms. J Physiol 2016;594:1215–30. https://doi.org/10.1113/JP271099 doi: 10.1113/JP271099. [DOI] [PMC free article] [PubMed]
  57. Akolekar R, Syngelaki A, Gallo DM, Poon LC, Nicolaides KH. Umbilical and fetal middle cerebral artery Doppler at 35–37 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 2015;46:82–92. https://doi.org/10.1002/uog.14842 doi: 10.1002/uog.14842. [DOI] [PubMed]
  58. Bakalis S, Akolekar R, Gallo DM, Poon LC, Nicolaides KH. Umbilical and fetal middle cerebral artery Doppler at 30-34 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol 2015;45:409–20. https://doi.org/10.1002/uog.14822 doi: 10.1002/uog.14822. [DOI] [PubMed]
  59. Bligh LN, Alsolai AA, Greer RM, Kumar S. Cerebroplacental ratio thresholds measured within 2-weeks before birth and risk of Cesarean section for intrapartum fetal compromise and adverse neonatal outcome. Ultrasound Obstet Gynecol 2018;52:340–6. https://doi.org/10.1002/uog.17542 doi: 10.1002/uog.17542. [DOI] [PubMed]
  60. Bligh LN, Al Solai A, Greer RM, Kumar S. Diagnostic performance of cerebroplacental ratio thresholds at term for prediction of low birthweight and adverse intrapartum and neonatal outcomes in a term, low-risk population. Fetal Diagn Ther 2018;43:191–8. https://doi.org/10.1159/000477932 doi: 10.1159/000477932. [DOI] [PubMed]
  61. Flatley C, Kumar S. Is the fetal cerebroplacental ratio better that the estimated fetal weight in predicting adverse perinatal outcomes in a low risk cohort? J Matern Fetal Neonatal Med 2019;32:2380–6. https://doi.org/10.1080/14767058.2018.1438394 doi: 10.1080/14767058.2018.1438394. [DOI] [PubMed]
  62. Khalil AA, Morales-Roselló J, Morlando M, Hannan H, Bhide A, Papageorghiou A, et al. Is fetal cerebroplacental ratio an independent predictor of intrapartum fetal compromise and neonatal unit admission? Am J Obstet Gynecol 2015;213:54.e1–54.e10. https://doi.org/10.1016/j.ajog.2014.10.024 doi: 10.1016/j.ajog.2014.10.024. [DOI] [PubMed]
  63. Maged AM, Abdelhafez A, Al Mostafa W, Elsherbiny W. Fetal middle cerebral and umbilical artery Doppler after 40 weeks gestational age. J Matern Fetal Neonatal Med 2014;27:1880–5. https://doi.org/10.3109/14767058.2014.892068 doi: 10.3109/14767058.2014.892068. [DOI] [PubMed]
  64. Monaghan C, Binder J, Thilaganathan B, Morales-Roselló J, Khalil A. Perinatal loss at term: the role of uteroplacental and fetal doppler assessment. Ultrasound Obstet Gynecol 2018;52:72–7. https://doi.org/10.1002/uog.17500 doi: 10.1002/uog.17500. [DOI] [PubMed]
  65. Morales-Roselló J, Khalil A, Morlando M, Papageorghiou A, Bhide A, Thilaganathan B. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet Gynecol 2014;43:303–10. https://doi.org/10.1002/uog.13319 doi: 10.1002/uog.13319. [DOI] [PubMed]
  66. Prior T, Mullins E, Bennett P, Kumar S. Prediction of intrapartum fetal compromise using the cerebroumbilical ratio: a prospective observational study. Am J Obstet Gynecol 2013;208:124.e1–6. https://doi.org/10.1016/j.ajog.2012.11.016 doi: 10.1016/j.ajog.2012.11.016. [DOI] [PubMed]
  67. Prior T, Paramasivam G, Bennett P, Kumar S. Are fetuses that fail to achieve their growth potential at increased risk of intrapartum compromise? Ultrasound Obstet Gynecol 2015;46:460–4. https://doi.org/10.1002/uog.14758 doi: 10.1002/uog.14758. [DOI] [PubMed]
  68. Rial-Crestelo M, Martinez-Portilla RJ, Cancemi A, Caradeux J, Fernandez L, Peguero A, et al. Added value of cerebro-placental ratio and uterine artery Doppler at routine third trimester screening as a predictor of SGA and FGR in non-selected pregnancies. J Matern Fetal Neonatal Med 2019;32:2554–60. https://doi.org/10.1080/14767058.2018.1441281 doi: 10.1080/14767058.2018.1441281. [DOI] [PubMed]
  69. Sabdia S, Greer RM, Prior T, Kumar S. Predicting intrapartum fetal compromise using the fetal cerebro-umbilical ratio. Placenta 2015;36:594–8. https://doi.org/10.1016/j.placenta.2015.01.200 doi: 10.1016/j.placenta.2015.01.200. [DOI] [PubMed]
  70. Stumpfe FM, Kehl S, Pretscher J, Baier F, Bayer CM, Schwenke E, et al. Correlation of short-term variation and Doppler parameters with adverse perinatal outcome in low-risk fetuses at term. Arch Gynecol Obstet 2019;299:411–20. https://doi.org/10.1007/s00404-018-4978-z doi: 10.1007/s00404-018-4978-z. [DOI] [PubMed]
  71. Twomey S, Flatley C, Kumar S. The association between a low cerebro-umbilical ratio at 30-34 weeks gestation, increased intrapartum operative intervention and adverse perinatal outcomes. Eur J Obstet Gynecol Reprod Biol 2016;203:89–93. https://doi.org/10.1016/j.ejogrb.2016.05.036 doi: 10.1016/j.ejogrb.2016.05.036. [DOI] [PubMed]
  72. Dunn L, Sherrell H, Kumar S. Review: Systematic review of the utility of the fetal cerebroplacental ratio measured at term for the prediction of adverse perinatal outcome. Placenta 2017;54:68–75. https://doi.org/10.1016/j.placenta.2017.02.006 doi: 10.1016/j.placenta.2017.02.006. [DOI] [PubMed]
  73. Phelan JP, Ahn MO, Smith CV, Rutherford SE, Anderson E. Amniotic fluid index measurements during pregnancy. J Reprod Med 1987;32:601–4. [PubMed]
  74. Ashwal E, Hiersch L, Melamed N, Aviram A, Wiznitzer A, Yogev Y. The association between isolated oligohydramnios at term and pregnancy outcome. Arch Gynecol Obstet 2014;290:875–81. https://doi.org/10.1007/s00404-014-3292-7 doi: 10.1007/s00404-014-3292-7. [DOI] [PubMed]
  75. Ghosh G, Marsál K, Gudmundsson S. Amniotic fluid index in low-risk pregnancy as an admission test to the labor ward. Acta Obstet Gynecol Scand 2002;81:852–5. https://doi.org/10.1034/j.1600-0412.2002.810909.x doi: 10.1034/j.1600-0412.2002.810909.x. [DOI] [PubMed]
  76. Hassan AA. The role of amniotic fluid index in the management of postdate pregnancy. J Coll Physicians Surg Pak 2005;15:85–8. https://doi.org/02.2005/jcpsp.8588 [PubMed]
  77. Hsieh TT, Hung TH, Chen KC, Hsieh CC, Lo LM, Chiu TH. Perinatal outcome of oligohydramnios without associated premature rupture of membranes and fetal anomalies. Gynecol Obstet Invest 1998;45:232–6. https://doi.org/10.1159/000009974 doi: 10.1159/000009974. [DOI] [PubMed]
  78. Locatelli A, Vergani P, Toso L, Verderio M, Pezzullo JC, Ghidini A. Perinatal outcome associated with oligohydramnios in uncomplicated term pregnancies. Arch Gynecol Obstet 2004;269:130–3. https://doi.org/10.1007/s00404-003-0525-6 doi: 10.1007/s00404-003-0525-6. [DOI] [PubMed]
  79. Megha B, Indu C. Correlation of amniotic fluid index with perinatal outcome. J Obstet Gynecol India 2014;64:32–5. https://doi.org/10.1007/s13224-013-0467-2 doi: 10.1007/s13224-013-0467-2. [DOI] [PMC free article] [PubMed]
  80. Melamed N, Pardo J, Milstein R, Chen R, Hod M, Yogev Y. Perinatal outcome in pregnancies complicated by isolated oligohydramnios diagnosed before 37 weeks of gestation. Am J Obstet Gynecol 2011;205:241.e1–6. https://doi.org/10.1016/j.ajog.2011.06.013 doi: 10.1016/j.ajog.2011.06.013. [DOI] [PubMed]
  81. Morris JM, Thompson K, Smithey J, Gaffney G, Cooke I, Chamberlain P, et al. The usefulness of ultrasound assessment of amniotic fluid in predicting adverse outcome in prolonged pregnancy: a prospective blinded observational study. BJOG 2003;110:989–94. https://doi.org/10.1111/j.1471-0528.2003.02417.x doi: 10.1111/j.1471-0528.2003.02417.x. [DOI] [PubMed]
  82. Myles TD, Santolaya-Forgas J. Normal ultrasonic evaluation of amniotic fluid in low-risk patients at term. J Reprod Med 2002;47:621–4. [PubMed]
  83. Naveiro-Fuentes M, Prieto AP, Ruiz RS, Badillo MPC, Ventoso FM, Vallejo JLG. Perinatal outcomes with isolated oligohydramnios at term pregnancy. J Perinat Med 2016;44:793–8. https://doi.org/10.1515/jpm-2015-0198 doi: 10.1515/jpm-2015-0198. [DOI] [PubMed]
  84. Quiñones JN, Odibo AO, Stringer M, Rochon ML, Macones GA. Determining a threshold for amniotic fluid as a predictor of perinatal outcome at term. J Matern Fetal Neonatal Med 2012;25:1319–23. https://doi.org/10.3109/14767058.2011.632453 doi: 10.3109/14767058.2011.632453. [DOI] [PubMed]
  85. Rainford M, Adair R, Scialli AR, Ghidini A, Spong CY. Amniotic fluid index in the uncomplicated term pregnancy. Prediction of outcome. J Reprod Med 2001;46:589–92. [PubMed]
  86. Shanks A, Tuuli M, Schaecher C, Odibo AO, Rampersad R. Assessing the optimal definition of oligohydramnios associated with adverse neonatal outcomes. J Ultrasound Med 2011;30:303–7. https://doi.org/10.7863/jum.2011.30.3.303 doi: 10.7863/jum.2011.30.3.303. [DOI] [PubMed]
  87. Zhang J, Troendle J, Meikle S, Klebanoff MA, Rayburn WF. Isolated oligohydramnios is not associated with adverse perinatal outcomes. BJOG 2004;111:220–5. https://doi.org/10.1111/j.1471-0528.2004.00060.x doi: 10.1111/j.1471-0528.2004.00060.x. [DOI] [PubMed]
  88. Moraitis AA, Armata I, Sovio U, Smith GC. Borderline low amniotic fluid index and adverse pregnancy outcome at term: prospective cohort study and meta-analysis of diagnostic test accuracy. Abstracts of the British Maternal & Fetal Medicine Society (BMFMS) 21st Annual Conference, 28–29 March 2019, Edinburgh, UK, abstract no. EP.317.
  89. Asgharnia M, Faraji R, Salamat F, Ashrafkhani B, Dalil Heirati SF, Naimian S. Perinatal outcomes of pregnancies with borderline versus normal amniotic fluid index. Iran J Reprod Med 2013;11:705–10. [PMC free article] [PubMed]
  90. Banks EH, Miller DA. Perinatal risks associated with borderline amniotic fluid index. Am J Obstet Gynecol 1999;180:1461–3. https://doi.org/10.1016/S0002-9378(99)70037-2 doi: 10.1016/S0002-9378(99)70037-2. [DOI] [PubMed]
  91. Choi SR. Borderline amniotic fluid index and perinatal outcomes in the uncomplicated term pregnancy. J Matern Fetal Neonatal Med 2016;29:457–60. https://doi.org/10.3109/14767058.2015.1004051 doi: 10.3109/14767058.2015.1004051. [DOI] [PubMed]
  92. Gumus II, Koktener A, Turhan NO. Perinatal outcomes of pregnancies with borderline amniotic fluid index. Arch Gynecol Obstet 2007;276:17–19. https://doi.org/10.1007/s00404-006-0309-x doi: 10.1007/s00404-006-0309-x. [DOI] [PubMed]
  93. Jamal A, Kazemi M, Marsoosi V, Eslamian L. Adverse perinatal outcomes in borderline amniotic fluid index. Int J Reprod Biomed 2016;14:705–8. https://doi.org/10.29252/ijrm.14.11.705 doi: 10.29252/ijrm.14.11.705. [DOI] [PMC free article] [PubMed]
  94. Kwon JY, Kwon HS, Kim YH, Park YW. Abnormal Doppler velocimetry is related to adverse perinatal outcome for borderline amniotic fluid index during third trimester. J Obstet Gynaecol Res 2006;32:545–9. https://doi.org/10.1111/j.1447-0756.2006.00459.x doi: 10.1111/j.1447-0756.2006.00459.x. [DOI] [PubMed]
  95. Petrozella LN, Dashe JS, McIntire DD, Leveno KJ. Clinical significance of borderline amniotic fluid index and oligohydramnios in preterm pregnancy. Obstet Gynecol 2011;117:338–42. https://doi.org/10.1097/AOG.0b013e3182056766 doi: 10.1097/AOG.0b013e3182056766. [DOI] [PubMed]
  96. Rutherford SE, Phelan JP, Smith CV, Jacobs N. The four-quadrant assessment of amniotic fluid volume: an adjunct to antepartum fetal heart rate testing. Obstet Gynecol 1987;70:353–6. [PubMed]
  97. Sahin E, Madendag Y, Tayyar AT, Sahin ME, Col Madendag I, Acmaz G, et al. Perinatal outcomes in uncomplicated late preterm pregnancies with borderline oligohydramnios. J Matern Fetal Neonatal Med 2018;31:3085–8. https://doi.org/10.1080/14767058.2017.1364722 doi: 10.1080/14767058.2017.1364722. [DOI] [PubMed]
  98. Wood SL, Newton JM, Wang L, Lesser K. Borderline amniotic fluid index and its relation to fetal intolerance of labor: a 2-center retrospective cohort study. J Ultrasound Med 2014;33:705–11. https://doi.org/10.7863/ultra.33.4.705 doi: 10.7863/ultra.33.4.705. [DOI] [PubMed]
  99. Boers KE, Vijgen SM, Bijlenga D, van der Post JA, Bekedam DJ, Kwee A, et al. Induction versus expectant monitoring for intrauterine growth restriction at term: randomised equivalence trial (DIGITAT). BMJ 2010;341:c7087. https://doi.org/10.1136/bmj.c7087 doi: 10.1136/bmj.c7087. [DOI] [PMC free article] [PubMed]
  100. Campbell S, Wilkin D. Ultrasonic measurement of fetal abdomen circumference in the estimation of fetal weight. Br J Obstet Gynaecol 1975;82:689–97. https://doi.org/10.1111/j.1471-0528.1975.tb00708.x doi: 10.1111/j.1471-0528.1975.tb00708.x. [DOI] [PubMed]
  101. Boulvain M, Senat MV, Perrotin F, Winer N, Beucher G, Subtil D, et al. Induction of labour versus expectant management for large-for-date fetuses: a randomised controlled trial. Lancet 2015;385:2600–5. https://doi.org/10.1016/S0140-6736(14)61904-8 doi: 10.1016/S0140-6736(14)61904-8. [DOI] [PubMed]
  102. Aviram A, Yogev Y, Ashwal E, Hiersch L, Hadar E, Gabbay-Benziv R. Prediction of large for gestational age by various sonographic fetal weight estimation formulas-which should we use? J Perinatol 2017;37:513–7. https://doi.org/10.1038/jp.2017.5 doi: 10.1038/jp.2017.5. [DOI] [PubMed]
  103. Balsyte D, Schäffer L, Burkhardt T, Wisser J, Kurmanavicius J. Sonographic prediction of macrosomia cannot be improved by combination with pregnancy-specific characteristics. Ultrasound Obstet Gynecol 2009;33:453–8. https://doi.org/10.1002/uog.6282 doi: 10.1002/uog.6282. [DOI] [PubMed]
  104. Benacerraf BR, Gelman R, Frigoletto FD. Sonographically estimated fetal weights: accuracy and limitation. Am J Obstet Gynecol 1988;159:1118–21. https://doi.org/10.1016/0002-9378(88)90425-5 doi: 10.1016/0002-9378(88)90425-5. [DOI] [PubMed]
  105. Ben-Haroush A, Yogev Y, Hod M, Bar J. Predictive value of a single early fetal weight estimate in normal pregnancies. Eur J Obstet Gynecol Reprod Biol 2007;130:187–92. https://doi.org/10.1016/j.ejogrb.2006.04.018 doi: 10.1016/j.ejogrb.2006.04.018. [DOI] [PubMed]
  106. Ben-Haroush A, Melamed N, Mashiach R, Meizner I, Yogev Y. Use of the amniotic fluid index combined with estimated fetal weight within 10 days of delivery for prediction of macrosomia at birth. J Ultrasound Med 2008;27:1029–32. https://doi.org/10.7863/jum.2008.27.7.1029 doi: 10.7863/jum.2008.27.7.1029. [DOI] [PubMed]
  107. Benson CB, Coughlin BF, Doubilet PM. Amniotic fluid volume in large-for-gestational-age fetuses of nondiabetic mothers. J Ultrasound Med 1991;10:149–51. https://doi.org/10.7863/jum.1991.10.3.149 doi: 10.7863/jum.1991.10.3.149. [DOI] [PubMed]
  108. Burkhardt T, Schmidt M, Kurmanavicius J, Zimmermann R, Schaffer L. Evaluation of fetal anthropometric measures to predict the risk for shoulder dystocia. Ultrasound Obstet Gynecol 2014;43:77–82. https://doi.org/10.1002/uog.12560 doi: 10.1002/uog.12560. [DOI] [PubMed]
  109. Chauhan SP, Parker D, Shields D, Sanderson M, Cole JH, Scardo JA. Sonographic estimate of birth weight among high-risk patients: feasibility and factors influencing accuracy. Am J Obstet Gynecol 2006;195:601–6. https://doi.org/10.1016/j.ajog.2006.04.012 doi: 10.1016/j.ajog.2006.04.012. [DOI] [PubMed]
  110. Chervenak JL, Divon MY, Hirsch J, Girz BA, Langer O. Macrosomia in the postdate pregnancy: is routine ultrasonographic screening indicated? Am J Obstet Gynecol 1989;161:753–6. https://doi.org/10.1016/0002-9378(89)90395-5 doi: 10.1016/0002-9378(89)90395-5. [DOI] [PubMed]
  111. Cohen JM, Hutcheon JA, Kramer MS, Joseph KS, Abenhaim H, Platt RW. Influence of ultrasound-to-delivery interval and maternal–fetal characteristics on validity of estimated fetal weight. Ultrasound Obstet Gynecol 2010;35:434–41. https://doi.org/10.1002/uog.7506 doi: 10.1002/uog.7506. [DOI] [PubMed]
  112. Crimmins S, Mo C, Nassar Y, Kopelman JN, Turan OM. Polyhydramnios or excessive fetal growth are markers for abnormal perinatal outcome in euglycemic pregnancies. Am J Perinatol 2018;35:140–5. https://doi.org/10.1055/s-0037-1606186 doi: 10.1055/s-0037-1606186. [DOI] [PMC free article] [PubMed]
  113. Cromi A, Ghezzi F, Di Naro E, Siesto G, Bergamini V, Raio L. Large cross-sectional area of the umbilical cord as a predictor of fetal macrosomia. Ultrasound Obstet Gynecol 2007;30:861–6. https://doi.org/10.1002/uog.5183 doi: 10.1002/uog.5183. [DOI] [PubMed]
  114. De Reu PAOM, Smits LJ, Oosterbaan HP, Nijhuis JG. Value of a single early third trimester fetal biometry for the prediction of birth weight deviations in a low risk population. J Perinat Med 2008;36:324–9. https://doi.org/10.1515/JPM.2008.057 doi: 10.1515/JPM.2008.057. [DOI] [PubMed]
  115. Freire DM, Cecatti JG, Paiva CS. [Correlation between estimated fetal weight by ultrasound and neonatal weight.] Rev Bras Ginecol Obstet 2010;32:4–10. https://doi.org/10.1590/S0100-72032010000100002 doi: 10.1590/S0100-72032010000100002. [DOI] [PubMed]
  116. Galvin DM, Burke N, Burke G, Breathnach F, McAuliffe F, Morrison J, et al. 94: Accuracy of prenatal detection of macrosomia > 4,000g and outcomes in the absence of intervention: results of the prospective multicenter genesis study. Am J Obstet Gynecol 2017;216:S68. https://doi.org/10.1016/j.ajog.2016.11.983 doi: 10.1016/j.ajog.2016.11.983. [DOI]
  117. Gilby JR, Williams MC, Spellacy WN. Fetal abdominal circumference measurements of 35 and 38 cm as predictors of macrosomia. A risk factor for shoulder dystocia. J Reprod Med 2000;45:936–8. https://doi.org/10.1097/00006254-200106000-00007 doi: 10.1097/00006254-200106000-00007. [DOI] [PubMed]
  118. Hasenoehrl G, Pohlhammer A, Gruber R, Staudach A, Steiner H. Fetal weight estimation by 2D and 3D ultrasound: comparison of six formulas. Ultraschall Med 2009;30:585–90. https://doi.org/10.1055/s-0028-1109185 doi: 10.1055/s-0028-1109185. [DOI] [PubMed]
  119. Hendrix NW, Grady CS, Chauhan SP. Clinical vs. sonographic estimate of birth weight in term parturients. A randomized clinical trial. J Reprod Med 2000;45:317–22. [PubMed]
  120. Henrichs C, Magann EF, Brantley KL, Crews JH, Sanderson M, Chauhan SP. Detecting fetal macrosomia with abdominal circumference alone. J Reprod Med 2003;48:339–42. [PubMed]
  121. Humphries J, Reynolds D, Bell-Scarbrough L, Lynn N, Scardo JA, Chauhan SP. Sonographic estimate of birth weight: relative accuracy of sonographers versus maternal-fetal medicine specialists. J Matern Fetal Neonatal Med 2002;11:108–12. https://doi.org/10.1080/jmf.11.2.108.112 doi: 10.1080/jmf.11.2.108.112. [DOI] [PubMed]
  122. Kayem G, Grangé G, Bréart G, Goffinet F. Comparison of fundal height measurement and sonographically measured fetal abdominal circumference in the prediction of high and low birth weight at term. Ultrasound Obstet Gynecol 2009;34:566–71. https://doi.org/10.1002/uog.6378 doi: 10.1002/uog.6378. [DOI] [PubMed]
  123. Kehl S, Brade J, Schmidt U, Berlit S, Bohlmann MK, Sütterlin M, et al. Role of fetal abdominal circumference as a prognostic parameter of perinatal complications. Arch Gynecol Obstet 2011;284:1345–9. https://doi.org/10.1007/s00404-011-1888-8 doi: 10.1007/s00404-011-1888-8. [DOI] [PubMed]
  124. Levine AB, Lockwood CJ, Brown B, Lapinski R, Berkowitz RL. Sonographic diagnosis of the large for gestational age fetus at term: does it make a difference? Obstet Gynecol 1992;79:55–8. [PubMed]
  125. Melamed N, Yogev Y, Meizner I, Mashiach R, Pardo J, Ben-Haroush A. Prediction of fetal macrosomia: effect of sonographic fetal weight-estimation model and threshold used. Ultrasound Obstet Gynecol 2011;38:74–81. https://doi.org/10.1002/uog.8930 doi: 10.1002/uog.8930. [DOI] [PubMed]
  126. Miller JM, Korndorffer FA, Gabert HA. Fetal weight estimates in late pregnancy with emphasis on macrosomia. J Clin Ultrasound 1986;14:437–42. https://doi.org/10.1002/jcu.1870140606 doi: 10.1002/jcu.1870140606. [DOI] [PubMed]
  127. Miller JM, Brown HL, Khawli OF, Pastorek JG, Gabert HA. Ultrasonographic identification of the macrosomic fetus. Am J Obstet Gynecol 1988;159:1110–14. https://doi.org/10.1016/0002-9378(88)90423-1 doi: 10.1016/0002-9378(88)90423-1. [DOI] [PubMed]
  128. Nahum GG, Pham KQ, McHugh JP. Ultrasonic prediction of term birth weight in Hispanic women. Accuracy in an outpatient clinic. J Reprod Med 2003;48:13–22. [PubMed]
  129. Nahum GG, Stanislaw H. A computerized method for accurately predicting fetal macrosomia up to 11 weeks before delivery. Eur J Obstet Gynecol Reprod Biol 2007;133:148–56. https://doi.org/10.1016/j.ejogrb.2006.08.011 doi: 10.1016/j.ejogrb.2006.08.011. [DOI] [PubMed]
  130. Nicod AC, Hohlfeld P, Vial Y. [Performance of ultrasound estimation of fetal weight in fetuses weighing ≤ 2000 g and more than 4000 g.] Rev Med Suisse 2012;8:2022–4, 2026–7. [PubMed]
  131. O’Reilly-Green CP, Divon MY. Receiver operating characteristic curves of sonographic estimated fetal weight for prediction of macrosomia in prolonged pregnancies. Ultrasound Obstet Gynecol 1997;9:403–8. https://doi.org/10.1046/j.1469-0705.1997.09060403.x doi: 10.1046/j.1469-0705.1997.09060403.x. [DOI] [PubMed]
  132. Pates JA, McIntire DD, Casey BM, Leveno KJ. Predicting macrosomia. J Ultrasound Med 2008;27:39–43. https://doi.org/10.7863/jum.2008.27.1.39 doi: 10.7863/jum.2008.27.1.39. [DOI] [PubMed]
  133. Peregrine E, O’Brien P, Jauniaux E. Clinical and ultrasound estimation of birth weight prior to induction of labor at term. Ultrasound Obstet Gynecol 2007;29:304–9. https://doi.org/10.1002/uog.3949 doi: 10.1002/uog.3949. [DOI] [PubMed]
  134. Pollack RN, Hauer-Pollack G, Divon MY. Macrosomia in postdates pregnancies: the accuracy of routine ultrasonographic screening. Am J Obstet Gynecol 1992;167:7–11. https://doi.org/10.1016/S0002-9378(11)91615-9 doi: 10.1016/S0002-9378(11)91615-9. [DOI] [PubMed]
  135. Rossavik IK, Joslin GL. Macrosomatia and ultrasonography: what is the problem? South Med J 1993;86:1129–32. https://doi.org/10.1097/00007611-199310000-00010 doi: 10.1097/00007611-199310000-00010. [DOI] [PubMed]
  136. Sapir A, Khayyat I, Drukker L, Rabinowitz R, Samueloff A, Sela HY. 365: Ultrasound predication of shoulder dystocia in low risk term singleton deliveries. Am J Obstet Gynecol 2017;216(Suppl. 1):S221. https://doi.org/10.1016/j.ajog.2016.11.623 doi: 10.1016/j.ajog.2016.11.623. [DOI]
  137. Smith GC, Smith MF, McNay MB, Fleming JE. The relation between fetal abdominal circumference and birthweight: findings in 3512 pregnancies. Br J Obstet Gynaecol 1997;104:186–90. https://doi.org/10.1111/j.1471-0528.1997.tb11042.x doi: 10.1111/j.1471-0528.1997.tb11042.x. [DOI] [PubMed]
  138. Sovio U, Moraitis AA, Wong HS, Smith GCS. Universal vs selective ultrasonography to screen for large-for-gestational-age infants and associated morbidity. Ultrasound Obstet Gynecol 2018;51:783–91. https://doi.org/10.1002/uog.17491 doi: 10.1002/uog.17491. [DOI] [PubMed]
  139. Sritippayawan S, Anansakunwat W, Suthantikorn C. The accuracy of gestation-adjusted projection method in estimating birth weight by sonographic fetal measurements in the third trimester. J Med Assoc Thai 2007;90:1058–67. [PubMed]
  140. Sylvestre G, Divon MY, Onyeije C, Fisher M. Diagnosis of macrosomia in the postdates population: combining sonographic estimates of fetal weight with glucose challenge testing. J Matern Fetal Med 2000;9:287–90. https://doi.org/10.1002/1520-6661(200009/10)9:5<287::AID-MFM6>3.0.CO;2-1 doi: 10.1002/1520-6661(200009/10)9:5&#x0003c;287::AID-MFM6&#x0003e;3.0.CO;2-1. [DOI] [PubMed]
  141. Weiner Z, Ben-Shlomo I, Beck-Fruchter R, Goldberg Y, Shalev E. Clinical and ultrasonographic weight estimation in large for gestational age fetus. Eur J Obstet Gynecol Reprod Biol 2002;105:20–4. https://doi.org/10.1016/S0301-2115(02)00140-9 doi: 10.1016/S0301-2115(02)00140-9. [DOI] [PubMed]
  142. Weiner E, Fainstein N, Mizrachi Y, Elyashiv O, Mevorach-Zussman N, Bar J, et al. 410: Comparison between three methods for the detection of macrosomia and growth restriction in patients presenting in active labor--a prospective study. Am J Obstet Gynecol 2016;214:S225–S6. https://doi.org/10.1016/j.ajog.2015.10.451 doi: 10.1016/j.ajog.2015.10.451. [DOI]
  143. Shepard MJ, Richards VA, Berkowitz RL, Warsof SL, Hobbins JC. An evaluation of two equations for predicting fetal weight by ultrasound. Am J Obstet Gynecol 1982;142:47–54. https://doi.org/10.1016/s0002-9378(16)32283-9 doi: 10.1016/s0002-9378(16)32283-9. [DOI] [PubMed]
  144. Ouzounian JG. Shoulder dystocia: incidence and risk factors. Clin Obstet Gynecol 2016;59:791–4. https://doi.org/10.1097/GRF.0000000000000227 doi: 10.1097/GRF.0000000000000227. [DOI] [PubMed]
  145. Little SE, Edlow AG, Thomas AM, Smith NA. Estimated fetal weight by ultrasound: a modifiable risk factor for cesarean delivery? Am J Obstet Gynecol 2012;207:309.e1–309.e6. https://doi.org/10.1016/j.ajog.2012.06.065 doi: 10.1016/j.ajog.2012.06.065. [DOI] [PubMed]
  146. Blackwell SC, Refuerzo J, Chadha R, Carreno CA. Overestimation of fetal weight by ultrasound: does it influence the likelihood of cesarean delivery for labor arrest? Am J Obstet Gynecol 2009;200:340.e1–340.e3. https://doi.org/10.1016/j.ajog.2008.12.043 doi: 10.1016/j.ajog.2008.12.043. [DOI] [PubMed]
  147. Parry S, Severs CP, Sehdev HM, Macones GA, White LM, Morgan MA. Ultrasonographic prediction of fetal macrosomia. Association with cesarean delivery. J Reprod Med 2000;45:17–22. [PubMed]
  148. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016;48:333–9. https://doi.org/10.1002/uog.15884 doi: 10.1002/uog.15884. [DOI] [PubMed]
  149. Gaccioli F, Sovio U, Cook E, Hund M, Charnock-Jones DS, Smith GCS. Screening for fetal growth restriction using ultrasound and the sFLT1/PlGF ratio in nulliparous women: a prospective cohort study. Lancet Child Adolesc Health 2018;2:569–81. https://doi.org/10.1016/S2352-4642(18)30129-9 doi: 10.1016/S2352-4642(18)30129-9. [DOI] [PMC free article] [PubMed]
  150. Bond DM, Gordon A, Hyett J, de Vries B, Carberry AE, Morris J. Planned early delivery versus expectant management of the term suspected compromised baby for improving outcomes. Cochrane Database Syst Rev 2015;11:CD009433. https://doi.org/10.1002/14651858.CD009433.pub2 doi: 10.1002/14651858.CD009433.pub2. [DOI] [PMC free article] [PubMed]
  151. Boulvain M, Irion O, Dowswell T, Thornton JG. Induction of labour at or near term for suspected fetal macrosomia. Cochrane Database Syst Rev 2016;5:CD000938. https://doi.org/10.1002/14651858.CD000938.pub2 doi: 10.1002/14651858.CD000938.pub2. [DOI] [PMC free article] [PubMed]
  152. Royal College of Obstetricians and Gynaecologists (RCOG). The Investigation and Management of the Small-for-Gestational-Age Fetus, Investigation and Management (Green-top Guideline No. 31). London: RCOG; 2013.
  153. NHS England. Saving Babies’ Lives Version Two: A Care Bundle for Reducing Perinatal Mortality. URL: www.england.nhs.uk/wp-content/uploads/2019/03/Saving-Babies-Lives-Care-Bundle-Version-Two-Updated-Final-Version.pdf (accessed February 2021).
  154. Grobman WA, Rice MM, Reddy UM, Tita ATN, Silver RM, Mallett G, et al. Labor induction versus expectant management in low-risk nulliparous women. N Engl J Med 2018;379:513–23. https://doi.org/10.1056/NEJMoa1800566 doi: 10.1056/NEJMoa1800566. [DOI] [PMC free article] [PubMed]
  155. Wastlund D, Moraitis AA, Thornton JG, Sanders J, White IR, Brocklehurst P, et al. The cost-effectiveness of universal late-pregnancy screening for macrosomia in nulliparous women: a decision analysis. BJOG 2019;126:1243–50. https://doi.org/10.1111/1471-0528.15809 doi: 10.1111/1471-0528.15809. [DOI] [PMC free article] [PubMed]
  156. Impey LWM, Murphy DJ, Griffiths M, Penna LK on behalf of the Royal College of Obstetricians and Gynaecologists. Management of breech presentation. BJOG 2017;124:e151–e77. https://doi.org/10.1111/1471-0528.14465 doi: 10.1111/1471-0528.14465. [DOI]
  157. Rouse DJ, Owen J, Goldenberg RL, Cliver SP. The effectiveness and costs of elective cesarean delivery for fetal macrosomia diagnosed by ultrasound. JAMA 1996;276:1480–6. https://doi.org/10.1001/jama.1996.03540180036030 doi: 10.1001/jama.1996.03540180036030. [DOI] [PubMed]
  158. Wickham H, Henry L. tidyr: Easily Tidy Data with ‘spread()’ and ‘gather()’ Functions. 2019. URL: https://tidyr.tidyverse.org/ (accessed May 2019).
  159. Strong M. SAVI: SAVI Sheffield Accelerated Value of Information. 2015. URL: https://www.sciencedirect.com/science/article/pii/S1098301515048354?via%3Dihub (accessed May 2019).
  160. Stock SJ, Ferguson E, Duffy A, Ford I, Chalmers J, Norman JE. Outcomes of elective induction of labour compared with expectant management: population based study. BMJ 2012;344:e2838. https://doi.org/10.1136/bmj.e2838 doi: 10.1136/bmj.e2838. [DOI] [PMC free article] [PubMed]
  161. Leung WC, Pun TC, Wong WM. Undiagnosed breech revisited. Br J Obstet Gynaecol 1999;106:638–41. https://doi.org/10.1111/j.1471-0528.1999.tb08360.x doi: 10.1111/j.1471-0528.1999.tb08360.x. [DOI] [PubMed]
  162. Ben-Meir A, Elram T, Tsafrir A, Elchalal U, Ezra Y. The incidence of spontaneous version after failed external cephalic version. Am J Obstet Gynecol 2007;196:157.e1–3. https://doi.org/10.1016/j.ajog.2006.10.889 doi: 10.1016/j.ajog.2006.10.889. [DOI] [PubMed]
  163. Morrison JJ, Rennie JM, Milton PJ. Neonatal respiratory morbidity and mode of delivery at term: influence of timing of elective caesarean section. Br J Obstet Gynaecol 1995;102:101–6. https://doi.org/10.1111/j.1471-0528.1995.tb09060.x doi: 10.1111/j.1471-0528.1995.tb09060.x. [DOI] [PubMed]
  164. Ouzounian JG, Gherman RB. Shoulder dystocia: are historic risk factors reliable predictors? Am J Obstet Gynecol 2005;192:1933–5; discussion 5–8. https://doi.org/10.1016/j.ajog.2005.02.054 doi: 10.1016/j.ajog.2005.02.054. [DOI] [PubMed]
  165. Rossi AC, Mullin P, Prefumo F. Prevention, management, and outcomes of macrosomia: a systematic review of literature and meta-analysis. Obstet Gynecol Surv 2013;68:702–9. https://doi.org/10.1097/01.ogx.0000435370.74455.a8 doi: 10.1097/01.ogx.0000435370.74455.a8. [DOI] [PubMed]
  166. Chongsuvivatwong V, Bachtiar H, Chowdhury ME, Fernando S, Suwanrath C, Kor-Anantakul O, et al. Maternal and fetal mortality and complications associated with cesarean section deliveries in teaching hospitals in Asia. J Obstet Gynaecol Res 2010;36:45–51. https://doi.org/10.1111/j.1447-0756.2009.01100.x doi: 10.1111/j.1447-0756.2009.01100.x. [DOI] [PubMed]
  167. Gibson KS, Waters TP, Bailit JL. Maternal and neonatal outcomes in electively induced low-risk term pregnancies. Am J Obstet Gynecol 2014;211:249.e1–249.e16. https://doi.org/10.1016/j.ajog.2014.03.016 doi: 10.1016/j.ajog.2014.03.016. [DOI] [PubMed]
  168. MacKenzie IZ, Shah M, Lean K, Dutton S, Newdick H, Tucker DE. Management of shoulder dystocia: trends in incidence and maternal and neonatal morbidity. Obstet Gynecol 2007;110:1059–68. https://doi.org/10.1097/01.AOG.0000287615.35425.5c doi: 10.1097/01.AOG.0000287615.35425.5c. [DOI] [PubMed]
  169. Sandmire HF, DeMott RK. The Green Bay cesarean section study. IV. The physician factor as a determinant of cesarean birth rates for the large fetus. Am J Obstet Gynecol 1996;174:1557–64. https://doi.org/10.1016/s0002-9378(96)70606-3 doi: 10.1016/s0002-9378(96)70606-3. [DOI] [PubMed]
  170. Thorngren-Jerneck K, Herbst A. Low 5-minute Apgar score: a population-based register study of 1 million term births. Obstet Gynecol 2001;98:65–70. https://doi.org/10.1097/00006250-200107000-00012 doi: 10.1097/00006250-200107000-00012. [DOI] [PubMed]
  171. Pasupathy D, Wood AM, Pell JP, Fleming M, Smith GC. Time trend in the risk of delivery-related perinatal and neonatal death associated with breech presentation at term. Int J Epidemiol 2009;38:490–8. https://doi.org/10.1093/ije/dyn225 doi: 10.1093/ije/dyn225. [DOI] [PubMed]
  172. MacKay DF, Smith GC, Dobbie R, Pell JP. Gestational age at delivery and special educational need: retrospective cohort study of 407,503 schoolchildren. PLOS Med 2010;7:e1000289. https://doi.org/10.1371/journal.pmed.1000289 doi: 10.1371/journal.pmed.1000289. [DOI] [PMC free article] [PubMed]
  173. Persson M, Razaz N, Tedroff K, Joseph KS, Cnattingius S. Five and 10 minute Apgar scores and risks of cerebral palsy and epilepsy: population based cohort study in Sweden. BMJ 2018;360:k207. https://doi.org/10.1136/bmj.k207 doi: 10.1136/bmj.k207. [DOI] [PMC free article] [PubMed]
  174. Iliodromiti S, Mackay DF, Smith GC, Pell JP, Nelson SM. Apgar score and the risk of cause-specific infant mortality: a population-based cohort study. Lancet 2014;384:1749–55. https://doi.org/10.1016/S0140-6736(14)61135-1 doi: 10.1016/S0140-6736(14)61135-1. [DOI] [PubMed]
  175. NHS Improvement. National Schedule of Reference Costs, 2016–17 – NHS Trusts and NHS Foundation Trusts. London: NHS; 2017.
  176. Vijgen SM, Boers KE, Opmeer BC, Bijlenga D, Bekedam DJ, Bloemenkamp KW, et al. Economic analysis comparing induction of labour and expectant management for intrauterine growth restriction at term (DIGITAT trial). Eur J Obstet Gynecol Reprod Biol 2013;170:358–63. https://doi.org/10.1016/j.ejogrb.2013.07.017 doi: 10.1016/j.ejogrb.2013.07.017. [DOI] [PubMed]
  177. Palencia R, Gafni A, Hannah ME, Ross S, Willan AR, Hewson S, et al. The costs of planned cesarean versus planned vaginal birth in the Term Breech Trial. CMAJ 2006;174:1109–13. https://doi.org/10.1503/cmaj.050796 doi: 10.1503/cmaj.050796. [DOI] [PMC free article] [PubMed]
  178. James M, Hunt K, Burr R, Johanson R. A decision analytical cost analysis of offering ECV in a UK district general hospital. BMC Health Serv Res 2001;1:6. https://doi.org/10.1186/1472-6963-1-6 doi: 10.1186/1472-6963-1-6. [DOI] [PMC free article] [PubMed]
  179. Alfirevic Z, Keeney E, Dowswell T, Welton NJ, Medley N, Dias S, et al. Which method is best for the induction of labour? A systematic review, network meta-analysis and cost-effectiveness analysis. Health Technol Assess 2016;20(65). https://doi.org/10.3310/hta20650 doi: 10.3310/hta20650. [DOI] [PMC free article] [PubMed]
  180. Culligan PJ, Myers JA, Goldberg RP, Blackwell L, Gohmann SF, Abell TD. Elective cesarean section to prevent anal incontinence and brachial plexus injuries associated with macrosomia – a decision analysis. Int Urogynecol J Pelvic Floor Dysfunct 2005;16:19–28. https://doi.org/10.1007/s00192-004-1203-3 doi: 10.1007/s00192-004-1203-3. [DOI] [PubMed]
  181. Mistry H, Heazell AE, Vincent O, Roberts T. A structured review and exploration of the healthcare costs associated with stillbirth and a subsequent pregnancy in England and Wales. BMC Pregnancy Childbirth 2013;13:236. https://doi.org/10.1186/1471-2393-13-236 doi: 10.1186/1471-2393-13-236. [DOI] [PMC free article] [PubMed]
  182. Barrett B, Mosweu I, Jones CR, Charman T, Baird G, Simonoff E, et al. Comparing service use and costs among adolescents with autism spectrum disorders, special needs and typical development. Autism 2015;19:562–9. https://doi.org/10.1177/1362361314536626 doi: 10.1177/1362361314536626. [DOI] [PubMed]
  183. Access Economics. The Economic Impact of Cerebral Palsy in Australia in 2007. Sydney, NSW: Access Economics Pty limited; 2008.
  184. Curtis L, Burns A. Unit Costs of Health and Social Care 2017. Canterbury: PSSRU, University of Kent; 2017.
  185. Szende A, Janssen B, Cabasés J. Self-Reported Population Health: An International Perspective Based on EQ-5D. Dordrecht: Springer Netherlands; 2014. https://doi.org/10.1007/978-94-007-7596-1 doi: 10.1007/978-94-007-7596-1. [DOI] [PubMed]
  186. Office for National Statistics. National Life Tables, United Kingdom, 1980–82 to 2014–16. Newport: Office for National Statistics; 2017.
  187. Leigh S, Granby P, Turner M, Wieteska S, Haycox A, Collins B. The incidence and implications of cerebral palsy following potentially avoidable obstetric complications: a preliminary burden of disease study. BJOG 2014;121:1720–8. https://doi.org/10.1111/1471-0528.12897 doi: 10.1111/1471-0528.12897. [DOI] [PubMed]
  188. National Institute for Health and Care Excellence. Guide to the Methods of Technology Appraisal 2013. London: NICE; 2013. [PubMed]
  189. Wilson ECF, Wastlund D, Moraitis AA, Smith GCS. Late pregnancy ultrasound to screen for and manage potential birth complications in nulliparous women: a cost-effectiveness and value of information analysis. Value Health 2021; in press. doi: 10.1016/j.jval.2020.11.005. [DOI] [PubMed]
  190. Wilson EC. A practical guide to value-of-information analysis. PharmacoEconomics 2015;33:105–21. https://doi.org/10.1007/s40273-014-0219-x doi: 10.1007/s40273-014-0219-x. [DOI] [PubMed]
  191. Claxton K. The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies. J Health Econ 1999;18:341–64. https://doi.org/10.1016/S0167-6296(98)00039-3 doi: 10.1016/S0167-6296(98)00039-3. [DOI] [PubMed]
  192. Pratt J, Raiffa H, Schlaifer R. Introduction to Statistical Decision Theory. Cambridge, MA: Massachusetts Institute of Technology; 1995.
  193. Heath A, Baio G. Calculating the expected value of sample information using efficient nested Monte Carlo: a tutorial. Value Health 2018;21:1299–304. https://doi.org/10.1016/j.jval.2018.05.004 doi: 10.1016/j.jval.2018.05.004. [DOI] [PubMed]
  194. Walker KF, Dritsaki M, Bugg G, Macpherson M, McCormick C, Grace N, et al. Labour induction near term for women aged 35 or over: an economic evaluation. BJOG 2017;124:929–34. https://doi.org/10.1111/1471-0528.14557 doi: 10.1111/1471-0528.14557. [DOI] [PubMed]
  195. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M, ISPOR-SMDM Modeling Good Research Practices Task Force. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force – 2. Value Health 2012;15:804–11. https://doi.org/10.1016/j.jval.2012.06.016 doi: 10.1016/j.jval.2012.06.016. [DOI] [PMC free article] [PubMed]
  196. Heazell AEP, Siassakos D, Blencowe H, Burden C, Bhutta ZA, Cacciatore J, et al. Stillbirths: economic and psychosocial consequences. Lancet 2016;387:604–16. https://doi.org/10.1016/s0140-6736(15)00836-3 doi: 10.1016/s0140-6736(15)00836-3. [DOI] [PubMed]
  197. Heazell AE, Whitworth MK, Whitcombe J, Glover SW, Bevan C, Brewin J, et al. Research priorities for stillbirth: process overview and results from UK Stillbirth Priority Setting Partnership. Ultrasound Obstet Gynecol 2015;46:641–7. https://doi.org/10.1002/uog.15738 doi: 10.1002/uog.15738. [DOI] [PubMed]
  198. Eskes M, Ensing S, Groenendaal F, Abu-Hanna A, Ravelli A. The risk of intrapartum/neonatal mortality and morbidity following birth at 37 weeks of gestation: a nationwide cohort study. BJOG 2019;126:1252–7. https://doi.org/10.1111/1471-0528.15748 doi: 10.1111/1471-0528.15748. [DOI] [PMC free article] [PubMed]
  199. Nelson HD, Fu R, Cantor A, Pappas M, Daeges M, Humphrey L. Effectiveness of breast cancer screening: systematic review and meta-analysis to update the 2009 U.S. Preventive Services Task Force recommendation. Ann Intern Med 2016;164:244–55. https://doi.org/10.7326/M15-0969 doi: 10.7326/M15-0969. [DOI] [PubMed]
  200. Norman JE, Heazell AEP, Rodriguez A, Weir CJ, Stock SJE, Calderwood CJ, et al. Awareness of fetal movements and care package to reduce fetal mortality (AFFIRM): a stepped wedge, cluster-randomised trial. Lancet 2018;392:1629–38. https://doi.org/10.1016/s0140-6736(18)31543-5 doi: 10.1016/s0140-6736(18)31543-5. [DOI] [PMC free article] [PubMed]
  201. NHS Digital. NHS Maternity Statistics, England 2016–17. Leeds: NHS Digital; 2017.
  202. American College of Obstetricians and Gynecologists. Practice bulletin no. 173: fetal macrosomia. Obstet Gynecol 2016;128:e195–e209. https://doi.org/10.1097/aog.0000000000001767 doi: 10.1097/aog.0000000000001767. [DOI] [PubMed]
  203. Culliney KA, Parry GK, Brown J, Crowther CA. Regimens of fetal surveillance of suspected large-for-gestational-age fetuses for improving health outcomes. Cochrane Database Syst Rev 2016;4:CD011739. https://doi.org/10.1002/14651858.CD011739.pub2 doi: 10.1002/14651858.CD011739.pub2. [DOI] [PMC free article] [PubMed]
  204. Benner JS, Morrison MR, Karnes EK, Kocot SL, McClellan M. An evaluation of recent federal spending on comparative effectiveness research: priorities, gaps, and next steps. Health Aff 2010;29:1768–76. https://doi.org/10.1377/hlthaff.2010.0687 doi: 10.1377/hlthaff.2010.0687. [DOI] [PubMed]
  205. Royal College of Obstetricians and Gynaecologists (RCOG). Green-top Guideline No. 42: Shoulder Dystocia. London: RCOG; 2012.
  206. Hannah ME, Hannah WJ, Hewson SA, Hodnett ED, Saigal S, Willan AR. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomised multicentre trial. Lancet 2000;356:1375–83. https://doi.org/10.1016/s0140-6736(00)02840-3 doi: 10.1016/s0140-6736(00)02840-3. [DOI] [PubMed]
  207. Gherman RB, Ouzounian JG, Miller DA, Kwok L, Goodwin TM. Spontaneous vaginal delivery: a risk factor for Erb’s palsy? Am J Obstet Gynecology 1998;178:423–7. https://doi.org/10.1016/s0002-9378(98)70413-2 doi: 10.1016/s0002-9378(98)70413-2. [DOI] [PubMed]
  208. NHS Digital. NHS Staff Earnings Estimates to September 2017 – Provisional Statistics. Leeds: NHS Digital; 2017.
  209. NHS Purchasing and Supply Agency. Cost-effectiveness of Ultrasound Elastography in the Assessment of Liver Fibrosis. Chester: NHS Purchasing and Supply Agency; 2009.
  210. Curtis L. Unit Costs of Health and Social Care 2008. Canterbury: PSSRU, University of Kent; 2008.
  211. Malloy MH, Freeman DH. Respiratory distress syndrome mortality in the United States, 1987 to 1995. J Perinatol 2000;20:414–20. https://doi.org/10.1038/sj.jp.7200420 doi: 10.1038/sj.jp.7200420. [DOI] [PubMed]
  212. Curtis L, Burns A. Unit Costs of Health and Social Care 2016. Canterbury: PSSRU, University of Kent; 2016.
  213. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997;39:214–23. https://doi.org/10.1111/j.1469-8749.1997.tb07414.x doi: 10.1111/j.1469-8749.1997.tb07414.x. [DOI] [PubMed]
  214. EuroQol Group. EuroQol--a new facility for the measurement of health-related quality of life. Health Policy 1990;16:199–208. https://doi.org/10.1016/0168-8510(90)90421-9 doi: 10.1016/0168-8510(90)90421-9. [DOI] [PubMed]
  215. Young NL, Rochon TG, McCormick A, Law M, Wedge JH, Fehlings D. The health and quality of life outcomes among youth and young adults with cerebral palsy. Arch Phys Med Rehabil 2010;91:143–8. https://doi.org/10.1016/j.apmr.2009.08.152 doi: 10.1016/j.apmr.2009.08.152. [DOI] [PubMed]

RESOURCES