Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(3):356–370. doi: 10.1111/j.1750-3639.2001.tb00405.x

The Role of Hormones, Growth Factors and Their Receptors in Pituitary Tumorigenesis

Shereen Ezzat 1,
PMCID: PMC8098327  PMID: 11414477

Abstract

Numerous factors have been shown to govern adenohypophysial cell proliferation. Human and animal models have documented that the hypothalamic trophic hormone growth hormone‐releasing hormone stimulates cell proliferation, and prolonged stimulation leads to tumor formation. Similarly, lack of dopaminergic inhibition of lactotrophs and lack of feedback suppression by adrenal, gonadal or thyroid hormones are implicated, perhaps through hypothalamic stimulatory mechanisms, in pituitary adenoma formation superimposed on hyperplasia. However, most pituitary tumors are not associated with underlying hyperplasia. Overexpression of growth factors and their receptors, such as EGF, TGFα, EGF‐R and VEGF has been identified in pituitary adenomas, and reduction of follistatin expression has been implicated in gonadotroph adenomas. Aberrant expression of members of the FGF family, an FGF antisense gene and FGF receptors have all been described in pituitary adenomas. The clonal composition of pituitary adenomas attests to the molecular basis of pituitary tumorigenesis, however, the evidence suggests that these various hypophysiotropic hormones and growth factors likely play a role as promoters of tumor cell growth in genetically transformed cells.

Full Text

The Full Text of this article is available as a PDF (586.5 KB).

This work was supported in part by grants from the Canadian Institutes of Health Research (MT‐14404).

References

  • 1. Abbass SAA, Asa SL, Ezzat S (1997) Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab 82: 1160–1166. [DOI] [PubMed] [Google Scholar]
  • 2. Abbass SAA, Ezzat S, Guha A, Asa SL (1999) Novel isoforms of fibroblast growth factor receptor 4 (FGFR4) are expressed by central nervous system neoplasms. Endo Soc Mtg 549 (Abstract). [Google Scholar]
  • 3. Abel ED, Boers ME, Pazos‐Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F (1999) Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 104: 291–300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Adams EF, Bhuttacharji SC, Halliwell CLJ, Loizou M, Birch G, Mashiter K (1984) Effect of pancreatic growth hormone releasing factors on GH secretion by human somatotrophic pituitary tumours in cell culture. Clin Endocrinol (Oxf) 21: 709–718. [DOI] [PubMed] [Google Scholar]
  • 5. Adams EF, Winslow CLJ, Mashiter K (1983) Pancreatic growth hormone releasing factor stimulates growth hormone secretion by pituitary cells. Lancet 1: 1100–1101. [DOI] [PubMed] [Google Scholar]
  • 6. Alexander JM, Jameson JL, Bikkal HA, Schwall RH, Klibanski A (1991) The effects of activin on follicle‐stimulating hormone secretion and biosynthesis in human glycoprotein hormone‐producing pituitary adenomas. J Clin Endocrinol Metab 72: 1261–1267. [DOI] [PubMed] [Google Scholar]
  • 7. Alexander JM, Klibanski A (1994) Gonadotropin‐releasing hormone receptor mRNA expression by human pituitary tumors in vitro . J Clin Invest 93: 2332–2339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Alexander JM, Swearingen B, Tindall GT, Klibanski A (1995) Human pituitary adenomas express endogenous inhibin subunit and follistatin messenger ribonucleic acids. J Clin Endocrinol Metab 80: 147–152. [DOI] [PubMed] [Google Scholar]
  • 9. Asa SL. Tumors of the Pituitary Gland. Third Series(Fascicle 22). (1998) Washington, D.C., Armed Forces Institute of Pathology. Atlas of Tumor Pathology. Rosai J. Ref Type: Serial (Book, Monograph).
  • 10. Asa SL, Kelly MA, Grandy DK, Low MJ (1999) Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia dopamine D2 receptor‐deficient mice. Endocrinology 140: 5348–5355. [DOI] [PubMed] [Google Scholar]
  • 11. Asa SL, Kovacs K, Hammer GD, Liu B, Roos BA, Low MJ (1992) Pituitary corticotroph hyperplasia in rats implanted with a medullary thyroid carcinoma cell line transfected with a corticotropin‐releasing hormone complementary deoxyribonucleic acid expression vector. Endocrinology 131: 715–720. [DOI] [PubMed] [Google Scholar]
  • 12. Asa SL, Kovacs K, Melmed S (1995) The hypothalamic‐pituitary axis In: Melmed S (ed) The Pituitary. Blackwell Scientific Publication Inc., Boston , 3–44. [Google Scholar]
  • 13. Asa SL, Kovacs K, Stefaneanu L, Horvath E, Billestrup N, Gonzalez‐Manchon C, Vale W (1992) Pituitary adenomas in mice transgenic for growth hormone‐releasing hormone. Endocrinology 131: 2083–2089. [DOI] [PubMed] [Google Scholar]
  • 14. Asa SL, Kovacs K, Tindall GT, Barrow DL, Horvath E, Vecsei P (1984) Cushing's disease associated with an intrasellar gangliocytoma producing corticotrophin‐releasing factor. Ann Intern Med 101: 789–793. [DOI] [PubMed] [Google Scholar]
  • 15. Asa SL, Penz G, Kovacs K, Ezrin C (1982) Prolactin cells in the human pituitary. A quantitative immunocytochemical analysis. Arch Pathol Lab Med 106: 360–363. [PubMed] [Google Scholar]
  • 16. Asa SL, Ramyar L, Murphy PR, Li AW, Ezzat S (2001) The endogenous fibroblast growth factor‐2 antisense gene product regulates pituitary cell growth and hormone production. Mol Endocrinol 15: 589–599. [DOI] [PubMed] [Google Scholar]
  • 17. Baird A, Mormède P, Ying S‐Y, Wehrenberg WB, Ueno N, Ling N, Guillemin R (1985) A nonmitogenic pituitary function of fibroblast growth factor: regulation of thyrotropin and prolactin secretion. Proc Natl Acad Sci USA 82: 5545–5549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Bamberger CM, Schulte HM, Chrousos GP (1996) Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr Rev 17: 245–261. [DOI] [PubMed] [Google Scholar]
  • 19. Banerjee SK, Sarkar DK, Weston AP, De A, Campbell DR (1997) Over expression of vascular endothelial growth factor and its receptor during the development of estrogen‐induced rat pituitary tumors may mediate estrogen‐initiated tumor angiogenesis. Carcinogenesis 18: 1155–1161. [DOI] [PubMed] [Google Scholar]
  • 20. Banerjee SK, Zoubine MN, Tran TM, Weston AP, Campbell DR (2000) Overexpression of vascular endothelial growth factor164 and its co‐ receptor neuropilin‐1 in estrogen‐induced rat pituitary tumors and GH3 rat pituitary tumor cells. Int J Oncol 16: 253–260. [DOI] [PubMed] [Google Scholar]
  • 21. Becker D, Lee PLP, Rodeck U, Herlyn M (1992) Inhibition of the fibroblast growth factor receptor 1 (FGFR‐1) gene in human melanocytes and malignant melanomas leads to inhibition of proliferation and signs indicative of differentiation. Oncogene 7: 2303–2313. [PubMed] [Google Scholar]
  • 22. Beerli RR, Hynes NE (1996) Epidermal growth factorrelated peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 271: 6071–6076. [DOI] [PubMed] [Google Scholar]
  • 23. Bertherat J, Chanson P, Dewailly D, Dupuy M, Jaquet P, Peillon F, Epelbaum J (1993) Somatostatin receptors, adenylate cyclase activity, and growth hormone (GH) response to octreotide in GH‐secreting adenomas. J Clin Endocrinol Metab 77: 1577–1583. [DOI] [PubMed] [Google Scholar]
  • 24. Bevan JS, Burke CW, Esiri MM, Adams CBT, Ballabio M, Nissim M, Faglia G (1989) Studies of two thyrotrophinsecreting pituitary adenomas: evidence for dopamine receptor deficiency. Clin Endocrinol (Oxf) 31: 59–70. [DOI] [PubMed] [Google Scholar]
  • 25. Billestrup N, Swanson LW, Vale W (1986) Growth hormone‐releasing factor stimulates proliferation of somatotrophs in vitro . Proc Natl Acad Sci USA 83: 6854–6857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Borrelli E, Sawchenko PE, Evans RM (1992) Pituitary hyperplasia induced by ectopic expression of nerve growth factor. Proc Natl Acad Sci USA 89: 2764–2768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Carey RM, Varma SK, Drake CR, Jr. , Thorner MO, Kovacs K, Rivier J, Vale W (1984) Ectopic secretion of corticotropin‐releasing factor as a cause of Cushing's syndrome. A clinical, morphologic, and biochemical study. N Engl J Med 311: 13–20. [DOI] [PubMed] [Google Scholar]
  • 28. Childs GV, Rougeau D, Unabia G (1995) Corticotropinreleasing hormone and epidermal growth factor: mitogens for anterior pituitary corticotropes. Endocrinology 136: 1595–1602. [DOI] [PubMed] [Google Scholar]
  • 29. Danila DC, Inder WJ, Zhang X, Alexander JM, Swearingen B, Hedley‐Whyte ET, Klibanski A (2000) Activin effects on neoplastic proliferation of human pituitary tumors. J Clin Endocrinol Metab 85: 1009–1015. [DOI] [PubMed] [Google Scholar]
  • 30. De Keyzer Y, Rene P, Lenne F, Auzan C, Clauser E, Bertagna X (1997) V3 vasopressin receptor and corticotropic phenotype in pituitary and nonpituitary tumors. Horm Res 47: 259–262. [DOI] [PubMed] [Google Scholar]
  • 31. Dong Q, Brucker‐Davis F, Weintraub BD, Smallridge RC, Carr F, Battey J, Spiegel AM, Shenker A (1996) Screening of candidate oncogenes in human thyrotroph tumors: absence of activating mutations of the Gαq, Gα11, Gαs, or thyrotropinreleasing hormone receptor genes. J Clin Endocrinol Metab 81: 1134–1140. [DOI] [PubMed] [Google Scholar]
  • 32. Dougall WC, Quan X, Peterson NC, Miller MJ, Samanta A, Greene MI (1994) The neu‐oncogene: signal transduction pathways, transformation mechanisms and evolving therapies. Oncogene 9: 2109–2123. [PubMed] [Google Scholar]
  • 33. Eisemman A, Ahn AJ, Graziani G, Tronick SR, Ron D (1991) Alternative splicing generates at least five different isoforms of the human bFGF receptor. Oncogene 6: 1195–1202. [PubMed] [Google Scholar]
  • 34. Ezzat S (1992) Hypophysiotropic regulation of anterior pituitary hormones: cellular and molecular mechanisms In: Selman WR (ed) Neuroendocrinology. Williams & Wilkins, Baltimore , 3–18. [Google Scholar]
  • 35. Ezzat S, Asa SL, Stefaneanu L, Whittom R, Smyth HS, Horvath E, Kovacs K, Frohman LA (1994) Somatotroph hyperplasia without pituitary adenoma associated with a long standing growth hormone‐releasing hormone‐producing bronchial carcinoid. J Clin Endocrinol Metab 78: 555–560. [DOI] [PubMed] [Google Scholar]
  • 36. Ezzat S, Melmed S (1990) The role of growth factors in the pituitary. J Endocrinol Invest 13: 691–698. [DOI] [PubMed] [Google Scholar]
  • 37. Ezzat S, Smyth HS, Ramyar L, Asa SL (1995) Heterogeneous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas. J Clin Endocrinol Metab 80: 878–884. [DOI] [PubMed] [Google Scholar]
  • 38. Ezzat S, Walpola IA, Ramyar L, Smyth HS, Asa SL (1995) Membrane‐anchored expression of transforming growth factor‐a in human pituitary adenoma cells. J Clin Endocrinol Metab 80: 534–539. [DOI] [PubMed] [Google Scholar]
  • 39. Ezzat S, Zheng L, Smyth HS, Asa SL (1997) The c‐erbB‐2/neu proto‐oncogene in human pituitary tumours. Clin Endocrinol (Oxf) 46: 599–606. [DOI] [PubMed] [Google Scholar]
  • 40. Ezzat S, Zheng L, Zhu X‐F, Wu GE, Asa SL. Pituitary tumorigenesis induced by a novel transforming isoform of fibroblast growth factor receptor 4. (2001) Submitted.
  • 41. Filetti S, Rapoport B, Aron DC, Greenspan FC, Wilson CB, Fraser W (1982) TSH and TSH‐subunit production by human thyrotrophic tumour cells in monolayer culture. Acta Endocrinol (Copenh) 99: 224–231. [DOI] [PubMed] [Google Scholar]
  • 42. Fisher DA, Lakshmanan J (1990) Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr Rev 11: 418–442. [DOI] [PubMed] [Google Scholar]
  • 43. Fjellestad‐Paulsen A, Abrahamsson P‐A, Bjartell A, Grino M, Grimelius L, Hedeland H, Falkmer S (1988) Carcinoma of the prostate with Cushing's syndrome. A case report with immunohistochemical and chemical demonstration of immunoreactive corticotropin‐releasing hormone in plasma and tumor tissue. Acta Endocrinol (Copenh) 119: 506–516. [PubMed] [Google Scholar]
  • 44. Friedman E, Adams EF, Hoog A, Gejman PV, Carson E, Larsson C, De Marco L, Werner S, Fahlbusch R, Nordenskjöld M (1994) Normal structural dopamine type 2 receptor gene in prolactin‐secreting and other pituitary tumors. J Clin Endocrinol Metab 78: 568–574. [DOI] [PubMed] [Google Scholar]
  • 45. Gertz BJ, Contreras LN, McComb DJ, Kovacs K, Tyrrell JB, Dallman MF (1987) Chronic administration of corticotropin‐releasing factor increases pituitary corticotroph number. Endocrinology 120: 381–388. [DOI] [PubMed] [Google Scholar]
  • 46. Gesundheit N, Petrick PA, Nissim M, Dahlberg PA, Doppman JL, Emerson CH, Braverman LE, Oldfield EH, Weintraub BD (1989) Thyrotropin‐secreting pituitary adenomas: clinical and biochemical heterogeneity. Case reports and follow‐up of nine patients. Ann Intern Med 111: 827–835. [DOI] [PubMed] [Google Scholar]
  • 47. Gittoes NJL, McCabe CJ, Verhaeg J, Sheppard MC, Franklyn JA (1997) Thyroid hormone and estrogen receptor expression in normal pituitary and nonfunctioning tumors of the anterior pituitary. J Clin Endocrinol Metab 82: 1960–1967. [DOI] [PubMed] [Google Scholar]
  • 48. Givol D, Yayon A (1992) Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J 6: 3362–3369. [PubMed] [Google Scholar]
  • 49. Godfrey P, Rahal J, Beamer W, Copeland N, Jenkins N, Mayo K (1993) GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genet 4: 227–232. [DOI] [PubMed] [Google Scholar]
  • 50. Goldman R, Levy RB, Peles E, Yarden Y (1990) Heterodimerization of the erbB‐1 and erbB‐2 receptors in human breast carcinoma cells: A mechanism for receptor transregulation. Biochem J 29: 11024–11028. [DOI] [PubMed] [Google Scholar]
  • 51. Gonsky R, Herman V, Melmed S, Fagin J (1991) Transforming DNA sequences present in human prolactin‐secreting pituitary tumors. Mol Endocrinol 5: 1687–1695. [DOI] [PubMed] [Google Scholar]
  • 52. Gonzalez AM, Logan A, Ying W, Lappi DA, Berry M, Baird A (1994) Fibroblast growth factor in the hypothalamic‐pituitary axis: Differential expression of fibroblast growth factor‐2 and a high affinity receptor. Endocrinology 134: 2289–2297. [DOI] [PubMed] [Google Scholar]
  • 53. Gospodarowicz D, Abraham JA, Schilling J (1989) Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary‐derived folliculo stellate cells. Proc Natl Acad Sci USA 86: 7311–7315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G (1987) Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 8: 95–114. [DOI] [PubMed] [Google Scholar]
  • 55. Grossman A, Besser GM (1985) Prolactinomas. Br Med J 290: 182–184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Haddad G, Penabad JL, Bashey HM, Asa SL, Gennarelli TA, Cirullo R, Snyder PJ (1994) Expression of activin/inhibin subunit messenger ribonucleic acids by gonadotroph adenomas. J Clin Endocrinol Metab 79: 1399–1403. [DOI] [PubMed] [Google Scholar]
  • 57. Hanneken A, Ying W, Ling N, Baird A (1994) Identification of soluble forms of the fibroblast growth factor receptor in blood. Proc Natl Acad Sci USA 91: 9170–9174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Hashimoto K, Koga M, Motomura T, Kasayama S, Kouhara H, Ohnishi T, Arita N, Hayakawa T, Sato B, Kishimoto T (1995) Identification of alternatively spliced messenger ribonucleic acid encoding truncated growth hormone‐releasing hormone receptor in human pituitary adenomas. J Clin Endocrinol Metab 80: 2933–2939. [DOI] [PubMed] [Google Scholar]
  • 59. Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S (1999) Early involvement of estrogen‐induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nature Medicine 5: 1317–1321. [DOI] [PubMed] [Google Scholar]
  • 60. Horvath E, Kovacs K (1991) The adenohypophysis In: Kovacs K, Asa SL (eds) Functional Endocrine Pathology. Blackwell Scientific Publications, Inc., Boston , 245–281. [Google Scholar]
  • 61. Hurley DM, Accili D, Stratakis CA, Karl M, Vamvakopoulos N, Rorer E, Constatine K, Taylor SI, Chrousos GP (1991) Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest 87: 680–686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Ikeda H, Mitsuhashi T, Kubota K, Kuzuya N, Uchimura H (1984) Epidermal growth factor stimulates growth hormone secretion from superfused rat adenohypophyseal fragments. Endocrinology 115: 556–558. [DOI] [PubMed] [Google Scholar]
  • 63. Jin L, Chandler WF, Lloyd RV (1994) Localization of basic fibroblast growth factor (bFGF) protein and mRNA in human pituitaries: Regulation of bFGF mRNA by gonadotropin‐releasing hormone. Endocr Pathol 5: 27–34. [DOI] [PubMed] [Google Scholar]
  • 64. Jin L, Qian X, Kulig E, Sanno N, Scheithauer BW, Kovacs K, Young WF, Jr. , Lloyd RV (1997) Transforming growth factor‐beta, transforming growth factor‐beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol 151: 509–519. [PMC free article] [PubMed] [Google Scholar]
  • 65. Jones KL, Villela JF, Lewis UJ (1986) The growth of cultured rabbit articular chondrocytes is stimulated by pituitary growth factors but not by purified human growth hormone or ovine prolactin. Endocrinology 118: 2588–2593. [DOI] [PubMed] [Google Scholar]
  • 66. Joubert Bression D, Benlot C, Lagoguey A, Garnier P, Brandi AM, Gautron JP, LeGrand JC, Peillon F (1989) Normal and growth hormone (GH)‐secreting adenomatous human pituitaries release somatostatin and GH‐releasing hormone. J Clin Endocrinol Metab 68: 572–577. [DOI] [PubMed] [Google Scholar]
  • 67. Kanasaki H, Fukunaga K, Takahashi K, Miyazaki K, Miyamoto E (2000) Involvement of p38 mitogen‐activated protein kinase activation in bromocriptine‐induced apoptosis in rat pituitary GH3 cells. Biol Reprod 62: 1486–1494. [DOI] [PubMed] [Google Scholar]
  • 68. Karl M, Lamberts SWJ, Koper JW, Katz DA, Huizenga NE, Kino T, Haddad BR, Hughes MR, Chrousos GP (1996) Cushing's disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel dominant‐negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 108: 296–307. [PubMed] [Google Scholar]
  • 69. Karl M, von Wichert G, Kempter E, Katz DA, Reincke M, Mönig H, Ali IU, Stratakis CA, Oldfield EH, Chrousos GP, Schulte HM (1996) Nelson's syndrome associated with a somatic frame shift mutation in the glucocorticoid receptor gene. J Clin Endocrinol Metab 81: 124–129. [DOI] [PubMed] [Google Scholar]
  • 70. Kasper S, Friesen HG (1986) Human pituitary tissue secretes a potent growth factor for chondrocyte proliferation. J Clin Endocrinol Metab 62: 70–76. [DOI] [PubMed] [Google Scholar]
  • 71. Kawakita S, Asa SL, Kovacs K (1989) Effects of growth hormone‐releasing hormone (GHRH) on densely granulated somatotroph adenomas and sparsely granulated somatotroph adenomas in vitro: a morphological and functional investigation. J Endocrinol Invest 12: 443–448. [DOI] [PubMed] [Google Scholar]
  • 72. Kelijman M, Williams TC, Downs TR, Frohman LA (1988) Comparison of the sensitivity of growth hormone secretion to somatostatin in vivo and in vitro in acromegaly. J Clin Endocrinol Metab 67: 958–963. [DOI] [PubMed] [Google Scholar]
  • 73. Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R, Ben‐Jonathan N, Grandy DK, Low MJ (1997) Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor‐deficient mice. Neuron 19: 103–113. [DOI] [PubMed] [Google Scholar]
  • 74. Koga M, Nakao H, Arao M, Sato B, Noma K, Morimoto Y, Kishimoto S, Mori S, Uozumi T (1987) Demonstration of specific dopamine receptors on human pituitary adenomas. Acta Endocrinol (Copenh) 114: 595–602. [DOI] [PubMed] [Google Scholar]
  • 75. Kovacs K, Horvath E (1986) Tumors of the Pituitary Gland. Atlas of Tumor Pathology, Second Series, Fascicle 21. Armed Forces Institute of Pathology, Washington , D.C. . [Google Scholar]
  • 76. Kovacs K, Stefaneanu L, Ezzat S, Smyth HS (1994) Prolactin‐producing pituitary adenoma in a male‐to‐female transsexual patient with protracted estrogen administration. A morphologic study. Arch Pathol Lab Med 118: 562–565. [PubMed] [Google Scholar]
  • 77. Krieger DT (1979) Medical treatment of Cushing disease In: Tolis G, Labrie F, Martin JB, Naftolin F (eds) Clinical Neuroendocrinology: A Pathophysiological Approach. Raven Press, New York , 423–427. [Google Scholar]
  • 78. Krieger DT (1983) Physiopathology of Cushing's disease. Endocr Rev 4: 22–43. [DOI] [PubMed] [Google Scholar]
  • 79. Larson GH, Koos RD, Sortino MA, Wise PM (1990) Acute effect of basic fibroblast growth factor on secretion of prolactin as assessed by the reverse hemolytic plaque assay. Endocrinology 126: 927–932. [DOI] [PubMed] [Google Scholar]
  • 80. Le Dafniet M, Blumberg‐Tick J, Gozlan H, Barret A, Joubert Bression D, Peillon F (1989) Altered balance between thyrotropin‐releasing hormone and dopamine in prolactinomas and other pituitary tumors compared to normal pituitaries. J Clin Endocrinol Metab 69: 267–271. [DOI] [PubMed] [Google Scholar]
  • 81. Le Dafniet M, Blumberg‐Tick J, Yuan Li J, Brandi AM, Bression D, Barret A, Feinstein MC, Peillon F (1988) Release of thyrotropin releasing hormone (TRH) from human prolactin‐secreting pituitary adenoma cells. Modulation by dopamine [Fre]. C R Acad Sci [III] 306: 129–134. [PubMed] [Google Scholar]
  • 82. Le Dafniet M, Grouselle D, Li JY, Kujas M, Bression D, Barret A, Tixier‐Vidal A, Peillon F (1987) Evidence of thyrotropin‐releasing hormone (TRH) and TRH‐binding sites in human nonsecreting pituitary adenomas. J Clin Endocrinol Metab 65: 1014–1019. [DOI] [PubMed] [Google Scholar]
  • 83. Le Dafniet M, Lefebvre P, Barret A, Mechain C, Feinstein MC, Brandi AM, Peillon F (1990) Normal and adenomatous human pituitaries secrete thyrotropin‐releasing hormone in vitro: modulation by dopamine, haloperidol, and somatostatin. J Clin Endocrinol Metab 71: 480–486. [DOI] [PubMed] [Google Scholar]
  • 84. LeRiche V, Asa SL, Ezzat S (1996) Epidermal growth factor and its receptor (EGF‐R) in human pituitary adenomas: EGF‐R correlates with tumor aggressiveness. J Clin Endocrinol Metab 81: 656–662. [DOI] [PubMed] [Google Scholar]
  • 85. Levy A, Lightman SL (1992) Growth hormone‐releasing hormone transcripts in human pituitary adenomas. J Clin Endocrinol Metab 74: 1474–1476. [DOI] [PubMed] [Google Scholar]
  • 86. Levy L, Bourdais J, Mouhieddine B, Benlot C, Villares S, Cohen P, Peillon F, Joubert D (1993) Presence and characterization of the somatostatin precursor in normal human pituitaries and in growth hormone secreting adenomas. J Clin Endocrinol Metab 76: 85–90. [DOI] [PubMed] [Google Scholar]
  • 87. Li Y, Koga M, Kasayama S, Matsumoto K, Arita N, Hayakawa T, Sato B (1992) Identification and characterization of high molecular weight forms of basic fibroblast growth factor in human pituitary adenomas. J Clin Endocrinol Metab 75: 1436–1441. [DOI] [PubMed] [Google Scholar]
  • 88. Lin S, Lin C, Gukovsky I, Lusis A, Sawchenko P, Rosenfeld MG (1993) Molecular basis of the little mouse phenotype and implications for cell type‐specific growth. Nature 364: 208–213. [DOI] [PubMed] [Google Scholar]
  • 89. Lloyd RV, Jin L, Chang A, Kulig E, Camper SA, Ross BD, Downs TR, Frohman LA (1992) Morphologic effects of hGRH gene expression on the pituitary, liver, and pancreas of MT‐hGRH transgenic mice. An in situ hybridization analysis. Am J Pathol 141: 895–906. [PMC free article] [PubMed] [Google Scholar]
  • 90. Loras B, Li JY, Durand A, Trouillas J, Sassolas G, Girod C (1985) GRF et adénomes somatotropes humains. Corrélations in vivo et in vitro entre la libération de GH et les aspects morphologiques et immunocytochimiques. Ann Endocrinol (Paris) 46: 373–382. [PubMed] [Google Scholar]
  • 91. Lüdecke DK, Westphal M, Schabet M, Höllt V (1980) In vitro secretion of ACTH, β‐endorphin and β‐lipotropin in Cushing's disease and Nelson's syndrome. Horm Res 13: 259–279. [DOI] [PubMed] [Google Scholar]
  • 92. Marchionni MA, Goodearl ADJ, Chen MS, Bermingham‐McDonogh O, Kirk C, Hendricks M, Danehy F, Misumi D, Sudhalter J, Kobayashi K, Wroblewski D, Lynch C, Baldassare M, Hiles I, Davis JB, Hsuan JJ, Totty NF, Otsu M, McBurney RN, Waterfield MD, Stroobant P, Gwynne D (1993) Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362: 312–318. [DOI] [PubMed] [Google Scholar]
  • 93. Mason IJ (1994) The ins and outs of fibroblast growth factors. Cell 78: 547–552. [DOI] [PubMed] [Google Scholar]
  • 94. May V, Wilber JF, U'Prichard DC, Childs GV (1987) Persistence of immunoreactive TRH and GnRH in longterm primary anterior pituitary cultures. Peptides 8: 543–558. [DOI] [PubMed] [Google Scholar]
  • 95. McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE (1995) Targeting of transforming growth factor‐α expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 136: 4479–4488. [DOI] [PubMed] [Google Scholar]
  • 96. McCabe CJ, Gittoes NJ, Sheppard MC, Franklyn JA (1999) Thyroid receptor alpha1 and alpha2 mutations in nonfunctioning pituitary tumors. J Clin Endocrinol Metab 84: 649–653. [DOI] [PubMed] [Google Scholar]
  • 97. McNicol AM, Kubba MAG, McTeague E (1988) The mitogenic effects of corticotrophin‐releasing factor on the anterior pituitary gland of the rat. J Endocrinol 118: 237–241. [DOI] [PubMed] [Google Scholar]
  • 98. Miller GM, Alexander JM, Bikkal HA, Katznelson L, Zervas NT, Klibanski A (1995) Somatostatin receptor subtype gene expression in pituitary adenomas. J Clin Endocrinol Metab 80: 1386–1392. [DOI] [PubMed] [Google Scholar]
  • 99. Miller GM, Alexander JM, Klibanski A (1996) Gonadotropin‐releasing hormone messenger RNA expression in gonadotropin tumors and normal human pituitary. J Clin Endocrinol Metab 81: 80–83. [DOI] [PubMed] [Google Scholar]
  • 100. Missale C, Boroni F, Losa M, Giovanelli MA, Zanellato A, Dal Toso R, Balsari A, Spano P (1993) Nerve growth factor suppresses the transforming phenotype of human prolactinomas. Proc Natl Acad Sci USA 90: 7961–7965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Missale C, Boroni F, Sigala S, Zanellato A, Dal Toso R, Balsari A, Spano P (1994) Nerve growth factor directs differentiation of the bipotential cell line GH‐3 into the mammotroph phenotype. Endocrinology 135: 290–298. [DOI] [PubMed] [Google Scholar]
  • 102. Missale C, Losa M, Sigala S, Balsari A, Giovanelli M, Spano PF (1996) Nerve growth factor controls proliferation and progression of human prolactinoma cell lines through an autocrine mechanism. Mol Endocrinol 10: 272–285. [DOI] [PubMed] [Google Scholar]
  • 103. Molitch ME (1987) Pathogenesis of pituitary tumors. Endocrinol Metab Clin North Am 16: 503–527. [PubMed] [Google Scholar]
  • 104. Murdoch GH, Potter E, Nicolaisen AK, Evans RM, Rosenfeld MG (1982) Epidermal growth factor rapidly stimulates prolactin gene transcription. Nature 300: 192–194. [DOI] [PubMed] [Google Scholar]
  • 105. Nelson KG, Takahashi T, Lee DC, Luetteke NC, Bossert NL, Ross K, Eitzman BE, McLachlan JA (1992) Transforming growth factor‐α is a potential medicator of estrogen action in the mouse uterus. Endocrinology 131: 1657–1664. [DOI] [PubMed] [Google Scholar]
  • 106. Newman CB, Cosby H, Friesen HG, Feldman M, Cooper P, De Crescito V, Pilon M, Kleinberg DL (1987) Evidence for a nonprolactin, non‐growth‐hormone mammary mitogen in the human pituitary gland. Proc Natl Acad Sci USA 84: 8110–8114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107. Nicolis G, Shimshi M, Allen C, Halmi NS, Kourides IA (1988) Gonadotropin‐producing pituitary adenoma in a man with long‐standing primary hypogonadism. J Clin Endocrinol Metab 66: 237–241. [DOI] [PubMed] [Google Scholar]
  • 108. Pagesy P, Yuan Li J, Berthet M, Peillon F (1992) Evidence of gonadotropin‐releasing hormone mRNAin the rat anterior pituitary. Mol Endocrinol 6: 523–528. [DOI] [PubMed] [Google Scholar]
  • 109. Patterson JC, Childs GV (1994) Nerve growth factor in the anterior pituitary: regulation of secretion. Endocrinology 135: 1697–1704. [DOI] [PubMed] [Google Scholar]
  • 110. Peillon F, Le Dafniet M, Garnier P, Feinstein MC, Donnadieu M, Barret A, Gautron JP, Brandi AM, Benlot C, Lagoguey A, Lefebvre P, Blumberg‐Tick J, Joubert ( Bression) D (1989) Neurohormones coming from the normal and tumoral human anterior pituitary. Secretion and regulation in vitro [Fre]. Pathologie Biologie 37: 840–845. [PubMed] [Google Scholar]
  • 111. Peillon F, Liappi G, Garnier P, Brandi AM, Evain‐Brion D, Dodeur M, Gautron JP, Donnadieu M, Michard M, Racadot J, Joubert Bression) D (1988) in vitro secretion of somatostatin (SRIH) by human adenomatous somatotropic cells. Relation with somatotropic hormone (GH) release and modulation by thyroliberin (TRH) [Fre]. C R Acad Sci [III] 306: 161–166. [PubMed] [Google Scholar]
  • 112. Penabad JL, Bashey HM, Asa SL, Haddad G, Davis KD, Herbst AB, Gennarelli TA, Kaiser UB, Chin WW, Snyder PJ (1996) Decreased follistatin gene expression in gonadotroph adenomas. J Clin Endocrinol Metab 81: 3397–3403. [DOI] [PubMed] [Google Scholar]
  • 113. Peters KG, Werner S, Chen G, Williams LT (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Develop 114: 233–243. [DOI] [PubMed] [Google Scholar]
  • 114. Plowman GD, Culouscou J‐M, Whitney GS, Green JM, Carlton GW, Foy L, Neubauer MG, Shoyab M (1993) Ligand‐specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 90: 1746–1750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Polk DH, Ervin MG, Padbury JF, Lam RW, Reviczky AL, Fisher DA (1987) Epidermal growth factor acts as a corticotropin‐releasing factor in chronically catheterized fetal lambs. J Clin Invest 79: 984–988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Prysor‐Jones RA, Silverlight JJ, Jenkins JS (1989) Oestradiol, vasoactive intestinal peptide and fibroblast growth factor in the growth of human pituitary tumour cells in vitro . J Endocrinol 120: 171–177. [DOI] [PubMed] [Google Scholar]
  • 117. Qian X, LeVea CM, Freeman JK, Dougall WC, Greene MI (1994) Heterodimerization of epidermal growth factor receptor and wild‐type or kinase‐deficient Neu: A mechanism of interreceptor kinase activation and transphosphorylation. Proc Natl Acad Sci USA 91: 1500–1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Ramsdell JS, Tashjian AH (1985) Thyrotropin‐releasing hormone and epidermal growth factor stimulate prolactin synthesis by a pathway(s) that differs from that used by phorbol esters: dissociation of actions by calcium dependency and additivity. Endocrinology 117: 2050–2060. [DOI] [PubMed] [Google Scholar]
  • 119. Ray DW, Littlewood AC, Clark AJ, Davis JRE, White A (1994) Human small cell lung cancer cell lines expressing the proopiomelanocortin gene have aberrant glucocorticoid receptor function. J Clin Invest 93: 1625–1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120. Reubi JC, Landolt AM (1989) The growth hormone responses to octreotide in acromegaly correlate with adenoma somatostatin receptor status. J Clin Endocrinol Metab 68: 844–850. [DOI] [PubMed] [Google Scholar]
  • 121. Rizzino A (1991) Growth Factors In: Kovacs K, Asa SL (eds) Functional Endocrine Pathology. Blackwell Scientific Publications Inc., Boston , 979–989. [Google Scholar]
  • 122. Roh M, Paterson AJ, Asa SL, Chin E, Kudlow JE (2001) Stage‐sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol Endocrinol 15: 600–613. [DOI] [PubMed] [Google Scholar]
  • 123. Saeger W (1977) Die Morphologie der paraadenomatösen Adenohypophyse. Ein Beitrag zur Pathogenese der Hypophysenadenome. Virchows Arch [Pathol Anat] 372: 299–314. [DOI] [PubMed] [Google Scholar]
  • 124. Sakai Y, Horiba N, Sakai K, Tozawa F, Kuwayama A, Demura H, Suda T (1997) Corticotropin‐releasing factor up‐regulates its own receptor gene expression in corticotropic adenoma cells in vitro . J Clin Endocrinol Metab 82: 1229–1234. [DOI] [PubMed] [Google Scholar]
  • 125. Samsoondar J, Kudlow JE (1987) Partial purification of an adrenal growth factor produced by normal bovine anterior pituitary cells in culture. Endocrinology 120: 929–935. [DOI] [PubMed] [Google Scholar]
  • 126. Sanno N, Jin L, Qian X, Osamura RY, Scheithauer BW, Kovacs K, Lloyd RV (1997) Gonadotropin‐releasing hormone and gonadotropin‐releasing hormone receptor messenger ribonucleic acids expression in nontumorous and neoplastic pituitaries. J Clin Endocrinol Metab 82: 1974–1982. [DOI] [PubMed] [Google Scholar]
  • 127. Sano T, Asa SL, Kovacs K (1988) Growth hormone‐releasing hormone‐producing tumors: clinical, biochemical, and morphological manifestations. Endocr Rev 9: 357–373. [DOI] [PubMed] [Google Scholar]
  • 128. Schechter J, Goldsmith P, Wilson C, Weiner R (1988) Morphological evidence for the presence of arteries in human prolactinomas. J Clin Endocrinol Metab 67: 713–719. [DOI] [PubMed] [Google Scholar]
  • 129. Scheithauer BW, Kovacs K, Randall RV (1983) The pituitary gland in untreated Addison's disease. A histologic and immunocytologic study of 18 adenohypophyses. Arch Pathol Lab Med 107: 484–487. [PubMed] [Google Scholar]
  • 130. Scheithauer BW, Kovacs K, Randall RV, Ryan N (1985) Pituitary gland in hypothyroidism. Histologic and immunocytologic study. Arch Pathol Lab Med 109: 499–504. [PubMed] [Google Scholar]
  • 131. Scheithauer BW, Sano T, Kovacs KT, Young WF, Jr. , Ryan N, Randall RV (1990) The pituitary gland in pregnancy: A clinicopathologic and immunohistochemical study of 69 cases. Mayo Clin Proc 65: 461–474. [DOI] [PubMed] [Google Scholar]
  • 132. Senogles SE, Benovic JL, Amlaiky N, Unson C, Milligan G, Vinitsky R, Spiegel AM, Caron MG (1987) The D2 receptor of anterior pituitary is functionally associated with a pertussis toxin‐sensitive guanine nucleotide binding protein. J Biol Chem 262: 4860–4867. [PubMed] [Google Scholar]
  • 133. Shimon I, Hüttner A, Said J, Spirna OM, Melmed S (1996) Heparin‐binding secretory transforming gene (hst) facilitates rat lactotrope cell tumorigenesis and induces prolactin gene transcription. J Clin Invest 97: 187–195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134. Snyder PJ (1985) Gonadotroph cell adenomas of the pituitary. Endocr Rev 6: 552–563. [DOI] [PubMed] [Google Scholar]
  • 135. Spada A, Bassetti M, Martino E, Giannattasio G, BeckPeccoz P, Sartorio A, Vallar L, Baschieri L, Pinchera A, Faglia G (1985) In vitro studies on TSH secretion and adenylate cyclase activity in a human TSH‐secreting pituitary adenoma. Effects of somatostatin and dopamine. J Endocrinol Invest 8: 193–198. [DOI] [PubMed] [Google Scholar]
  • 136. Spada A, Elahi FR, Arosio M, Sartorio A, Guglielmo L, Vallar L, Faglia G (1987) Lack of desensitization of adenomatous somatotrophs to growth hormone‐releasing hormone in acromegaly. J Clin Endocrinol Metab 64: 585–591. [DOI] [PubMed] [Google Scholar]
  • 137. Spada A, Lania A (1996) Hormone receptors in pituitary adenomas In: Landolt AM, Vance ML, Reilly PL (eds) Pituitary adenomas. Churchill Livingstone, New York , 59–71. [Google Scholar]
  • 138. Suda T (1992) Corticotropin‐releasing factor gene expression. Methods in Neuroscience 9: 23–31. [Google Scholar]
  • 139. Suda T, Tozawa F, Dobashi I, Horiba N, Ohmori N, Yamakado M, Yamada M, Demura H (1993) Corticotropin‐releasing hormone, proopiomelaninocortin, and glucocorticoid receptor gene expression in adrenocorticotropin‐producing tumors in vitro . J Clin Invest 92: 2790–2795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140. Suda T, Tozawa F, Yamada M, Ushiyama T, Tomori N, Sumitomo T, Nakagami Y, Demura H, Shizume K (1988) Effects of corticotropin‐releasing hormone and dexamethasone on proopiomelanocortin messenger RNA level in human corticotroph adenoma cells in vitro . J Clin Invest 82: 110–114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141. Thapar K, Kovacs K, Stefaneanu L, Scheithauer B, Killinger D, Lloyd RV, Smyth HS, Barr A, Thorner MO, Gaylinn B, Laws ER, Jr. (1997) Overexpression of the growth‐hormone‐releasing hormone gene in acromegaly‐associated pituitary tumors. An event associated with neoplastic progression and aggressive behavior. Am J Pathol 151: 769–784. [PMC free article] [PubMed] [Google Scholar]
  • 142. Thorner MO, Perryman RL, Cronin MJ, Rogol AD, Draznin M, Johanson A, Vale W, Horvath E, Kovacs K (1982) Somatotroph hyperplasia: Successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone‐releasing factor. J Clin Invest 70: 965–977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143. Vallar L, Meldolesi J (1989) Mechanisms of signal transduction at the dopamine D2 receptor. Trends in Pharmacological Science 10: 74–77. [DOI] [PubMed] [Google Scholar]
  • 144. Wang CJ, Howng SL, Lin KH (1995) Expression of thyroid hormone receptors in human pituitary tumor cells. Cancer Lett 91: 79–83. [DOI] [PubMed] [Google Scholar]
  • 145. Webster J, Ham J, Bevan JS, Scanlon MF (1989) Growth factors and pituitary tumors. Trends Endocrinol Metab 1: 95–98. [DOI] [PubMed] [Google Scholar]
  • 146. Webster J, Ham J, Bevan JS, Ten Horn CD, Scanlon MF (1991) Preliminary characterization of growth factors secreted by human pituitary tumors. J Clin Endocrinol Metab 72: 687–692. [DOI] [PubMed] [Google Scholar]
  • 147. Weiner RI, Windle J, Mellon P, Schechter J (1991) Role of FGF in tumorigenesis of the anterior pituitary. J Endocrinal Invest 14 (Suppl): S13. [Google Scholar]
  • 148. Werner S, Weinberg W, Liao X, Peters KG, Blessing M, Yuspa SH, Weiner RL, Williams LT (1993) Targeted expression of a dominant‐negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J 12: 2635–2643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149. White BA, Bancroft FC (1983) Epidermal growth factor and thyrotropin‐releasing hormone interact synergistically with calcium to regulate prolactin mRNA levels. J Biol Chem 258: 4618–4622. [PubMed] [Google Scholar]
  • 150. White MC, Daniels M, Kendall‐Taylor P, Turner SJ, Mathias D, Teasdale G (1985) Effects of growth hormone‐releasing factor (1–44) on growth hormone release from human somatotrophinomas in vitro: interaction with somatostatin, dopamine, vasoactive intestinal peptide and cycloheximide. J Endocrinol 105: 269–276. [DOI] [PubMed] [Google Scholar]
  • 151. Wood DF, Johnston JM, Johnston DG (1991) Dopamine, the dopamine D2 receptor and pituitary tumours. Clin Endocrinol (Oxf) 35: 455–466. [DOI] [PubMed] [Google Scholar]
  • 152. Yamada M, Hashimoto K, Satoh T, Shibusawa N, Kohga H, Ozawa Y, Yamada S, Mori M (1997) A novel transcript for the thyrotropin‐releasing hormone receptor in human pituitary and pituitary tumors. J Clin Endocrinol Metab 82: 4224–4228. [DOI] [PubMed] [Google Scholar]
  • 153. Yamada M, Monden T, Satoh T, Sato N, Murakami M, Iriuchijima T, Kakegawa T, Mori M (1993) Pituitary adenomas of patients with acromegaly express thyrotropin‐releasing hormone receptor messenger RNA cloning and functional expression of the human thyrotropin‐releasing hormone receptor gene. Biochem Biophys Res Commun 195: 737–745. [DOI] [PubMed] [Google Scholar]
  • 154. Yan G, Fukabori Y, McBride G, Nikolaropolous S, McKeehan WL (1993) Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)‐FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 13: 4513–4522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155. Yan G, Wang F, Fukabori Y, Sussman D, Hou J, McKeehan WL (1992) Expression and transformation of a variant of the heparin‐binding fibroblast growth factor receptor (flg) gene resulting from splicing of the exon at alternate 3′‐acceptor site. Biochem Biophys Res Commun 183: 423–430. [DOI] [PubMed] [Google Scholar]
  • 156. Ying S‐Y (1988)Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle‐stimulating hormone. Endocr Rev 9: 267–293. [DOI] [PubMed] [Google Scholar]
  • 157. Zimering MB, Katsumata N, Sato Y, Brandi ML, Aurbach GD, Marx SJ, Friesen HG (1993) Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: Relation to pituitary tumor. J Clin Endocrinol Metab 76: 1182–1187. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES