Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;15(4):297–310. doi: 10.1111/j.1750-3639.2005.tb00115.x

Angiogenesis in Gliomas: Biology and Molecular Pathophysiology

Ingeborg Fischer 1,2,3, Jean‐Pierre Gagner 1,2,3, Meng Law 4,5,6, Elizabeth W Newcomb 2,6, David Zagzag 1,2,3,5,6,
PMCID: PMC8096031  PMID: 16389942

Abstract

Glioblastoma multiforme (GBM) is characterized by exuberant angiogenesis, a key event in tumor growth and progression. The pathologic mechanisms driving this change and the biological behavior of gliomas remain unclear. One mechanism may involve cooption of native blood vessels by glioma cells inducing expression of angio‐poietin‐2 by endothelial cells. Subsequently, vascular apoptosis and involution leads to necrosis and hypoxia. This in turn induces angiogenesis that is associated with expression of hypoxia‐inducible factor (HIF)‐1 a and vascular endothelial growth factor (VEGF) in perinecrotic pseudopalisading glioma cells. Here we review the molecular and cellular mechanisms implicated in HIF‐1 ‐dependent and HIF‐1 ‐independent glioma‐associated angiogenesis. In GBMs, both tumor hypoxia and genetic alterations commonly occur and act together to induce the expression of HIF‐1. The angiogenic response of the tumor to HIF‐1 is mediated by HIF‐1‐regulated target genes leading to the upregulation of several proangiogenic factors such as VEGF and other adaptive response molecules. Understanding the roles of these regulatory processes in tumor neovascularization, tumor growth and progression, and resistance to therapy will ultimately lead to the development of improved antiangiogenic therapies for GBMs.

Full Text

The Full Text of this article is available as a PDF (673.8 KB).

References

  • 1. Abdulrauf SI, Edvardsen K, Ho KL, Yang XY, Rock JP, Rosenblum ML (1998) Vascular endothelial growth factor expression and vascular density as prognostic markers of survival in patients with low‐grade astrocytoma. J Neurosurg 88:513–520. [DOI] [PubMed] [Google Scholar]
  • 2. Abe T, Okamura K, Ono M, Kohno K, Mori T, Hori S, Kuwano M (1993) Induction of vascular endothelial tubular morphogenesis by human glioma cells. A model system for tumor angiogenesis. J Clin Invest 92:54–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Abe T, Terada K, Wakimoto H, Inoue R, Tymin‐ski E, Bookstein R, Basilion JP, Chiocca EA (2003) PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res 63:2300–2305. [PubMed] [Google Scholar]
  • 4. Acker T, Diez‐Juan A, Aragones J, Tjwa M, Brus‐selmans K, Moons L, Fukumura D, Moreno‐Murciano MP, Herbert JM, Burger A, Riedel J, Elvert G, Flamme I, Maxwell PH, Collen D, Dewerchin M, Jain RK, Plate KH, Carmeliet P (2005) Genetic evidence for a tumor suppressor role of HIF‐2alpha. Cancer Cell 8:131–141. [DOI] [PubMed] [Google Scholar]
  • 5. Acker T, Plate KH (2002) A role for hypoxia and hypoxia‐inducible transcription factors in tumor physiology. J Mol Med 80:562–575. [DOI] [PubMed] [Google Scholar]
  • 6. Adini A, Kornaga T, Firoozbakht F, Benjamin LE (2002) Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res 62:2749–2752. [PubMed] [Google Scholar]
  • 7. Alavi A, Hood JD, Frausto R, Stupack DG, Cheresh DA (2003) Role of Raf in vascular protection from distinct apoptotic stimuli. Science 301:94–96. [DOI] [PubMed] [Google Scholar]
  • 8. Arai Y, Kubota T, Nakagawa T, Kabuto M, Sato K, Kobayashi H (1998) Production of urokinase‐type plasminogen activator (u‐PA) and plasminogen activator inhibitor‐1 (PAI‐1) in human brain tumours. Acta Neurochir (Wien) 140:377–385. [DOI] [PubMed] [Google Scholar]
  • 9. Arrieta O, Gracia E, Guevara P, Garcia‐Navarrete R, Ondarza R, Rembao D, Sotelo J (2002) Hepatocyte growth factor is associated with poor prognosis of malignant gliomas and is a predictor for recurrence of meningioma. Cancer 94:3210–3218. [DOI] [PubMed] [Google Scholar]
  • 10. Auguste P, Gursel DB, Lemiere S, Reimers D, Cuevas P, Carceller F, Di Santo JP, Bikfalvi A (2001) Inhibition of fibroblast growth factor/fibroblast growth factor receptor activity in glioma cells impedes tumor growth by both angiogenesis‐dependent and ‐independent mechanisms. Cancer Res 61:1717–1726. [PubMed] [Google Scholar]
  • 11. Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor‐1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1:1356–1370. [DOI] [PubMed] [Google Scholar]
  • 12. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, de Mol M, Bono F et al (2003) Role of PlGF in the intra‐ and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9:936–943. [DOI] [PubMed] [Google Scholar]
  • 13. Baeza N, Weller M, Yonekawa Y, Kleihues P, Ohgaki H (2003) PTEN methylation and expression in glioblastomas. Acta Neuropathol (Berl) 106:479–485. [DOI] [PubMed] [Google Scholar]
  • 14. Barker FG 2nd, Davis RL, Chang SM, Prados MD (1996) Necrosis as a prognostic factor in glioblastoma multiforme. Cancer 77:1161–1166. [DOI] [PubMed] [Google Scholar]
  • 15. Bello L, Giussani C, Carrabba G, Pluderi M, Costa F, Bikfalvi A (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284. [DOI] [PubMed] [Google Scholar]
  • 16. Bengtson NW, Linzer DI (2000) Inhibition of tumor growth by the antiangiogenic placental hormone, proliferin‐related peptide. Mol Endocrinol 14:1934–1943. [DOI] [PubMed] [Google Scholar]
  • 17. Berkman RA, Merrill MJ, Reinhold WC, Monacci WT, Saxena A, Clark WC, Robertson JT, Ali IU, Oldfield EH (1993) Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 91:153–159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM (1999) Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF‐1. Genes Dev 13:64–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Birner P, Gatterbauer B, Oberhuber G, Schindl M, Rossler K, Prodinger A, Budka H, Hainfellner JA (2001) Expression of hypoxia‐inducible factor‐1 alpha in oligodendrogliomas: its impact on prognosis and on neoangiogenesis. Cancer 92:165–171. [DOI] [PubMed] [Google Scholar]
  • 20. Birse‐Archbold JL, Kerr LE, Jones PA, Mc‐Culloch J, Sharkey J (2005) Differential profile of Nix upregulation and translocation during hypoxia/ischaemia in vivo versus in vitro. J Cereb Blood Flow Metab 25:1356–1365. [DOI] [PubMed] [Google Scholar]
  • 21. Blum R, Jacob‐Hirsch J, Amariglio N, Rechavi G, Kloog Y (2005) Ras inhibition in glioblastoma down‐regulates hypoxia‐inducible factor‐la, causing glycolysis shutdown and cell death. Cancer Res 65:999–1006. [PubMed] [Google Scholar]
  • 22. Bogler O, Mikkelsen T (2003) Angiogenesis in glioma: molecular mechanisms and roadblocks to translation. Cancer J 9:205–213. [DOI] [PubMed] [Google Scholar]
  • 23. Boudouresque F, Berthois Y, Martin PM, Figarella‐Branger D, Chinot O, Ouafik L (2005) Role of adrenomedullin in glioblastomas growth. Bull Cancer 92:317–326. [PubMed] [Google Scholar]
  • 24. Brahimi‐Horn C, Mazure N, Pouysségur J (2005) Signalling via the hypoxia‐inducible factorla requires multiple posttranslational modifications. Cell Signal 17:1–9. [DOI] [PubMed] [Google Scholar]
  • 25. Brat DJ, Bellail AC, van Meir EG (2005) The role of interleukin‐8 and its receptor in gliomatosis and tumoral angiogenesis. Neuro-Oncology 7:122–133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Brat DJ, van Meir EG (2004) Vaso‐occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Invest 84:397–405. [DOI] [PubMed] [Google Scholar]
  • 27. Brem S (1976) The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg 23:440–453. [DOI] [PubMed] [Google Scholar]
  • 28. Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48:347–356. [PubMed] [Google Scholar]
  • 29. Brockmann MA, Ulbricht U, Gruner K, Fill‐brandt R, Westphal M, Lamszus K (2003) Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor‐associated growth factors. Neurosurgery 52:1391–1399. [DOI] [PubMed] [Google Scholar]
  • 30. Broholm H, Laursen H (2004) Vascular endothelial growth factor (VEGF) receptor neuropilin‐1's distribution in astrocytic tumors. APMIS 112:257–263. [DOI] [PubMed] [Google Scholar]
  • 31. Buccoliero AM, Caldarella A, Arganini L, Mennonna P, Gallina P, Taddei A, Taddei GL (2004) Cyclooxygenase‐2 in oligodendroglioma: possible prognostic significance. Neuropathology 24:201–207. [DOI] [PubMed] [Google Scholar]
  • 32. Burger PC, Vogel FS, Green SB, Strike TA (1985) Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer 56:1106–1111. [DOI] [PubMed] [Google Scholar]
  • 33. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshet E (1998) Role of HIF‐1 alpha in hypoxia‐mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490. [DOI] [PubMed] [Google Scholar]
  • 34. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439. [DOI] [PubMed] [Google Scholar]
  • 35. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257. [DOI] [PubMed] [Google Scholar]
  • 36. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, de Mol M, Wu Y, Bono F, Devy L, Beck H et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583. [DOI] [PubMed] [Google Scholar]
  • 37. Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L (2000) Redox‐regulated recruitment of the transcriptional coactivators CREB‐binding protein and SRC‐1 to hypoxia‐inducible factor 1 alpha. Mol Cell Biol 20:402–415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Cervera P, Videau C, Viollet C, Petrucci C, La‐combe J, Winsky‐Sommerer R, Csaba Z, Helboe L, Daumas‐Duport C, Reubi JC, Epelbaum J (2002) Comparison of somatostatin receptor expression in human gliomas and medulloblastomas J Neu-roendocrinol 14:458–471. [DOI] [PubMed] [Google Scholar]
  • 39. Cha S, Johnson G, Wadghiri YZ, Jin O, Babb J, Zagzag D, Turnbull DH (2003) Dynamic, contrastenhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 49:848–855. [DOI] [PubMed] [Google Scholar]
  • 40. Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM, Cavenee WK (1996) Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci U S A 93:8502–8507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Cheng SY, Nagane M, Huang HS, Cavenee WK (1997) Intracerebral tumor‐associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF 189. Proc Natl Acad Sci U S A 94:12081–12087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Clapp C, Weiner RI (1992) A specific, high affinity, saturable binding site for the 16‐kilodalton fragment of prolactin on capillary endothelial cells. Endocrinology 130:1380–1386. [DOI] [PubMed] [Google Scholar]
  • 43. Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271:736–741. [DOI] [PubMed] [Google Scholar]
  • 44. Corbacho AM, Martinez de la Escalera G, Clapp C (2002) Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol 173:219–238. [DOI] [PubMed] [Google Scholar]
  • 45. Daumas‐Duport C, Tucker ML, Kolles H, Cervera P, Beuvon F, Varlet P, Udo N, Koziak M, Chodkiewicz JP (1997) Oligodendrogliomas. Part II: A new grading system based on morphological and imaging criteria. J Neurooncol 34:61–78. [DOI] [PubMed] [Google Scholar]
  • 46. de Boüard S, Guillamo JS (2005) [Angiogenesis and antiangiogenic strategies for glioblastomas]. Bull Cancer 92:360–372. [PubMed] [Google Scholar]
  • 47. Del Maestro RF, Megyesi JF, Farrell CL (1990) Mechanisms of tumor‐associated edema: a review. Can J Neurol Sci 17:177–183. [DOI] [PubMed] [Google Scholar]
  • 48. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms‐like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991. [DOI] [PubMed] [Google Scholar]
  • 49. Ding H, Wu X, Roncari L, Lau N, Shannon P, Nagy A, Guha A (2000) Expression and regulation of neuropilin‐1 in human astrocytomas. Int J Cancer 88:584–592. [DOI] [PubMed] [Google Scholar]
  • 50. Duerr EM, Rollbrocker B, Hayashi Y, Peters N, MeyerPuttlitz B, Louis DN, Schramm J, Wiestler OD, Parsons R, Eng C, von Deimling A (1998) PTEN mutations in gliomas and glioneuronal tumors. Oncogene 16:2259–2264. [DOI] [PubMed] [Google Scholar]
  • 51. Dunn IF, Heese O, Black PM (2000) Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neuro-Oncology 50:121–137. [DOI] [PubMed] [Google Scholar]
  • 52. Dvorak HF (2005) Angiogenesis: update 2005. J Thromb Haemost 3:1835–1842. [DOI] [PubMed] [Google Scholar]
  • 53. Earnest F 4th, Kelly PJ, Scheithauer BW, Kall BA, Cascino TL, Ehman RL, Forbes GS, Axley PL (1988) Cerebral astrocytomas: histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 166:823–827. [DOI] [PubMed] [Google Scholar]
  • 54. Egidy G, Eberl LP, Valdenaire O, Irmler M, Majdi R, Diserens AC, Fontana A, Janzer RC, Pinet F, Juillerat‐Jeanneret L (2000) The endothelin system in human glioblastoma. Lab Invest 80:1681–1689. [DOI] [PubMed] [Google Scholar]
  • 55. Elmlinger MW, Deininger MH, Schuett BS, Meyermann R, Duffner F, Grote EH, Ranke MB (2001) In vivo expression of insulinlike growth factor‐binding protein‐2 in human gliomas increases with the tumor grade. Endocrinology 142:1652–1658. [DOI] [PubMed] [Google Scholar]
  • 56. Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii‐Kuriyama Y (1999) Molecular mechanisms of transcription activation by HLF and HIF‐1a in response to hypoxia: their stabilization and redox signal‐induced interaction with CBP/p300. EMBO J 18:1905–1914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii‐Kuriyama Y (1997) A novel bHLH‐PAS factor with close sequence similarity to hypoxia‐inducible factor 1 a regulates the VEGF expression, and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94:4273–4278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Farhadi MR, Capelle HH, Erber R, Ullrich A, Vajkoczy P (2005) Combined inhibition of vascular endothelial growth factor and platelet‐derived growth factor signaling: effects on the angiogenesis, microcirculation, and growth of orthotopic malignant gliomas. J Neurosurg 102:363–370. [DOI] [PubMed] [Google Scholar]
  • 59. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL (1999) Reciprocal positive regulation of hypoxia‐inducible factor 1 alpha and insulin‐like growth factor 2. Cancer Res 59:3915–3918. [PubMed] [Google Scholar]
  • 60. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611. [DOI] [PubMed] [Google Scholar]
  • 61. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. [DOI] [PubMed] [Google Scholar]
  • 62. Finkenzeller G, Marme D, Weich HA, Hug H (1992) Platelet‐derived growth factor‐induced transcription of the vascular endothelial growth factor gene is mediated by protein kinase C. Cancer Res 52:4821–4823. [PubMed] [Google Scholar]
  • 63. Flamme I, Froehlich T, von Reutern M, Kappel A, Damert A, Risau W, Plate KH (1997) HRF, a putative basic helix‐loop‐helix‐PAS‐domain transcription factor is closely related to hypoxia‐inducible factor‐1α and developmentally expressed in blood vessels. Mech Dev 63:51–60. [DOI] [PubMed] [Google Scholar]
  • 64. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent J Natl Cancer Inst 82:4–6. [DOI] [PubMed] [Google Scholar]
  • 65. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31. [DOI] [PubMed] [Google Scholar]
  • 66. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK (2004) The candidate tumor suppressor protein ING4 regulates brain tumor growth and angiogenesis. Nature 428:328–332. [DOI] [PubMed] [Google Scholar]
  • 67. Gilhuis HJ, Bernse HJ, Jeuken JW, Wesselin P, Sprenger SH, Kerstens HM, Wiegant J, Boerman RH (2001) The relationship between genetic aberrations as detected by comparative genomic hybridization and vascularization in glioblastoma xenografts. J Neurooncol 51:121–127. [DOI] [PubMed] [Google Scholar]
  • 68. Gladson CL (1999) The extracellular matrix of gliomas: modulation of cell function. J Neuro-pathol Exp Neurol 58:1029–1040. [DOI] [PubMed] [Google Scholar]
  • 69. Godard S, Getz G, Delorenzi M, Farmer P, Kobayashi H, Desbaillets I, Nozaki M, Diserens AC, Hamou MF, Dietrich PY et al (2003) Classification of human astrocytic gliomas on the basis of gene expression: a correlated group of genes with angiogenic activity emerges as a strong predictor of subtypes. Cancer Res 63:6613–6625. [PubMed] [Google Scholar]
  • 70. Gollmer JC, Ladoux A, Gioanni J, Paquis P, Dubreuil A, Chatel M, Frelin C (2000) Expression of vascular endothelial growth factorb in human astrocytoma. Neurooncology 2:80–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Gothert JR, Gustin SE, van Eekelen JA, Schmidt U, Hall MA, Jane SM, Green AR, Gottgens B, Izon DJ, Begley CG (2004) Genetically tagging endothelial cells in vivo: bone marrow‐derived cells do not contribute to tumor endothelium. Blood 104:1769–1777. [DOI] [PubMed] [Google Scholar]
  • 72. Guha A (1998) Ras activation in astrocytomas and neurofibromas. Can J Neurol Sci 25:267–281. [DOI] [PubMed] [Google Scholar]
  • 73. Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ, Cavenee WK, Cheng SY (2003) Platelet‐derived growth factor‐B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162:1083–1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364. [DOI] [PubMed] [Google Scholar]
  • 75. Haskell H, Natarajan M, Hecker TP, Ding Q, Stewart J Jr, Grammer JR, Gladson CL (2003) Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin Cancer Res 9:2157–2165. [PubMed] [Google Scholar]
  • 76. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEG‐FR1(+) stem cells from bone‐marrow microenvironment. Nat Med 8:841–849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Heidenreich R, Machein M, Nicolaus A, Hilbig A, Wild C, Clauss M, Plate KH, Breier G (2005) Inhibition of solid tumor growth by gene transfer of VEGF receptor‐1 mutants. Int J Cancer 111:348–357. [DOI] [PubMed] [Google Scholar]
  • 78. Hicklin DJ, Ellis LM (2005) Role of vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027. [DOI] [PubMed] [Google Scholar]
  • 79. Hirano H, Lopes MB, Laws ER Jr, Asakura T, Goto M, Carpenter JE, Karns LR, VandenBerg SR (1999) Insulin‐like growth factor‐1 content and pattern of expression correlates with histopathologic grade in diffusely infiltrating astrocytomas. Neuro-oncology 1:109–119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998. [DOI] [PubMed] [Google Scholar]
  • 81. Hon WC, Wilson MI, Harlos K, Claridge TD, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones EY (2002) Structural basis for the recognition of hydroxyproline in HIF‐1 alpha by pVHL. Nature 417:975–978. [DOI] [PubMed] [Google Scholar]
  • 82. Hu P, Margolis B, Skolnik EY, Lammers R, Ullrich A, Schlessinger J (1992) Interaction of phosphatidylinositol 3‐kinase‐associated p85 with epidermal growth factor and platelet‐derived growth factor receptors. Mol Cell Biol 12:981–990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Iida T, Mine S, Fujimoto H, Suzuki K, Minami Y, Tanaka Y (2002) Hypoxia‐inducible factor‐1 alpha induces cell cycle arrest of endothelial cells. Genes Cells 7: 143–149. [DOI] [PubMed] [Google Scholar]
  • 84. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFα targeted for VHL‐mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468. [DOI] [PubMed] [Google Scholar]
  • 85. Ivanov S, Liao SY, Ivanova A, Danilkovitch‐Miagkova A, Tarasova N, Weirich G, Merrill MJ, Proescholdt MA, Oldfield EH, Lee J, Zavada J, Waheed A, Sly W, Lerman MI, Stanbridge EJ (2001) Expression of hypoxia‐inducible cell‐surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Jain RK, Duda DG (2003) Role of bone marrow‐derived cells in tumor angiogenesis and treatment. Cancer Cell 3:515–516. [DOI] [PubMed] [Google Scholar]
  • 87. Jiang BH, Agani F, Passaniti A, Semenza GL (1997) V‐SRC induces expression of hypoxia‐inducible factor 1 (HIF‐1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF‐1 in tumor progression. Cancer Res 57:5328–5335. [PubMed] [Google Scholar]
  • 88. Kanno H, Shuin T, Kondo K, Yamamoto I, Ito S, Shinonaga M, Yoshida M, Yao M (1997) Somatic mutations of the von Hippel‐Lindau tumor suppressor gene and loss of heterozygosity on chromosome 3p in human glial tumors. Cancer Res 57:1035–1038. [PubMed] [Google Scholar]
  • 89. Kaur B, Brat DJ, Devi NS, van Meir EG (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24:3632–3642. [DOI] [PubMed] [Google Scholar]
  • 90. Kazuno M, Tokunaga T, Oshika Y, Tanaka Y, Tsugane R, Kijima H, Yamazaki H, Ueyama Y, Nakamura M (1999) Thrombospondin‐2 (TSP2) expression is inversely correlated with vascularity in glioma. Eur J Cancer 35:502–506. [DOI] [PubMed] [Google Scholar]
  • 91. Khatua S, Peterson KM, Brown KM, Lawlor C, Santi MR, LaFleur B, Dressman D, Stephan DA, MacDonald TJ (2003) Overexpression of the EGFR/FKBP12/HIF‐2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res 63:1865–1870. [PubMed] [Google Scholar]
  • 92. Kee HJ, Ahn KY, Choi KC, Won Song J, Heo T, Jung S, Kim JK, Bae CS, Kim KK (2004) Expression of brain‐specific angiogenesis inhibitor 3 (BAI3) in normal brain and implications for BAI3 in ischemia‐induced brain angiogenesis and malignant glioma. FEBS Lett 569:307–316. [DOI] [PubMed] [Google Scholar]
  • 93. Kitamuro T, Takahashi K, Nakayama M, Murakami O, Hida W, Shirato K, Shibahara S (2000) Induction of adrenomedullin during hypoxia in cultured human glioblastoma cells. J Neurochem 75:1826–1833. [DOI] [PubMed] [Google Scholar]
  • 94. Kleihues P, Burger PC, Collins V, Newcomb EW, Ohgaki H, Cavenee WK (2000) Glioblastoma. In: Pathology and Genetics of Tumours of the Nervous System, Kleihues P, Cavenee WK, (Eds.), pp. 29–39, IARC Press: Lyon . [Google Scholar]
  • 95. Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology 1:44–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Koong AC, Chen EY, Giaccia AJ (1994) Hypoxia causes the activation of nuclear factor kappa B through the phosphorylation of I kappa B alpha on tyrosine residues. Cancer Res 54:1425–1430. [PubMed] [Google Scholar]
  • 97. Kremer C, Breier G, Risau W, Plate KH (1997) Up‐regulation of flk‐1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57:3852–3859. [PubMed] [Google Scholar]
  • 98. Lacroix M, Abi‐Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198. [DOI] [PubMed] [Google Scholar]
  • 99. Lal A, Peters H, Croix B St, Haroon ZA, Dewhirst MW, Strausberg RL, Kaanders JH, van der Kogel AJ, Riggins GJ (2001) Transcriptional response to hypoxia in human tumors. J Natl Cancer Inst 93:1337–1343. [DOI] [PubMed] [Google Scholar]
  • 100. Lamszus K, Ulbricht U, Matschke J, Brockmann MA, Fillbrandt R, Westphal M (2003) Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF‐A. Clin Cancer Res 9:1399–1405. [PubMed] [Google Scholar]
  • 101. Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, Barnes P, Scott RM, Black PM, Sallan SE, Folkman J (1994) Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 344:82–86. [DOI] [PubMed] [Google Scholar]
  • 102. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947. [DOI] [PubMed] [Google Scholar]
  • 103. Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO, Israel MA (2005) Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci U S A 102:5814–5819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W (1999) The von Hippel‐Lindau tumor suppressor protein is a component of an E3 ubiquitin‐protein ligase activity. Genes Dev 13:1822–1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Liwnicz BH, Wu SZ, Tew JM (1987) The relationship between the capillary structure and hemorrhage in gliomas. J Neurosurg, 66:536–541. [DOI] [PubMed] [Google Scholar]
  • 106. Ljubimova JY, Fujita M, Khazenzon NM, Ljubimov AV, Black KL (2006) Changes in laminin isoforms associated with brain tumor invasion and angiogenesis. Front Biosci 11:81–88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Loeffler S, Fayard B, Weis J, Weissenberger J (2005) Interleukin‐6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 115:202–213. [DOI] [PubMed] [Google Scholar]
  • 108. Lopez‐Lopez C, LeRoith D, Torres‐Aleman I (2004) Insulin‐like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci U S A 101:9833–9838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Louis DN, Holland EC, Cairncross JG (2001) Glioma classification: a molecular reappraisal. Am J Pathol 159:779–786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Luttun A, Autiero M, Tjwa M, Carmeliet P (2004) Genetic dissection of tumor angiogenesis: are PIGF and VEGFR‐1 novel anti‐cancer targets Biochim Biophys Acta 1654:79–94. [DOI] [PubMed] [Google Scholar]
  • 111. Luttun A, Carmeliet G, Carmeliet P (2002) Vascular progenitors: from biology to treatment. Trends Cardiovasc Med 12:88–96. [DOI] [PubMed] [Google Scholar]
  • 112. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone‐marrowderived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201. [DOI] [PubMed] [Google Scholar]
  • 113. Machein MR, Knedla A, Knoth R, Wagner S, Neuschl E, Plate KH (2004) Angiopoietin‐1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 165:1557–1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Machein MR, Renniger S, de Lima‐Hahn E, Plate KH (2003) Minor contribution of bone marrow‐derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol 13:582–597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin‐2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60. [DOI] [PubMed] [Google Scholar]
  • 116. Maxwell PH (2004) HIF‐1's relationship to oxygen: simple yet sophisticated. Cell Cycle 3:156–159. [PubMed] [Google Scholar]
  • 117. Maxwell PH, Pugh CW, Ratcliffe PJ (2001) The pVHL‐HIF‐1 system. A key mediator of oxygen homeostasis. Adv Exp Med Biol 502:365–376. [PubMed] [Google Scholar]
  • 118. Maxwell P, Salnikow K (2004) HIF‐1: an oxygen and metal responsive transcription factor. Cancer Biol Ther 3:29–35. [DOI] [PubMed] [Google Scholar]
  • 119. Mehrian Shai R, Reichardt JK, Ya‐Hsuan H, Kremen TJ, Liau LM, Cloughesy TF, Mischel PS, Nelson SF (2005) Robustness of gene expression profiling in glioma specimen samplings and derived cell lines. Mol Brain Res 136:99–103. [DOI] [PubMed] [Google Scholar]
  • 120. Mentlein R, Eichler O, Forstreuter F, Held‐Feindt J (2001) Somatostatin inhibits the production of vascular endothelial growth factor in human glioma cells. Int J Cancer 92:545–550. [DOI] [PubMed] [Google Scholar]
  • 121. Mentlein R, Held‐Feindt J (2003) Angiogenesis factors in gliomas: a new key to tumour therapy. Naturissenschaften 90:385–394. [DOI] [PubMed] [Google Scholar]
  • 122. Mikkelsen T, Yan PS, Ho KL, Sameni M, Sloane BF, Rosenblum ML (1995) Immunolocalization of cathepsin B in human glioma: implications for tumor invasion and angiogenesis. J Neurosurg 83:285–290. [DOI] [PubMed] [Google Scholar]
  • 123. Millauer B, Wizigmann‐Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk‐1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846. [DOI] [PubMed] [Google Scholar]
  • 124. Moriyama T, Kataoka H, Koono M, Wakisaka S (1999) Expression of hepatocyte growth factor/scatter factor and its receptor c‐Met in brain tumors: evidence for a role in progression of astrocytic tumors. Int J Mol Med 3:531–536. [DOI] [PubMed] [Google Scholar]
  • 125. Nabors LB, Suswam E, Huang Y, Yang X, Johnson MJ, King PH (2003) Tumor necrosis factor alpha induces angiogenic factor upregulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer Res 63:4181–4187. [PubMed] [Google Scholar]
  • 126. Nakamura M, Ishida E, Shimada K, Kishi M, Nakase H, Sakaki T, Konishi N (2005) Frequent LOH on 22q12.3 and TIMP‐3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85:165–175. [DOI] [PubMed] [Google Scholar]
  • 127. Nelson JS, Tsukada Y, Schoenfeld D, Fulling K, Lamarche J, Peress N (1983) Necrosis as a prognostic criterion in malignant supratentorial, astrocytic gliomas. Cancer 52:550–554. [DOI] [PubMed] [Google Scholar]
  • 128. Nie D, Honn KV (2004) Eicosanoid regulation of angiogenesis in tumors. Semin Thromb Hemost 30:119–125. [DOI] [PubMed] [Google Scholar]
  • 129. Niida H, Takeuchi S, Tanaka R, Minakawa T (1995) Angiogenesis in microvascular endothelial cells induced by glioma cells and inhibited by tumor necrosis factor in vitro. Neurol Med Chir (Tokyo) 35:209–214. [DOI] [PubMed] [Google Scholar]
  • 130. Nomura M, Yamagishi S, Harada S, Yamashima T, Yamashita J, Yamamoto H (1998) Placenta growth factor (PIGF) mRNA expression in brain tumors. J Neurooncol 40:123–130. [DOI] [PubMed] [Google Scholar]
  • 131. Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C, Pohl U, Hartmann C, McLaughlin ME, Batchelor TT, Black PM, Von Deimling A, Pomeroy SL, Golub TR, Louis DN (2003) Gene expression‐based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63:1602–1607. [PubMed] [Google Scholar]
  • 132. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979. [DOI] [PubMed] [Google Scholar]
  • 133. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schuler D, Probst‐Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lutolf UM, Kleihues P (2004) Genetic pathways to glioblastoma: a population‐based study. Cancer Res 64:6892–6899. [DOI] [PubMed] [Google Scholar]
  • 134. Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M, Schuler D, Probst‐Hensch NM, Yasargil MG, Yonekawa Y, Lutolf UM, Kleihues P, Ohgaki H (2004) Population‐based study on incidence, survival rates, and genetic alterations of low‐grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol (Berl) 108:49–56. [DOI] [PubMed] [Google Scholar]
  • 135. Osada H, Tokunaga T, Nishi M, Hatanaka H, Abe Y, Tsugu A, Kijima H, Yamazaki H, Ueyama Y, Nakamura M (2004) Overexpression of the neuropilin 1 (NRP1) gene correlated with poor prognosis in human glioma. AntiCancer Res 24:547–552. [PubMed] [Google Scholar]
  • 136. Ozawa T, Hu JL, Hu LJ, Kong EL, Bollen AW, Lamborn KR, Deen DF (2005) Functionality of hypoxia‐induced BAX expression in a human glioblastoma xenograft model. Cancer Gene Ther 12: 449–455. [DOI] [PubMed] [Google Scholar]
  • 137. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361. [DOI] [PubMed] [Google Scholar]
  • 138. Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K (1994) Vascular endothelial growth factor is induced in response to transforming growth factor‐beta in fibroblastic and epithelial cells. J Biol Chem 269:6271–6274. [PubMed] [Google Scholar]
  • 139. Plate KH, Breier G, Weich HA, Mennel HD, Risau W (1994) Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 59:520–529. [DOI] [PubMed] [Google Scholar]
  • 140. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848. [DOI] [PubMed] [Google Scholar]
  • 141. Pore N, Liu S, Haas‐Kogan DA, O'Rourke DM, Maity A (2003) PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by trans‐activating the proximal VEGF promoter. Cancer Res 63:236–241. [PubMed] [Google Scholar]
  • 142. Raza SM, Lang FF, Aggarwal BB, Fuller GN, Wildrick DM, Sawaya R (2002) Necrosis and glioblastoma: a friend or a foe? A review and a hypothesis. Neurosurgery 51:2–12; discussion 12–13. [DOI] [PubMed] [Google Scholar]
  • 143. Rege TA, Fears CY, Gladson CL (2005) Endogenous inhibitors of angiogenesis in malignant gliomas: Nature's antiangiogenic therapy. Neuro-Oncology 7:106–121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144. Rempel SA, Dudas S, Ge S, Gutierrez JA. (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6:102–111. [PubMed] [Google Scholar]
  • 145. Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor micro‐environment. Cancer Res 56:5754–5757. [PubMed] [Google Scholar]
  • 146. Richard DE, Berra E, Pouysségur J (2000) Nonhypoxic pathway mediates the induction of hypoxia‐inducible factor 1 α in vascular smooth muscle cells. J Biol Chem 275:26765–26771. [DOI] [PubMed] [Google Scholar]
  • 147. Rijken PFJW, Bernsen HJJA, Peters JPW, Hodgkiss RJ, Raleigh JA, van der Kogel AJ (2000) Spatial relationship between hypoxia and the (perfused) vascular network in a human glioma xenograft: a quantitative multi‐parameter analysis. Int J Rad Oncol Biol Phys 48:571–582. [DOI] [PubMed] [Google Scholar]
  • 148. Roberts WG, Palade GE (1997) Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 57:765–772. [PubMed] [Google Scholar]
  • 149. Rolhion C, Penault‐Llorca F, Kemeny JL, Lemaire JJ, Jullien C, Labit‐Bouvier C, Finat‐Duclos F, Verrelle P (2001) Interleukin‐6 overexpression as a marker of malignancy in human gliomas. J Neurosurg 94:97–101. [DOI] [PubMed] [Google Scholar]
  • 150. Rong Y, Post DE, Pieper RO, Durden DL, van Meir EG, Brat DJ (2005) PTEN and hypoxia regulate tissue factor expression and plasma coagulation by glioblastoma. Cancer Res 65:1406–1413. [DOI] [PubMed] [Google Scholar]
  • 151. Sahin A, Velten M, Pietsch T, Knuefermann P, Okuducu AF, Hahne JC, Wernert N (2005) Inactivation of Ets 1 transcription factor by a specific decoy strategy reduces rat C6 glioma cell proliferation and MMP‐9 expression. Int J Mol Med 15:771–776. [PubMed] [Google Scholar]
  • 152. Saleh M, Davis ID, Wilks AF (1997) The paracrine role of tumour‐derived mIL‐4 on tumour‐associated endothelium. Int J Cancer 72:664–672. [DOI] [PubMed] [Google Scholar]
  • 153. Sallinen SL, Sallinen PK, Haapasalo HK, Helin HJ, Helen PT, Schraml P, Kallioniemi OP, Kononen J (2000) Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res 60:6617–6622. [PubMed] [Google Scholar]
  • 154. Salmaggi A, Eoli M, Frigerio S, Silvani A, Gelati M, Corsini E, Broggi G, Boiardi A (2003) Intracavitary VEGF, bFGF, IL‐8, IL‐12 levels in primary and recurrent malignant glioma. J Neurooncol 62:297–303. [DOI] [PubMed] [Google Scholar]
  • 155. Salmaggi A, Gelati M, Pollo B, Frigerio S, Eoli M, Silvani A, Broggi G, Ciusani E, Croci D, Boiardi A, de Rossi M (2004) CXCL12 in malignant glial tumors: a possible role in angiogenesis and cross‐talk between endothelial and tumoral cells. J Neurooncol 67:305–317. [DOI] [PubMed] [Google Scholar]
  • 156. Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, Fukui M (1995) Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55:1189–1193. [PubMed] [Google Scholar]
  • 157. Schmid T, Zhou J, Brune B (2004) HIF‐1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med 8:423–431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158. Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, Lamszus K (1999) Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84:10–18. [DOI] [PubMed] [Google Scholar]
  • 159. Schofield CJ, Ratdiffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354. [DOI] [PubMed] [Google Scholar]
  • 160. Semenza GL (2001) HIF‐1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3. [DOI] [PubMed] [Google Scholar]
  • 161. Semenza GL (2003) Targeting HIF‐1 for cancer therapy. Nat Rev Cancer 3:721–732. [DOI] [PubMed] [Google Scholar]
  • 162. Shih AH, Holland EC (2005) Platelet‐derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett, http://www.sciencedirect.com. [DOI] [PubMed]
  • 163. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia‐initiated angiogenesis. Nature 359:843–845. [DOI] [PubMed] [Google Scholar]
  • 164. Smits A, Funa K (1998) Platelet‐derived growth factor (PDGF) in primary brain tumours of neuroglial origin. Histol Histopathol 13:511–520. [DOI] [PubMed] [Google Scholar]
  • 165. Sonoda Y, Kanamori M, Deen DF, Cheng SY, Berger MS, Pieper RO (2003) Overexpression of vascular endothelial growth factor isoforms drives oxygenation and growth but not progression to glioblastoma multiforme in a human model of gliomagenesis. Cancer Res 63:1962–1968. [PubMed] [Google Scholar]
  • 166. Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL (2001) HIF‐1‐dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 2001 61:6669–6673. [PubMed] [Google Scholar]
  • 167. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362. [DOI] [PubMed] [Google Scholar]
  • 168. Stratmann A, Risau W, Plate KH (1998) Cell type‐specific expression of angiopoietin‐1 and angiopoietin‐2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169. Straume O, Chappuis PO, Salvesen HB, Halvorsen OJ, Haukaas SA, Goffin JR, Begin LR, Foulkes WD, Akslen LA (2002) Prognostic importance of glomeruloid microvascular proliferation indicates an aggressive angiogenic phenotype in human cancers. Cancer Res 62:6808–6811. [PubMed] [Google Scholar]
  • 170. Suddith RL, Kelly PJ, Hutchison HT, Murray EA, Haber B (1975) In vitro demonstration of an endothelial proliferative factor produced by neural cell lines. Science 190:682–684. [DOI] [PubMed] [Google Scholar]
  • 171. Sundberg C, Nagy JA, Brown LF, Feng D, Eckelhoefer IA, Manseau EJ, Dvorak AM, Dvorak HF (2001) Glomeruloid microvascular proliferation follows adenoviral vascular permeability factor/vascular endothelial growth factor‐164 gene delivery. Am J Pathol 158:1145–1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172. Takahashi JA, Mori H, Fukumoto M, Igarashi K, Jaye M, Oda Y, Kikuchi H, Hatanaka M (1990) Gene expression of fibroblast growth factors in human gliomas and meningiomas: demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues. Proc Natl Acad Sci U S A 87:5710–5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia‐inducible factors HIF‐1alpha and HIF‐2alpha in normal human tissues, cancers, and tumor‐associated macrophages. Am J Pathol 157:411–421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174. Theurillat JP, Hainfellner J, Maddalena A, Weissenberger J, Aguzzi A (1999) Early induction of angiogenetic signals in gliomas of GFAP‐v‐src transgenic mice. Am J Pathol 154:581–590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46. [DOI] [PubMed] [Google Scholar]
  • 176. Tsai JC, Goldman CK, Gillespie GY (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF‐BB, and bFGF. J Neurosurg 82:864–873. [DOI] [PubMed] [Google Scholar]
  • 177. Tse V, Xu L, Yung YC, Santarelli JG, Juan D, Fabel K, Silverberg G, Harsh G (2003) The temporalspatial expression of VEGF, angiopoietins‐1 and 2, and Tie‐2 during tumor angiogenesis and their functional correlation with tumor neovascular architecture. Neurol Res 25:729–738. [DOI] [PubMed] [Google Scholar]
  • 178. Tuettenberg J, Grobbolz R, Korn T, Wenz F, Erber R, Vajkoczy P (2005) Continuous low‐dose chemotherapy plus inhibition of cyclooxygen‐ase‐2 as an antiangiogenic therapy of glioblastoma multiforme. J Cancer Res Clin Oncol 131:31–40. [DOI] [PubMed] [Google Scholar]
  • 179. Tynninen O, Aronen HJ, Ruhala M, Paetau A, Von Boguslawski K, Salonen O, Jaaskelainen J, Paavonen T. (1999) MRI enhancement and microvascular density in gliomas. Correlation with tumor cell proliferation. Invest Radiol 34:427–434. [DOI] [PubMed] [Google Scholar]
  • 180. Ueba T, Nosaka T, Takahashi JA, Shibata F, Florkiewicz RZ, Vogelstein B, Oda Y, Kikuchi H, Hatanaka M (1994) Transcriptional regulation of basic fibroblast growth factor gene by p53 in human glioblastoma and hepatocellular carcinoma cells. Proc Natl Acad Sci U S A 91:9009–9013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181. Valter MM, Hugel A, Huang HJ, Cavenee WK, Wiestler OD, Pietsch T, Wernert N (1999) Expression of the Ets‐1 transcription factor in human astrocytomas is associated with Fms‐like tyrosine kinase‐1 (Flt‐1)/vascular endothelial growth factor receptor‐1 synthesis and neoangiogenesis. Cancer Res 59:5608–5614. [PubMed] [Google Scholar]
  • 182. Vaquero J, Zurita M, Morales C, Cincu R, Oya S (2000) Expression of vascular permeability factor in glioblastoma specimens: correlation with tumor vascular endothelial surface and peritumoral edema. J Neurooncol 49:49–55. [DOI] [PubMed] [Google Scholar]
  • 183. Veikkola T, Karkkainen M, Claesson‐Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212. [PubMed] [Google Scholar]
  • 184. von Deimling A, Louis DN, Wiestler OD (1995) Molecular pathways in the formation of gliomas. Glia 15:328–338. [DOI] [PubMed] [Google Scholar]
  • 185. Wang D, Huang HJ, Kazlauskas A, Cavenee WK (1999) Induction of vascular endothelial growth factor expression in endothelial cells by platelet‐derived growth factor through the activation of phosphatidylinositol 3‐kinase. Cancer Res 59:1464–1472. [PubMed] [Google Scholar]
  • 186. Weinmann M, Belka C, Plasswilm L (2004) Tumour hypoxia: impact on biology, prognosis and treatment of solid malignant tumours. Onkologie 27:83–90. [DOI] [PubMed] [Google Scholar]
  • 187. Wen S, Stolarov J, Myers MP, Su JD, Wigler MH, Tonks NK, Durden DL (2001) PTEN controls tumor‐induced angiogenesis. Proc Natl Acad Sci U S A 98:4622–4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188. Wenger RH, Gassmann M (1997) Oxygen(es) and the hypoxia‐inducible factor‐1. Biol Chem 378:609–616. [PubMed] [Google Scholar]
  • 189. Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ (1995) Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immunolight and immuno‐electron microscopic study. J Neuropathol Exp Neurol 54:304–310. [DOI] [PubMed] [Google Scholar]
  • 190. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia‐inducible expression of tumor‐associated carbonic anhydrases. Cancer Res 60:7075–7083. [PubMed] [Google Scholar]
  • 191. Xiao Q, Hsu CY, Chen H, Ma X, Xu J, Lee JM (2005) Characterization of cis‐regulatory elements of the vascular endothelial growth inhibitor gene promoter. Biochem J 388:913–920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192. Yamahata H, Takeshima H, Kuratsu J, Sarker KP, Tanioka K, Wakimaru N, Nakata M, Kitajima I, Maruyama I (2002) The role of thrombin in the neo‐vascularization of malignant gliomas: an intrinsic modulator for the up‐regulation of vascular endothelial growth factor. Int J Oncol 20:921–928. [PubMed] [Google Scholar]
  • 193. Yanamandra N, Kondraganti S, Gondi CS, Gujrati M, Olivero WC, Dinh DH, Rao JS (2005) Recombinant adeno‐associated virus (rAAV) expressing TFPI‐2 inhibits invasion, angiogenesis and tumor growth in a human glioblastoma cell line. Int J Cancer 115:998–1005. [DOI] [PubMed] [Google Scholar]
  • 194. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular‐specific growth factors and blood vessel formation. Nature 407:242–248. [DOI] [PubMed] [Google Scholar]
  • 195. Yeo EJ, Chun YS, Park JW (2004) New anticancer strategies targeting HIF‐1. Biochem Pharmacol 68:1061–1069. [DOI] [PubMed] [Google Scholar]
  • 196. Zadeh G, Qian B, Okhowat A, Sabha N, Kontos CD, Guha A (2004) Targeting the Tie2/Tek receptor in astrocytomas. Am J Pathol 164:467–476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197. Zagzag D (1995). Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol 146:293–309. [PMC free article] [PubMed] [Google Scholar]
  • 198. Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, Zabski S, Yancopoulos GD, Grumet M (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849. [DOI] [PubMed] [Google Scholar]
  • 199. Zagzag D, Capo V (2002) Angiogenesis in the central nervous system: a role for vascular endothelial growth factor/vascular permeability factor and tenascin‐C. Common molecular effectors in cerebral neoplastic and non‐neoplastic “angiogenic diseases Histol Histopathol 17:301–321. [DOI] [PubMed] [Google Scholar]
  • 200. Zagzag D, Friedlander DR, Miller DC, Dosik J, Cangiarella J, Kostianovsky M, Cohen H, Grumet M, Greco MA (1995) Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Res 55:907–914. [PubMed] [Google Scholar]
  • 201. Zagzag D, Friedlander DR, Dosik J, Chikramane S, Chan W, Greco MA, Allen JC, Dorovini‐Zis K, Grumet M (1996) Tenascin‐C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer Res 56:182–189. [PubMed] [Google Scholar]
  • 202. Zagzag D, Friedlander DR, Margolis B, Grumet M, Semenza GL, Zhong H, Simons JW, Holash J, Wiegand SJ, Yancopoulos GD (2000) Molecular events implicated in brain tumor angiogenesis and invasion. Pediatr Neurosurg 33:49–55. [DOI] [PubMed] [Google Scholar]
  • 203. Zagzag D, Goldenberg M, Brem S (1989) Angiogenesis and blood‐brain barrier breakdown modulate CT contrast enhancement: an experimental study in a rabbit brain‐tumor model. Am J Roentgenol 153:141–146. [DOI] [PubMed] [Google Scholar]
  • 204. Zagzag D, Hooper A, Friedlander DR, Chan W, Holash J, Wiegand SJ, Yancopoulos GD, Grumet M (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin‐2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400. [DOI] [PubMed] [Google Scholar]
  • 205. Zagzag D, Krishnamachary B, Yee H, Okuyama H, Chiriboga L, Ali MA, Melamed J, Semenza GL (2005) Stromal cell‐derived factor‐1 alpha and CXCR4 expression in hemangioblastoma and clear cell‐renal cell carcinoma: von Hippel‐Lindau loss‐of‐function induces expression of a ligand and its receptor. Cancer Res 65:6178–6188. [DOI] [PubMed] [Google Scholar]
  • 206. Zagzag D, Miller DC, Sato Y, Rifkin DB, Burstein DE (1990) Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Res 50:7393–8. [PubMed] [Google Scholar]
  • 207. Zagzag D, Robert F, Brem S (1988) Neovascularization and tumor growth in the rabbit brain: A model for experimental studies of angiogenesis and blood‐brain barrier. Am J Pathol 131:361–372. [PMC free article] [PubMed] [Google Scholar]
  • 208. Zagzag D, Shiff B, Jallo GI, Greco MA, Blanco C, Cohen H, Hukin J, Allen JC, Friedlander DR (2002) Tenascin‐C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res 62:2660–2668. [PubMed] [Google Scholar]
  • 209. Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL (2000) Expression of hypoxia‐inducible factor 1 alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618. [PubMed] [Google Scholar]
  • 210. Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B (1998) Insulin induces transcription of target genes through the hypoxia‐inducible factor HIF‐1 alpha/ARNT. EMBO J 17:5085–5094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211. Zeng H, Dvorak HF, Mukhopadhyay D (2001) Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) receptor‐1 down‐modulates VPF/VEGF receptor‐2‐mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3‐kinase‐dependent pathways. J Biol Chem 276:26969–26979. [DOI] [PubMed] [Google Scholar]
  • 212. Zhang X, Groopman JE, Wang JF (2005) Extracellular matrix regulates endothelial functions through interaction of VEGFR‐3 and integrin alpha5beta1. J Cell Physiol 202:205–214. [DOI] [PubMed] [Google Scholar]
  • 213. Zhang W, Wang H, Song SW, Fuller GN (2002) Insulin‐like growth factor binding protein 2: gene expression microarrays and the hypothesis‐generation paradigm. Brain Pathol 12:87–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214. Zhong H, de Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia‐inducible factor‐1 alpha in common human cancers and their metastases. Cancer Res 59:5830–5835. [PubMed] [Google Scholar]
  • 215. Zundel W, Schindler C, Haas‐Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ (2000) Loss of PTEN facilitates HIF‐1 ‐mediated gene expression. Genes Dev 14:391–396. [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES