Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;8(4):625–640. doi: 10.1111/j.1750-3639.1998.tb00189.x

The Bacterial Endotoxin Lipopolysaccharide has the Ability to Target the Brain in Upregulating Its Membrane CD14 Receptor Within Specific Cellular Populations

Steve Lacroix 1, Doug Feinstein 2, Serge Rivest 1,
PMCID: PMC8098216  PMID: 9804372

Abstract

Systemic injection of the bacterial endotoxin lipopolysaccharide (LPS) provides a very good mean for increasing the release of proinflammatory cytokines by circulating monocytes and tissue macrophages. There is now considerable evidence that LPS exerts its action on mononuclear phagocytes via the cell surface receptor CD14. The aim of the present study was to verify the hypothesis that the brain has also the ability to express the gene encoding the LPS receptor, which may allow a direct action of the endotoxin onto specific cellular populations during blood sepsis. Adult male Sprague‐Dawley rats were sacrificed 1, 3, 6 and 24 h after systemic (i.v. or i.p.) injection of LPS or the vehicle solution. Brains were cut from the olfactory bulb to the medulla in 30‐μm coronal sections and mRNA encoding rat CD14 was assayed by in situ hybridization histochemistry using a specific 35S‐labeled riboprobe. The results show low levels of CD14 mRNA in the leptomeninges, choroid plexus and along blood vessels of the brain microvasculature under basal conditions. Systemic injection of the bacterial endotoxin caused a profound increase in the expression of the gene encoding CD14 within these same structures as well as in the circumventricular organs (CVOs) the organum vasculosum of the lamina terminalis, subfornical organ, median eminence and area postrema. In most of these structures, the signal for CD14 mRNA was first detected at 1 h, reached a peak at 3 h post‐injection, declined at 6 h, and return to basal levels 24 h after LPS treatment. Quite interestingly, a migratory‐like pattern of CD14 positive cells was observed from all sensorial CVOs to deeper parenchymal brain 3 and 6 h after LPS injection. At 6 h post‐challenge, small positive cells were found throughout the entire parenchymal brain and dual‐labeling procedure indicated that different cells of myeloid origin have the ability to express CD14 in response to systemic LPS. These included CVO microglia, choroid plexus and leptomeninge macrophages, parenchymal and perivascular‐associated microglial cells, although specific nonmyeloid cells were also positive for the LPS receptor. These results provide the very first evidence of a direct role of LPS on specific cell populations of the central nervous system, which is likely to be responsible for the transcription of proinflammatory cytokines; first within accessible structures from the blood and thereafter through scattered parenchymal cells during severe sepsis.

Full Text

The Full Text of this article is available as a PDF (311.0 KB).

References

  • 1. Akira S. , Hirano T. , Taga T. and Kishimoto T. ( 1990. ) Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF) . FASEB J. 4 : 2860 – 2867 . [PubMed] [Google Scholar]
  • 2. Arditi M. , Zhou J. , Torres M. , Durden D.L. , Stins M. and Kim K.S. ( 1995. ) Lipopolysaccharide stimulates the tyrosine phosphorylation of mitogen‐activated protein kinases p44, p42, and p41 in vascular endothelial cells in a soluble CD14‐dependent manner . J. Immunol. 155 : 3994 – 4003 . [PubMed] [Google Scholar]
  • 3. Bebo B.F.J. and Linthicum D.S. ( 1995. ) Expression of mRNA for 55‐kDa and 75‐kDa tumor necrosis factor (TNF) receptors in mouse cerebrovascular endothelium: effects of interleukin‐1 beta, interferon‐gamma and TNF‐alpha on cultured cells . J. Neuroimmunol. 62 : 161 – 167 . [DOI] [PubMed] [Google Scholar]
  • 4. Besedovsky H.O. and Del Rey A. ( 1996. ) Immune‐neuroendocrine interactions: Facts and hypotheses . Endocr. Rev. 17 : 64 – 102 . [DOI] [PubMed] [Google Scholar]
  • 5. Blalock J. and Smith E.M. ( 1985. ) A complete loop between the immune system and neuroendocrine systems . Fed. Proc. 44 : 108 – 111 . [PubMed] [Google Scholar]
  • 6. Dinarello C.A. ( 1984. ) Interleukin‐1 and the pathogenesis of the acute‐phase response . New Eng. J. Med. 311 : 1413 – 1422 . [DOI] [PubMed] [Google Scholar]
  • 7. Dunn A.J. ( 1992. ) The role of interleukin‐1 and tumor necrosis factor alpha in the neurochemical and neuroendocrine responses to endotoxin . Brain Res. Bull. 6 : 807 – 812 . [DOI] [PubMed] [Google Scholar]
  • 8. Edwards C.K. , Yunger L.M. , Lorence R.M. , Dantzer R. and Kelley K.W. ( 1991. ) The pituitary gland is required for protection against lethal effects of Salmonella typhimurium . Proc. Nat. Acad. Sci. USA 88 : 2274 – 2277 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Ericsson A. , Liu C , Hart R.P and Sawchenko P.E. ( 1995. ) Type 1 interleukin‐1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL‐1‐induced cellular activation . J. Comp. Neurol. 361 : 681 – 698 . [DOI] [PubMed] [Google Scholar]
  • 10. Ertel W , Morrison M.H. , Wang P. , Ba Z.F. , Ayala A. and Chaudry I.H. ( 1992. ) The complex pattern of cytokines in sepsis ‐ association between prostaglandins, cachectin, and interleukins . Ann Surg. 214 : 141 – 148 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Fantuzzi G. and Dinarello C.A. ( 1996. ) The inflammatory response in interleukin‐1ß‐deficient mice: comparison with other cytokine‐related knock‐out mice . J. Leukoc. Biol. 59 : 489 – 493 . [DOI] [PubMed] [Google Scholar]
  • 12. Fattori E. , Cappelletti M. , Costa P. , Sellito C. , Cantoni L. , Carelli M. , Faggioni R. , Fantuzzi G. , Ghezzi P. and Poli V. ( 1994. ) Defective inflammatory response in interleukin 6‐deficient mice . J. Exp. Med. 180 : 1243 – 1250 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Fearns C. , Kravchenko V.V. , Ulevitch R.J. and Loskutoff D.J. ( 1995. ) Murine CD14 gene expression in vivo: extramyeloid synthesis and regulation by lipopolysaccharide . J. Exp. Med. 181 : 857 – 866 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Ferrero E. , Jiao D. , Tsuberi B.Z. , Tesio L. , Rong G.W. , Haziot A. and Goyert S.M. ( 1993. ) Transgenic mice expressing human CD14 are hypersensitive to lipopolysaccharide . Proc. Natl. Acad. Sci. USA 90 : 2380 – 2384 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Galea E. , Reis D.J. , Fox E.S. , Xu H. and Feinstein D.L. ( 1996. ) CD14 mediates endotoxin induction of nitric oxide synthase in cultured brain glial cells . J. Neuroimmunol. 64 : 19 – 28 . [DOI] [PubMed] [Google Scholar]
  • 16. Ghosh S. and Baltimore D. ( 1990. ) Activation in vitro of NF‐kappa B by phosphorylation of its inhibitor I kappa B . Nature 344 : 678 – 682 . [DOI] [PubMed] [Google Scholar]
  • 17. Givalois L. , Dornand J. , Mekaouche M. , Solier M.D. , Bristow A.F. , Ixart G. , Siaud P. , Assenmacher I. and Barbanel G. ( 1994. ) The temporal cascade of plasma level surges in ACTH, corticosterone and cytokines in endotoxin‐challenged rats . Am. J. Physiol. 266 : R164 – R170 . [DOI] [PubMed] [Google Scholar]
  • 18. Golenbock D.T. , Liu Y.H.M.F. , Freeman M.W. and Zoeller R.A. ( 1993. ) Surface expression of human CD14 in Chinese hamster ovary fibroblasts imparts macrophage‐like responsiveness to bacterial endotoxin . J. Biol. Chem. 268 : 22055 – 22059 . [PubMed] [Google Scholar]
  • 19. Henkel T. , Machleidt T. , Alkalay I. , Kronke M. , Ben‐Neriah Y. and Baeuerle P.A. ( 1993. ) Rapid proteolysis of I kappa B‐alpha is necessary for activation of transcription factor NF‐kappa B . Nature 365 : 182 – 185 . [DOI] [PubMed] [Google Scholar]
  • 20. Kakucska I.Y.QI , Clark B.D. and Lechan R.M. ( 1993. ) Endotoxin‐induced corticotropin‐releasing hormone gene expression in the hypothalamic paraventricular nucleus is mediated centrally by interleukin‐1 . Endocrinology 133 : 815 – 821 . [DOI] [PubMed] [Google Scholar]
  • 21. Kitchens R.L. , Ulevitch R.J. and Munford R.S. ( 1992. ) Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14‐mediated pathway . J. Exp. Med. 176 : 485 – 494 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Lacroix S. and Rivest S. ( 1997. ) Functional circuitry in the brain of immune‐challenged rats: partial involvement of prostaglandins . J. Comp. Neurol. 387 : 307 – 324 . [DOI] [PubMed] [Google Scholar]
  • 23. Lacroix S. and Rivest S. ( 1998. ) Effect of acute systemic inflammatory response and cytokines on the transcription of the genes encoding cyclooxygenase enzymes (COX‐1 and COX‐2) in the rat brain . J. Neurochem. 70 : 452 – 466 . [DOI] [PubMed] [Google Scholar]
  • 24. Lee J.D. , Kato K. , Tobias P.S. , Kirkland T.N. and Ulevitch R.J. ( 1992. ) Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein . J. Exp. Med. 175 : 1697 – 1705 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Lee J.D. , Kravchenko V. , Kirkland T.N. , Han J. , Mackman N. , Moriarty A. , Leturcq D. , Tobias P.S. and Ulevitch R.J. ( 1993. ) Glycosyl‐phosphatidylinositol‐anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin . Proc. Natl. Acad. Sci. USA 1990 : 9930 – 9934 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Leturcq D.J. , Moriarty A.M. , Talbott G. , Winn R.K. , Martin T.R. and Ulevitch R.J. ( 1996. ) Antibodies against CD14 protect primates from endotoxin‐induced shock . J. Clin. Invest. 98 : 1533 – 1538 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Nadeau S. and Rivest S. ( 1998. ) Regulation of the gene encoding tumor necrosis factor alpha in the rat brain and pituitary in response to different models of systemic immune challenge, submitted . [DOI] [PubMed]
  • 28. Perlstein R.S. , Whitnall M.H. , Abrams J.S. , Mougey E.H. and Neta R. ( 1993. ) Synergistic roles of interleukin‐6, interleukin‐1, and tumor necrosis factor in the adrenocorticotropin response to bacterial lipopolysaccharide in vivo . Endocrinology 132 : 946 – 952 . [DOI] [PubMed] [Google Scholar]
  • 29. Quan N. , Whiteside M. and Herkenham M. ( 1998. ) Time course and localization patterns of interleukin‐1ß messenger RNA expression in brain and pituitary after peripheral administration of lipopolysaccharide . Neuroscience 83 : 281 – 293 . [DOI] [PubMed] [Google Scholar]
  • 30. Quan N. , Whiteside M. , Kim L. and Herkenham M. ( 1997. ) Induction of inhibitory factor kBa mRNA in the central nervous system after peripheral lipopolysaccharide administration: An in situ hybridization histochemistry study in the rat . Proc. Natl. Acad. Sci. USA 94 : 10985 – 10990 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Rivest S. ( 1995. ) Molecular mechanisms and neural pathways mediating the influence of interleukin‐1 on the activity of neuroendocrine CRF motoneurons in the rat . Int. J. Devl. Neurosci. 13 : 135 – 146 . [DOI] [PubMed] [Google Scholar]
  • 32. Rivest S. and Laflamme N. ( 1995. ) Neuronal activity and neuropeptide gene transcription in the brain of immune‐challenged rats . J. Neuroendocrinol. 7 : 501 – 525 . [DOI] [PubMed] [Google Scholar]
  • 33. Rivest S. , Laflamme N. and Nappi R.E. ( 1995. ) Immune challenge and immobilization stress induce transcription of the gene encoding the CRF receptor in selective nuclei of the rat hypothalamus . J. Neurosci. 15 : 2680 – 2695 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Rivest S. and Rivier C. ( 1995. ) The role of CRF and interleukin‐1 in the regulation of neurons controlling reproductive functions . Endocrine Rev. 16 : 177 – 199 . [DOI] [PubMed] [Google Scholar]
  • 35. Schumann R.R. , Leong S.R. , Flaggs G.W. , Gray P.W. , Wright S.D. , Mathison J.C. , Tobias P.S. and Ulevitch R.J. ( 1990. ) Structure and function of lipopolysaccharide binding protein . Science 249 : 1429 – 1431 . [DOI] [PubMed] [Google Scholar]
  • 36. Sternberg E.M. , Hill J.M. , Chrousos G.P. , Kamilaris T. , Listwak S.J. , Gold P.W. and Wilder R.L. ( 1989. ) Inflammatory mediator‐induced hypothalamic‐pituitary‐adrenal axis activation is defective in streptoccocal cell wall arthritis‐susceptible Lewis rats . Proc. Natl. Acad. Sci. USA. 86 : 2374 – 2378 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Swanson L.W. ( 1992. ) Brain maps: structure of the rat brain . Elsevier; , New York , NY . [Google Scholar]
  • 38. Vallières L. and Rivest S. ( 1997. ) Regulation of the genes encoding interleukin‐6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin‐1β . J. Neurochem. 69 : 1668 – 1683 . [DOI] [PubMed] [Google Scholar]
  • 39. Watanabe A. , Takeshita A. , Kitano S. and Hanazawa S. ( 1996. ) CD14‐mediated signal pathway of Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts . Infect. Immun. 64 : 4488 – 4494 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Wright S.D. , Ramos R.A. , Patel M. and Miller D.S. ( 1992. ) Septin: A factor in plasma that opsonizes lipopolysaccharide‐bearing particles for recognition by CD14 on phagocytes . J. Exp. Med. 176 : 719 – 727 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Wright S.D. , Ramos R.A. , Tobias P.S. , Ulevitch R.J. and Mathison J.C. ( 1990. ) CD14, a receptor for complexes of lipolysaccharide (LPS) and LPS binding protein . Science 249 : 1431 – 1433 . [DOI] [PubMed] [Google Scholar]
  • 42. Zheng H. , Fletcher D. , Kozak W. , Jiang M. , Hofmann K. , Conn C.A. , Soszynski D. , Grabiec C. , Trumbauer M.E. , Shaw A. , Kostura M.J. , Stevens K. , Rosen H. , North R.J. , Chen H.Y. , Tocci M.J. , Kluger M.J. and Van der Ploeg L.H.T. ( 1995. ) Resistance to fever induction and impaired acute‐phase response in interleukin‐1ß‐deficient mice . Immunity 3 : 9 – 19 . [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES