Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;10(1):153–162. doi: 10.1111/j.1750-3639.2000.tb00252.x

Redox Regulation of Nuclear Factor Kappa B: Therapeutic Potential for Attenuating Inflammatory Responses

John W Christman 1, Timothy S Blackwell 1, Bernhard HJ Juurlink 2,
PMCID: PMC8098183  PMID: 10668905

Abstract

Nuclear factor kappa B (NF‐κB) is a protein transcription factor that is required for maximal transcription of a wide array of pro‐inflammatory mediators that are involved in the pathogenesis of stroke. The purpose of this review article is to describe what is known about the molecular biology of NF NF‐κB and to review current understanding of the interaction between reactive oxygen species (ROS) in NF‐κB. ROS seem to play a duel role by participating in the NF‐κB activation cascade and by directly modulating DNA binding affinity. Exogenous and endogenous antioxidants are effective in blocking activation of NF‐κB and preventing the consequences of pro‐inflammatory gene expression. Phase II enzymes either directly or indirectly play a major in vivo role in minimizing oxidative stress by scavenging peroxides, peroxide breakdown products and dicarbonyls and in regeneration of lipid peroxidation chain‐breaker, vitamin E. Dietary phase II enzyme inducers have been demonstrated to increase phase II enzyme activities in a variety of tissues. These data, together, suggest that phase II enzyme inducers could have therapeutic value for ameliorating inflammatory conditions.

Full Text

The Full Text of this article is available as a PDF (178.0 KB).

References

  • 1. Ahn, D , Putt, D , Kresty, L , Stoner, GD , Fromm, D , Hollenberg, PF (1996) The effects of dietary ellagic acid on rat hepatic and esophageal mucosal cytochromes P450 and phase II enzymes. Carcinogenesis 17: 821–8. [DOI] [PubMed] [Google Scholar]
  • 2. Appelt, LC , Reicks, MM (1997) Soy feeding induces phase II enzymes in rat tissues. Nutr Cancer 28: 270–5. [DOI] [PubMed] [Google Scholar]
  • 3. Baeuerle, PA (1998) IkappaB‐NF‐kappaB structures: at the interface of inflammation control (comment). Cell 95: 729–31. [DOI] [PubMed] [Google Scholar]
  • 4. Barch, DH , Rundhaugen, LM , Pillay, NS (1995) Ellagic acid induces transcription of the rat glutathione S‐transferase‐ Ya gene. Carcinogenesis 16: 665–8. [DOI] [PubMed] [Google Scholar]
  • 5. Benson, AM , Hunkeler, MJ , Talalay, P (1980) Increase of NAD(P):quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis. Proc Natl Acad Sci USA 77: 5216–5220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Bethea, JR , Castro, M , Keane, RW , Lee, TT , Dietrich, WD , Yezierski, RP (1998) Traumatic spinal cord injury induces nuclear factor‐κB activation. J Neurosci 18: 3251–3260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Blackwell, TS , Blackwell, TR , Holden, EP , Christman, BW , Christman, JW (1996) In vivo antioxidant treatment suppresses nuclear factor‐kappa B activation and neutrophilic lung inflammation. J Immunol 157: 1630–7. [PubMed] [Google Scholar]
  • 8. Blackwell, TS , Christman, JW (1997) The role of nuclear factor‐kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 17: 3–9. [DOI] [PubMed] [Google Scholar]
  • 9. Boissiere, F , Hunot, S , Faucheux, B , Duyckaerts, C , Hauw, JJ , Agid, Y , Hirsch, EC (1997) Nuclear translocation of NF‐kappaB in cholinergic neurons of patients with Alzheimer's disease. Neuroreport 8: 2849–52. [DOI] [PubMed] [Google Scholar]
  • 10. Brand, K , Page, S , Rogler, G , Bartsch, A , Brandl, R , Knuechel, R , Page, M , Kaltschmidt, C , Baeuerle, PA , Neumeier, D (1996) Activated transcription factor nuclear factor‐kappa B is present in the atherosclerotic lesion. J Clin Invest 97: 1715–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Carroll, JE , Howard, EF , Hess, DC , Wakade, CG , Chen, Q , Cheng, C (1998) Nuclear factor‐kappa B activation during cerebral reperfusion: effect of attenuation with N‐acetylcysteine treatment. Brain Res Mol Brain Res 56: 186–91. [DOI] [PubMed] [Google Scholar]
  • 12. Carsol, MA , Pouliquen‐Sonaglia, I , Lesgards, G , Marchis‐Mouren, G , Puigserver, A , Santimone, M (1997) A new kinetic model for the mode of action of soluble and membrane‐ immobilized glutathione peroxidase from bovine erythrocytes—effects of selenium. Eur J Biochem 247: 248–55. [DOI] [PubMed] [Google Scholar]
  • 13. Chanock, SJ , El Benna, J , Smith, RM , Babior, BM (1994) The respiratory oxidase burst. J Biol Chem 269: 24519–24522. [PubMed] [Google Scholar]
  • 14. Christman, JW , Lancaster, LH , Blackwell, TS (1998) Nuclear factor kappa B: a pivotal role in the systemic inflammatory response syndrome and new target for therapy (see comments). Intensive Care Med 24: 1131–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Daniel, EM , Krupnick, AS , Heur, Y‐H , Blinzler, JA , Nims, RW , Stoner, GD (1989) Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J Food Comp Analys 2:338–349. [Google Scholar]
  • 16. Esterbauer, H , Zollner, H , Schauer, RJ (1990) Aldehydes formed by lipid peroxidation: mechanisms of formation, occurrence, and determination., In: Membrane Lipid Peroxidation ( Vigo‐Pelfrey, C ed), pp. 239–268. CRC Press: Boca Raton , FL . [Google Scholar]
  • 17. Flohé, L , Brigelius‐Flohe, R , Saliou, C , Traber, MG , Packer, L (1997) Redox regulation of NF‐kappa B activation. Free Radic Biol Med 22: 1115–26. [DOI] [PubMed] [Google Scholar]
  • 18. Fridovich, I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247: 1–11. [DOI] [PubMed] [Google Scholar]
  • 19. Fridovich, I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64: 97–112. [DOI] [PubMed] [Google Scholar]
  • 20. Gabriel, C , Justicia, C , Camins, A , Planas, AM (1999) Activation of nuclear factor‐kappaB in the rat brain after transient focal ischemia. Brain Res Mol Brain Res 65: 61–9. [DOI] [PubMed] [Google Scholar]
  • 21. Galloway, DC , Blake, DG , Shepherd, AG , McLellan, LI (1997) Regulation of human gamma‐glutamylcysteine synthetase: co‐ordinate induction of the catalytic and regulatory subunits in HepG2 cells. Biochem J 328: 99–104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Gius, D , Botero, A , Shah, S , Curry, HA (1999) Intracellular oxidation/reduction status in the regulation of transcription factors NF‐kappaB and AP‐1. Toxicol Lett 106: 93–106. [DOI] [PubMed] [Google Scholar]
  • 23. Goon, D , Saxena, M , Awasthi, YC , Ross, D (1993) Activity of mouse liver glutathione S‐transferases toward trans, trans‐ muconaldehyde and trans‐4‐hydroxy‐2‐none‐nal. Toxicol Appl Pharmacol 119: 175–80. [DOI] [PubMed] [Google Scholar]
  • 24. Gutteridge, JMC (1992) Iron and oxygen radicals in brain. Ann Neurol 32: S16–S21. [DOI] [PubMed] [Google Scholar]
  • 25. Hayes, JD , Pulford, DJ (1995) The glutathione S‐transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445–600. [DOI] [PubMed] [Google Scholar]
  • 26. Hertog, IMGL , Hollman, PCH , Katan, MB (1992) Contents of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agr Food Chem 40: 2379–2383. [Google Scholar]
  • 27. Howard, EF , Chen, Q , Cheng, C , Carroll, JE , Hess, D (1998) NF‐kappa B is activated and ICAM‐1 gene expression is upregulated during reoxygenation of human brain endothelial cells. Neurosci Lett 248: 199–203. [DOI] [PubMed] [Google Scholar]
  • 28. Itoh, K , Chiba, T , Takahashi, S , Ishii, T , Igarashi, K , Katoh, Y , Oyake, T , Hayashi, N , Satoh, K , Hatayama, I , Yamamoto, M , Nabeshima, Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Comm 236: 313–322. [DOI] [PubMed] [Google Scholar]
  • 29. Iuvone, T , D'Acquisto, F , Van Osselaer, N , Di Rosa, M , Carnuccio, R , Herman, AG (1998) Evidence that inducible nitric oxide synthase is involved in LPS‐ induced plasma leakage in rat skin through the activation of nuclear factor‐kappaB. Br J Pharmacol 123: 1325–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Ivanov, V , Merkenschlager, M , Ceredig, R (1993) Antioxidant treatment of thymic organ cultures decreases NF‐kappa B and TCF1 (alpha) transcription factor activities and inhibits alpha beta T cell development. J Immunol 151: 4694–704. [PubMed] [Google Scholar]
  • 31. Jaiswal, AK (1994) Antioxidant response element. Biochem Pharmacol 48: 439–444. [DOI] [PubMed] [Google Scholar]
  • 32. Jensson, H , Guthenberg, C , Alin, P , Mannervik, B (1986) Rat glutathione transferase 8–8, an enzyme efficiently detoxifying 4‐ hydroxyalk‐2‐enals. FEBS Lett 203: 207–9. [DOI] [PubMed] [Google Scholar]
  • 33. Juurlink, BHJ (1999) Management of oxidative stress in the CNS: The many roles of glutathione. Neurotox Res 1: in press. [DOI] [PubMed] [Google Scholar]
  • 34. Juurlink, BHJ , Paterson, PG (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and management strategies. J Spinal Cord Med 21: 309–334. [DOI] [PubMed] [Google Scholar]
  • 35. Khan, SG , Katiyar, SK , Agarwal, R , Mukhtar, H (1992) Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH‐1 hairless mice: possible role in cancer chemoprevention. Cancer Res 52: 4050–4052. [PubMed] [Google Scholar]
  • 36. Kitamura, Y , Shimohama, S , Ota, T , Matsuoka, Y , Nomura, Y , Taniguchi, T (1997) Alteration of transcription factors NF‐kappaB and STAT1 in Alzheimer's disease brains. Neurosci Lett 237: 17–20. [DOI] [PubMed] [Google Scholar]
  • 37. Kretz‐Rémy, C , Mehlen, P , Mirault, ME , Arrigo, AP (1996) Inhibition of IkB‐a phosphorylation and degradation and subsequent NFk‐B activation by glutathione peroxidase overexpression. J Biol Chem 133: 1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Liu, SF , Ye, X , Malik, AB (1997) In vivo inhibition of nuclear factor‐kappa B activation prevents inducible nitric oxide synthase expression and systemic hypotension in a rat model of septic shock. J Immunol 159: 3976–83. [PubMed] [Google Scholar]
  • 39. Liu, T‐Z , Stern, A , Morrow, JD (1998) The isopstanes: Unique bioactive products of lipid peroxidation. J Biomed Sci 5: 415–420. [DOI] [PubMed] [Google Scholar]
  • 40. Lukiw, WJ , Bazan, NG (1998) Strong nuclear factor‐kappaB‐DNA binding parallels cyclooxygenase‐2 gene transcription in aging and in sporadic Alzheimer's disease superior temporal lobe neocortex. J Neurosci Res 53: 583–92. [DOI] [PubMed] [Google Scholar]
  • 41. Manna, SK , Kuo, MT , Aggarwal, BB (1999) Overexpression of gamma‐glutamylcysteine synthetase suppresses tumor necrosis factor‐induced apoptosis and activation of nuclear transcription factor‐kappa B and activator protein‐1. Oncogene 18: 4371–82. [DOI] [PubMed] [Google Scholar]
  • 42. Mark, RJ , Lovell, MA , Markesbery, WR , Uchida, K , Mattson, MP (1997) A role for 4‐hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid b‐peptide. J Neurochem 68: 255–264. [DOI] [PubMed] [Google Scholar]
  • 43. Matthews, JR , Kaszubska, W , Turcatti, G , Wells, TN , Hay, RT (1993) Role of cysteine62 in DNA recognition by the P50 subunit of NF‐kappa B. Nucleic Acids Res 21: 1727–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Matthews, JR , Wakasugi, N , Virelizier, JL , Yodoi, J , Hay, RT (1992) Thioredoxin regulates the DNA binding activity of NF‐kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20: 3821–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Mattson, MP (1998) Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci 21: 53–57. [DOI] [PubMed] [Google Scholar]
  • 46. May, JM , Qu, Z‐C , Whitesell, RR , Cobb, CE (1996) Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate. Free Radic Med Biol 20: 543–551. [DOI] [PubMed] [Google Scholar]
  • 47. Meister, A (1989) Metabolism and function of glutathione, In: Glutathione. Chemical, Biochemical, and Medical Aspects Vol. A, ( Dolphin, D , Avramovic, O , Poulson, R eds), pp. 367–474. John Wiley & Sons: New York . [Google Scholar]
  • 48. Mercurio, F , Manning, AM (1999) Multiple signals converging on NF‐kappaB. Curr Opin Cell Biol 11: 226–32. [DOI] [PubMed] [Google Scholar]
  • 49. Mirochnitchenko, O , Inouye, M (1996) Effect of overexpression of human Cu, Zn superoxide dismutase in transgenic mice on macrophage functions. J Immunol 156: 1578–86. [PubMed] [Google Scholar]
  • 50. Mitomo, K , Nakayama, K , Fujimoto, K , Sun, X , Seki, S , Yamamoto, K (1994) Two different cellular redox systems regulate the DNA‐binding activity of the p50 subunit of NF‐kappa B in vitro. Gene 145: 197–203. [DOI] [PubMed] [Google Scholar]
  • 51. Niki, E , Noguchi, N , Tsuchihashi, H , Gotoh, N (1995) Interaction among vitamin C, vitamin E and β‐carotene. Am J Clin Nutr 62(Suppl): 1322S–1336S. [DOI] [PubMed] [Google Scholar]
  • 52. Pinkus, R , Weiner, LM , Daniel, V (1996) Role of oxidants and antioxidants in the induction of AP‐1, NF‐kappaB, and glutathione S‐transferase gene expression. J Biol Chem 271:13422–9. [DOI] [PubMed] [Google Scholar]
  • 53. Prestera, T , Holtzclaw, WD , Zhang, Y , Talalay, P (1993) Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 90: 2965–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Prestera, T , Talalay, P (1995) Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 92: 8965–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Prestera, T , Zhang, Y , Spencer, SR , Wilczak, CA , Talalay, P (1993) The electrophile counterattack response: protection against neoplasia and toxicity. Advan Enzym Reg 33: 281–296. [DOI] [PubMed] [Google Scholar]
  • 56. Prochaska, HJ , De Long, MJ , Talalay, P (1985) On the mechanisms of induction of cancer‐protective enzymes: a unifying proposal. Proc Natl Acad Sci USA 82: 8232–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Rauchova, H , Ledvinkova, J , Kalous, M , Drahota, Z (1995) The effect of lipid peroxidation on the activity of various membrane‐bound ATPases in rat kidney. Int J Biochem Cell Biol 27: 251–255. [DOI] [PubMed] [Google Scholar]
  • 58. Richter, C , Kass, GEN (1991) Oxidative stress in mitochondria: its relationship to cellular Ca2+ homeostasis, cell death, proliferation and differentiation. Chem-Biol Interactions 77: 1–23. [DOI] [PubMed] [Google Scholar]
  • 59. Sakurai, A , Hara, S , Okano, N , Kondo, Y , Inoue, J , Imura, N (1999) Regulatory role of metallothionein in NF‐kappaB activation. FEBS Lett 455: 55–8. [DOI] [PubMed] [Google Scholar]
  • 60. Schmedtje, JF, Jr. , Ji, YS , Liu, WL , DuBois, RN , Runge, MS (1997) Hypoxia induces cyclooxygenase‐2 via the NF‐kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem 272: 601–8. [DOI] [PubMed] [Google Scholar]
  • 61. Schmidt, KN , Amstad, P , Cerutti, P , Baeuerle, PA (1996) Identification of hydrogen peroxide as the relevant messenger in the activation pathway of the transcription factor NFkB. Adv Exp Med Biol 387: 63–68. [DOI] [PubMed] [Google Scholar]
  • 62. Schmitz, ML , Baeuerle, PA (1991) The p65 subunit is responsible for the strong transcription activating potential of NF‐kappa B. Embo J 10: 3805–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Schreck, R , Albermann, K , Baeuerle, PA (1992) Nuclear factor kappa B: an oxidative stress‐responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17: 221–37. [DOI] [PubMed] [Google Scholar]
  • 64. Sharma, R , Ahmad, H , Singhal, SS , Saxena, M , Srivastava, SK , Awasthi, YC (1993) Comparative studies on the effect of butylated hydroxyanisole on glutathione and glutathione S‐transferases in the tissues of male and female CD‐1 mice. Comp Biochem Physiol C 105: 31–7. [DOI] [PubMed] [Google Scholar]
  • 65. Shivakumar, BR , Kolluri, SV , Ravindranath, V (1995) Glutathione and protein thiol homeostasis in brain during reperfusion after cerebral ischemia. J Pharmacol Exp Ther 274: 1167–73. [PubMed] [Google Scholar]
  • 66. Simeonova, PP , Leonard, S , Flood, L , Shi, X , Luster, MI (1999) Redox‐dependent regulation of interleukin‐8 by tumor necrosis factor‐ alpha in lung epithelial cells. Lab Invest 79: 1027–37. [PubMed] [Google Scholar]
  • 67. Sokoloff, L (1989) Circulation and energy metabolism of the brain, In: Basic Neurochemisitry 4th ed., ( Sigel, J , Agranoff, BW , Albers, RW , Molinoff, PB eds), pp. 565–590. Raven Press: New York . [Google Scholar]
  • 68. Springer, JE , Azbill, RD , Mark, RJ , Begley, JG , Waeg, G , Mattson, MP (1997) 4‐hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem 68: 2469–2476. [DOI] [PubMed] [Google Scholar]
  • 69. Squadrito, GL , Pryor, WA (1995) The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chem-Biol Interactions 96: 203–206. [DOI] [PubMed] [Google Scholar]
  • 70. Staal, FJ , Roederer, M , Herzenberg, LA (1990) Intracellular thiols regulate activation of nuclear factor kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87: 9943–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Suzuki, YJ , Mizuno, M , Tritschler, HJ , Packer, L (1995) Redox regulation of NF‐kappa B DNA binding activity by dihydrolipoate. Biochem Mol Biol Int 36: 241–6. [PubMed] [Google Scholar]
  • 72. Talalay, P , Zhang, Y (1996) Chemoprotection against cancer by isothiocyanates and glucosinolates. Biochem Soc Trans 24: 806–10. [DOI] [PubMed] [Google Scholar]
  • 73. Terai, K , Matsuo, A , McGeer, EG , McGeer, PL (1996) Enhancement of immunoreactivity for NF‐kappa B in human cerebral infarctions. Brain Res 739: 343–9. [DOI] [PubMed] [Google Scholar]
  • 74. Thornalley, PJ (1998) Glutathione‐dependent detoxification of alpha‐oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112: 137–51. [DOI] [PubMed]
  • 75. Tjalkens, RB , Luckey, SW , Kroll, DJ , Petersen, DR (1998) α,β‐Unsaturated aldehydes increase glutathione S‐transferase mRNA and protein: correlation with activation of the antioxidant response element. Arch Biochem Biophys 359: 42–50. [DOI] [PubMed] [Google Scholar]
  • 76. Toledano, MB , Leonard, WJ (1991) Modulation of transcription factor NF‐kappa B binding activity by oxidation‐reduction in vitro. Proc Natl Acad Sci USA 88: 4328–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Tretter, L , Adamvizi, V (1996) Early events in free radical‐mediated damage of isolated nerve terminals: effects of peroxides on membrane potential and intracellular Na+ and Ca++ concentrations. J Neurochem 66: 2057–2066. [DOI] [PubMed] [Google Scholar]
  • 78. Uda, Y , Price, KR , Williamson, G , Rhodes, MJ (1997) Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Lett 120: 213–6. [DOI] [PubMed] [Google Scholar]
  • 79. Ursini, F , Maiorino, M , Brigeliuys‐Flohé, R , Aumann, KD , Roveri, A , Schomburg, D , Flohé, L (1995) Diversity of glutathione peroxidases. Methods Enzymol. 252: 38–53. [DOI] [PubMed] [Google Scholar]
  • 80. Venugopal, R , Jaiswal, AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element‐mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17: 3145–3156. [DOI] [PubMed] [Google Scholar]
  • 81. Wang, W , Liu, LQ , Higuchi, CM , Chen, H (1998) Induction of NADPH:quinone reductase by dietary phytoestrogens in colonic Colo205 cells. Biochem Pharmacol 56: 189–95. [DOI] [PubMed] [Google Scholar]
  • 82. Wells‐Knecht, KJ , Zyzak, DV , Litchfield, JE , Thorpe, SR , Baynes, JW (1995) Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 34: 3702–9. [DOI] [PubMed] [Google Scholar]
  • 83. Wild, AC , Gipp, JJ , Mulcahy, T (1998) Overlapping antioxidant response element and PMA response element sequences mediate basal and beta‐naphthoflavone‐induced expression of the human gamma‐glutamylcysteine synthetase catalytic subunit gene. Biochem J 332: 373–81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Zhang, Y , Talalay, P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54: p 1976s–1981s. [PubMed] [Google Scholar]
  • 85. Zhang, Y , Talalay, P , Cho, CG , Posner, GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89: 2399–403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Zimniak, P , Singhal, SS , Srivastava, SK , Awasthi, S , Sharma, R , Hayden, JB , Awasthi, YC (1994) Estimation of genomic complexity, heterologous expression, and enzymatic characterization of mouse glutathione S‐transferase mGSTA4‐4 (GST 5.7). J Biol Chem 269: 992–1000. [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES