Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(2):293–311. doi: 10.1111/j.1750-3639.1999.tb00228.x

The Neurobiology of Schwann Cells

Rhona Mirsky 1,, Kristjan R Jessen 1
PMCID: PMC8098280  PMID: 10219747

Abstract

This selective review of Schwann cell biology focuses on questions relating to the origins, development and differentiation of Schwann cells and the signals that control these processes. The importance of neuregulins and their receptors in controlling Schwann cell precursor survival and generation of Schwann cells, and the role of these molecules in Schwann cell biology is addressed. The reciprocal signalling between peripheral glial cells and neurons in development and adult life revealed in recent years is highlighted, and the profound change in survival regulation from neuron‐dependent Schwann cell precursors to adult Schwann cells that depend on autocrine survival signals is discussed. Besides providing neuronal and autocrine signals, Schwann cells signal to mesenchymal cells and influence the development of the connective tissue sheaths of peripheral nerves. The importance of Desert Hedgehog in this process is described. The control of gene expression during Schwann cell development and differentiation by transcription factors is reviewed. Knockout of Oct‐6 and Krox‐20 leads to delay or absence of myelination, and these results are related to morphological or physiological observations on knockout or mutation of myelin‐related genes. Finally, the relationship between selected extracellular matrix components, integrins and the cytoskeleton is explored and related to disease.

Full Text

The Full Text of this article is available as a PDF (178.3 KB).

References

  • 1. Adlkofer K, Martini R, Aguzzi A, Zielasek J, Toyka KV, Suter U (1995) Hypermyelination and demyelinating peripheral neuropathy in Pmp22‐deficient mice. Nature Genet 11: 274–280. [DOI] [PubMed] [Google Scholar]
  • 2. Aguayo AJ, Bray GM (1982) Developmental disorders of myelination in mouse mutants. In: Neuronal‐glial Cell Interrelationships, Sears TA, (Ed.), pp. 57–76, Dahlem Konferenzen, Springer‐Verlag, Berlin , Heidelberg , New York . [Google Scholar]
  • 3. Anderson DJ (1993) Cell and molecular biology of neural crest cell lineage diversification. Curr Opin Neurobiol 8–13. [DOI] [PubMed]
  • 4. Anderson DJ (1997) Cellular and molecular biology of neural crest cell lineage determination. Trends Genet 13: 276–280. [DOI] [PubMed] [Google Scholar]
  • 5. Anton ES, Hadjiargyrou M, Patterson PH, Matthew WD (1995) CD9 plays a role in Schwann cell migration in vitro. J Neurosci 15: 584–595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Anzini P, Neuberg DH, Schachner M, Nelles E, Willecke K, Zielasek, J , Toyka KV, Suter U, Martini R (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17: 4545–4551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Arce V, Pollock RA, Philippe J‐M, Pennica D, Henderson CE, de Lapeyrière O (1998) Synergistic effects of Schwann‐ and muscle‐derived factors on motoneuron survival involve GDNF and cardiotrophin‐1 (CT‐1). J Neurosci 18: 1440–1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Banerjee SA, Patterson PH (1995) Schwann cell CD9 expression is regulated by axons. Mol Cell Neurosci 6: 462–473. [DOI] [PubMed] [Google Scholar]
  • 9. Banner LR, Patterson PH (1994) Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc Natl Acad Sci CS4 91: 7109–7113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Barakat‐Walter I, Duc C, Puymirat J (1993) Changes in the nuclear 3,5,3′‐triiodothyronine receptor expression in the rat dorsal root ganglia and sciatic nerve during development: comparison with regeneration. Eur J Neurosci 5: 319–326. [DOI] [PubMed] [Google Scholar]
  • 11. Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, Chen K, Lensch MW, Chance PF, Fischbeck KH (1993) Connexin mutations in X‐linked Charcot‐Marie‐Tooth disease. Science 262: 2039–2042. [DOI] [PubMed] [Google Scholar]
  • 12. Bermingham JR, Scherer SS, O'Connell S, Arroyo E, Kalla KA, Powell FL, Rosenfeld MG (1996) Tst‐1/Oct‐6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev 10: 1751–1762. [DOI] [PubMed] [Google Scholar]
  • 13. Bermingham‐McDonogh O, Xu Y‐T, Marchionni MA, Scherer SS (1997) Neuregulin expression in PNS neurons: isoforms and regulation by target interactions. Mol Cell Neurosci 10: 184–195. [DOI] [PubMed] [Google Scholar]
  • 14. Bharucha VA, Peden KW, Subach BR, Narayanan V, Tennekoon Gl (1993) Characterization of the cis‐acting elements of the mouse myelin P2 promoter. J Neurosci Res 36: 508–519. [DOI] [PubMed] [Google Scholar]
  • 15. Bhattacharyya A, Frank E, Ratner N, Brackenbury R (1991) P0 is an early marker of the Schwann cell lineage in chickens. Neuron 7: 831–844. [DOI] [PubMed] [Google Scholar]
  • 16. Bitgood MJ, McMahon AP (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell‐cell interaction in the mouse embryo. Dev Biol 172: 126–138. [DOI] [PubMed] [Google Scholar]
  • 17. Bitgood MJ, Shen L, McMahon AP (1996) Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 6: 298–304. [DOI] [PubMed] [Google Scholar]
  • 18. Blanchard AD, Sinanan A, Parmantier E, Zwart R, Broos L, Meijer D, Meier C, Jessen KR, Mirsky R (1996) Oct‐6 (SCIP/Tst‐1) is expressed in Schwann cell precursors, embryonic Schwann cells, and postnatal myelinating Schwann cells: Comparison with Oct‐1, Krox‐20 and Pax‐3. J Neurosci Res 46: 630–640. [DOI] [PubMed] [Google Scholar]
  • 19. Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS (1995) Interleukin‐6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem 64: 850–858. [DOI] [PubMed] [Google Scholar]
  • 20. Bönnemann CG, McNally EM, Kunkel LM (1996) Beyond dystrophin: current progress in the muscular dystrophies. Curr Opin Pediatr 8: 569–582. [PubMed] [Google Scholar]
  • 21. Bosio A, Stoffel W (1996) Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci USA 93:13280–13285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Bruzzone R, White TW, Scherer SS, Fischbeck KH, Paul DL (1994) Null mutations of connexin32 in patients with X‐linked Charcot‐Marie‐Tooth disease. Neuron 13: 1253–1260. [DOI] [PubMed] [Google Scholar]
  • 23. Buj‐Bello A, Buchman VL, Horton A, Rosenthal A, Davies AM (1995) GDNF is an age‐specific survival factor for sensory and autonomic neurons. Neuron 15: 821–828. [DOI] [PubMed] [Google Scholar]
  • 24. Bunge MB, Wood PM, Tynan LB, Bates ML, Sanes JR (1989) Perineurium originates from fibroblasts: demonstration in vitro with a retroviral marker. Science 243: 222–231. [DOI] [PubMed] [Google Scholar]
  • 25. Bunge RP (1993) Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr Opin Neurobiol: 805–809. [DOI] [PubMed]
  • 26. Busfield SJ, Michnick DA, Chickering TW, Revett TL, Ma J, Woolf EA, Comrack CA, Dussault BJ, Woolf J, Goodearl AD, Gearing DP (1997) Characterization of a neuregulin‐related gene, Don‐1, that is highly expressed in restricted regions of the cerebellum and hippocampus. Mol Cell Biol 17: 4007–4014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Carraway KL 3rd, Weber JL, Unger MJ, Ledesma J, Yu N, Gassmann M, Lai C (1997) Neuregulin‐2, a new ligand of ErbB3/ErbB4‐receptor tyrosine kinases. Nature 387: 512–516. [DOI] [PubMed] [Google Scholar]
  • 28. Carroll SL, Miller ML, Frohnert PW, Kim SS, Corbett JA (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J Neurosci 17: 1642–1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhauser N, Bohm‐Matthaei R, Baeuerle PA, Barde YA (1996) Selective activation of NF‐kappa B by nerve growth factor through the neurotrophin receptor p75. Science 272: 542–545. [DOI] [PubMed] [Google Scholar]
  • 30. Chang H, Riese DJ 2nd, Gilbert W, Stern DF, McMahan UJ (1997) Ligands for ErbB‐family receptors encoded by a neuregulin‐like gene. Nature 387: 509–512. [DOI] [PubMed] [Google Scholar]
  • 31. Cheng HL, Sullivan KA, Feldman EL (1996) Immunohistochemical localization of insulin‐like growth factor binding protein‐5 in the developing rat nervous system. Brain Res Dev Brain Res 92: 211–218. [DOI] [PubMed] [Google Scholar]
  • 32. Chiaramello A, Neuman K, Palm K, Metsis M, Neuman T (1995) Helix‐loop‐helix transcription factors mediate activation and repression of the p75 LNGFR gene. Mol Cell Biol 15: 6036–6044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Chiaramello A, Neuman K, Peavy DR, Zuber MX (1996) The GAP‐43 gene is a direct downstream target of the basic helix‐loop‐helix transcription factors. J Biol Chem 36: 22035–22043. [DOI] [PubMed] [Google Scholar]
  • 34. Chien H, Tani M, Glabinski A, Ransonhoff R, Griffin JW (1997) Schwann cells selectively express monocyte chemoattractant protein‐1 early during Wallerian degeneration. Peripheral Nerve Society Meeting Cambridge, England p.209. Title: Chemokine mRNA expression in experimental allergic neuritis.
  • 35. Ciutat D, Calderó J, Oppenheim RW, Esquerda JE (1996) Schwann cell apoptosis during normal development and after axonal degeneration induced by neurotoxins in the chick embryo. J Neurosci 16: 3979–3990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and region instability. Cell 86: 209–219. [DOI] [PubMed] [Google Scholar]
  • 37. Cohen JA, Yachnis AT, Arai M, Davis JG, Scherer SS (1992) Expression of the neu proto‐oncogene by Schwann cells during peripheral nerve development and Wallerian degeneration. J Neurosci Res 31: 622–634. [DOI] [PubMed] [Google Scholar]
  • 38. Curtis R, Scherer SS, Somogyi R, Adryan KM, Ip NY, Zhu Y, Lindsay RM, DiStefano PS (1994) Retrograde axonal transport of LIF is increased by peripheral nerve injury: correlation with increased LIF expression in distal nerve. Neuron 12:191–204. [DOI] [PubMed] [Google Scholar]
  • 39. Davies AM (1996) Paracrine and autocrine actions of neurotrophic factors. Neurochem Res 21: 749–753. [DOI] [PubMed] [Google Scholar]
  • 40. Davies AM (1998) Neuronal survival: early dependence on Schwann cells. Curr Biol 8: R15–R18. [DOI] [PubMed] [Google Scholar]
  • 41. De Felipe C, Hunt SP (1994) The differential control of c‐Jun expression in regenerating sensory neurons and their associated glial cells. J Neurosci 14: 2911–2923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, Jessen KR (1995) NDF is a neuron‐glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron 15: 585–596. [DOI] [PubMed] [Google Scholar]
  • 43. Dong Z, Dean C, Walters JE, Mirsky R, Jessen KR (1997) Response of Schwann cells to mitogens in vitro is determined by pre‐exposure to serum, time in vitro and developmental age. Glia 20: 219–230. [PubMed] [Google Scholar]
  • 44. Doyle JP, Stempak JG, Cowin P, Colman DR, D'Urso D (1995) Protein zero, a nervous system adhesion molecule, triggers epithelial reversion in host carcinoma cells. J Cell Biol 131: 465–482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Dulac C, Cameron‐Curry P, Ziller C, Le Douarin NM (1988) A surface protein expressed by avian myelinating and nonmyelinating Schwann cells but not by satellite or enteric glial cells. Neuron 1: 211–220. [DOI] [PubMed] [Google Scholar]
  • 46. Dulac C, Le Douarin NM (1991) Phenotypic plasticity of Schwann cells and enteric glial cells in response to the microenvironment. Proc Natl Acad Sci USA 88: 6358–6362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. D'Urso D, Brophy PJ, Staugaitis SM, Gillespie CS, Frey AB, Stempak JG, Colman DR (1990) Protein zero of peripheral nerve myelin: biosynthesis, membrane insertion, and evidence for homotypic interaction. Neuron 2: 449–460. [DOI] [PubMed] [Google Scholar]
  • 48. Dytrych L, Sherman DL, Gillespie CS, Brophy PJ (1998) Two PDZ domain proteins encoded by the murine periax‐in gene are the result of alternative intron retention and are differentially targeted in Schwann cells. J Biol Chem 273: 5794–5800. [DOI] [PubMed] [Google Scholar]
  • 49. Einheber S, Milner T, Giancotti F, Salzer J (1993) Axonal regulation of Schwann cell integrin expression suggests a role for alpha6 beta4 in myelination. J Cell Biol 123:1223–1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Einheber S, Hannocks M‐J, Metz CN, Rifkin DB, Salzer JL (1995) Transforming growth factor‐beta 1 regulates axon‐Schwann cell interactions. J Cell Biol 129: 443–458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Engvall E, Earwicker D, Day A, Muir D, Manthorpe M, Paulsson M (1992) Merosin promotes cell attachment and neurite outgrowth and is a component of the neurite‐promoting factor of RN22 schwannoma cells. Exp Cell Res 198: 115–123. [DOI] [PubMed] [Google Scholar]
  • 52. Ervasti JM, Campbell KP (1993) A role for the dystrophin‐glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122: 809–823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Feltri ML, Scherer SS, Nemni R, Kamholz J, Vogelbacker H, Oronzi Scott M, Canal N, Quaranta V, Wrabetz L (1994) b4 integrin expression in myelinating Schwann cells is polarized, developmentally regulated and axonally dependent. Development 120:1287–1301. [DOI] [PubMed] [Google Scholar]
  • 54. Fernandez‐Vallé C, Gwynn L, Wood PM, Carbonetto S, Bunge M (1994) Anti‐b1 integrin antibody inhibits Schwann cell myelination. J Neurobiol 25: 1207–1226. [DOI] [PubMed] [Google Scholar]
  • 55. Fernandez‐Vallé C, Gorman D, Gomez AM, Bunge MB (1997) Actin plays a role in both changes in cell shape and gene‐expression associated with Schwann cell myelination. J Neurosci 17: 241–250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Filbin MT, Walsh FS, Trapp BD, Pizzey JA, Tennekoon Gl (1990) Role of myelin P0 protein as a homophilic adhesion molecule. Nature 344: 871–872. [DOI] [PubMed] [Google Scholar]
  • 57. Franz T (1990) Defective ensheathment of motoric nerves in the splotch mutant mouse. Acta Anat 138: 246–253. [DOI] [PubMed] [Google Scholar]
  • 58. Funakoshi H, Frisen J, Barbany G, Timmusk T, Zachrisson O, Verge VMK, Persson H (1993) Differential expression of messenger RNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123:455–465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Garbern JY, Cambi F, Tang X‐M, Sima AAF, Vallat JM, Bosch EP, Lewis R, Shy M, Sohi J, Kraft G, Chen KL, Joshi I, Leonard DGB, Johnson W, Raskind W, Dlouhy SR, Pratt V, Hodes ME, Bird T, Kamholz J (1997) Proteolipid protein is necessary in peripheral as well as central myelin. Neuron 19: 205–218. [DOI] [PubMed] [Google Scholar]
  • 60. Gassman M, Lemke G (1997) Neuregulins and neuregulin receptors in neural development. Curr Opin Neurobiol 7: 87–92. [DOI] [PubMed] [Google Scholar]
  • 61. Gillespie CS, Sherman DL, Blair GE, Brophy PJ (1994) Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. Neuron 12: 497–508. [DOI] [PubMed] [Google Scholar]
  • 62. Gondré M, Burrola P, Weinstein DE (1998) Accelerated nerve regeneration mediated by Schwann cells expressing a mutant form of the POU protein SCIP J Cell Biol 141:493–501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Grinspan JB, Marchionni MA, Reeves M, Coulaloglou M, Scherer SS (1996) Axonal interactions regulate Schwann cell apoptosis in developing peripheral nerve: neuregulin receptors and the role of neuregulins. J Neurosci 16: 6107–6118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Hadjiargyrou M, Patterson PH (1995) An anti‐CD9 monoclonal antibody promotes adhesion and induces proliferation of Schwann cells in vitro. J Neurosci 15: 574–583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Hadjiargyrou M, Kaprielian Z, Kato N, Patterson PH (1996) Association of the tetraspan protein CD9 with integrins on the surface of S‐16 Schwann cells. J Neurochem 67:2505–2513. [DOI] [PubMed] [Google Scholar]
  • 66. Hall DE, Reichardt LF, Crowley E, Holley B, Moezzi H, Sonnenberg A, Damsky CH (1990) The a1b1 and a6b1 integrin heterodimers mediate cell attachment to distinct sites on laminin. J Cell Biol 110:2175–2184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Hammarberg H, Piehl F, Cullheim S, Fjell J, Hokfelt T, Fried K (1996) GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7: 857–860. [DOI] [PubMed] [Google Scholar]
  • 68. He X, Gerrero R, Simmons DM, Park RE, Lin CR, Swanson LW, Rosenfeld MG (1991) Tst‐1, a member of the POU domain gene family, binds the promoter of the gene encoding the cell surface adhesion molecule P0. Mol Cell Biol 11: 1739–1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, Simmons L, Moffet B, Vandlen RA, Simpson L et al (1994) GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266:1062–1064. [DOI] [PubMed] [Google Scholar]
  • 70. Henion PD, Weston JA (1997) Timing and pattern of cell fate restrictions in the neural crest lineage. Development 124:4351–4359. [DOI] [PubMed] [Google Scholar]
  • 71. Heumann R, Lindholm D, Bandtlow C, Meyer M, Radeke MJ, Misko TP, Shooter E, Thoenen H (1987) Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc Natl Acad Sci USA 84: 8735–8739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Higashiyama S, Horikawa M, Yamada K, Ichino N, Nakano N, Nakagawa T, Miyagawa J, Matsushita N, Nagatsu T, Taniguchi N, Ishiguro H (1997) A novel brain‐derived member of the epidermal growth factor family that interacts with ErbB3 and ErbB4. J Biochem (Tokyo) 122: 675–680. [DOI] [PubMed] [Google Scholar]
  • 73. Hogervorst F, Admiraal LG, Niessen C, Kuikman I, Janssen H, Daams H, Sonnenberg A (1993) Biochemical characterization and tissue distribution of the A and B variants of the integrin alpha 6 subunit. J Cell Biol 121: 179–191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Howe A, Aplin AE, Alahari SK, Juliano RL (1998) Integrin signaling and cell growth control. Curr Opin Cell Biol 10: 220–231. [DOI] [PubMed] [Google Scholar]
  • 75. Huan Y, Rutkowski JL, Tennekoon Gl (1994) The role of CCAAT/enhancer binding protein in Schwann cell differentiation. American Society for Cell Biology 34th Annual Meeting, No. 2105, San Francisco. American Society for Cell Biology.
  • 76. Jaakkola S, Savunen O, Halme T, Uitto J, Peltonen J (1993) Basement membranes during development of human nerve: Schwann cells and perineurial cells display marked changes in their expression profiles for laminin subunits and beta 1 and beta 4 integrins. J Neurocytol 22: 215–230. [DOI] [PubMed] [Google Scholar]
  • 77. Jaegle M, Mandemakers W, Broos L, Zwart R, Karis A, Visser P, Grosveld F, Meijer D (1996) The POU factor Oct‐6 and Schwann cell differentiation. Science 273: 507–510. [DOI] [PubMed] [Google Scholar]
  • 78. Jaegle M, Meijer D (1998) The role of Oct‐6 in Schwann cell differentiation. Micr Res Tech 41, no 5 (in press). [DOI] [PubMed] [Google Scholar]
  • 79. Jessen KR, Mirsky R (1992) Schwann cells: early lineage, regulation of proliferation and control of myelin formation. Curr Opin Neurobiol 2: 575–581. [DOI] [PubMed] [Google Scholar]
  • 80. Jessen KR, Brennan A, Morgan L, Mirsky R, Kent A, Hashimoto Y, Gavrilovic J (1994) The Schwann cell precursor and its fate: A study of cell death and differentiation during gliogenesis in rat embryonic nerves. Neuron 12: 509–527. [DOI] [PubMed] [Google Scholar]
  • 81. Jessen KR, Mirsky R (1998) Origin and early development of Schwann cells. Micr Res Tech 41 no 5 (in press). [DOI] [PubMed] [Google Scholar]
  • 82. Kageyama R, Sasai Y, Akazawa C, Ishibashi M, Takebashi K, Shimuzu C, Tomita K, Nakanishi S (1995) Regulation of mammalian neural development by helix‐loop‐helix transcription factors. Crit Rev Neurol 9:177–188. [PubMed] [Google Scholar]
  • 83. Kanje M, Skottner A, Sjoberg J (1990) Insulin‐like growth factor (IGF‐I) and regeneration of the sciatic nerve of the rat. Rest Neurol Neurosci 1:211–215. [DOI] [PubMed] [Google Scholar]
  • 84. Kerkhoff H, Hassan SM, Troost D, Van Etten RW, Veldman H, Jennekens FG (1994) Insulin‐like and fibroblast growth factors in spinal cords, nerve roots and skeletal muscle of human controls and patients with amyotrophic lateral sclerosis. Acta Neuropathol Berl 87: 411–421. [DOI] [PubMed] [Google Scholar]
  • 85. Kim HA, Rosenbaum T, Marchionni MA, Ratner N, DeClue JE (1995) Schwann cells from neurofibromin deficient mice exhibit activation of p21 ras, inhibition of cell proliferation and morphological changes. Oncogene 11: 325–335. [PubMed] [Google Scholar]
  • 86. Kim HA, DeClue JE, Ratner N (1997) cAMP‐dependent protein kinase A is required for Schwann cell growth: interactions between the cAMP and neuregulin/tyrosine kinase pathways. J Neurosci Res 49: 236–247. [PubMed] [Google Scholar]
  • 87. Kioussi C, Gross MK, Gruss P (1995) Pax3: a paired domain gene as a regulator in PNS myelination. Neuron 15:553–562. [DOI] [PubMed] [Google Scholar]
  • 88. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr, Milbrandt J (1996) Neurturin, a relative of glial‐cell‐line‐derived neurotrophic factor. Nature 384: 467–470. [DOI] [PubMed] [Google Scholar]
  • 89. Kuhlbrodt K, Herbarth B, Sock E, Hermans‐Borgmeyer I, Wegner M (1998) Sox10, a novel transcriptional modulator in glial cells. J Neurosci 18: 237–250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Kuhn R, Monuki ES, Lemke G (1991) The gene encoding the transcription factor SCIP has features of an expressed retroposon. Mol Cell Biol 11: 4642–4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Lamperth L, Mannelidis L, Webster H de F (1989) Non myelin‐forming perineuronal Schwann cells in rat trigeminal ganglia express P0 myelin glycoprotein mRNA during postnatal development. Brain Res Mol Brain Res 5: 177–181. [DOI] [PubMed] [Google Scholar]
  • 92. Le Douarin N, Dulac C, Dupin E, Cameron‐Curry P (1991) Glial cell lineages in the neural crest. Glia 4: 175–184. [DOI] [PubMed] [Google Scholar]
  • 93. Lee JE (1997) Basic helix‐loop‐helix genes in neural development. Curr Opin Neurobiol: 13–20. [DOI] [PubMed]
  • 94. Lee M‐J, Brennan A, Blanchard A, Zoidl G, Dong Z, Tabernero A, Zoidl C, Dent MAR, Jessen KR, Mirsky R (1997) P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non‐myelin‐forming and myelin‐forming Schwann cells, respectively. Mol Cell Neurosci 8: 336–350. [DOI] [PubMed] [Google Scholar]
  • 95. Lee MM, Sato‐Bigbee C, De Vries GH (1996) Schwann cells stimulated by axolemma‐enriched fractions express cyclic AMP responsive element binding protein. J Neurosci Res 46: 204–210. [DOI] [PubMed] [Google Scholar]
  • 96. Levi ADO, Bunge RP, Lofgren JA, Meima L, Hefti F, Nikolics K, Sliwkowski MX (1995) The influence of heregulins on human Schwann cell proliferation. J Neurosci 15: 1329–1340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Lewin GR, Barde YA (1996) Physiology of the neurotrophins. Annu Rev Neurosci 19: 289–317. [DOI] [PubMed] [Google Scholar]
  • 98. Li C, Tropak MB, Gerial R, Clapoff S, Abramow‐Newerly W, Trapp B, Peterson A, Roder J (1994) Myelination in the absence of myelin‐associated glycoprotein. Nature 369: 747–750. [DOI] [PubMed] [Google Scholar]
  • 99. Li H, Terenghi G, Hall SM (1997) Effects of delayed re‐innervation on the expression of c‐erbB receptors by chronically denervated rat Schwann cells in vivo. Glia 20: 333–347. [DOI] [PubMed] [Google Scholar]
  • 100. Lindholm D, Heumann R, Meyer M, Thoenen H (1987) Interleukin‐1 regulates synthesis of nerve growth factor in non‐neuronal cells of rat sciatic nerve. Nature 330: 658–659. [DOI] [PubMed] [Google Scholar]
  • 101. Mahanthappa NK, Anton ES, Matthew WD (1996) Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J Neurosci 16: 4673–4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102. Marchionni MA, Goodearl ADJ, Chen MS, Bermingham‐McDonogh O, Kirk C, Hendricks M, Danehy F, Misumi D, Sudhalter J, Kobayashi K et al (1993) Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362: 312–0318. [DOI] [PubMed] [Google Scholar]
  • 103. Martini R, Zielasek J, Toyka KV, Giese KP, Schachner M (1995) Protein zero (PO)‐deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nature Genet 11: 281–286. [DOI] [PubMed] [Google Scholar]
  • 104. Martini R, Schachner M (1997) Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 19: 298–310. [PubMed] [Google Scholar]
  • 105. Masu Y, Wolf E, Holtmann B, Sendtner M, Brem G, Thoenen H (1993) Disruption of the CNTF gene results in motor neuron degeneration. Nature 365: 27–32. [DOI] [PubMed] [Google Scholar]
  • 106. Matheny C, DiStephano PS, Milbrandt J (1992) Differential expression of NGF receptor and early response genes in neural crest‐derived cells. Mol Brain Res 13: 75–81. [DOI] [PubMed] [Google Scholar]
  • 107. Matsumura K, Yamada H, Saito F, Sunada Y, Shimizu T (1997) Peripheral nerve involvement in merosin‐deficient congenital muscular dystrophy and dy mouse. Neuromuscul Disord 7:7–12. [DOI] [PubMed] [Google Scholar]
  • 108. Matsumura K, Chiba A, Yamada H, Fukuta‐Ohi H, Fujita S, Endo T, Kobata A, Anderson LV, Kanazawa I, Campbell KP, Shimizu T (1997) A role of dystroglycan in Schwannoma cell adhesion to laminin. J Biol Chem 272: 13904–13910. [DOI] [PubMed] [Google Scholar]
  • 109. Matsuoka I, Meyer M, Thoenen H (1991) Cell‐type‐specific regulation of nerve growth factor (NGF) synthesis in non‐neuronal cells‐ comparison of Schwann cells with other cell types. J Neurosci 11:3165–3177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Meyer D, Birchmeier C (1994) Distinct isoforms of neuregulin are expressed in mesenchymal and neuronal cells during mouse development. Proc Natl Acad Sci USA 91: 1064–1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378: 386–390. [DOI] [PubMed] [Google Scholar]
  • 112. Meyer D, Yamaii T, Garratt A, Riethmacher‐Sonnenberg E, Kane D, Theill LE, Birchmeier C (1997) Isoform‐specific expression and function of neuregulin. Development 124: 3575–3586. [DOI] [PubMed] [Google Scholar]
  • 113. Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) Enhanced synthesis of brain‐derived neurotrophic factor in the lesioned peripheral nerve‐ different mechanisms are responsible for the regulation of BDNF and NGF messenger RNA. J Cell Biol 199: 45–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Milbrandt J, De Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT et al (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20: 245–253. [DOI] [PubMed] [Google Scholar]
  • 115. Milner R, Wilby M, Nishimura S, Boylen K, Edwards G, Fawcett J, Streuli C, Pytela R, Ffrench‐Constant C (1997) Division of labor of Schwann cell integrins during migration on peripheral nerve extracellular matrix ligands. DevBiol 185:215–228. [DOI] [PubMed] [Google Scholar]
  • 116. Mirsky R, Jessen KR (1996) Schwann cell development, differentiation and myelination. Curr Opin Neurobiol: 6:89–96. [DOI] [PubMed] [Google Scholar]
  • 117. Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4‐binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19: 849–861. [DOI] [PubMed] [Google Scholar]
  • 118. Montag D, Giese KR Bartsch U, Martini R, Lang Y, Blüthmann H, Karthigasan J, Kirschner DA, Wintergerst ES, Nave K‐A, Zielasek J, Toyka KV, Lipp H‐P, Schachner M (1994) Mice deficient for the myelin‐associated glyco‐protein show subtle abnormalities in myelin. Neuron 13: 229–246. [DOI] [PubMed] [Google Scholar]
  • 119. Monuki ES, Weinmaster G, Kuhn R, Lemke G (1989) SCIP: a glia POU domain gene regulated by cyclic AMP. Neuron 3: 783–793. [DOI] [PubMed] [Google Scholar]
  • 120. Monuki ES, Kuhn R, Weinmaster G, Trapp BD, Lemke G (1990) Expression and activity of the POU transcription factor SCIP Science 249: 1300–1303. [DOI] [PubMed] [Google Scholar]
  • 121. Monuki ES, Kuhn R, Lemke G (1993) Repression of the myelin P0 gene by the POU transcription factor SCIP Mech Dev 42: 15–32. [DOI] [PubMed] [Google Scholar]
  • 122. Morrissey TK, Levi AD, Nuijens A, Sliwkowski MX, Bunge RP (1995) Axon‐induced mitogenesis of human Schwann cells involves heregulin and p185erbB2. Proc Natl Acad Sci USA 92: 1431–1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Murphy P, Topilko P, Schneider‐Manoury S, Seitanidou T, Baron Van Evercooren A, Charnay P (1996) The regulation of Krox‐20 expression reveals important steps in the control of peripheral glial cell development. Development 122:2847–2857. [DOI] [PubMed] [Google Scholar]
  • 124. Nakamura Y, Iwamoto R, Mekada E (1996) Expression and distribution of CD9 in myelin of the central and peripheral nervous systems. Am J Pathol 149: 575–583. [PMC free article] [PubMed] [Google Scholar]
  • 125. Nave K‐A (1996) Myelin‐specific genes and their mutations in the mouse. In: Glial Cell Development, Basic Principles and Clinical Relevance, Jessen KR, Richardson WD, (Eds.), Chapter 8, pp. 141–164, Bios Scientific Publishers Ltd: Oxford . [Google Scholar]
  • 126. Niessen CM, Cremona O, Daams H, Ferraresi S, Sonnenberg A, Marchisio PC (1994) Expression of the integrin a6b4 in peripheral nerves: localization in Schwann and perineural cells and different variants of the b4 subunit. J Cell Sci 107: 543–552. [DOI] [PubMed] [Google Scholar]
  • 127. Nikam SS, Tennekoon Gl, Christy BA, Yoshino JE, Rutkowski JL (1995) The zinc finger transcription factor Zif268/Egr‐1 is essential for Schwann cell expression of the p75 NGF receptor. Mol Cell Neurosci 6: 337–348. [DOI] [PubMed] [Google Scholar]
  • 128. Oh S, Ri Y, Bennett MVL, Trexler EB, Verselis VK, Bargiello TA (1997) Changes in permeability caused by connexin 32 mutations underlie X‐linked Charcot‐Marie‐Tooth disease. Neuron 19: 927–938. [DOI] [PubMed] [Google Scholar]
  • 129. Olsson Y (1990) Microenvironment of the peripheral nervous system under normal and pathological conditions. Crit Rev Neurobiol 5: 265–311. [PubMed] [Google Scholar]
  • 130. Omori Y, Mesnil M, Yamasaki H (1996) Connexin 32 mutations from X‐linked Charcot‐Marie‐Tooth disease patients: functional defects and dominant negative effects. Mol Biol Cell 7: 907–916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131. Oudega M, Xu XM, Guenard V, Kleitman N, Bunge MB (1997) A combination of insulin‐like growth factor‐I and platelet‐derived growth factor enhances myelination but diminishes axonal regeneration into Schwann cell grafts in the adult rat spinal cord. Glia 19: 247–258. [DOI] [PubMed] [Google Scholar]
  • 132. Owens GC, Bunge RP (1991) Schwann cells infected with a recombinant retrovirus expressing myelin‐associated glycoprotein antisense RNA do not form myelin. Neuron 7: 565–575. [DOI] [PubMed] [Google Scholar]
  • 133. Parmantier E, Turmaine M, Greensmith L, McMahon AP, Jessen KR, Mirsky R (1998) Involvement of the signalling molecule Desert Hedgehog in peripheral nerve development. Am Soc Neurosci Abst 24, 49. [Google Scholar]
  • 134. Pu SF, Zhuang HX, Ishii DN (1995) Differential spatio‐temporal expression of the insulin‐like growth factor genes in regenerating sciatic nerve. Brain Res Mol Brain Res 34: 18–28. [DOI] [PubMed] [Google Scholar]
  • 135. Raabe TD, Clive DR, Neuberger TJ, Wen D, DeVries GH (1996) Cultured neonatal Schwann cells contain and secrete neuregulins. J Neurosci Res 46: 263–270. [DOI] [PubMed] [Google Scholar]
  • 136. Raabe TD, Francis A, DeVries GH (1998) Neuregulins in glial cells. Neurochem Res 23: 311–318. [DOI] [PubMed] [Google Scholar]
  • 137. Rambukkana A, Salzer JL, Yurchenco PD, Tuomanen El (1997) Neural targeting of Mycobacterium leprae mediated by the G domain of the Iaminin‐alpha2 chain. Cell 88: 811–821. [DOI] [PubMed] [Google Scholar]
  • 138. Reynolds ML, Fitzgerald M, Benowitz LI (1991) GAP‐43 expression in developing cutaneous and muscle nerves in the rat hindlimb. Neuroscience 41: 201–211. [DOI] [PubMed] [Google Scholar]
  • 139. Riethmacher D, Sonnenberg‐Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C (1997) Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389: 725–730. [DOI] [PubMed] [Google Scholar]
  • 140. Rosenbaum C, Karyala S, Marchionni MA, Kim HA, Krasnoselsky AL, Happel B, Isaacs I, Brackenbury R, Ratner N (1997) Schwann cells express NDF and SMDF/n‐ARIA mRNAs, secrete neuregulin, and show constitutive activation of erbB3 receptors: evidence for a neuregulin autocrine loop. Exp Neurol 148: 604–615. [DOI] [PubMed] [Google Scholar]
  • 141. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, Hoang‐Xuan K, Demczuk S, Desmaze C, Plougastel B, Pulst SM, Lenoir G, Bijlsma E, Fashold R, Dumanski J, De Jong P, Parry D, Eldridge R, Aurias A, Delattre O, Thomas G (1993) Alteration in a new gene encoding a putative membrane‐organizing protein causes neuro‐fibromatosis type 2. Nature 363: 515–521. [DOI] [PubMed] [Google Scholar]
  • 142. Rutkowski JL, Kirk CJ, Lerner MA, Tennekoon GI (1995) Purification and expansion of human Schwann cells in vitro. Nature Med 1: 80–83. [DOI] [PubMed] [Google Scholar]
  • 143. Sadoulet‐Puccio HM, Kunkel LM (1996) Dystrophin and its isoforms. Brain Pathol 6: 25–35. [DOI] [PubMed] [Google Scholar]
  • 144. Scherer SS, Wang D‐Y, Kuhn R, Lemke G, Wrabetz L, Kamholz J (1994) Axons regulate Schwann cell expression of the POU transcription factor SCIP J Neurosci 14: 1930–1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145. Scherer SS, Xu YT, Bannerman PG, Sherman DL, Brophy PJ (1995) Periaxin expression in myelinating Schwann cells: modulation by axon‐glial interactions and polarized localization during development. Development 121: 4265–4273. [DOI] [PubMed] [Google Scholar]
  • 146. Scherer SS, Gutmann DH (1996) Expression of the neurofibromatosis 2 tumor suppressor gene product, merlin, in Schwann cells. J Neurosci Res 46: 595–605. [DOI] [PubMed] [Google Scholar]
  • 147. Scherer SS and Salzer JL (1996) Axon‐Schwann cell interactions during peripheral nerve degeneration and regeneration. In: Glial Cell Development, Basic Principles and Clinical Relevance, Jessen KR, Richardson WD, (Eds.), Chapter 9, pp. 165–196, Bios Scientific Publishers Ltd: Oxford . [Google Scholar]
  • 148. Scherer SS (1997) Molecular genetics of demyelination: new wrinkles on an old membrane. Neuron 18: 13–16. [DOI] [PubMed] [Google Scholar]
  • 149. Scoles DR, Huynh DP, Morcos PA, Coulsell ER, Robinson NGG, Tamanoi F, Pulst SM (1998) Neurofibromatosis 2 tumour suppressor schwannomin interacts with b11‐spectrin. Nature Gen 18: 354–359. [DOI] [PubMed] [Google Scholar]
  • 150. Sendtner M, Gotz R, Holtmann B, Escary JL, Masu Y, Carroll P, Wolf E, Brem G, Brulet P, Thoenen H (1996) Cryptic physiological trophic support of motoneurons by LIF revealed by double gene targeting of CNTF and LIF. Curr Biol 6: 686–694. [DOI] [PubMed] [Google Scholar]
  • 151. Serada M, Griffiths I, Pühlhofer A, Stewart H, Rossner MJ, Zimmermann F, Magyar JP, Schneider A, Hund E, Meinck H‐M, Suter U, Nave K‐A (1996) A transgenic rat model of Charcot‐Marie‐Tooth disease. Neuron 16: 1049–1060. [DOI] [PubMed] [Google Scholar]
  • 152. Shah NM, Marchionni MA, Isaacs I, Stroobant P, Anderson DJ (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77: 349–360. [DOI] [PubMed] [Google Scholar]
  • 153. Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFb superfamily members. Cell 85: 331–343. [DOI] [PubMed] [Google Scholar]
  • 154. Shibuya Y, Mizoguchi A, Takeichi M, Shimada K, Ide C (1995) Localization of N‐cadherin in the normal and regenerating nerve fibers of the chicken peripheral nervous system. Neuroscience 67: 253–261. [DOI] [PubMed] [Google Scholar]
  • 155. Snipes GJ, Suter U (1995) Molecular basis of common hereditary motor and sensory neuropathies in humans and in mouse models. Brain Pathol 5: 233–247. [DOI] [PubMed] [Google Scholar]
  • 156. Southard‐Smith EM, Kos L, Pavan WJ (1998) Sox 10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nature Genet 18: 60–64. [DOI] [PubMed] [Google Scholar]
  • 157. Springer JE, Seeburger JL, He J, Gabrea A, Blankenhorn EP, Bergman LW (1995) cDNA sequence and differential mRNA regulation of two forms of glial cell line‐derived neurotrophic factor in Schwann cells and rat skeletal muscle. Exp Neurol 131: 47–52. [DOI] [PubMed] [Google Scholar]
  • 158. Stewart HJS (1995) Expression of c‐jun, Jun B, Jun D and cAMP response element binding protein by Schwann cells and their precursors in vivo and in vitro. Eur J Neurosci 7: 1366–1375. [DOI] [PubMed] [Google Scholar]
  • 159. Stewart HJS, Mirsky R, Jessen KR (1996) The Schwann cell lineage: embryonic and early postnatal development. In: Glial Cell Development, Basic Principles and Clinical Relevance, Jessen KR, Richardson WD, (Eds.), Chapter 1, pp. 1–52, Bios Scientific Publishers Ltd: Oxford . [Google Scholar]
  • 160. Stewart HJS, Bradke F, Tabernero A, Morrell D, Jessen KR, Mirsky R (1996) Regulation of rat Schwann cell P0 expression and DNA synthesis by insulin‐like growth factors in vitro. Eur J Neurosci 8: 553–564. [DOI] [PubMed] [Google Scholar]
  • 161. Stewart HJS, Zoidl G, Rossner M, Brennan A, Zoidl C, Nave K‐A, Mirsky R, Jessen KR (1997) Helix‐loop‐helix proteins in Schwann cells: a study of regulation and sub‐cellular localization of Ids, REB and E12/47 during embryonic and postnatal development. J Neurosci Res 50: 684–701. [DOI] [PubMed] [Google Scholar]
  • 162. Stoffel W, Bosio A (1997) Myelin glycolipids and their functions. Curr Opin Neurobiol 7: 654–661. [DOI] [PubMed] [Google Scholar]
  • 163. Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MR Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, De Sauvage F, Rosenthal A (1996) The tumor‐suppressor bene patched encodes a candidate receptor for Sonic hedgehog. Nature 384:129–134. [DOI] [PubMed] [Google Scholar]
  • 164. Sun Y, Zigmond RE (1996) Leukaemia inhibitory factor induced in the sciatic nerve after axotomy is involved in the induction of galanin in sensory neurons. Eur J Neurosci 8: 2213–2220. [DOI] [PubMed] [Google Scholar]
  • 165. Suter U, Snipes GJ (1995) Peripheral myelin protein 22: Facts and hypotheses. J Neurosci Res 40: 145–151. [DOI] [PubMed] [Google Scholar]
  • 166. Syroid DE, Maycox PR, Burrola PG, Liu N, Wen D, Lee K‐F, Lemke G, Kilpatrick TJ (1996) Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc Natl Acad Sci USA 93: 9229–9234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167. Tabernero A, Stewart HJS, Jessen KR, Mirsky R (1998) The neuron‐glia signal b neuregulin induces sustained CREB phosphorylation on Ser‐133 in cultured rat Schwann cells. Mol Cell Neurosci 00:1–14. [PubMed] [Google Scholar]
  • 168. Thoenen H, Hughes RA, Sendtner M (1993) Towards a comprehensive understanding of the trophic support of motoneurons. CR Acad Sci III 316: 1158–1163. [PubMed] [Google Scholar]
  • 169. Topilko P, Schneider‐Manoury S, Levi G, Baron‐Van Evercooren A, Chennoufi ABY, Seitanidou T, Babinet C, Charnay P (1994) Krox‐20 controls myelination in the peripheral nervous system. Nature 371: 796–799. [DOI] [PubMed] [Google Scholar]
  • 170. Topilko P, Levi G, Merlo G, Mantero S, Desmarquet C, Mancardi G, Charnay P (1997) Differential regulation of the zinc finger genes Krox‐20 and Krox‐24 (Egr‐1) suggests antagonistic roles in Schwann cells. J Neurosci Res 50:702–712. [DOI] [PubMed] [Google Scholar]
  • 171. Trachtenberg JT, Thompson WJ (1996) Schwann cell apoptosis at developing neuromuscular junctions is regulated by glial growth factor. Nature 379: 174–177. [DOI] [PubMed] [Google Scholar]
  • 172. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MR Parry DM, Eldridge R, Kley N, Menon AG, Pulaski K, Haase VH, Ambrose CM, Munroe D, Bove C, Haines JL, Martuza RL, MacDonald ME, Seizinger BR, Short MR Buckler AJ, Gusella JF (1993) A novel moesin‐, ezrin‐, radixin‐like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72: 791–800. [DOI] [PubMed] [Google Scholar]
  • 173. van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A (1996) Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet 13:366–369. [DOI] [PubMed] [Google Scholar]
  • 174. Watabe K, Fukuda T, Tanaka J, Honda H, Toyohara K, Sakai O (1995) Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth‐promoting activities. J Neurosci Res 41: 279–290. [DOI] [PubMed] [Google Scholar]
  • 175. Weinstein DE, Burrola PG, Lemke G (1995) Premature Schwann cell differentiation and hypermyelination in mice expressing a targeted antagonist of the POU transcription factor SCIP Mol Cell Neurosci 6: 212–229. [DOI] [PubMed] [Google Scholar]
  • 176. Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, Hillan K, Crowley C, Brush J, Godowski PJ (1997) Neuregulin‐3 (NRG3): a novel neural tissue‐enriched protein that binds and activates ErbB4. Proc Natl Acad Sci USA 94: 9562–9567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177. Zhang SM, Marsh R, Ratner N, Brackenbury R (1995) Myelin glycoprotein P0 is expressed at early stages of chicken and rat embyrogenesis. J Neurosci Res 40: 241–250. [DOI] [PubMed] [Google Scholar]
  • 178. Zorick TS, Syroid DE, Arroyo E, Scherer SS, Lemke G (1996) The transcription factors SCIP and Krox‐20 mark distinct stages and cell fates in Schwann cell differentiation. Mol Cell Neurosci 8: 129–145. [DOI] [PubMed] [Google Scholar]
  • 179. Zorick TS, Lemke G (1996) Schwann cell differentiation. Curr Opin Cell Biol 8: 870–876. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES