Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;15(2):134–138. doi: 10.1111/j.1750-3639.2005.tb00509.x

Microglial EP2 as a New Target to Increase Amyloid β Phagocytosis and Decrease Amyloid β‐Induced Damage to Neurons

Feng‐Shiun Shie 1, Kathleen S Montine 1, Richard M Breyer 2, Thomas J Montine 1,
PMCID: PMC8095884  PMID: 15912885

Abstract

Epidemiologic and animal model data support a role for the prostaglandin pathway in AD pathogenesis. However, unexpected toxicity from protracted use of some nonsteroidal anti‐inflammatory drugs (NSAIDs) compels investigation of therapeutic targets in this pathway other than COX inhibitors. Previously, we have shown that mice lacking one specific receptor for PGE2, EP2 (EP2‐/‐), are protected from the indirect neurotoxic effects of cerebral innate immune response mediated by CD14‐dependent activation. Here we review data showing that EP2‐/‐ microglia have a highly desirable combination of features: ablated indirect neurotoxicity following exposure to Aβ1–42 coupled with enhanced phagocytosis of Aβ peptides, both synthetic and those deposited in human brain. These data point to microglial EP2 as a more focused target within the PG pathway for therapy in AD.

Full Text

The Full Text of this article is available as a PDF (152.8 KB).

REFERENCES

  • 1. Aisen PS, Schafer KA, Grundman M, Pfeiffer E, Sano M, Davis KL, Farlow MR, Jin S, Thomas RG, Thal LJ (2003) Effects of rofecoxib or naproxen vs. placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289:2819–2826. [DOI] [PubMed] [Google Scholar]
  • 2. Anthony JC, Breitner JC, Zandi PP, Meyer MR, Jurasova I, Norton MC, Stone SV (2000) Reduced prevalence of AD in users of NSAIDs and H2 receptor antagonists: the Cache County study. Neurology 54:2066–2071. [DOI] [PubMed] [Google Scholar]
  • 3. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson‐Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid β‐peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919. [DOI] [PubMed] [Google Scholar]
  • 4. Bhattacharya M, Peri K, Almazan G, Ribeiro‐da‐Silva A, Shichi H, Durocher Y, Abramovitz M, Hou X, Varma D, Chemtob S (1998) Nuclear localization of prostaglandin E2 receptors. Proc Natl Acad Sci U S A 95:15792–15727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001) Prostanoid receptors: subtypes and signaling. Ann Rev Pharmacol Toxicol 41:661–690. [DOI] [PubMed] [Google Scholar]
  • 6. Caggiano AO, Kraig RP (1999) Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide‐induced interleukin‐ 1β production. J Neurochem 72:565–575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Drachman D, Rothstein J (2000) Inhibition of cyclooxygenase‐2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis. Ann Neurol 48:792–795. [PubMed] [Google Scholar]
  • 8. Dumont I, Peri KG, Hardy P, Hou X, Martinez‐Bermudez AK, Molotchnikoff S, Varma DR, Chemtob S (1998) PGE2, via EP3 receptors, regulates brain nitric oxide synthase in the perinatal period. Am J Physiol 275:R1812–R1821. [DOI] [PubMed] [Google Scholar]
  • 9. Ek M, Arias C, Sawchenko P, Ericsson‐Dahlstrand A (2000) Distribution of the EP3 prostaglandin E2 receptor subtype in the rat brain: relationship to sites of interleukin‐1‐induced cellular responsiveness. J Comp Neurol 428:5–20. [DOI] [PubMed] [Google Scholar]
  • 10. Fassbender K, Walter S, Kuhl S, Landmann R, Ishii K, Bertsch T, Stalder AK, Muehlhauser F, Liu Y, Ulmer AJ, Rivest S, Lentschat A, Gulbins E, Jucker M, Staufenbiel M, Brechtel K, Walter J, Multhaup G, Penke B, Adachi Y, Hartmann T, Beyreuther K (2004) The LPS receptor (CD14) links innate immunity with Alzheimer's disease. FASEB J 18:203–205. [DOI] [PubMed] [Google Scholar]
  • 11. Fitzgerald GA (2004) Coxibs and cardiovascular disease. N Engl J Med 351:1709–1711. [DOI] [PubMed] [Google Scholar]
  • 12. in T'Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T, Breteler MM, Stricker BH (2001) Nonsteroidal anti‐inflammatory drugs and the risk of Alzheimer's disease. N Engl J Med 345:1515–1521. [DOI] [PubMed] [Google Scholar]
  • 13. Jantzen PT, Connor KE, DiCarlo G, Wenk GL, Wallace JL, Rojiani AM, Coppola D, Morgan D, Gordon MN (2002) Microglial activation and _‐amyloid deposit reduction caused by a nitric oxide‐releasing nonsteroidal anti‐inflammatory drug in amyloid precursor protein plus presenilin‐1 transgenic mice. J Neurosci 22:2246–2254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Katzman R (1976) Editorial: The prevalence and malignancy of Alzheimer disease. A major killer. Arch Neurol 33:217–218. [DOI] [PubMed] [Google Scholar]
  • 15. Lanz TA, Fici GJ, Merchant KM (2005) Lack of Specific Amyloid‐β1–42 suppression by nonsteroidal anti‐inflammatory drugs in young, plaque‐free Tg2576 Mice and in guinea pig neuronal cultures. J Pharmacol Exp Ther 312:399–406. [DOI] [PubMed] [Google Scholar]
  • 16. Levi G, Minghetti L, Aloisi F (1998) Regulation of prostanoid synthesis in microglial cells and effects of prostaglandin E2 on microglial functions. Biochimie 80:899–904. [DOI] [PubMed] [Google Scholar]
  • 17. Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J Neurosci 20:5709–5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Martin BK, Meinert CL, Breitner JC (2002) Double placebo design in a prevention trial for Alzheimer's disease. Control Clin Trials 23:93–99. [DOI] [PubMed] [Google Scholar]
  • 19. McCullough L, Wu L, Haughey N, Liang X, Hand T, Wang Q, Breyer RM, Andreasson K (2004) Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 24:257–268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Milatovic D, Zaja‐Milatovic S, Montine KS, Horner PJ, Montine TJ (2003) Pharmacologic suppression of neuronal oxidative damage and dendritic degeneration following direct activation of glial innate immunity in mouse cerebrum. J Neurochem 87:1518–1526. [DOI] [PubMed] [Google Scholar]
  • 21. Milatovic D, Zaja‐Milatovic S, Montine KS, Shie FS, Montine TJ (2004) Neuronal oxidative damage and dendritic degeneration following activation of CD14‐dependent innate immune response in vivo. J Neuroinflammation 1:20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Minghetti L, Nicolini A, Polazzi E, Creminon C, Maclouf J, Levi G (1997) Inducible nitric oxide synthase expression in activated rat microglial cultures is downregulated by exogenous prostaglandin E2 and by cyclooxygenase inhibitors. Glia 19:152–160. [PubMed] [Google Scholar]
  • 23. Minghetti L, Polazzi E, Nicolini A, Creminon C, Levi G (1997) Up‐regulation of cyclooxygenase‐2 expression in cultured microglia by prostanoid E2, cyclic AMP, and nonsteroidal anti‐inflammatory drugs. Eur J Neurosci 9:934–940. [DOI] [PubMed] [Google Scholar]
  • 24. Nakamura K, Kaneko T, Yamashita Y, Hasegawa H, Katoh H, Negishi M (2000) Immunohistochemical localization of prostaglandin EP3 receptor in the rat central nervous system. J Comp Neurol 421:543–569. [DOI] [PubMed] [Google Scholar]
  • 25. Oka T, Oka K, Schammell TE, Lee C, Kelly JF, Nantel F, Elmquist JK, Saper CB (2000) Relationship of EP1–4 prostaglandin receptors with rat hypothalamic cell groups involved in lipopolysaccharide fever responses. J Comp Neurol 428:20–32. [DOI] [PubMed] [Google Scholar]
  • 26. Rogers J, Strohmeyer R, Kovelowski CJ, Li R (2002) Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. Glia 40:260–269. [DOI] [PubMed] [Google Scholar]
  • 27. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson‐Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid‐β attenuates Alzheimer‐disease‐like pathology in the PDAPP mouse. Nature 400:173–177. [DOI] [PubMed] [Google Scholar]
  • 28. Shie FS, Breyer RM, Montine TJ (2005) Microglia lacking EP2 have enhanced Ab phagocytosis yet lack Ab‐activated neurotoxicity. Am J Pathol 166:. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Solomon B, Koppel R, Frankel D, Hanan‐Aharon E (1997) Disaggregation of Alzheimer β‐amyloid by site‐directed mAb. Proc Natl Acad Sci U S A 94:4109–4112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Stewart WF, Kawas C, Corrada M, Metter EJ (1997) Risk of Alzheimer's disease and duration of NSAID use. Neurology 48:626–632. [DOI] [PubMed] [Google Scholar]
  • 31. Sugimoto Y, Shigemoto R, Namba T, Negishi M, Mizuno N, Narumiya S, Ichikawa A (1994) Distribution of the messenger RNA for the prostaglandin E receptor subtype EP3 in the mouse nervous system. Neuroscience 62:919–928. [DOI] [PubMed] [Google Scholar]
  • 32. Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietzik CU, Findlay KA, Smith TE, Murphy MP, Butler T, Kang DE, Sterling N, Golde TE, Koo EH (2001) A subset of NSAIDs lower amyloidogenic AP42 independently of cyclooxygenase activity. Nature 414:212–216. [DOI] [PubMed] [Google Scholar]
  • 33. Yan Q, Zhang J, Liu H, Babu‐Khan S, Vassar R, Biere AL, Citron M, Landreth G (2003) Anti‐inflammatory drug therapy alters β‐amyloid processing and deposition in an animal model of Alzheimer's disease. J Neurosci 23:7504–7509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Yip AG, Green RC, Huyck M, Cupples LA, Farrer LA (2005) Nonsteroidal anti‐inflammatory drug use and Alzheimer's disease risk: the MIRAGE Study. BMC Geriatr 5:2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Zaja‐Milatovic S, Milatovic D, Schantz AM, Zhang J, Montine KS, Samii A, Deutch AY, Montine TJ (2005) Dendritic degeneration in neostriatal medium spiny neurons in Parkinson disease. Neurology 64:545–547. [DOI] [PubMed] [Google Scholar]
  • 36. Zhang J, Rivest S (1999) Distribution, regulation and colocalization of the genes encoding EP2 and EP4 PGE2 receptors in the rat brain and neuronal responses to inflammation. Eur J Neurosci 11:2651–2668. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES