Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;8(1):195–215. doi: 10.1111/j.1750-3639.1998.tb00145.x

Mouse Models of Human Lysosomal Diseases

Kinuko Suzuki 1,3, Richard L Proia 2, Kunihiko Suzuki 3,4,
PMCID: PMC8098314  PMID: 9458176

Abstract

Genetically authentic animal models of human lysosomal diseases occur spontaneously in many mammalian species. However, most are among larger domestic or farm animals with only two well‐defined genetic lysosomal diseases known among rodents. This status changed dramatically in recent years with the advent of the combined homologous recombination and embryonic stem cell technology, which allows directed generation of mouse models that are genetically equivalent to human diseases. Almost all known human sphingolipidoses, two mucopolysaccharidoses and aspartylglycosamin‐uria have so far been duplicated in mice and more are expected in the near future. This technology also allows generation of mouse mutants that are not known or are highly unlikely to exist in humans, such as “double‐knockouts.” These animal models will play an important role in studies of the pathogenesis and treatment of these disorders. While the utility of these mouse models is obvious, species differences in brain development and metabolic pathways must be always remembered, if the ultimate goal of the study is application to human patients.

Full Text

The Full Text of this article is available as a PDF (353.9 KB).

References

  • 1. Alroy J, Orgad U, DeGasperi R, Richard R, Warren K, Knowles JG, Thalhammer JG, Raghavan SS (1992) Canine GM1‐gangliosidosis: a clinical, morphologic, histochemical and biochemical comparison of two different models. Am J Pathol 140: 675–689. [PMC free article] [PubMed] [Google Scholar]
  • 2. Alroy J, Warren CD, Raghavan SS, Kolodny EH (1989) Animal models for lysosomal storage diseases: Their past and future contribution. Hum Pathol 20: 823–826. [DOI] [PubMed] [Google Scholar]
  • 3. Baker HJ, Mole JA, Linsey JR, Creel RM (1982) Animal models of human ganglioside storage diseases. Fed Proc 35: 1193–1201. [PubMed] [Google Scholar]
  • 4. Bapat B, Ethier M, Neote K, Mahuran D, Gravel RA (1988) Cloning and sequence of a cDNA encoding the β subunit of mouse β‐hexosaminidase. FEBS Lett 237: 191–195. [DOI] [PubMed] [Google Scholar]
  • 5. Beutler E, Grabowski GA (1995) Gaucher Disease. In: Metabolic and Molecular Basis of Inherited Disease, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 86, pp. 2641–2670, McGraw‐Hill: New York . [Google Scholar]
  • 6. Beccari T, Hoade J, Oriacchio J, Stirling JL (1992) Cloning and sequence analysis of a cDNA encoding the α subunit of mouse β‐N‐acetylhexosaminidase and comparison with the human enzyme. Biochem J 285: 593–596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Birkenmeier EH, Davisson MT, Beamer WG, Ganschow RE, Vogler CA, Gwynn B, Lyford KA, Maltais LM, Wawrzyniak CJ (1989) Murine mucopolysaccharidosis type VII. Characterization of a mouse with β‐glucuronidase deficiency. J Clin Invest 83: 1258–1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Boustany RM, Qian WH, Suzuki K (1993) Mutations in the lysosomal β‐galactosidase cause GM1 gangliosidosis in American patients. Am J Hum Genet 53: 881–888. [PMC free article] [PubMed] [Google Scholar]
  • 9. Bradova F, Ulrich‐Bott B, Roggendorf W, Paton BC, Harzer K (1993) Prosaposin deficiency: Further characterization of the sphingolipid activator protein‐deficient sibs. Multiple glycolipid elevations (including lactosylceramidosis), partial enzyme deficiencies and ultrastructure of the skin in this generalized sphingolipid storage disease. Hum Genet 92: 143–152. [DOI] [PubMed] [Google Scholar]
  • 10. Burg J, Banerjee A, Conzelmann E, Sandhoff K (1983) Activating protein for ganglioside GM2 degradation by β‐hexosaminidase isoenzymes in tissue extracts from different species. Hoppe-Seyler Z Physiol Chem 364: 821–829. [DOI] [PubMed] [Google Scholar]
  • 11. Chakraborty S, Rafi MA, Wenger DA (1994) Mutations in the lysosomal β‐galactosidase gene that cause the adult form of GM1‐gangliosidosis. Am J Hum Genet 54: 1004–1013. [PMC free article] [PubMed] [Google Scholar]
  • 12. Clarke LA, Russell CS, Pownall S, Warrington CL, Borowski A, Dimmick JE, Toone J, Jirik FR (1997) Murine mucopolysaccharidosis type I: targeted disruption of the murine α‐L‐iduronidase gene. Hum Mol Genet 6: 503–511. [DOI] [PubMed] [Google Scholar]
  • 13. Cohen‐Tannoudji M, Marchand P, Akli S, Sheardown SA, Puech J‐P, Kress C, Gressens P, Nassogne M‐C, Beccari T, Muggleton‐Harris AL, Evrard P, Stirling JL, Poenaru L, Babinet C (1995) Disruption of murine HEXA gene leads to enzymatic deficiency and to neuronal lysosomal storage, similar to that observed in Tay‐Sachs disease. Mam Genome 6: 844–849. [DOI] [PubMed] [Google Scholar]
  • 14. D'Azzo A, Andrea G, Strisciuglio P, Galjaard H (1995) Galactosialidosis. In: The Metabolic and Molecular Basis of Inherited Disease, 7th Edition., Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 91, pp. 2825–2838, McGraw‐Hill: New York . [Google Scholar]
  • 15. Desnick RJ, Loannou YA, Eng CM (1995) α‐Galactosidase A deficiency: Fabry disease. In: The Metabolic and Molecular Basis of Inherited Disease, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 89, pp. 2741–2784, McGraw‐Hill: New York . [Google Scholar]
  • 16. De Veber GA, Schwarting GA, Kolodny EH, Kowall NW (1992) Fabry disease. Immunochemical characterization of neuronal involvement. Ann Neurol 31: 409–415. [DOI] [PubMed] [Google Scholar]
  • 17. Di Natale P, Annella T, Daniele A, Spagnuolo G, Cerundolo R, De Caprariis D, Gravino AE (1992) Animal models for lysosomal storage disease: a new case of feline mucopolysaccharidosis VI. J Inher Metab Dis 15: 17–24. [DOI] [PubMed] [Google Scholar]
  • 18. Evers M, Saftig P, Schmidt P, Hafner A, McLoghlin DB, Schmahl WS, Hess B, von Figura K, Peters C (1996) Targeted disruption of the arylsulfatase B gene results in mice resembling the phenotype of mucopolysaccharodosis VI. Proc Natl Acad Sci USA 93: 8214–8219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Fujita N, Suzuki K, Vanier M, Popko B, Maeda N, Klein A, Henseler M, Sandhoff K, Nakayasu H, Suzuki K (1996) Targeted disruption of the mouse sphingolipid activator protein gene: a complex phenotype, including severe leukodystrophy and wide‐spread storage of multiple sphingolipids. Hum Mol Genet 5: 711–725. [DOI] [PubMed] [Google Scholar]
  • 20. Gieselmann V, Zlotogora J, Harris A, Wenger DA, Morris CP (1994) Molecular genetics of metachromatic leukodystrophy. Hum Mutat 4: 233–242. [DOI] [PubMed] [Google Scholar]
  • 21. Gravel RA, Clark JTR, Kaback MN, Mahuran D, Sandhoff K, Suzuki K (1995) The GM2 gangliosidosis. In: The Metabolic and Molecular Basis of Inherited Disease, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 92, pp. 2839–2879, McGraw‐Hill: New York . [Google Scholar]
  • 22. Gregoire A, Perier O, Dustin P (1966) Metachromatic leukodystrophy, an electron microscopic study. J Neuropathol Exp Neurol 25: 617–636. [DOI] [PubMed] [Google Scholar]
  • 23. Grosveld F, Van Assendelft G B, Greaves DR, Kollias G (1987) Position‐independent, high level expression of the human β‐globin gene in transgenic mice. Cell 51: 975–985. [DOI] [PubMed] [Google Scholar]
  • 24. Hahn CN, del Pilar Martin M, Schröder M, Vanier MT, Hara Y, Suzuki K, Suzuki K, D'Azzo A. (1997) Generalized CNS disease and massive GM1‐ganglioside accumulation in mice defective in lysosomal acid β‐galactosidase. Hum Mol Genet 6: 205–211. [DOI] [PubMed] [Google Scholar]
  • 25. Harzer K, Paton BC, Poulos A, Kustermann‐Kuhn B, Roggendorf W, Grisar T, Popp M (1989) Sphingolipid activator deficiency in a 16 week old atypical Gaucher disease patient and his fetal sibling: Biochemical signs of combined sphingolipidoses. Eur J Pediatr 149: 31–39. [DOI] [PubMed] [Google Scholar]
  • 26. Haskins M, Baker HJ, Birkenmeier E, Hoogerbrugge P, Poorthuis B, Sakiyama T, Shull R, Taylor RM, Thrall M, Walkley SU (1991) Transplantation in animal model systems. In: Treatment of genetic diseases. Desnick RJ (ed.), pp. 183–201, Churchill Livingstone: Edinburgh , London . [Google Scholar]
  • 27. Haskins ME, Desnick RJ, DiFerrante N, Jezyik PF, Patterson DF (1984) β‐glucuronidase deficiency in a dog. A model of human mucopolysaccharidosis VII. Pediatr Res 18: 980–984. [DOI] [PubMed] [Google Scholar]
  • 28. Haskins ME, Jezyk PF, Desnick RJ, McDonough SK, Patterson DF (1979) α ‐L‐iduronidase deficiency in a cat: A model of mucopolysaccharidoses I. Pediatr Res 13: 1294–1297. [DOI] [PubMed] [Google Scholar]
  • 29. Hess B, Saftig P, Hartmann D, Coenen R, Lüllmann‐Rauch R, Goebel HH, Evers M, von Figura K, D'Hooge R, Nagels G, De Deyn P, Peters C, Gieselmann V (1996) Phenotype of arylsulfatase A‐deficient mice: relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci USA 93: 14821–14828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Ho MW, O'Brien JS (1971) Gaucher's disease: deficiency of “acid”β‐glucosidase and reconstitution of enzyme activity in vitro. Proc Natl Acad Sci USA 68: 2810–2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Holleran WM, Ginns EI, Menon GK, Grundmann J‐U, Fartasch M, McKinney CE, Elias PM, Sidransky E. (1994) Consequences of β‐glucocerebrosidase deficiency in epidermis: ultrastructure and permeability barrier alteration in Gaucher disease. J Clin Invest 91: 1736–1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Hoogerbrugge PM, Suzuki K, Suzuki K, Poorthuis BJHM, Kobayashi T, Wagemaker G, Van Bekkum DW (1988) Donor derived cells in the central nervous system of twitcher mice after bone marrow transplantation. Science 239: 1035–1038. [DOI] [PubMed] [Google Scholar]
  • 33. Horinouchi K, Erlich S, Perl DP, Ferlinz K, Bisgaier CL, Sandhoff K, Desnick RJ, Stewart CL, Schuchman EH (1995) Acid sphingomyelinase deficient mice: a model of type A and B Niemann‐Pick disease. Nature Genet 10: 288–293. [DOI] [PubMed] [Google Scholar]
  • 34. Jezyk PF, Haskins ME, Patterson DF, Mellman WJ, Greenstein M (1977) Mucopolysaccharidosis in a cat with arylsulfatase B deficiency. A model of Maroteaux‐Lamy syndrome. Science 198: 834–836. [DOI] [PubMed] [Google Scholar]
  • 35. Kaartinen V, Mononen I, Voncken JW, Noronkoski T, Gonzalez‐Gomez, Heisterkamp N and Groffen J (1996) A mouse model for the human lysosomal disease aspartyl‐glucosaminuria. Nature Med 2: 1375–1378. [DOI] [PubMed] [Google Scholar]
  • 36. Kolodny EH, Fluharty AL (1995) Metachromatic leukodystrophy and multiple sulfatase deficiency: sulfatide lipidosis. In: The Metabolic and Molecular Basis of Inherited Diseases, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 88, pp. 2693–2739, McGraw‐Hill: New York . [Google Scholar]
  • 37. Kuemmel TA, Schroeder R, Stoffel W (1997) Light and electron microscopic analysis of the central and peripheral nervous systems of acid sphingomyelinase‐deficient mice resulting from gene targeting. J Neuropathol Exp Neurol 56: 171–179. [DOI] [PubMed] [Google Scholar]
  • 38. Leinekugel P, Michel S, Conzelmann E, Sandhoff K (1992) Quantitative correlation between the residual activity of β‐hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 88: 513–523. [DOI] [PubMed] [Google Scholar]
  • 39. Liu Y, Hoffmann A, Grinberg A, Westphal H, McDonald MP, Miller KM, Crawley JN, Sandhoff K, Suzuki K, Proia RL (1997) Mouse model of GM2 activator deficiency manifests cerebellar pathology and motor impairment. Proc Natl Acad Sci USA 94: 8138–8143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Luzi P, Rafi MA, Victoria T, Baskin GB, Wenger DA (1997) Characterization of the rhesus monkey galactocerebrosidase (GALC) cDNA and gene and identification of the mutation causing globoid cell leukodystrophy (Krabbe disaes) in the primate. Genomics 42: 319–324. [DOI] [PubMed] [Google Scholar]
  • 41. Matsuda J, Suzuki O, Oshima A, Ogura A, Naiki M, Suzuki Y (1997) Neurological manifestations of knockout mice with b‐galactosidase deficiency. Brain Dev 19: 19–20. [DOI] [PubMed] [Google Scholar]
  • 42. Matsumoto A, Vanier MT, Oya Y, Kelly D, Popko B, Wenger DA, Suzuki K, Suzuki K (1998) Minimal increment in galactosylceramidase expression is sufficient for significant phenotypic improvement in twitcher mouse. Dev Brain Dysfunct, in press. [Google Scholar]
  • 43. Matsushima G, Taniike M, Glimcher LH, Grusby MJ, Frelinger JA, Suzuki K, Ting J P‐Y (1994) Absence of MHC Class II molecules reduces CNS demyelination, microglial/macrophages infiltration, and twitching in murine globoid cell leukodystrophy. Cell 78: 645–656. [DOI] [PubMed] [Google Scholar]
  • 44. Mehl E, Jatzkewitz H (1964) Eine Cerebrosidsulfatase aus Schweineniere. Hoppe-Seylers Z Physiol Chem 339: 260–276. [PubMed] [Google Scholar]
  • 45. Miranda SRP, Erlich S, Visser JWM, Gatt S, Dagan A, Friedrich VL Jr, Schuchman EH (1997) Bone marrow transplantation in acid sphingomyelinase‐deficient mice: engraftment and cell migration into the brain as a function of radiation, age, and phenotype. Blood 90: 444–452. [PubMed] [Google Scholar]
  • 46. Muldoon LL, Neuwelt EA, Pagel MA, Weiss DL (1994) Characterization of the molecular defect in a feline model for type II GM2‐Gangliosidosis (Sandhoff Disease). Am J Pathol 144: 1109–1118. [PMC free article] [PubMed] [Google Scholar]
  • 47. Neufeld EF, Muenzer J (1995) The Mucopolysaccharidoses In: The Metabolic and Molecular Basis of Inherited Diseases, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 78, pp. 2465–2494, McGraw‐Hill: New York . [Google Scholar]
  • 48. Nishimoto J, Namba E, Inui K, Okada S, Suzuki K (1991) GM1 gangliosidosis (genetic β‐galactosidase deficiency): identification of four mutations in different clinical phenotypes among Japanese patients. Am J Hum Genet 49: 566–574. [PMC free article] [PubMed] [Google Scholar]
  • 49. Nordborg C, Kyllerman M, Conradi N, Mansson J‐E (1997) Early‐infantile galactosialidosis with multiple brain infarctions: morphological, neuropathological and neuro‐chemical findings. Acta Neuropathol (Berl) 93: 24–33. [DOI] [PubMed] [Google Scholar]
  • 50. Norflus FN, McDonald MP, Crawley JN, Suzuki K, Proia RL, Tifft CJ (1996) Bone marrow transplantation as a therapy for GM2 gangliosidosis. Am J Hum Genet 59: A204. [Google Scholar]
  • 51. Ohshima T, Murray GJ, Swaim WD, Longenecker G, Quirk JM, Cardarelli CO, Sugimoto Y, Pastan I, Gottesman MM, Brady RO, Kulkarni AB (1997) α‐galactosidase A deficient mice: a model of Fabry disease. Proc Natl Acad Sci USA 94: 2540–2544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Otterbach B, Stoffel W (1995) Acid sphingomyelinase‐deficient mice mimic the neurovisceral form of human lysosomal storage disease (Niemann‐Pick disease). Cell 81: 1053–1061. [DOI] [PubMed] [Google Scholar]
  • 53. Oya Y, Nakayasu H, Fujita N, Suzuki K, Suzuki K. Pathological study of mice with total deficiency of sphingolipid activator proteins (SAP knockout mice). Acta Neuropathol (Berl), submitted. [DOI] [PubMed]
  • 54. Oyanagi K, Ohama E, Miyashita K, Yoshino H, Miyatake T, Yamazaki M, Ikuta F (1991) Galactosialidosis: neuropathological findings in a case of the late infantile type. Acta Neuropathol (Berl) 82: 331–339. [DOI] [PubMed] [Google Scholar]
  • 55. Peng L, Suzuki K (1987) Ultrastructural study of neurons in metachromatic leukodystrophy. Clin Neuropathol 6: 224–230. [PubMed] [Google Scholar]
  • 56. Phaneuf D, Wakamatsu N, Huang J‐Q, Borowski A, Peterson AC, Fortunato SR, Ritter G, Igdoura SA, Morales CR, Benoit G, Akerman BR, Leclerc D, Hanai N, Martin JD, Trasler JM, Gravel RA. (1996) Dramatically different phenotypes in mouse models of human Tay‐Sachs and Sandhoff diseases. Hum Mol Genet 5: 1–14. [DOI] [PubMed] [Google Scholar]
  • 57. Platt FM, Neises GR, Reinkensmeier G, Townsend MJ, Perry VH, Praia R, Winchester B, Dwek RA, Butters TD (1997) Prevention of lysosomal storage in Tay‐Sachs mice treated with N‐Butyldeoxynojirimycin. Science 276: 428–431. [DOI] [PubMed] [Google Scholar]
  • 58. Rahman AN, Lindenberg R. (1963) The neuropathology of hereditary dystrophic lipidosis. Arch Neurol 9: 373–385. [DOI] [PubMed] [Google Scholar]
  • 59. Sands MS, Vogler C, Torrey A, Levy B, Gwynn B, Grubb J, Sly WS, Birkenmeier EH (1997) Murine mucopolysac‐charidosis type VII: longterm therapeutic effects of enzyme replacement and enzyme replacement following by bone marrow transplantation. J Clin Invest 99: 1596–1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Sango K, McDonald MP, Crawley JN, Mack ML, Tifft CJ, Skop E, Starr CM, Hoffmann A, Sandhoff K, Suzuki K, Proia RL. (1996) Mice lacking both subunits of lysosomal β‐hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nature Genet 14: 348–352. [DOI] [PubMed] [Google Scholar]
  • 61. Sango K, Yamanaka S, Hoffmann A, Okuda Y, Grinberg A, Westphal H, McDonald MP, Crawley JN, Sandhoff K, Suzuki K, Proia RL. (1995) Mouse models of Tay‐Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nature Genet 11: 170–176. [DOI] [PubMed] [Google Scholar]
  • 62. Sandhoff K, Harzer K, Fürst W (1995) Sphingolipid activator proteins In: The Metabolic and Molecular Basis of Inherited Diseases, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 76, pp. 2427–2441, McGraw Hill: New York . [Google Scholar]
  • 63. Schnabel D, Schröder M, Fürst M, Klein A, Hurwitz R, Zenk T, Weber J, Harzer K, Paton BC, Poulos A, Suzuki K, Sandhoff K (1992) Simultaneous deficiency of sphingolipid activator proteins 1 and 2 is caused by a mutation in the initiation codon of their common gene. J Biol Chem 267: 3312–3315. [PubMed] [Google Scholar]
  • 64. Schuchman EH, Desnick RJ (1995) Niemann‐Pick disease type A and B: acid sphingomyelinase deficiencies. In: The Metabolic and Molecular Basis of Inherited Diseases, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 84, pp. 2601–2624, McGraw‐Hill: New York . [Google Scholar]
  • 65. Scott HS, Bunge S, Gal A, Clarke LA, Morris CP, Hop‐wood JJ (1995) Molecular genetics of mucopolysaccharidosis type I: diagnostic, clinical and biological implications. Hum Mutat 6: 288–302. [DOI] [PubMed] [Google Scholar]
  • 66. Shull RM, Helman RG, Spellacy E, Constantopoulos G, Munger RJ, Neufeld EF (1984) Morphologic and biochemical studies of canine mucopolysaccharidosis I. Am J Pathol 114: 487–495. [PMC free article] [PubMed] [Google Scholar]
  • 67. Sidransky E, Fartasch M, Lee RE, Metlay LA, Abella S, Zimran A, Gao W, Elias PM, Ginns EI, Holleran WM (1996) Epidermal abnormalities may distinguish type 2 from type 1 and 3 of Gaucher disease. Pediatr Res 39: 134–141. [DOI] [PubMed] [Google Scholar]
  • 68. Sidransky E, Sherer DM, Ginns EI (1992) Gaucher disease in the neonate: A distinct Gaucher phenotype is analogous to a mouse model created by targeted disruption of the glucocerebrosidase gene. Pediatr Res 32: 494–498. [DOI] [PubMed] [Google Scholar]
  • 69. Sung JH (1979) Autonomic neurons affected by lipid storage in the spinal cord in Fabry's disease: distribution of autonomic neurons in the sacral cord. J Neuropathol Exp Neurol 38: 87–98. [DOI] [PubMed] [Google Scholar]
  • 70. Suzuki K (1968) Cerebral GM1‐gangliosidosis: chemical pathology of visceral organs. Science 159: 1471–1472. [DOI] [PubMed] [Google Scholar]
  • 71. Suzuki K (1991) Neuropathology of late onset gangliosidosis: a review. Dev Neurosci 13: 205–210. [DOI] [PubMed] [Google Scholar]
  • 72. Suzuki K (1994) A genetic demyelinating disease gioboid cell leukodystrophy: studies with animal models. J Neuropath Exp Neurol 53: 359–363. [DOI] [PubMed] [Google Scholar]
  • 73. Suzuki K, Sango K, Proia RL, Langaman CL (1997) Mice deficient in all forms of lysosomal β‐hexosaminidase show mucopolysaccharidosis‐like pathology. J Neuropathol Exp Neurol 56: 693–703. [PubMed] [Google Scholar]
  • 74. Suzuki K, Suzuki K (1996) The gangliosidoses. In: Handbook of Clinical Neurology, Vinken PJ, Bruyn GW (eds.) Vol 66, revised Series 22: Neurodystrophies and Neurolipidoses, Moser H (volume ed.), pp. 247–280, Elsevier Science Publishers: Amsterdam . [Google Scholar]
  • 75. Suzuki Y, Oshima A (1993) A β‐galactosidase gene mutation identified in both Morquio B disease and infantile GM1‐gangliosidosis. Hum Genet 91: 407. [DOI] [PubMed] [Google Scholar]
  • 76. Suzuki Y, Sakuraba H, Oshima A (1995) β‐galactosidase deficiency (β‐galactosidosis): GM1 gangliosidosis and Morquio B disease. In: The Metabolic and Molecular Basis of Inherited Disease, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 90, pp. 2785–2824, McGraw‐Hill: New York . [Google Scholar]
  • 77. Taniike M, Yamanaka S, Proia RL, Langaman CL, Bone‐Turrentine T, Suzuki K (1995) Neuropathology of mice with targeted disruption of Hexa gene, a model of Tay‐Sachs disease. Acta Neuropathol (Berl) 89: 296–304. [DOI] [PubMed] [Google Scholar]
  • 78. Terry RD, Korey SR (1960) Membranous cytoplasmic granules in infantile amaurotic idiocy Nature 188: 1000–1002. [DOI] [PubMed] [Google Scholar]
  • 79. Terry RD, Weiss M (1963) Studies in Tay‐Sachs disease: II. Ultrastructure of cerebrum. J Neuropathol Exp Neurol 22: 18–55. [DOI] [PubMed] [Google Scholar]
  • 80. Thomas GH, Beaudet AL (1995) Disorders of glycoprotein degradation and structure: α‐mannosidosis, β‐mannosidosis, fucosidosis, scialidosis, aspartylglucosaminuria, and carbohydrate‐deficient glycoprotein syndrome. In: The Metabolic and Molecular Basis of Inherited Disease, 7th Edition, Scriver CR, Beaudet AL, Sly WS, Valle D (eds.), Chapter 81, pp. 2529–2561, McGraw‐Hill: New York . [Google Scholar]
  • 81. Thompson JN, Jones MZ, Dawson G, Huffman PS (1992) N‐acetylglucosamine 6 sulfatase deficiency in a Nubian goat: A model of Sanfilippo syndrome type D (mucopolysaccharidosis IIID) J Inher Metab Dis 15: 760–768. [DOI] [PubMed] [Google Scholar]
  • 82. Tybulewicz VLJ, Tremblay ML, LaMarca ME, Willemsen RW, Stubblefield BK, Winfield S, Zablocka B, Sidransky E, Martin BM, Huang SP, Mintzer KA, Westphal H, Mulligan RC, Ginns EI (1992) Animal model of Gaucher's disease from targeted disruption of the mouse glucocerebrosidase gene. Nature 357: 407–410. [DOI] [PubMed] [Google Scholar]
  • 83. Vanier MT, Suzuki K (1996) Niemann‐Pick disease. In: Handbook of Clinical Neurology, Vinken PJ, Bruyn GW (eds.), Vol. 66, revised Series 22: Neurodystrophies and Neurolipidoses, Moser H (volume ed.), pp. 133–162, Elsevier Science Publishers: Amsterdam . [Google Scholar]
  • 84. Von Hirsch T, Peiffer J (1955) Über histologische Methoden in der Differentialdiagnose von Leukodystrophien und Lipidosen. Arch Psychiatr Nervenkr 194: 88–104. [DOI] [PubMed] [Google Scholar]
  • 85. Walkley SU (1988) Pathobiology of neuronal storage disease. Int Rev Neurobiol 29: 191–244. [DOI] [PubMed] [Google Scholar]
  • 86. Walkley SU, Thrall MA, Dobrenis K, Huang M, March PA, Siegel DA, Wurzelmann S (1994) Bone marrow transplantation corrects the enzyme defect in neurons of the central nervous system in a lysosomal storage disease. Proc Natl Acad Sci USA 91: 2970–2974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Wang AM, Stewart CL, Desnick RJ (1993) α‐N‐Acetyl‐galactosaminidase: characterization of the murine cDNA and genomic sequences and generation of the mice by targeted gene disruption, (abstract). Am J Hum Genet 53: 99. [Google Scholar]
  • 88. Wenger DA, Tarby TJ, Wharton C (1978) Macular cherry‐red spots and myoclonus with dementia: Coexistent neuraminidase and β‐galactosidase deficiencies. Biochem Biophys Res Commun 82: 589–595. [DOI] [PubMed] [Google Scholar]
  • 89. Willemsen R, Tybulewicz E, Sidransky E, Eliason WK, Martin BM, LaMarca ME, Reuser AJJ, Tremblay M, Westphal H, Mulligan RC, Ginns El (1995) A biochemical and ultrastructural evaluation of the type 2 Gaucher mouse. Mol Chem Neuropathol 24: 179–192. [DOI] [PubMed] [Google Scholar]
  • 90. Wolf HJ, Pietra GG (1964) The visceral lesions of metachromatic leukodystrophy. Am J Pathol 44: 921–930. [PMC free article] [PubMed] [Google Scholar]
  • 91. Yamanaka S, Johnson MD, Grinberg A, Westphal H, Crawley JN, Taniike M, Suzuki K, Praia RL (1994) Targeted disruption of the Hexa gene results in mice with biochemical and pathologic features of Tay‐Sachs disease. Proc Natl Acad Sci USA 91: 9975–9979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Yamanaka S, Johnson ON, Norflus F, Boles DJ, Proia RL (1994) Structure and expression of the mouse β‐hexosaminidase genes, Hexa and Hexb . Genomics 21: 588–596. [DOI] [PubMed] [Google Scholar]
  • 93. Yamano T, Shimada M, Sugino H, Dezawa T, Koike M, Okada S, Yabuuchi H (1985) Ultrastructural study on a severe infantile sialidosis (β‐galactosidase‐α‐neu‐raminidase deficiency). Neuropediatrics 16: 109–112. [DOI] [PubMed] [Google Scholar]
  • 94. Yeager AM, Brennan S, Tiffany C, Moser HW, Santos CW (1984) Prolonged survival and remyelination after hematopoietic cell transplantation in the twitcher mouse. Science 225: 1052–1054. [DOI] [PubMed] [Google Scholar]
  • 95. Yeager AM, Shinn C, Shinohara M, Pardoll DM (1993) Hematopoietic cell transplantation in the twitcher mouse: The effects of pretransplant conditioning with graded doses of Busulfan. Transplantation 56: 185–190. [DOI] [PubMed] [Google Scholar]
  • 96. Yoshida M, Ikadai A, Maekawa A, Takahashi M, Nagase S (1993) Pathological characteristics of mucopolysaccharidosis VI in the rat. J Comp Pathol 109: 141–153. [DOI] [PubMed] [Google Scholar]
  • 97. Zhou XY, Morreau H, Rottier R, Davis D, Bonten E, Gillemans N, Wenger D, Grosveld FG, Doberty P, Suzuki K, Grosveld GC, D'Azzo A (1995) Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells. Genes Dev 9: 2623–2634. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES