Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;16(1):40–54. doi: 10.1111/j.1750-3639.2006.tb00560.x

Mechanism of Cerebral β‐Amyloid Angiopathy: Murine and Cellular Models

Martin C Herzig 1,2,, William E Van Nostrand 3, Mathias Jucker 1
PMCID: PMC8095938  PMID: 16612981

Abstract

Cerebral amyloid angiopathy of the β‐amyloid type (Aβ‐CAA) is a risk factor for hemorrhagic stroke and independently is believed to contribute to dementia. Naturally occurring animal models of Aβ‐CAA are scarce and not well suited for the laboratory. To this end, a variety of transgenic mouse models have been developed that, similar to cerebral Aβ‐amyloidosis in humans, develop either Aβ‐CAA only or both Aβ‐CAA and parenchymal amyloid, or primarily parenchymal amyloid with only scarce Aβ‐CAA. The lessons learned from these mouse models are: i) Aβ‐CAA alone is sufficient to induce cerebral hemorrhage and associate pathologies including neuroinflammation, ii) the origin of vascular amyloid is mainly neuronal, iii) Aβ‐CAA results largely from impaired Aβ clearance, iv) a high ratio Aβ40:42 favors vascular over parenchymal amyloidosis, and v) genetic risk factors such as ApoE modulate Aβ‐CAA and CAA‐induced hemorrhages. Therapeutic strategies to inhibit Aβ‐CAA are poor at the present time. Once Aβ‐CAA is present current Aβ immunotherapy strategies have failed to clear vascular amyloid and even run the risk of serious side effects. Despite this progress in deciphering the pathomechanism of Aβ‐CAA, with these first generation mouse models of Aβ‐CAA, refining these models is needed and will help to understand the emerging importance of Aβ‐CAA for dementia and to develop biomarkers and therapeutic strategies.

References

  • 1. Attems J (2005) Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol (Berl) 110:345–359. [DOI] [PubMed] [Google Scholar]
  • 2. Attems J, Jellinger KA, Lintner F (2005) Alzheimer's disease pathology influences severity and topographical distribution of cerebral amyloid angiopathy. Acta Neuropathol (Berl) 110:222–231. [DOI] [PubMed] [Google Scholar]
  • 3. Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, Schenk D, Hyman BT (2001) Imaging of amyloid‐β deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 7:369–372. [DOI] [PubMed] [Google Scholar]
  • 4. Bahmanyar S, Higgins GA, Goldgaber D, Lewis DA, Morrison JH, Wilson MC, Shankar SK, Gajdusek DC (1987) Localization of amyloid β protein messenger RNA in brains from patients with Alzheimer's disease. Science 237:77–80. [DOI] [PubMed] [Google Scholar]
  • 5. Bales KR, Verina T, Cummins DJ, Du Y, Dodel RC, Saura J, Fishman CE, DeLong CA, Piccardo P, Petegnief V, et al (1999) Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 96:15233–15238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M, Hyslop P, Johnstone EM, Little SP, Cummins DJ, et al (1997) Lack of apolipoprotein E dramatically reduces amyloid β‐peptide deposition. Nat Genet 17:263–264. [DOI] [PubMed] [Google Scholar]
  • 7. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson‐Wood, K , et al (2000) Peripherally administered antibodies against amyloid β‐peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919. [DOI] [PubMed] [Google Scholar]
  • 8. Beckmann N, Schuler A, Mueggler T, Meyer EP, Wiederhold KH, Staufenbiel M, Krucker T (2003) Age‐dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer's disease. J Neurosci 23:8453–8459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Blanc EM, Toborek M, Mark RJ, Hennig B, Matt‐son MP (1997) Amyloid β‐peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells. J Neurochem 68:1870–1881. [DOI] [PubMed] [Google Scholar]
  • 10. Boche D, Nicoll JA, Weller RO (2005) Immunotherapy for Alzheimer's disease and other dementias. Curr Opin Neurol 18:720–725. [DOI] [PubMed] [Google Scholar]
  • 11. Bodendorf U, Danner S, Fischer F, Stefani M, Sturchler‐Pierrat C, Wiederhold KH, Staufenbiel M, Paganetti P (2002) Expression of human β‐secretase in the mouse brain increases the steady‐state level of β‐amyloid. J Neurochem 80:799–806. [DOI] [PubMed] [Google Scholar]
  • 12. Borchelt DR, Davis J, Fischer M, Lee MK, Slunt HH, Ratovitsky T, Regard J, Copeland NG, Jenkins NA, Sisodia SS, et al (1996) A vector for expressing foreign genes in the brains and hearts of transgenic mice. Genet Anal 13:159–163. [DOI] [PubMed] [Google Scholar]
  • 13. Buee L, Ding W, Delacourte A, Fillit H (1993) Binding of secreted human neuroblastoma proteoglycans to the Alzheimer's amyloid A4 peptide. Brain Res 601:154–163. [DOI] [PubMed] [Google Scholar]
  • 14. Bugiani O, Padovani A, Magoni M, Andora G, Sgarzi M, Savoiardo M, Bizzi A, Giaccone G, Rossi G, Tagliavini F (1998) An Italien type of HCHWA. Neurobiol Aging 19:S238. [Google Scholar]
  • 15. Burbach G, Vlachos A, Ghebremedhin E, Del Turco, D , Coomaraswamy J, Staufenbiel M, Jucker M, Deller T (2006) Vessel ultrastructure in APP23 transgenic mice after passive anti‐Aβ immunotherapy and subsequent intracerebral hemorrhage. Neurobiol Aging (in press). [DOI] [PubMed] [Google Scholar]
  • 16. Calhoun ME, Burgermeister P, Phinney AL, Stalder, M . Tolnay, M , Wiederhold KH, Abramowski D, Sturchler‐Pierrat C, Sommer B, Staufenbiel M, et al (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 96:14088–14093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Caroni P (1997) Overexpression of growth‐associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71:3–9. [DOI] [PubMed] [Google Scholar]
  • 18. Castano EM, Prelli F, Soto C, Beavis R, Matsubara E, Shoji M, Frangione B (1996) The length of amyloid‐β in hereditary cerebral hemorrhage with amyloidosis, Dutch type. Implications for the role of amyloid‐β 1–42 in Alzheimer's disease. J Biol Chem 271:32185–32191. [DOI] [PubMed] [Google Scholar]
  • 19. Castillo GM, Ngo C, Cummings J, Wight TN, Snow AD (1997) Perlecan binds to the β‐amyloid proteins (Aβ) of Alzheimer's disease, accelerates Aβ fibril formation, and maintains Aβ fibril stability. J Neurochem 69:2452–2465. [DOI] [PubMed] [Google Scholar]
  • 20. Chauhan NB, Siegel GJ, Lichtor T (2004) Effect of age on the duration and extent of amyloid plaque reduction and microglial activation after injection of anti‐Aβ antibody into the third ventricle of TgCRND8 mice. J Neurosci Res 78:732–741. [DOI] [PubMed] [Google Scholar]
  • 21. Cheng IH, Palop JJ, Esposito LA, Bien‐Ly N, Yan F, Mucke L (2004) Aggressive amyloidosis in mice expressing human amyloid peptides with the Arctic mutation. Nat Med 10:1190–1192. [DOI] [PubMed] [Google Scholar]
  • 22. Chishti MA, Yang DS, Janus C, Phinney AL, Horne P, Pearson J, Strome R, Zuker N, Loukides J, French J, et al (2001) Early‐onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276:21562–21570. [DOI] [PubMed] [Google Scholar]
  • 23. Christie R, Yamada M, Moskowitz M, Hyman B (2001) Structural and functional disruption of vascular smooth muscle cells in a transgenic mouse model of amyloid angiopathy. Am J Pathol 158:1065–1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Christoforidis M, Schober R, Krohn K (2005) Genetic‐morphologic association study: association between the low density lipoprotein‐receptor related protein (LRP) and cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 31:11–19. [DOI] [PubMed] [Google Scholar]
  • 25. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo‐Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β‐amyloid precursor protein in familial Alzheimer's disease increases β‐protein production. Nature 360:672–674. [DOI] [PubMed] [Google Scholar]
  • 26. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak‐Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261:921–923. [DOI] [PubMed] [Google Scholar]
  • 27. Cruz L, Urbanc B, Borreguero JM, Lazo ND, Teplow DB, Stanley HE (2005) Solvent and mutation effects on the nucleation of amyloid β‐protein folding. Proc Natl Acad Sci US A 102:18258–18263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Cserr HF, Harling‐Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2:269–276. [DOI] [PubMed] [Google Scholar]
  • 29. Das P, Murphy MP, Younkin LH, Younkin SG, Golde TE (2001) Reduced effectiveness of Aβ1–42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol Aging 22:721–727. [DOI] [PubMed] [Google Scholar]
  • 30. Davis J, van Nostrand WE (1996) Enhanced pathologic properties of Dutch‐type mutant amyloid β‐protein. Proc Natl Acad Sci U S A 93:2996–3000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, van Nostrand WE (2004) Early‐onset and robust cerebral microvascular accumulation of amyloid β‐protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid β‐protein precursor. J Biol Chem 279:20296–20306. [DOI] [PubMed] [Google Scholar]
  • 32. Davis‐Salinas J, Saporito‐Irwin SM, Cotman CW, van Nostrand WE (1995) Amyloid β‐protein induces its own production in cultured degenerating cerebrovascular smooth muscle cells. J Neurochem 65:931–934. [DOI] [PubMed] [Google Scholar]
  • 33. Davis‐Salinas J, van Nostrand WE (1995) Amyloid β‐protein aggregation nullifies its pathologic properties in cultured cerebrovascular smooth muscle cells. J Biol Chem 270:20887–20890. [DOI] [PubMed] [Google Scholar]
  • 34. De Jonghe C, Cras P, Vanderstichele H, Cruts M, Vanderhoeven I, Smouts I, Vanmechelen E, Martin JJ, Hendriks L, van Broeckhoven C (1999) Evidence that Aβ42 plasma levels in presenilin‐1 mutation carriers do not allow for prediction of their clinical phenotype. Neurobiol Dis 6:280–287. [DOI] [PubMed] [Google Scholar]
  • 35. De Jonghe C, Esselens C, Kumar‐Singh S, Craessaerts K, Serneels S, Checler F, Annaert W, van Broeckhoven C, De Strooper B (2001) Pathogenic APP mutations near the gamma‐secretase cleavage site differentially affect Aβ secretion and APP C‐terminal fragment stability. Hum Mol Genet 10:1665–1671. [DOI] [PubMed] [Google Scholar]
  • 36. De Jonghe C, Zehr C, Yager D, Prada CM, Younkin S, Hendriks L, van Broeckhoven C, Eck‐man CB (1998) Flemish and Dutch mutations in amyloid β precursor protein have different effects on amyloid β secretion. Neurobiol Dis 5:281–286. [DOI] [PubMed] [Google Scholar]
  • 37. Deane R, Du Yan, S , Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch D, Manness L, Lin C, Yu J, et al (2003) RAGE mediates amyloid‐β pep‐tide transport across the blood‐brain barrier and accumulation in brain. Nat Med 9:907–913. [DOI] [PubMed] [Google Scholar]
  • 38. Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H, Wu Z, Holtzman DM, Zlokovic BV (2005) IgG‐assisted age‐dependent clearance of Alzheimer's amyloid β peptide by the blood‐brain barrier neonatal Fc receptor. J Neurosci 25:11495–11503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Deane R, Wu Z, Sagare A, Davis J, Du Yan, S , Hamm K, Xu F, Parisi M, LaRue B, HW Hu (2004) LRP/amyloid β‐peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43:333–344. [DOI] [PubMed] [Google Scholar]
  • 40. Deane R, Wu Z, Zlokovic BV (2004) RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid β‐peptide clearance through transport across the blood‐brain barrier. Stroke 35:2628–2631. [DOI] [PubMed] [Google Scholar]
  • 41. DeMattos RB, Cirrito JR, Parsadanian M, May PC, O'Dell MA, Taylor JW, Harmony JA, Aronow BJ, Bales KR, Paul SM, et al (2004) ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo. Neuron 41:193–202. [DOI] [PubMed] [Google Scholar]
  • 42. Dermaut B, Kumar‐Singh S, De Jonghe C, Cruts M, Lofgren A, Lubke U, Cras P, Dom R, De Deyn PP, Martin JJ, et al (2001) Cerebral amyloid angiopathy is a pathogenic lesion in Alzheimer's disease due to a novel presenilin 1 mutation. Brain 124:2383–2392. [DOI] [PubMed] [Google Scholar]
  • 43. Dewachter I, van Dorpe J, Spittaels K, Tesseur I, Van Den Haute, C , Moechars D, van Leuven F (2000) Modeling Alzheimer's disease in transgen‐ic mice: effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Exp Gerontol 35:831–841. [DOI] [PubMed] [Google Scholar]
  • 44. Domnitz SB, Robbins EM, Hoang AW, Garcia‐Alloza M, Hyman BT, Rebeck GW, Greenberg SM, Bacskai BJ, Frosch MP (2005) Progression of cerebral amyloid angiopathy in transgenic mouse models of Alzheimer disease. J Neuropathol Exp Neurol 64:588–594. [DOI] [PubMed] [Google Scholar]
  • 45. Eckman EA, Reed DK, Eckman CB (2001) Degradation of the Alzheimer's amyloid β peptide by endothelin‐converting enzyme. J Biol Chem 276:24540–24548. [DOI] [PubMed] [Google Scholar]
  • 46. Eisenhauer PB, Johnson RJ, Wells JM, Davies TA, Fine RE (2000) Toxicity of various amyloid β peptide species in cultured human blood‐brain barrier endothelial cells: increased toxicity of dutch‐type mutant. J Neurosci Res 60:804–810. [DOI] [PubMed] [Google Scholar]
  • 47. Eng JA, Frosch MP, Choi K, Rebeck GW, Greenberg SM (2004) Clinical manifestations of cerebral amyloid angiopathy‐related inflammation. Ann Neurol 55:250–256. [DOI] [PubMed] [Google Scholar]
  • 48. Evin G, Weidemann A (2002) Biogenesis and metabolism of Alzheimer's disease Aβ amyloid peptides. Peptides 23:1285–1297. [DOI] [PubMed] [Google Scholar]
  • 49. Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM, Holtzman DM (2002) Human and murine ApoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol Dis 9:305–318. [DOI] [PubMed] [Google Scholar]
  • 50. Farkas E, Luiten PG (2001) Cerebral microvas‐cular pathology in aging and Alzheimer's disease. Prog Neurobiol 64:575–611. [DOI] [PubMed] [Google Scholar]
  • 51. Ferrer I, Boada Rovira, M , Sánchez Guerra, ML , Rey MJ, Costa‐Jussá F (2004) Neuropathology and pathogenesis of encephalitis following amy‐loid‐β immunization in Alzheimer's disease. Brain Pathol 14:11–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Folin M, Baiguera S, Tommasini M, Guidolin D, Conconi MT, De Carlo E, Nussdorfer GG, Parnigot‐to PP (2005) Effects of β‐amyloid on rat neuromi‐crovascular endothelial cells cultured in vitro. Int JMol Med 15:929–935. [PubMed] [Google Scholar]
  • 53. Frackowiak J, Miller DL, Potempska A, Sukon‐tasup T, Mazur‐Kolecka B (2003) Secretion and accumulation of Aβ by brain vascular smooth muscle cells from AβPP‐Swedish transgenic mice. J Neuropathol Exp Neurol 62:685–696. [DOI] [PubMed] [Google Scholar]
  • 54. Frackowiak J, Zoltowska A, Wisniewski HM (1994) Non‐fibrillar β‐amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. J Neuropathol Exp Neurol 53:637–645. [DOI] [PubMed] [Google Scholar]
  • 55. Frangione B, Revesz T, Vidal R, Holton J, Lashley T, Houlden H, Wood N, Rostagno A, Plant G, Ghiso J (2001) Familial cerebral amyloid angiopathy related to stroke and dementia. Amyloid 8 Suppl 1:36–42. [PubMed] [Google Scholar]
  • 56. Fraser PE, Nguyen JT, Inouye H, Surewicz WK, Selkoe DJ, Podlisny MB, Kirschner DA (1992) Fibril formation by primate, rodent, and Dutch‐hemorrhagic analogues of Alzheimer amyloid β‐protein. Biochemistry 31:10716–10723. [DOI] [PubMed] [Google Scholar]
  • 57. Fryer JD, Demattos RB, McCormick LM, O'Dell MA, Spinner ML, Bales KR, Paul SM, Sullivan PM, Parsadanian M, Bu G, et al (2005) The low density lipoprotein receptor regulates the level of central nervous system human and murine apolipoprotein E but does not modify amyloid plaque pathology in PDAPP mice. J Biol Chem 280:25754–25759. [DOI] [PubMed] [Google Scholar]
  • 58. Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM, Holtzman DM (2005) Human apolipoprotein E4 alters the amyloid‐β 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 25:2803–2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Fryer JD, Taylor JW, DeMattos RB, Bales KR, Paul SM, Parsadanian M, Holtzman DM (2003) Apolipoprotein E markedly facilitates age‐dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J Neurosci 23:7889–7896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Fukuchi K, Ho L, Younkin SG, Kunkel DD, Og‐burn CE, LeBoeuf RC, Furlong CE, Deeb SS, Noch‐lin D, Wegiel J, et al (1996) High levels of circulating β‐amyloid peptide do not cause cerebral β‐amyloidosis in transgenic mice. Am J Pathol 149:219–227. [PMC free article] [PubMed] [Google Scholar]
  • 61. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, et al (1995) Alzheimer‐type neuropathology in transgenic mice overexpress‐ing V717F β‐amyloid precursor protein. Nature 373:523–527. [DOI] [PubMed] [Google Scholar]
  • 62. Ghersi‐Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD (1996) Fate of cerebrospinal fluid‐borne amyloid β‐peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J Neurochem 67:880–883. [DOI] [PubMed] [Google Scholar]
  • 63. Goate A, Chartier‐Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349:704–706. [DOI] [PubMed] [Google Scholar]
  • 64. Goedert M (1987) Neuronal localization of amyloid β protein precursor mRNA in normal human brain and in Alzheimer's disease. Embo J 6:3627–3632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49:697–705. [DOI] [PubMed] [Google Scholar]
  • 66. Greenberg SM (1998) Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology 51:690–694. [DOI] [PubMed] [Google Scholar]
  • 67. Greenberg SM (2002) Cerebral amyloid angiopathy and vessel dysfunction. Cerebrovasc Dis 13 Suppl 2:42–47. [DOI] [PubMed] [Google Scholar]
  • 68. Greenberg SM, Briggs ME, Hyman BT, Kokoris GJ, Takis C, Kanter DS, Kase CS, Pessin MS (1996) Apolipoprotein E epsilon 4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 27:1333–1337. [DOI] [PubMed] [Google Scholar]
  • 69. Greenberg SM, Gurol ME, Rosand J, Smith EE (2004) Amyloid angiopathy‐related vascular cognitive impairment. Stroke 35:2616–2619. [DOI] [PubMed] [Google Scholar]
  • 70. Greenberg SM, Rebeck GW, Vonsattel JP, Gomez‐Isla T, Hyman BT (1995) Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol 38:254–259. [DOI] [PubMed] [Google Scholar]
  • 71. Haass C, Schlossmacher MG, Hung AY, Vigo‐Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, et al (1992) Amyloid β‐peptide is produced by cultured cells during normal metabolism. Nature 359:322–325. [DOI] [PubMed] [Google Scholar]
  • 72. Harigaya Y, Tomidokoro Y, Ikeda M, Sasaki A, Kawarabayashi T, Matsubara E, Kanai M, Saido TC, Younkin SG, Shoji M (2005) Type‐specific evolution of amyloid plaque and angiopathy in APPsw mice. Neurosci Lett.. [DOI] [PubMed] [Google Scholar]
  • 73. Harper JD, Wong SS, Lieber CM, Lansbury PT (1997) Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 4:119–125. [DOI] [PubMed] [Google Scholar]
  • 74. Harris‐White ME, Frautschy SA (2005) Low density lipoprotein receptor‐related proteins (LRPs), Alzheimer's and cognition. Curr Drug Targets CNS Neurol Disord 4:469–480. [DOI] [PubMed] [Google Scholar]
  • 75. Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H (1999) Interaction between Aβ(1–42) and Aβ(1–40) in Alzheimer's β‐amyloid fibril formation in vitro. Biochemistry 38:15514–15521. [DOI] [PubMed] [Google Scholar]
  • 76. Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin JJ, et al (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β‐amyloid precursor protein gene. Nat Genet 1:218–221. [DOI] [PubMed] [Google Scholar]
  • 77. Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD, Danner S, Abramowski D, Sturchler‐Pierrat C, Burki K, et al (2004) Aβ is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloido‐sis. Nat Neurosci 7:954–960. [DOI] [PubMed] [Google Scholar]
  • 78. Hirsch‐Reinshagen V, Maia LF, Burgess BL, Blain JF, Naus KE, McIsaac SA, Parkinson PF, Chan JY, Tansley GH, Hayden, MR (2005) The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer's disease. J Biol Chem 280:43243–43256. [DOI] [PubMed] [Google Scholar]
  • 79. Hirsch‐Reinshagen V, Zhou S, Burgess BL, Ber‐nier L, McIsaac SA, Chan JY, Tansley GH, Cohn JS, Hayden MR, Wellington CL (2004) Deficiency of ABCA1 impairs apolipoprotein E metabolism in bra in. J Biol Chem 279:41197–41207. [DOI] [PubMed] [Google Scholar]
  • 80. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, et al (2000) Apolipoprotein E isoform‐dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 97:2892–2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM, Chang LK, Sun Y, Paul SM (1999) Expression of human apolipoprotein E reduces amyloid‐β deposition in a mouse model of Alzheimer's disease. J Clin Invest 103:R15–R21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Holtzman DM, Fagan AM, Mackey B, Tenkova T, Sartorius L, Paul SM, Bales K, Ashe KH, Irizarry MC, Hyman BT (2000) Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer's disease model. Ann Neurol 47:739–747. [PubMed] [Google Scholar]
  • 83. Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque‐independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 96:3228–3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Hsiao K, Chapman P, Nilsen S, Eckman C, Hari‐gaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102. [DOI] [PubMed] [Google Scholar]
  • 85. Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W, Xu S, Eckman C, Younkin S, Price D, et al (1995) Age‐related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15:1203–1218. [DOI] [PubMed] [Google Scholar]
  • 86. Irizarry MC, McNamara M, Fedorchak K, Hsiao K, Hyman BT (1997) APPSw transgenic mice develop age‐related Aβ deposits and neuropil abnormalities, but no neuronal loss in CA1. J Neuro-pathol Exp Neurol 56:965–973. [DOI] [PubMed] [Google Scholar]
  • 87. Irizarry MC, Rebeck GW, Cheung B, Bales K, Paul SM, Holzman D, Hyman BT (2000) Modulation of Aβ deposition in APP transgenic mice by an apolipoprotein E null background. Ann N Y Acad Sci 920:171–178. [DOI] [PubMed] [Google Scholar]
  • 88. Iwata N, Higuchi M, Saido TC (2005) Metabolism of amyloid‐β peptide and Alzheimer's disease. Pharmacol Ther 108:129–148. [DOI] [PubMed] [Google Scholar]
  • 89. Iwata N, Tsubuki S, Takaki Y, Shirotani K, Lu B, Gerard NP, Gerard C, Hama E, Lee HJ, Saido TC (2001) Metabolic regulation of brain Aβ by neprilysin. Science 292:1550–1552. [DOI] [PubMed] [Google Scholar]
  • 90. Iwata N, Tsubuki S, Takaki Y, Watanabe K, Seki‐guchi M, Hosoki E, Kawashima‐Morishima M, Lee HJ, Hama E, Sekine‐Aizawa, Y , et al (2000) Identification of the major Aβ1–42–degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 6:143–150. [DOI] [PubMed] [Google Scholar]
  • 91. Iwatsubo T, Mann DM, Odaka A, Suzuki, N . Ihara, Y (1995) Amyloid β protein (Aβ) deposition: Aβ 42(43) precedes Aβ 40 in Down syndrome. Ann Neurol 37:294–299. [DOI] [PubMed] [Google Scholar]
  • 92. Jarrett JT, Berger EP, Lansbury, PT, Jr. (1993) The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 32:4693–4697. [DOI] [PubMed] [Google Scholar]
  • 93. Ji Y, Permanne B, Sigurdsson EM, Holtzman DM, Wisniewski T (2001) Amyloid ?40/42 clearance across the blood‐brain barrier following intra‐ventricular injections in wild‐type, ApoE knock‐out and human ApoE3 or E4 expressing transgenic mice. JAlzheimersDis 3:23–30. [DOI] [PubMed] [Google Scholar]
  • 94. Joachim CL, Duffy LK, Morris JH, Selkoe DJ (1988) Protein chemical and immunocytochemi‐cal studies of meningovascular β‐amyloid protein in Alzheimer's disease and normal aging. Brain Res 474:100–111. [DOI] [PubMed] [Google Scholar]
  • 95. Jung SS, van Nostrand WE (2002) Aβ does not induce oxidative stress in human cerebrovascular smooth muscle cells. Neuroreport 13:1309–1312. [DOI] [PubMed] [Google Scholar]
  • 96. Juszczyk P, Kolodziejczyk AS, Grzonka Z (2005) Circular dichroism and aggregation studies of amyloid β (11–8) fragment and its variants. Acta Biochim Pol 52:425–431. [PubMed] [Google Scholar]
  • 97. Kalaria RN, Premkumar DR, Pax AB, Cohen DL, Lieberburg I (1996) Production and increased detection of amyloid β protein and amyloidogenic fragments in brain microvessels, meningeal vessels and choroid plexus in Alzheimer's disease. Mol Brain Res 35:58–68. [DOI] [PubMed] [Google Scholar]
  • 98. Kalback W, Watson MD, Kokjohn TA, Kuo YM, Weiss N, Luehrs DC, Lopez J, Brune D, Sisodia SS, Staufenbiel M, et al (2002) APP transgenic mice Tg2576 accumulate Aβ peptides that are distinct from the chemically modified and insoluble peptides deposited in Alzheimer's disease senile plaques. Biochemistry 41:922–928. [DOI] [PubMed] [Google Scholar]
  • 99. Kamino K, Orr HT, Payami H, Wijsman EM, Alonso ME, Pulst SM, Anderson L, O'Dahl S, Nemens E, White JA, et al (1992) Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. Am J Hum Genet 51:998–1014. [PMC free article] [PubMed] [Google Scholar]
  • 100. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller‐Hill B (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell‐surface receptor. Nature 325:733–736. [DOI] [PubMed] [Google Scholar]
  • 101. Kawai M, Kalaria RN, Cras P, Siedlak SL, Velas‐co ME, Shelton ER, Chan HW, Greenberg BD, Perry G (1993) Degeneration of vascular muscle cells in cerebral amyloid angiopathy of Alzheimer disease. Brain Res 623:142–146. [DOI] [PubMed] [Google Scholar]
  • 102. Koldamova R, Staufenbiel M, Lefterov I (2005) Lack of ABCA1 considerably decreases brain Apoe level and increases amyloid deposition in APP23 mice. J Biol Chem 280:43224–43235. [DOI] [PubMed] [Google Scholar]
  • 103. Kounnas MZ, Moir RD, Rebeck GW, Bush AI, Argraves WS, Tanzi RE, Hyman BT, Strickland DK (1995) LDL receptor‐related protein, a multifunctional ApoE receptor, binds secreted β‐amyloid precursor protein and mediates its degradation. Cell 82:331–340. [DOI] [PubMed] [Google Scholar]
  • 104. Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, Kokjohn TA, Kalback WM, Luehrs DC, Vishnivetskaya TA, Abramowski D, et al (2001) The evolution of Aβ peptide burden in the APP23 transgenic mice: implications for Aβ deposition in Alzheimer disease. Mol Med 7:609–618. [PMC free article] [PubMed] [Google Scholar]
  • 105. Kurochkin IV, Goto S (1994) Alzheimer's β‐amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme. FEBS Lett 345:33–37. [DOI] [PubMed] [Google Scholar]
  • 106. LaDu MJ, Falduto MT, Manelli AM, Reardon CA, Getz GS, Frail DE (1994) Isoform‐specific binding of apolipoprotein E to β‐amyloid. J Biol Chem 269:23403–23406. [PubMed] [Google Scholar]
  • 107. Lannfelt L, Bogdanovic N, Appelgren H, Axelman K, Lilius L, Hansson G, Schenk D, Hardy J, Winblad B (1994) Amyloid precursor protein mutation causes Alzheimer's disease in a Swedish family. Neurosci Lett 168:254–256. [DOI] [PubMed] [Google Scholar]
  • 108. Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, Walz T, Lansbury, PT, Jr. (2003) Mixtures of wild‐type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332:795–808. [DOI] [PubMed] [Google Scholar]
  • 109. Lazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB (2005) On the nucleation of amyloid β‐protein monomer folding. Protein Sci 14:1581–1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Lee EB, Leng LZ, Lee VM, Trojanowski JQ (2005) Meningoencephalitis associated with passive immunization of a transgenic murine model of Alzheimer's amyloidosis. FEBS Lett 579:2564–2568. [DOI] [PubMed] [Google Scholar]
  • 111. Lee EB, Zhang B, Liu K, Greenbaum EA, Doms RW, Trojanowski JQ, Lee VM (2005) BACE over‐expression alters the subcellular processing of APP and inhibits Aβ deposition in vivo. J Cell Biol 168:291–302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Levy E, Carman MD, Fernandez‐Madrid IJ, Power MD, Lieberburg I, van Duinen SG, Bots GT, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126. [DOI] [PubMed] [Google Scholar]
  • 113. Lleo A, Berezovska O, Growdon JH, Hyman BT (2004) Clinical, pathological, and biochemical spectrum of Alzheimer disease associated with PS‐1 mutations. Am J Geriatr Psychiatry 12:146–156. [DOI] [PubMed] [Google Scholar]
  • 114. Lleo A, Waldron E, von Arnim, CA , Herl L, Tangredi MM, Peltan ID, Strickland DK, Koo EH, Hyman BT, Pietrzik CU, et al (2005) Low density lipoprotein receptor‐related protein (LRP) interacts with presenilin 1 and is a competitive substrate of the amyloid precursor protein (APP) for gamma‐secretase. J Biol Chem 280:27303–27309. [DOI] [PubMed] [Google Scholar]
  • 115. Lord A, Kalimo H, Eckman C, Zhang XQ, Lan‐nfelt L, Nilsson LN (2006) The Arctic Alzheimer mutation facilitates early intraneuronal Aβ aggregation and senile plaque formation in trans‐genic mice. Neurobiol Aging 27:67–77. [DOI] [PubMed] [Google Scholar]
  • 116. Lüthi, A . Van der Putten, H , Botteri FM, Mansuy IM, Meins M, Frey U, Sansig G, Portet C, Schmutz M, Schroder M, et al (1997) Endogenous serine protease inhibitor modulates epileptic activity and hippocampal long‐term potentiation. J Neurosci 17:4688–4699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Maat‐Schieman M, Roos R, van Duinen S (2005) Hereditary cerebral hemorrhage with amyloidosis‐Dutch type. Neuropathology 25:288–297. [DOI] [PubMed] [Google Scholar]
  • 118. Mackic JB, Stins M, McComb JG, Calero M, Ghiso J, Kim KS, Yan SD, Stern D, Schmidt AM, Frangione, B , et al (1998) Human blood‐brain barrier receptors for Alzheimer's amyloid‐β 1–40. Asymmetrical binding, endocytosis, and trans‐cytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102:734–743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119. Mackic JB, Weiss MH, Miao W, Kirkman E, Ghiso J, Calero M, Bading J, Frangione B, Zlokovic BV (1998) Cerebrovascular accumulation and increased blood‐brain barrier permeability to circulating Alzheimer's amyloid β peptide in aged squirrel monkey with cerebral amyloid angiopathy. J Neurochem 70:210–215. [DOI] [PubMed] [Google Scholar]
  • 120. Maeda A, Yamada M, Itoh Y, Otomo E, Hay‐akawa M, Miyatake T (1993) Computer‐assisted three‐dimensional image analysis of cerebral amyloid angiopathy. Stroke 24:1857–1864. [DOI] [PubMed] [Google Scholar]
  • 121. Mann DM, Pickering‐Brown SM, Takeuchi A, Iwatsubo T (2001) Amyloid angiopathy and variability in amyloid β deposition is determined by mutation position in presenilin‐1‐linked Alzheimer's disease. Am J Pathol 158:2165–2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122. McDermott JR, Gibson AM (1997) Degradation of Alzheimer's β‐amyloid protein by human and rat brain peptidases: involvement of insulin‐degrading enzyme. Neurochem Res 22:49–56. [DOI] [PubMed] [Google Scholar]
  • 123. McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C, Skipper L, Murphy MP, Beard J, Das P, et al (2005) Aβ42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47:191–199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124. McLaurin J, Yang D, Yip CM, Fraser PE (2000) Review: modulating factors in amyloid‐β fibril formation. J Struct Biol 130:259–270. [DOI] [PubMed] [Google Scholar]
  • 125. Melchor JP, McVoy L, van Nostrand WE (2000) Charge alterations of E22 enhance the pathogenic properties of the amyloid β‐protein. J Neurochem 74:2209–2212. [DOI] [PubMed] [Google Scholar]
  • 126. Meyer‐Luehmann M, Stalder M, Herzig MC, Kaeser SA, Kohler E, Pfeifer M, Boncristiano S, Mathews PM, Mercken M, Abramowski D, et al (2003) Extracellular amyloid formation and associated pathology in neural grafts. Nat Neurosci 6:370–377. [DOI] [PubMed] [Google Scholar]
  • 127. Miao J, Vitek MP, Xu F, Previti ML, Davis J, van Nostrand WE (2005) Reducing cerebral microvascular amyloid‐β protein deposition diminishes regional neuroinflammation in vasculotropic mutant amyloid precursor protein transgenic mice. J Neurosci 25:6271–6277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Miao J, Xu F, Davis J, Otte‐Holler I, Verbeek MM, van Nostrand WE (2005) Cerebral microvascular amyloid β protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid β precursor protein. Am J Pathol 167:505–515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129. Miller DL, Papayannopoulos IA, Styles J, Bo‐bin SA, Lin YY, Biemann K, Iqbal K (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch Biochem Biophys 301:41–52. [DOI] [PubMed] [Google Scholar]
  • 130. Miravalle L, Tokuda T, Chiarle R, Giaccone G, Bugiani O, Tagliavini F, Frangione B, Ghiso J (2000) Substitutions at codon 22 of Alzheimer's Aβ peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J Biol Chem 275:27110–27116. [DOI] [PubMed] [Google Scholar]
  • 131. Moechars D, Dewachter I, Lorent K, Reverse D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler, F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483–6492. [DOI] [PubMed] [Google Scholar]
  • 132. Mohajeri MH, Saini KD, Nitsch RM (2004) Transgenic BACE expression in mouse neurons accelerates amyloid plaque pathology. J Neural Transm 111:413–425. [DOI] [PubMed] [Google Scholar]
  • 133. Moir RD, Tanzi RE (2005) LRP‐mediated clear‐anceof Aβ is inhibited by KPI‐containing isoforms of APP. Curr Alzheimer Res 2:269–273. [DOI] [PubMed] [Google Scholar]
  • 134. Morelli L, Llovera R, Gonzalez SA, Affranchino JL, Prelli F, Frangione B, Ghiso J, Castano EM (2003) Differential degradation of amyloid β genetic variants associated with hereditary dementia or stroke by insulin‐degrading enzyme. J Biol Chem 278:23221–23226. [DOI] [PubMed] [Google Scholar]
  • 135. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson‐Wood K, McConlogue L (2000) High‐level neuronal expression of Aβ 1–42 in wild‐type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L (1992) A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N‐terminus of β‐amyloid. Nat Genet 1:345–347. [DOI] [PubMed] [Google Scholar]
  • 137. Munoz FJ, Opazo C, Gil‐Gomez G, Tapia G, Fernandez V, Valverde MA, Inestrosa NC (2002) Vitamin E but not 17β‐estradiol protects against vascular toxicity induced by β‐amyloid wild type and the Dutch amyloid variant. J Neurosci 22:3081–3089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138. Munson GW, Roher AE, Kuo YM, Gilligan SM, Reardon CA, Getz GS, LaDu MJ (2000) SDS‐stable complex formation between native apolipoprotein E3 and β‐amyloid peptides. Biochemistry 39:16119–16124. [DOI] [PubMed] [Google Scholar]
  • 139. Murakami K, Irie K, Morimoto A, Ohigashi H, Shindo M, Nagao M, Shimizu T, Shirasawa T (2002) Synthesis, aggregation, neurotoxicity, and secondary structure of various Aβ 1–42 mutants of familial Alzheimer's disease at positions 21–23. Biochem Biophys Res Commun 294:5–10. [DOI] [PubMed] [Google Scholar]
  • 140. Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254:97–99. [DOI] [PubMed] [Google Scholar]
  • 141. Naslund J, Thyberg J, Tjernberg LO, Wernstedt C, Karlstrom AR, Bogdanovic N, Gandy SE, Lannfelt L, Terenius L, Nordstedt C (1995) Characterization of stable complexes involving apolipo‐protein E and the amyloid β peptide in Alzheimer's disease brain. Neuron 15:219–228. [DOI] [PubMed] [Google Scholar]
  • 142. Natte R, de Boer WI, Maat‐Schieman ML, Baelde HJ, Vinters HV, Roos RA, van Duinen SG (1999) amyloid β precursor protein‐mRNA is expressed throughout cerebral vessel walls. Brain Res 828:179–183. [DOI] [PubMed] [Google Scholar]
  • 143. Natte R, Yamaguchi H, Maat‐Schieman ML, Prins FA, Neeskens P, Roos RA, van Duinen SG (1999) Ultrastructural evidence of early non‐fibrillar Aβ42 in the capillary basement membrane of patients with hereditary cerebral hemorrhage with amyloidosis, Dutch type. Acta Neuropathol (Berl) 98:577–582. [DOI] [PubMed] [Google Scholar]
  • 144. Nicoll JA, Burnett C, Love S, Graham DI, Dewar D, Ironside JW, Stewart J, Vinters HV (1997) High frequency of apolipoprotein E epsilon 2 allele in hemorrhage due to cerebral amyloid angiopathy. Ann Neurol 41:716–721. [DOI] [PubMed] [Google Scholar]
  • 145. Nicoll JA, Burnett C, Love S, Graham DI, Ironside JW, Vinters HV (1996) High frequency of apolipoprotein E epsilon 2 in patients with cerebral hemorrhage due to cerebral amyloid angiopathy. Ann Neurol 39:682–683. [DOI] [PubMed] [Google Scholar]
  • 146. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid‐β peptide: a case report. Nat Med 9:448–452. [DOI] [PubMed] [Google Scholar]
  • 147. Nicoll JA, Yamada M, Frackowiak J, Mazur‐Kolecka B, Weller RO (2004) Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer's disease; Pro‐CAA position statement. Neurobiol Aging 25:589–597. [DOI] [PubMed] [Google Scholar]
  • 148. Nilsberth C, Westlind‐Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, et al (2001) The'Arctic'APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation. Nat Neurosci 4:887–893. [DOI] [PubMed] [Google Scholar]
  • 149. Nochlin D, Bird, TD . Nemens, EJ , Ball MJ, Sumi SM (1998) Amyloid angiopathy in a Volga German family with Alzheimer's disease and a presenilin‐2 mutation (N141I). AnnNeuro l43:131–135. [DOI] [PubMed] [Google Scholar]
  • 150. Obici L, Demarchi A, de Rosa G, Bellotti V, Marciano S, Donadei S, Arbustini E, Palladini G, Diegoli M, Genovese E, et al (2005) A novel AβPP mutation exclusively associated with cerebral amyloid angiopathy. Ann Neurol 58:639–644. [DOI] [PubMed] [Google Scholar]
  • 151. Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, et al (2003) Subacute meningo‐encephalitis in a subset of patients with AD after Aβ42 immunization. Neurology 61:46–54. [DOI] [PubMed] [Google Scholar]
  • 152. Paris D, Ait‐Ghezala G, Mathura VS, Patel N, Quadros A, Laporte V, Mullan M (2005) Anti‐an‐giogenic activity of the mutant Dutch Aβ peptide on human brain microvascular endothelial cells. Brain Res Mol Brain Res 136:212–230. [DOI] [PubMed] [Google Scholar]
  • 153. Paris D, Humphrey J, Quadros A, Patel N, Crescentini R, Crawford F, Mullan M (2003) Vasoactive effects of Aβ in isolated human cere‐brovessels and in a transgenic mouse model of Alzheimer's disease: role of inflammation. Neurol Res 25:642–651. [DOI] [PubMed] [Google Scholar]
  • 154. Paris D, Patel N, DelleDonne A, Quadros A, Smeed R, Mullan M (2004) Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci Lett 366:80–85. [DOI] [PubMed] [Google Scholar]
  • 155. Paris D, Quadros A, Humphrey J, Patel N, Crescentini R, Crawford F, Mullan M (2004) Nilva‐dipine antagonizes both Aβ vasoactivity in isolated arteries, and the reduced cerebral blood flow in APPsw transgenic mice. Brain Res 999:53–61. [DOI] [PubMed] [Google Scholar]
  • 156. Paris D, Town, T . Mori, T . Parker, TA , Humphrey J, Mullan M (2000) Soluble β‐amyloid peptides mediate vasoactivity via activation of a pro‐inflammatory pathway. Neurobiol Aging 21:183–197. [DOI] [PubMed] [Google Scholar]
  • 157. Paris D, Town T, Parker T, Humphrey J, Mullan M (2000) Aβ vasoactivity: an inflammatory reaction. Ann N YAcad Sci 903:97–109. [DOI] [PubMed] [Google Scholar]
  • 158. Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S, Wotoczek‐Obadia M, DelleDonne A, Patel N, Obregon DF, et al (2004) Inhibition of angiogenesis by Aβ peptides. Angiogenesis 7:75–85. [DOI] [PubMed] [Google Scholar]
  • 159. Permanne B, Perez C, Soto C, Frangione B, Wisniewski T (1997) Detection of apolipoprotein E/dimeric soluble amyloid β complexes in Alzheimer's disease brain supernatants. Biochem Biophys Res Commun 240:715–720. [DOI] [PubMed] [Google Scholar]
  • 160. Pfeifer LA, White LR, Ross GW, Petrovitch H, Launer LJ (2002) Cerebral amyloid angiopathy and cognitive function: the HAAS autopsy study. Neurology 58:1629–1634. [DOI] [PubMed] [Google Scholar]
  • 161. Prelli F, Castano E, Glenner GG, Frangione B (1988) Differences between vascular and plaque core amyloid in Alzheimer's disease. J Neurochem 51:648–651. [DOI] [PubMed] [Google Scholar]
  • 162. Preston SD, Steart PV, Wilkinson A, Nicoll JA, Weller RO (2003) Capillary and arterial cerebral amyloid angiopathy in Alzheimer's disease: defining the perivascular route for the elimination of amyloid β from the human brain. Neuropathol Appl Neurobiol 29:106–117. [DOI] [PubMed] [Google Scholar]
  • 163. Probst A, Ulrich J (1985) Amyloid angiopathy combined with granulomatous angiitis of the central nervous system: report on two patients. Clin Neuropathol 4:250–259. [PubMed] [Google Scholar]
  • 164. Racke MM, Boone LI, Hepburn DL, Parsadai‐nian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, et al (2005) Exacerbation of cerebral amyloid angiopathy‐associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid ?. J Neurosci 25:629–636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165. Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer's disease: allelic variation and receptor interactions. Neuron 11:575–580. [DOI] [PubMed] [Google Scholar]
  • 166. Rensink AA, de Waal RM, Kremer B, Verbeek MM (2003) Pathogenesis of cerebral amyloid angiopathy. Brain Res Rev 43:207–223. [DOI] [PubMed] [Google Scholar]
  • 167. Rensink AA, Otte‐Holler I, de Boer R, Bosch RR, ten Donkelaar, HJ , de Waal RM, Verbeek MM, Kremer B (2004) Insulin inhibits amyloid β‐in‐duced cell death in cultured human brain peri‐cytes. Neurobiol Aging 25:93–103. [DOI] [PubMed] [Google Scholar]
  • 168. Rensink AA, Verbeek MM, Otte‐Holler I, ten Donkelaar, HT , de Waal RM, Kremer B (2002) Inhibition of amyloid‐β‐induced cell death in human brain pericytes in vitro. Brain Res 952:111–121. [DOI] [PubMed] [Google Scholar]
  • 169. Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, Holton JL (2003) Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol 62:885–898. [DOI] [PubMed] [Google Scholar]
  • 170. Revesz T, Holton JL, Lashley T, Plant G, Rostagno A, Ghiso J, Frangione B (2002) Sporadic and familial cerebral amyloid angiopathies. Brain Patho l12:343–357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171. Roertgen KE, Parisi JE, Clark HB, Barnes DL, O'Brien TD, Johnson KH (1996) Aβ‐associated cerebral angiopathy and senile plaques with neurofibrillary tangles and cerebral hemorrhage in an aged wolverine (Gulo gulo). Neurobiol Aging 17:243–247. [DOI] [PubMed] [Google Scholar]
  • 172. Rossi G, Giaccone G, Maletta R, Morbin M, Capobianco R, Mangieri M, Giovagnoli AR, Bizzi A, Tomaino C, Perri M, et al (2004) A family with Alzheimer disease and strokes associated with A713T mutation of the APP gene. Neurology 63:910–912. [DOI] [PubMed] [Google Scholar]
  • 173. Rovelet‐Lecrux A, Hannequin D, Raux G, Meur NL, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, et al (2006) APP locus duplication causes autosomal dominant early‐onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26. [DOI] [PubMed] [Google Scholar]
  • 174. Russo C, Angelini G, Dapino D, Piccini A, Pi‐ombo G, Schettini G, Chen S, Teller JK, Zaccheo D, Gambetti P, et al (1998) Opposite roles of apolipoprotein E in normal brains and in Alzheimer's disease. ProcNatlAcad Sci USA 95:15598–15602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175. Sasahara M, Fries JW, Raines EW, Gown AM, Westrum LE, Frosch MP, Bonthron DT, Ross R, Collins T (1991) PDGF B‐chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell 64:217–227. [DOI] [PubMed] [Google Scholar]
  • 176. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson‐Wood K, Khan K, et al (1999) Immunization with amyloid‐(3 attenuates Alzheimer‐disease‐like pathology in the PDAPP mouse. Nature 400:173–177. [DOI] [PubMed] [Google Scholar]
  • 177. Schley D, Carare‐Nnadi R, Please CP, Perry VH, Weller RO (2005) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol.. [DOI] [PubMed] [Google Scholar]
  • 178. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak‐Vance MA, Goldgaber D, Roses AD (1993) Increased amyloid β‐peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late‐onset Alzheimer disease. Proc Natl Acad Sci U SA 90:9649–9653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179. Scholz W (1938) Studien zur Pathologie der Hirngefässe. II. Die drusige Entartung der Hirnarterien und‐capillaren. ZGesamte Neurol Psychiatr 162:694–715. [Google Scholar]
  • 180. Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81 :741–766. [DOI] [PubMed] [Google Scholar]
  • 181. Selkoe DJ, Bell DS, Podlisny MB, Price DL, Cork LC (1987) Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science 235:873–877. [DOI] [PubMed] [Google Scholar]
  • 182. Selkoe DJ, Schenk D (2003) Alzheimer's disease: molecular understanding predicts amyloid‐based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584. [DOI] [PubMed] [Google Scholar]
  • 183. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, et al (2000) Clearance of Alzheimer's amyloid‐β(1–40) peptide from brain by LDL receptor‐related protein‐1 at the blood‐brain barrier. J Clin Invest 106:1489–1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184. Shinkai Y, Yoshimura M, Ito Y, Odaka A, Suzuki N, Yanagisawa K, Ihara Y (1995) Amyloid β‐proteins 1–40 and 1–42(43) in the soluble fraction of extra‐and intracranial blood vessels. Ann Neu-rol 38:421–428. [DOI] [PubMed] [Google Scholar]
  • 185. Singaraja RR, Bocher V, James ER, Clee SM, Zhang LH, Leavitt BR, Tan B, Brooks‐Wilson A, Kwok A, Bissada N, et al (2001) Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoAI‐depen‐dent efflux stimulated by an internal promoter containing liver X receptor response elements in intron. J Biol Chem 276:33969–33979. [DOI] [PubMed] [Google Scholar]
  • 186. Snow AD, Kinsella MG, Parks E, Sekiguchi RT, Miller JD, Kimata K, Wight TN (1995) Differential binding of vascular cell‐derived proteoglycans (perlecan, biglycan, decorin, and versican) to the β‐amyloid protein of Alzheimer's disease. Arch Biochem Biophys 320:84–95. [DOI] [PubMed] [Google Scholar]
  • 187. Snow AD, Mar H, Nochlin D, Kimata K, Kato M, Suzuki S, Hassell J, Wight TN (1988) The presence of heparan sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer's disease. Am J Pathol 133:456–463. [PMC free article] [PubMed] [Google Scholar]
  • 188. Stalder AK, Ermini F, Bondolfi L, Krenger W, Burbach GJ, Deller T, Coomaraswamy J, Staufenbiel M, Landmann R, Jucker M (2005) Invasion of hematopoietic cells into the brain of amyloid precursor protein transgenic mice. J Neurosci 25:11125–11132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189. Steiner H, Revesz T, Neumann M, Romig H, Grim MG, Pesold B, Kretzschmar HA, Hardy J, Holton JL, Baumeister R, et al (2001) A pathogenic presenilin‐1 deletion causes abberrant Aβ42 production in the absence of congophilic amyloid plaques. J Biol Chem 276:7233–7239. [DOI] [PubMed] [Google Scholar]
  • 190. Strittmatter WJ, Bova Hill, C (2002) Molecular biology of apolipoprotein E. Curr Opin Lipidol 13:119–123. [DOI] [PubMed] [Google Scholar]
  • 191. Strittmatter WJ, Saunders AM, Schmechel D, Pericak‐Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high‐avidity binding to β‐amyloid and increased frequency of type 4 allele in late‐onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192. Sturchler‐Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease‐like pathology. Proc Natl Acad Sci USA 94:13287–13292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193. Sutton ET, Hellermann GR, Thomas T (1997) β‐amyloid‐induced endothelial necrosis and inhibition of nitric oxide production. Exp Cell Res 230:368–376. [DOI] [PubMed] [Google Scholar]
  • 194. Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos, L, Jr. . Eckman, C , Golde, TE . Younkin, SG (1994) An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (? APP717) mutants. Science 264:1336–1340. [DOI] [PubMed] [Google Scholar]
  • 195. Tagliavini F, Ghiso J, Timmers WF, Giaccone G, Bugiani O, Frangione B (1990) Coexistence of Alzheimer's amyloid precursor protein and amyloid protein in cerebral vessel walls. Lab Invest 62:761–767. [PubMed] [Google Scholar]
  • 196. Tagliavini F, Rossi G, Padovani A, Magoni M, Andora G, Sgarzi M, Bizzi A, Savoiardo M, Carella F, Morbin M, et al (1999) A new βPP mutation related to hereditary cerebral hemorrhage. Alzheimers Rep 2:S28. [Google Scholar]
  • 197. Takaki Y, Iwata N, Tsubuki S, Taniguchi S, Toy‐oshima S, Lu B, Gerard NP, Gerard C, Lee HJ, Shirotani K, et al (2000) Biochemical identification of the neutral endopeptidase family member responsible for the catabolism of amyloid β pep‐tide in the brain. J Biochem (Tokyo) 128:897–902. [DOI] [PubMed] [Google Scholar]
  • 198. Thomas T, Thomas G, McLendon C, Sutton T, Mullan M (1996) β‐Amyloid‐mediated vasoactivity and vascular endothelial damage. Nature 380:168–171. [DOI] [PubMed] [Google Scholar]
  • 199. Townsend KP, Obregon D, Quadros A, Patel N, Volmar C, Paris D, Mullan M (2002) Proinflammatory and vasoactive effects of Aβ in the cerebrovasculature. Ann NY Acad Sci 977:65–76. [DOI] [PubMed] [Google Scholar]
  • 200. Tsubuki S, Takaki Y, Saido TC (2003) Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβ to physiologically relevant proteolytic degradation. Lancet 361:1957–1958. [DOI] [PubMed] [Google Scholar]
  • 201. Uchida K, Nakayama H, Goto N (1991) Pathological studies on cerebral amyloid angiopathy, senile plaques and amyloid deposition in visceral organs in aged dogs. J Vet Med Sci 53:1037–1042. [DOI] [PubMed] [Google Scholar]
  • 202. van Dorpe J, Smeijers L, Dewachter I, Nuyens D, Spittaels K, Van Den Haute, C , Mercken M, Moechars D, Laenen I, Kuiperi C, et al (2000) Prominent cerebral amyloid angiopathy in transgenic mice overexpressing the london mutant of human APP in neurons. Am J Pathol 157:1283–1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203. van Nostrand WE, Davis‐Salinas J, Saporito‐Irwin SM (1996) Amyloid β‐protein induces the cerebrovascular cellular pathology of Alzheimer's disease and related disorders. Ann N Y Acad Sci 777:297–302. [DOI] [PubMed] [Google Scholar]
  • 204. van Nostrand WE, Melchor JP (2001) Disruption of pathologic amyloid β‐protein fibril assembly on the surface of cultured human cerebrovascular smooth muscle cells. Amyloid 8 Suppl 1:20–27. [PubMed] [Google Scholar]
  • 205. van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW (2001) Pathogenic effects of D23N Iowa mutant amyloid β‐protein. J Biol Chem 276:32860–32866. [DOI] [PubMed] [Google Scholar]
  • 206. van Nostrand WE, Melchor JP, Ruffini L (1998) Pathologic amyloid β‐protein cell surface fibril assembly on cultured human cerebrovascular smooth muscle cells. J Neurochem 70:216–223. [DOI] [PubMed] [Google Scholar]
  • 207. Verbeek MM, de Waal RM, Schipper JJ, van Nostrand WE (1997) Rapid degeneration of cultured human brain pericytes by amyloid β protein. J Neurochem 68:1135–1141. [DOI] [PubMed] [Google Scholar]
  • 208. Vinters HV (1987) Cerebral amyloid angiopathy. A critical review. Stroke 18:311–324. [DOI] [PubMed] [Google Scholar]
  • 209. von Arnim, CA , Kinoshita A, Peltan ID, Tangredi MM, Herl L, Lee BM, Spoelgen R, Hshieh TT, Ranganathan S, Battey FD, et al (2005) The low density lipoprotein receptor‐related protein (LRP) is a novel β‐secretase (BACE1) substrate. J Biol Chem 280:17777–17785. [DOI] [PubMed] [Google Scholar]
  • 210. Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, Holtzman DM (2005) Deletion of Abca1 increases Aβ deposition in the PDAPP transgenic mouse model of Alzheimer's disease. J Biol Chem 280:43236–43242. [DOI] [PubMed] [Google Scholar]
  • 211. Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, Kowalewski T, Holtzman DM (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte‐secreted ApoE. J Biol Chem 279:40987–40993. [DOI] [PubMed] [Google Scholar]
  • 212. Walker LC (1997) Animal models of cerebral β‐amyloid angiopathy. Brain Res Rev 25:70–84. [DOI] [PubMed] [Google Scholar]
  • 213. Walker LC, Masters C, Beyreuther K, Price DL (1990) Amyloid in the brains of aged squirrel monkeys. Acta Neuropathol (Berl) 80:381–387. [DOI] [PubMed] [Google Scholar]
  • 214. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid β‐protein fibril‐logenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372. [DOI] [PubMed] [Google Scholar]
  • 215. Wang Z, Natte R, Berliner JA, van Duinen SG, Vinters HV (2000) Toxicity of Dutch (E22Q) and Flemish (A21G) mutant amyloid β proteins to human cerebral microvessel and aortic smooth muscle cells. Stroke 31:534–538. [DOI] [PubMed] [Google Scholar]
  • 216. Wattendorff AR, Bots GT, Went LN, Endtz LJ (1982) Familial cerebral amyloid angiopathy presenting as recurrent cerebral haemorrhage. J Neurol Sci 55:121–135. [DOI] [PubMed] [Google Scholar]
  • 217. Wegiel J, Wisniewski HM, Dziewiatkowski J, Tarnawski M, Nowakowski J, Dziewiatkowska A, Soltysiak Z (1995) The origin of amyloid in cerebral vessels of aged dogs. Brain Res 705:225–234. [DOI] [PubMed] [Google Scholar]
  • 218. Weller RO, Massey A, Kuo YM, Roher AE (2000) Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer's disease. Ann N Y Acad Sci 903:110–117. [DOI] [PubMed] [Google Scholar]
  • 219. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid β accumulates in putative interstitial fluid drainage pathways in Alzheimer's disease. Am J Pathol 153:725–733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220. Weller RO, Nicoll JA (2003) Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res 25:611–616. [DOI] [PubMed] [Google Scholar]
  • 221. Weller RO, Nicoll JA (2005) Cerebral amyloid angiopathy: both viper and maggot in the brain. Ann Neurol 58:348–350. [DOI] [PubMed] [Google Scholar]
  • 222. Wellington CL, Walker EK, Suarez A, Kwok A, Bissada N, Singaraja R, Yang YZ, Zhang LH, James E, Wilson JE, et al (2002) ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab Invest 82:273–283. [DOI] [PubMed] [Google Scholar]
  • 223. Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, Morgan D (2004) Passive immunotherapy against Aβ in aged APP‐transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation 1:24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224. Wilhelmus MM, Otte‐Holler I, Davis J, van Nostrand WE, de Waal RM, Verbeek MM (2005) Apolipoprotein E genotype regulates amyloid‐β cytotoxicity. J Neurosci 25:3621–3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225. Willem M, Dewachter I, Smyth N, van Dooren T, Borghgraef P, Haass C, van Leuven F (2004) β‐site amyloid precursor protein cleaving enzyme 1 increases amyloid deposition in brain parenchyma but reduces cerebrovascular amyloid angiopathy in aging BACE x APP[V717I] double‐transgenic mice. Am J Pathol 165:1621–1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226. Winkler DT, Bondolfi L, Herzig MC, Jann L, Calhoun ME, Wiederhold KH, Tolnay M, Staufenbiel M, Jucker M (2001) Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy. J Neurosci 21:1619–1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227. Wisniewski HM, Wegiel J (1994) β‐amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol (Berl) 87:233–241. [DOI] [PubMed] [Google Scholar]
  • 228. Wisniewski T, Golabek A, Matsubara E, Ghiso J, Frangione B (1993) Apolipoprotein E: binding to soluble Alzheimer's β‐amyloid. Biochem Biophys Res Commun 192:359–365. [DOI] [PubMed] [Google Scholar]
  • 229. Wisniewski T, Lalowski M, Golabek A, Vogel T, Frangione B (1995) Is Alzheimer's disease an apolipoprotein E amyloidosis Lancet 345:956–958. [DOI] [PubMed] [Google Scholar]
  • 230. Wu Z, Guo H, Chow N, Sallstrom J, Bell RD, Deane R, Brooks AI, Kanagala S, Rubio A, Sagare A, et al (2005) Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 11:959–965. [DOI] [PubMed] [Google Scholar]
  • 231. Wyss‐Coray T, Lin C, Sanan DA, Mucke L, Masliah E (2000) Chronic overproduction of transforming growth factor‐β1 by astrocytes promotes Alzheimer's disease‐like microvascular degeneration in transgenic mice. Am J Pathol 156:139–150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232. Wyss‐Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid‐S in vitro and in situ. Nat Med 9:453–457. [DOI] [PubMed] [Google Scholar]
  • 233. Wyss‐Coray T, Masliah E, Mallory M, McConlogue L, Johnson‐Wood K, Lin C, Mucke L (1997) Amyloidogenic role of cytokine TGF‐β1 in trans‐genic mice and in Alzheimer's disease. Nature 389:603–606. [DOI] [PubMed] [Google Scholar]
  • 234. Yamada M, Itoh Y, Shintaku M, Kawamura J, Jensson O, Thorsteinsson L, Suematsu N, Matsushita M, Otomo E (1996) Immune reactions associated with cerebral amyloid angiopathy. Stroke 27:1155–1162. [DOI] [PubMed] [Google Scholar]
  • 235. Yamada M, Sodeyama N, Itoh Y, Takahashi A, Otomo E, Matsushita M, Mizusawa H (2003) Association of neprilysin polymorphism with cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 74:749–751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236. Yamaguchi H, Yamazaki T, Lemere CA, Frosch MP, Selkoe DJ (1992) β amyloid is focally deposited within the outer basement membrane in the amyloid angiopathy of Alzheimer's disease. An immunoelectron microscopic study. Am J Pathol 141:249–259. [PMC free article] [PubMed] [Google Scholar]
  • 237. Yasuda M, Maeda K, Ikejiri Y, Kawamata T, Kuroda S, Tanaka C (1997) A novel missense mutation in the presenilin‐1 gene in a familial Alzheimer's disease pedigree with abundant amyloid angiopathy. Neurosci Lett 232:29–32. [DOI] [PubMed] [Google Scholar]
  • 238. Yoshiike Y, Chui DH, Akagi T, Tanaka N, Takashima A (2003) Specific compositions of amyloid‐β peptides as the determinant of toxic β‐aggregation. J Biol Chem 278:23648–23655. [DOI] [PubMed] [Google Scholar]
  • 239. Zerbinatti CV, Bu G (2005) LRP and Alzheimer's disease. Rev Neurosci 16:123–135. [DOI] [PubMed] [Google Scholar]
  • 240. Zlokovic BV, Ghiso J, Mackic JB, McComb JG, Weiss MH, Frangione B (1993) Blood‐brain barrier transport of circulating Alzheimer's amyloid ?. Biochem Biophys Res Commun 197:1034–1040. [DOI] [PubMed] [Google Scholar]
  • 241. Zou K, Kim D, Kakio A, Byun K, Gong JS, Kim J, Kim M, Sawamura N, Nishimoto S, Matsuzaki K, et al (2003) Amyloid β‐protein (Aβ) 1–40 protects neurons from damage induced by Aβ1–42 in culture and in rat brain. J Neurochem 87:609–619. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES