Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;13(1):23–33. doi: 10.1111/j.1750-3639.2003.tb00003.x

Inflammation in the Central Nervous System: the Role for Dendritic Cells

Mikhail Pashenkov 1,, Natalia Teleshova 1,, Hans Link 1
PMCID: PMC8095979  PMID: 12580542

Abstract

Dendritic cells (DCs) are a subclass of antigen‐presenting cells critical in the initiation and regulation of adaptive immunity against pathogens and tumors, as well as in the triggering of autoimmunity. Recent studies have provided important knowledge regarding distribution of DCs in the central nervous system (CNS) and their role in intrathecal immune responses. DCs are present in normal meninges, choroid plexus, and cerebrospinal fluid, but absent from the normal brain parenchyma. Inflammation is accompanied by recruitment and/or development of DCs in the affected brain tissue. DCs present in different compartments of the CNS are likely to play a role in the defence against CNS infections, and also may contribute to relapses/chronicity of CNS inflammation and to break‐down of tolerance to CNS autoantigens. CNS DCs can therefore be viewed as a future therapeutic target in chronic inflammatory diseases such as multiple sclerosis.

Full Text

The Full Text of this article is available as a PDF (166.9 KB).

References

  • 1. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. [DOI] [PubMed] [Google Scholar]
  • 2. Bauer J, Stadelmann C, Bancher C, Jellinger K, Lassmann H (1999) Apoptosis of T lymphocytes in acute disseminated encephalomyelitis. Acta Neuropathol (Berl) 97:543–546. [DOI] [PubMed] [Google Scholar]
  • 3. Bo L, Mork S, Kong PA, Nyland H, Pardo CA, Trapp BD (1994) Detection of MHC class II‐antigens on macrophages and microglia, but not on astrocytes and endothelia in active multiple sclerosis lesions. J Neuroimmunol 51:135–146. [DOI] [PubMed] [Google Scholar]
  • 4. Boven LA, Montagne L, Nottet HS, De Groot CJ (2000) Macrophage inflammatory protein‐1 alpha (MIP‐1 alpha), MIP‐1beta, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin Exp Immunol 122:257–263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336. [DOI] [PubMed] [Google Scholar]
  • 6. Buelens C, Verhasselt V, De Groote D, Thielemans K, Goldman M, Willems F (1997) Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by interleukin‐10. Eur J Immunol 27:1848–1852. [DOI] [PubMed] [Google Scholar]
  • 7. Carson MJ, Reilly CR, Sutcliffe JG, Lo D (1999) Disproportionate recruitment of CD8+ T‐cells into the central nervous system by professional antigen‐presenting cells. Am J Pathol 154:481–494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Caux C, Ait‐Yahia S, Chemin K, de Bouteiller O, Dieu‐Nosjean MC, Homey B, Massacrier C, Vanbervliet B, Zlotnik A, Vicari A (2000) Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22:345–369. [DOI] [PubMed] [Google Scholar]
  • 9. Cella M, Scheidegger D, Palmer‐Lehmann K, Lane P, Lanzavecchia A, Alber G (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin‐12 and enhances T‐cell stimulatory capacity: T‐T help via APC activation. J Exp Med 184:747–752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL, Garber RL, Chang M, Schad PA, Stewart PM, Nowinski RC, Brown JP, Burmer GC (1995) Plaque‐associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A 92:7440–7444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Cross AH, Cannella B, Brosnan CF, Raine CS (1991) Hypothesis: antigen‐specific T‐cells prime central nervous system endothelium for recruitment of nonspecific inflammatory cells to effect autoimmune demyelination. J Neuroimmunol 33:237–244. [DOI] [PubMed] [Google Scholar]
  • 12. Cserr HF, Harling‐Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2:269–276. [DOI] [PubMed] [Google Scholar]
  • 13. Cua DJ, Hutchins B, LaFace DM, Stohlman SA, Coffman RL (2001) Central nervous system expression of IL‐10 inhibits autoimmune encephalomyelitis. J Immunol 166:602–608. [DOI] [PubMed] [Google Scholar]
  • 14. De Vos AF, von Meurs M, Brok HPM, Boon L, Rensing S't, Hart BA, Laman JD (2001) Transfer of CNS autoantigens and presentation in secondary lymphoid organs. J Neuroimmunol 118:75. [DOI] [PubMed] [Google Scholar]
  • 15. Dittel BN, Visintin I, Merchant RM, Janeway CA Jr (1999) Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J Immunol 163:32–39. [PubMed] [Google Scholar]
  • 16. Ekerfelt C, Ernerudh J, Bunikis J, Vrethem M, Aagesen J, Roberg M, Bergstrom S, Forsberg P (1997) Compartmentalization of antigen specific cytokine responses to the central nervous system in CNS borreliosis: secretion of IFNgamma predominates over IL‐4 secretion in response to outer surface proteins of Lyme disease Borrelia spirochetes. J Neuroimmunol 79:155–162. [DOI] [PubMed] [Google Scholar]
  • 17. Fischer HG, Bielinsky AK (1999) Antigen presentation function of brain‐derived dendriform cells depends on astrocyte help. Int Immunol 11:1265–1274. [DOI] [PubMed] [Google Scholar]
  • 18. Fischer H‐G, Bonifas U, Reichmann G (2000) Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164:4826–4834. [DOI] [PubMed] [Google Scholar]
  • 19. Fischer HG, Reichmann G (2001) Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166:2717–2726. [DOI] [PubMed] [Google Scholar]
  • 20. Fortsch D, Rollinghoff M, Stenger S (2000) IL‐10 converts human dendritic cells into macrophage‐like cells with increased antibacterial activity against virulent Mycobacterium tuberculosis. J Immunol 165:978–987. [DOI] [PubMed] [Google Scholar]
  • 21. Frei K, Nadal D, Pfister HW, Fontana A (1993) Listeria meningitis: identification of a cerebrospinal fluid inhibitor of macrophage listericidal function as interleukin 10. J Exp Med 178:1255–1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Gallucci S, Lolkema M, Matzinger P (1999). Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5:1249–1255. [DOI] [PubMed] [Google Scholar]
  • 23. Garcia‐Monco JC, Benach JL (1995) Lyme neuroborreliosis. Ann Neurol 37:691–702. [DOI] [PubMed] [Google Scholar]
  • 24. Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJ, Claassen E (1996) CD40‐CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 93:2499–2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Gordon LB, Knopf PM, Cserr HF (1992) Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. J Neuroimmunol 40:81–87. [DOI] [PubMed] [Google Scholar]
  • 26. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ (1997) The enigmatic plasmacytoid T‐cells develop into dendritic cells with interleukin (I L)‐3 and CD40‐ligand. J Exp Med 185:1101–1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Guseo A, Jellinger K (1975) The significance of perivascular inflitrations in multiple sclerosis. J Neurol 211:51–60. [DOI] [PubMed] [Google Scholar]
  • 28. Hanly A, Petito CK (1998) HLA‐DR‐positive dendritic cells of the normal human choroid plexus: a potential reservoir of HIV in the central nervous system. Hum Pathol 29:88–93. [DOI] [PubMed] [Google Scholar]
  • 29. Harling‐Berg CJ, Park JT, Knopf PM (1999) Role of cervical lymphatics in the Th2‐type hierarchy of CNS immune regulation. J Neuroimmunol 101:111–127. [DOI] [PubMed] [Google Scholar]
  • 30. Hickey WF (1991) Migration of hematogenous cells through the blood‐brain barrier and the initiation of CNS inflammation. Brain Pathol 1:97–105. [DOI] [PubMed] [Google Scholar]
  • 31. Huang YM, Stoyanova N, Jin YP, Teleshova N, Hussien Y, Xiao BG, Fredrikson S, Link H (2001) Altered phenotype and function of blood dendritic cells in multiple sclerosis are modulated by IFN‐beta and IL‐10. Clin Exp Immunol 124:306–314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH (2000) Induction of interleukin 10‐producing, nonproliferating CD4(+) T‐cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH (2001) Identification and functional characterization of human CD4(+)CD25(+) T‐cells with properties isolated from peripheral blood. J Exp Med 193:1285–1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Kadowaki N, Antonenko S, Lau JY, Liu YJ (2000) Natural interferon alpha/beta‐producing cells link innate and adaptive immunity. J Exp Med 192:219–226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML (1999) T‐cell priming by type‐1 and type‐2 polarized dendritic cells: the concept of a third signal. Immunol Today 20:561–567. [DOI] [PubMed] [Google Scholar]
  • 36. Karp CL, Biron CA, Irani DN (2000) Interferon beta in multiple sclerosis: is IL‐12 suppression the key? Immunol Today 21:24–28. [DOI] [PubMed] [Google Scholar]
  • 37. Kohrgruber N, Halanek N, Groger M, Winter D, Rappersberger K, Schmitt‐Egenolf M, Stingl G, Maurer D (1999) Survival, maturation, and function of CD11c‐ and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J Immunol 163:3250–3259. [PubMed] [Google Scholar]
  • 38. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T‐cells. Nat Immunol 1:311–316. [DOI] [PubMed] [Google Scholar]
  • 39. Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7:151–121. [DOI] [PubMed] [Google Scholar]
  • 40. Lowenstein PR (2002) Immunology of viral‐vector‐mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol 23:23–30. [DOI] [PubMed] [Google Scholar]
  • 41. Lowhagen P, Johansson BB, Nordborg C (1994) The nasal route of cerebrospinal fluid drainage in man. A light‐microscope study. Neuropathol Appl Neurobiol 20:543–550. [DOI] [PubMed] [Google Scholar]
  • 42. Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM (1998) Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J Exp Med 188:1493–1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Ludewig B, Junt T, Hengartner H, Zinkernagel RM (2001) Dendritic cells in autoimmune diseases. Curr Opin Immunol 13:657–662. [DOI] [PubMed] [Google Scholar]
  • 44. Mackay CR (2001) Chemokines: immunology's high impact factors. Nat Immunol 2:95–101. [DOI] [PubMed] [Google Scholar]
  • 45. Matyszak MK, Perry VH (1995) Demyelination in the central nervous system following a delayed‐type hypersensitivity response to bacillus Calmette‐Guerin. Neuroscience 64:967–977. [DOI] [PubMed] [Google Scholar]
  • 46. Matyszak MK, Perry VH (1996) The potential role of dendritic cells in immune‐mediated inflammatory diseases in the central nervous system. Neuroscience 74:599–608. [DOI] [PubMed] [Google Scholar]
  • 47. Matyszak MK, Perry VH (1996) A comparison of leucocyte responses to heat‐killed bacillus Calmette‐Guerin in different CNS compartments. Neuropathol Appl Neurobiol 22:44–53. [PubMed] [Google Scholar]
  • 48. Matyszak MK, Perry VH (1998) Bacillus Calmette‐Guerin sequestered in the brain parenchyma escapes immune recognition. J Neuroimmunol 82:73–80. [DOI] [PubMed] [Google Scholar]
  • 49. McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF (1998) MCP‐1, MCP‐2 and MCP‐3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 86:20–29. [DOI] [PubMed] [Google Scholar]
  • 50. McMenamin PG (1999) Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 405:553–562. [PubMed] [Google Scholar]
  • 51. McRae BL, Semnani RT, Hayes MP, van Seventer GA (1998) Type I IFNs inhibit human dendritic cell IL‐12 production and Th1 cell development. J Immunol 160:4298–4304. [PubMed] [Google Scholar]
  • 52. McWilliam AS, Napoli S, Marsh AM, Pemper FL, Nelson DJ, Pimm CL, Stumbles PA, Wells TN, Holt PG (1996) Dendritic cells are recruited into the airway epithelium during the inflammatory response to a broad spectrum of stimuli. J Exp Med 184:2429–2432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Medawar PB (1948) Immunity to homologous grafted skin: III. Fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 29:58–69. [PMC free article] [PubMed] [Google Scholar]
  • 54. Merill J, Benveniste E (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19:331–338. [DOI] [PubMed] [Google Scholar]
  • 55. Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz‐Levy Y, Carrizosa A, Kim BS (1997) Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136. [DOI] [PubMed] [Google Scholar]
  • 56. Mosmann TR, Sad S (1996) The expanding universe of T‐cell subsets: Th1, Th2 and more. Immunol Today 17:138–146. [DOI] [PubMed] [Google Scholar]
  • 57. Newman TA, Woolley ST, Hughes PM, Sibson NR, Anthony DC, Perry VH (2001) T‐cell‐ and macrophagemediated axon damage in the absence of a CNS‐specific immune response: involvement of metalloproteinases. Brain 124:2203–2214. [DOI] [PubMed] [Google Scholar]
  • 58. Olson JK, Croxford JL, Calenoff MA, Dal Canto MC, Miller SD (2001) A virus‐induced molecular mimicry model of multiple sclerosis. J Clin Invest 108:311–318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Ozenci V, Kouwenhoven M, Huang YM, Kivisakk P, Link H (2000) Multiple sclerosis is associated with an imbalance between tumour necrosis factor‐alpha (TNF‐alpha)‐ and IL‐10‐secreting blood cells that is corrected by interferonbeta (IFN‐beta) treatment. Clin Exp Immunol 120:147–153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Pashenkov M, Huang Y‐M, Kostulas V, Haglund M, Soderstrom M, Link H (2001) Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124:480–492. [DOI] [PubMed] [Google Scholar]
  • 61. Pashenkov M, Teleshova N, Kouwenhoven M, Smirnova T, Jin YP, Kostulas V, Huang YM, Pinegin B, Boiko A, Link H (2002) Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections. J Neuroimmunol 122:106–116. [DOI] [PubMed] [Google Scholar]
  • 62. Pashenkov M, Teleshova N, Kouwenhoven M, Huang YM, Söderström M, Link H (2002) Elevated expression of CCR5 by myeloid (CD11c+) blood dendritic cells in multiple sclerosis and acute optic neuritis. Clin Exp Immunol 127:519–527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Pashenkov M, Soderstrom M, Huang Y‐M, Link H (2002) Cerebrospinal fluid affects phenotype and functions of myeloid dendritic cells. Clin Exp Immunol 128:379–387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Pender MP (1998) Genetically determined failure of activation‐induced apoptosis of autoreactive T‐cells as a cause of multiple sclerosis. Lancet 351:978–981. [DOI] [PubMed] [Google Scholar]
  • 65. Penna G, Sozzani S, Adorini L (2001) Cutting edge: selective usage of chemokine receptors by plasmacytoid dendritic cells. J Immunol 167:1862–1866. [DOI] [PubMed] [Google Scholar]
  • 66. Phillips MJ, Needham M, Weller RO (1997) Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J Pathol 182:457–464. [DOI] [PubMed] [Google Scholar]
  • 67. Prineas JW (1979). Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203:1123–1125. [DOI] [PubMed] [Google Scholar]
  • 68. Robert C, Fuhlbrigge RC, Kieffer JD, Ayehunie S, Hynes RO, Cheng G, Grabbe S, von Andrian UH, Kupper TS (1999) Interaction of dendritic cells with skin endothelium: A new perspective on immunosurveillance. J Exp Med 189:627–636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD (1999) Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 29:2769–2778. [DOI] [PubMed] [Google Scholar]
  • 70. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony‐stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A (1998) Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 28:2760–2769. [DOI] [PubMed] [Google Scholar]
  • 72. Sallusto F, Lanzavecchia A (1999) Mobilizing dendritic cells for tolerance, priming and chronic inflammation. J Exp Med 189:611–614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Santambrogio L, Belyanskaya SL, Fischer FR, Cipriani B, Brosnan CF, Ricciardi‐Castagnoli P, Stern LJ, Strominger JL, Riese R (2001) Developmental plasticity of CNS microglia. Proc Natl Acad Sci U S A 98:6295–6300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Serafini B, Columba‐Cabezas S, Di Rosa F, Aloisi F (2000) Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am J Pathol 157:1991–2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Serafini B, Magliozzi R, Columba‐Cabezas S, Ambrosini E, Aloisi F (2001) Recruitment of dendritic cells and occurrence of lymphoid‐like features in the central nervous system during autoimmune encephalomyelitis. J Neuroimmunol 118:5. [Google Scholar]
  • 76. Shin T, Kojima T, Tanuma N, Ishihara Y, Matsumoto Y (1995) The subarachnoid space as a site for precursor T‐cell proliferation and effector T‐cell selection in experimental autoimmune encephalomyelitis. J Neuroimmunol 56:171–178. [DOI] [PubMed] [Google Scholar]
  • 77. Siegal FP, Kadowaki N, Shodell M, Fitzgerald‐Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon‐producing cells in human blood. Science 284:1835–1837. [DOI] [PubMed] [Google Scholar]
  • 78. Soderstrom M, Link H, Sun JB, Fredrikson S, Wang ZY, Huang WX (1994) Autoimmune T‐cell repertoire in optic neuritis and multiple sclerosis: T‐cells recognising multiple myelin proteins are accumulated in cerebrospinal fluid. J Neurol Neurosurg Psychiatry 57:544–551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH (1997) Induction of tolerance by IL‐10‐treated dendritic cells. J Immunol 159:4772–4780. [PubMed] [Google Scholar]
  • 81. Steinman RM, Pack M, Inaba K (1997) Dendritic cells in the T‐cell areas of lymphoid organs. Immunol Rev 156:25–37. [DOI] [PubMed] [Google Scholar]
  • 82. Stevenson PG, Hawke S, Sloan DJ, Bangham CR (1997) The immunogenicity of intracerebral virus infection depends on anatomical site. J Virol 71:145–151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Sun JB, Link H, Olsson T, Xiao BG, Andersson G, Ekre HP, Linington C, Diener P (1991) T and B cell responses to myelin‐oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 146:1490–1495. [PubMed] [Google Scholar]
  • 84. Suter T, Malipiero U, Otten L, Ludewig B, Muelethaler‐Mottet A, Mach B, Reith W, Fontana A (2000) Dendritic cells and differential usage of the MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis. Eur J Immunol 30:794–802. [DOI] [PubMed] [Google Scholar]
  • 85. Tanaka H, Demeure CE, Rubio M, Delespesse G, Sarfati M (2000) Human monocyte‐derived dendritic cells induce naive T‐cell differentiation into T helper cell type 2 (Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio. J Exp Med 192:405–412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Traugott U, Raine CS (1979) Acute experimental allergic encephalomyelitis. Myelin basic protein‐reactive T‐cells in the circulation and in meningeal infiltrates. J Neurol Sci 42:331–336. [DOI] [PubMed] [Google Scholar]
  • 87. Vass K, Lassmann H, Wekerle H, Wisniewski HM (1986) The distribution of Ia antigen in the lesions of rat acute experimental allergic encephalomyelitis. Acta Neuropathol (Berl) 70:149–160. [DOI] [PubMed] [Google Scholar]
  • 88. Waage A, Halstensen A, Shalaby R, Brandtzaeg P, Kierulf P, Espevik T (1989) Local production of tumor necrosis factor alpha, interleukin 1, and interleukin 6 in meningococcal meningitis. Relation to the inflammatory response. J Exp Med 170:1859–1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL‐2 and IL‐15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105–110. [PubMed] [Google Scholar]
  • 90. Wekerle H, Kojima K, Lannes‐Vieira J, Lassmann H, Linington C (1994) Animal models. Ann Neurol 36:S47–S53. [DOI] [PubMed] [Google Scholar]
  • 91. Weller RO (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 57:885–894. [DOI] [PubMed] [Google Scholar]
  • 92. Whitaker J (1998) Myelin basic protein in cerebrospinal fluid and other body fluids. Mult Scler 4:16–21. [DOI] [PubMed] [Google Scholar]
  • 93. Wilbanks GA, Streilein JW (1992) Fluids from immune privileged sites endow macrophages with the capacity to induce antigen‐specific immune deviation via a mechanism involving transforming growth factor‐beta. Eur J Immunol 22:1031–1036. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES