Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2008 Jan 28;7(2):741–752. doi: 10.1111/j.1750-3639.1997.tb01060.x

The Role of Macrophages in Wallerian Degeneration

Wolfgang Brück 1,
PMCID: PMC8098515  PMID: 9161725

Abstract

The present review focuses on macrophage properties in Wallerian degeneration. The identification of hematogenous phagocytes, the involvement of cell surface receptors and soluble factors, the state of activation during myelin removal and the signals and factors leading to macrophage recruitment into degenerating peripheral nerves after nerve transection are reviewed. The main effector cells in Wallerian degeneration are hematogenous phagocytes. Resident macrophages and Schwann cells play a minor role in myelin removal. The macrophage complement receptor type 3 is the main surface receptor involved in myelin recognition and uptake. The signals leading to macrophage recruitment are heterogenous and not yet defined in detail. Degenerating myelin and axons are suggested to participate. The relevance of these findings for immune‐mediated demyelination are discussed since the definition of the role of macrophages might lead to a better understanding of the pathogenesis of demyelination.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

References

  • 1. Allen RC, Loose LD (1976) Phagocytic activation of a luminol‐dependent chemiluminescence in rabbit aiveolar and peritoneal macrophages. Biachem Biophys Res Comm, 69: 245–252. [DOI] [PubMed] [Google Scholar]
  • 2. Ansselin AD, Pollard JD (1990) Immunopathological factors in peripheral nerve allograft rejection: quantification of lymphocyte invasion and major histocompatibility complex expression. J Neurol Sci 96: 75–88. [DOI] [PubMed] [Google Scholar]
  • 3. Auger MJ, Ross JA (1992) The biology of the macrophage. In: The Macrophage, Lewis CE, McGee JO (eds.), pp. 1–74, Oxford University press: Oxford . England . [Google Scholar]
  • 4. Avelino AM, Hart D., Dailey AF, MacKinnon M., Ellegala D., Kliot M. (1995) Differential macrophage responses in the peripheral and central nervous system during Wallerian degeneration of axons. Exp Neurol 136: 183–198. [DOI] [PubMed] [Google Scholar]
  • 5. Azzarelli B., Woodburn R., Olivelle S., Kimbro S., Siakotos A., Taylor M., Lee C‐H, Yen M., Paulsrud J. (1993) The A‐1 antigen: a novel marker in experimental peripheral nerve injury. J Comp Neurol 337: 353–365. [DOI] [PubMed] [Google Scholar]
  • 6. Baker D., O'Neill JK, Turk JL (1991) Cytokines in the central nervous system of mice during chronic relapsing experimental allergic encephalomyelitis. Cell Immunol 134: 505–510. [DOI] [PubMed] [Google Scholar]
  • 7. Bauer J., Ruuls SR, Huitinga I., Dijkstra CD (1996) The role of macrophage subpopulations in autoimmune disease of the central nervous system. Histochem J 28: 83–97. [DOI] [PubMed] [Google Scholar]
  • 8. Bell MD, Lopez‐Gonzalez R., Lawson L., Hughes D., Fraser I., Gordon S., Perry VH (1994) Upregulation of the macrophage scavenger receptor in response to different forms of injury in the CNS. J Neurocytol 23: 605–613. [DOI] [PubMed] [Google Scholar]
  • 9. Beller DI, Springer TA, Schreiber RD (1982) Anti‐Mac‐1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 156: 1000–1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Beuche W., Friede RL (1984) The role of non‐resident cells in Wallerian degeneration. J Neurocytol 13: 767–796. [DOI] [PubMed] [Google Scholar]
  • 11. Beuche W., Friede RL (1985) Millipore diffusion chambers allow dissociation of myelin phagocytosis by non‐resident cells and of allogenic nerve graft rejection. J Neurol Sci 69: 231–246. [DOI] [PubMed] [Google Scholar]
  • 12. Beuche W., Friede RL (1986) Myelin phagocytosis in Wallerian degeneration of peripheral nerves depends on silica‐sensitive, bg/bg‐negative and Fc‐positive monocytes. Brain Res 378: 97–106. [DOI] [PubMed] [Google Scholar]
  • 13. Bigbee JW, Yoshino JE, de Vries GH (1987) Morphological and proliferative responses of cultured Schwann cells following rapid phagocytosis of a myelin‐enriched fraction. J Neurocytol 16: 487–496. [DOI] [PubMed] [Google Scholar]
  • 14. Bisby MA, Chen S. (1990) Delayed Wallerian degeneration in sciatic nerves of C57BL/Ola mice is associated with impaired regeneration of sensory axons. Brain Res 530: 117–120. [DOI] [PubMed] [Google Scholar]
  • 15. Brown MC, Perry VH, Hunt SP, Lapper SR (1994) Further studies on motor and sensory nerve regeneration in mice with delayed Wallerian degeneration. Eur J Neurosci 6: 420–428. [DOI] [PubMed] [Google Scholar]
  • 16. Brown MC, Perry VH, Lunn ER, Gordon S., Heumann R. (1991) Macrophage dependence of peripheral sensory nerve regeneration: possible involvement of nerve growth factor. Neuron 6: 359–370. [DOI] [PubMed] [Google Scholar]
  • 17. Brück W., Brück Y., Friede RL (1992) TNF‐α suppresses CR3‐mediated myelin removal by macrophages. J Neuroimmunol 38: 9–18. [DOI] [PubMed] [Google Scholar]
  • 18. Brück W., Brück Y., Maruschak B., Friede RL (1994) Macrophages properties during peripheral nervous tissue rejection in vitro. J Neuropathol Exp Neurol 53: 51–60. [DOI] [PubMed] [Google Scholar]
  • 19. Brück W., Brück Y., Maruschak B., Friede RL (1995) Mechanisms of macrophage recruitment in Wallerian degeneration. Acta Neuropathol (Berl) 89: 363–367. [DOI] [PubMed] [Google Scholar]
  • 20. Brück W., Friede RL (1989) Activation of macrophages by recombinant interferon‐gamma has no effect on myelin phagocytosis but hinders invasion of nerves in organ culture. J Neuroimmunol 25: 47–55. [DOI] [PubMed] [Google Scholar]
  • 21. Brück W., Friede RL (1990) L‐Fucosidase treatment blocks myelin phagocytosis by macrophages in vitro . J Neuroimmunol 27: 217–227. [DOI] [PubMed] [Google Scholar]
  • 22. Brück W., Friede RL (1990) Anti‐macrophage CR3 antibody blocks myelin phagocytosis by macrophages in vitro . Acta Neuropathol (Bert) 80: 415–418. [DOI] [PubMed] [Google Scholar]
  • 23. Brück W., Friede RL (1991) The role of complement in myelin ohagocytosis during PNS wallerian degeneration. J Neurol Sci 103: 182–187. [DOI] [PubMed] [Google Scholar]
  • 24. Brück W., Huitinga I., Dijkstra CD (1996) Liposome‐mediated monocyte depletion during Wallerian degeneration defines the roe of hematogenous phagocytes in myelin removal. J Neurosci Res 46: 477–484. [DOI] [PubMed] [Google Scholar]
  • 25. Brück W., Maruschak B., Brúck Y. (1995) CD11b and CD18 antisense oligonucleotides suppress myelin removal by macrophages. E J Pathol 1.3: 953–03. [Google Scholar]
  • 26. Brück W., Porada P., Poser S., Rieckmann P., Hanefeld F., Kretzschmar HA, Lassmann H. (1995) Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38: 788–796. [DOI] [PubMed] [Google Scholar]
  • 27. Castano A., Bell MD, Perry VH (1996) Unusual aspects of inflammation in the nervous system: Wallerian degeneration. Neurobiol Aging 17: 745–751. [DOI] [PubMed] [Google Scholar]
  • 28. Chang RJ, Lee SH (1986) Effects of interferon‐gamma and tumor necrosis factor α on the expression of antigen on a murine macrophage cell line. J Immunol 137: 2853–2856. [PubMed] [Google Scholar]
  • 29. Chen S., Bisby MA (1993) Long‐term consequences of impaired regeneration on facial motoneurons in the C57BL/Ola mcuse. J Comp Neurol 335: 576–585. [DOI] [PubMed] [Google Scholar]
  • 30. Clemence A., Mirsky R., Jessen KR (1989) Non‐myelinforming Schwann cells proliferate rapidly during Wallerian degeneration in the rat sciatic nerve. J Neurocytol 18, 185–192. [DOI] [PubMed] [Google Scholar]
  • 31. Coleman DL (1986) Regulation of macrophage phagocytosis. Eur J Clin Microbiol 5: 1–5. [DOI] [PubMed] [Google Scholar]
  • 32. Crang AJ, Blakemore WF (1986) Observations on Wallerian degeneration in explant cultures of cat sciatic nerve. J Neurocytol 15: 471–482. [DOI] [PubMed] [Google Scholar]
  • 33. Crawford TO, Hsieh S‐T, Schryer BL, Glass JD (1995) Prolonged axonal survival in transsected nerves of C57BL/Ola mice is independent of age. J Neurocytol 24: 333–340. [DOI] [PubMed] [Google Scholar]
  • 34. Dijkstra CD, Ce Groot CJA, Huitinga I. (1992) The role of macrophages in demyelination. J Neuroimmunol 40: 183–188. [DOI] [PubMed] [Google Scholar]
  • 35. Feasby TE, Gilbert JJ, Hahn AF, Neilson M. (1987) Complement depletion suppresses Lewis rat experimental allergic neuritis. Brain Res 419: 97–103. [DOI] [PubMed] [Google Scholar]
  • 36. Fernandez‐Valle C., Bunge RP, Bunge BM (1995) Schwann cells degrade myelin and proliferate in the absence of macrophages: evidence from in vitro studies of Wallerian degeneration. J Neurocytol 24: 667–679. [DOI] [PubMed] [Google Scholar]
  • 37. Finsen BR, Sørensen T., Castellano B., Pedersen EB, Zimmer J. (1991) Leukocyte infiltration and glial reactions in xenografts of mouse brain tissue undergoing rejection in the adult rat brain. A light and electron microscopical immunocytochemical study. J Neuroimmunol 32: 159–183. [DOI] [PubMed] [Google Scholar]
  • 38. Finsen BR, Sørensen T., González B., Castellano B., Zimmer J. (1991) Immunological reactions to neural grafts in the central nervous system. Restorative Neurol Neurosci 2: 271–282. [DOI] [PubMed] [Google Scholar]
  • 39. George EB, Glass JD, Griffin JW (1995) Axotomy‐induced axonal degeneration is mediated by calcium influx through ion‐specific channels. J Neurosci 15: 6445–6452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. George R., Griffin JW (1994) Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model Exp Neurol 129: 225–236. [DOI] [PubMed] [Google Scholar]
  • 41. Glass JD, Brushart TM, George EB, Griffin JW (1993) Prolonged survival of transsected nerve fibers in C57BL/Ola mice is an intrinsic characteristic of the axon. J Neurocytol 22: 311–321. [DOI] [PubMed] [Google Scholar]
  • 42. Glass JD, Schryer BL, Griffin JW (1994) Calcium‐mediated degeneration of the axonal cytoskeleton in the Ola mouse. J Neurochem 62: 2472–2475. [DOI] [PubMed] [Google Scholar]
  • 43. Goldenberg PZ, Kwon EE, Benjamins JA, Whitaker JN, Quarles RH, Prineas JW (1989) Opsonization of normal myelin by anti‐myelin antibodies and normal serum. J Neuroimmunol 23: 157–166. [DOI] [PubMed] [Google Scholar]
  • 44. Goodrum JF, Novicki DL (1988) Macrophage‐like cells from explant cultures of rat sciatic nerve produce apolipoprotein E. J Neurosci Res 20: 457–462. [DOI] [PubMed] [Google Scholar]
  • 45. Gordon EJ, Myers KJ, Dougherty JP, Rosen H., Ron Y. (1995) Both anti‐CD11a (LFA‐1) and anti‐CD11b (MAC‐1) therapy delay the onset and diminish the severity of experimental allergic encephalomyelitis. J Neuroimmunol 62: 153–160. [DOI] [PubMed] [Google Scholar]
  • 46. Gordon S., Perry VH, Rabinowitz S., Chung L‐P, Rosen H. (1988) Plasma membrane receptors of the mononuclear phagocyte system. J Cell Sci Suppl 9: 1–26. [DOI] [PubMed] [Google Scholar]
  • 47. Griffin FM, Jr. , Griffin JA (1980) Augmentation of macrophage complement receptor function in vitro. II. Characterization of the effects of a unique lymphokine upon the phagocytic capabilities of macrophages. J Immunol 125: 844–849. [PubMed] [Google Scholar]
  • 48. Griffin FM, Jr. , Mullinax PJ (1984) Augmentation of macrophage complement receptor function in vitro. IV. The lymphokine that activates macrophage C3 receptors for phagocytosis binds to a fucose‐bearing glycoprotein on the macrophage plasma membrane. J Exp Med 160: 1206–1218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Griffin JW, George R., Ho T. (1993) Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52: 553–560. [DOI] [PubMed] [Google Scholar]
  • 50. Griffin JW, George R., Lobato C., Tyor WR, Yan LC, Glass JD (1992) Macrophage responses and myelin clearance during Wallerian degeneration: relevance to immune‐mediated demyelination. J Neuroimmunol 40: 153–166. [DOI] [PubMed] [Google Scholar]
  • 51. Griffin JW, Hoffman PN (1993) Degeneration and regeneration in the peripheral nervous system. In: Peripheral Neuropathy, V Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF (eds.), pp. 361–376, WB Saunders Company: Philadelphia . [Google Scholar]
  • 52. Griffin JW, Stoll G., Li CY, Tyor W., Cornblath DR (1990) Macrophage responses in inflammatory demyelinating neuropathies. Ann Neurol 27: S64–S68. [DOI] [PubMed] [Google Scholar]
  • 53. Hall SM (1993) Observations on the progress of Wallerian degeneration in transsected perpheral nerves of C57BL/Wld mice in the presence of recruited macrophages. J Neurocytol 22: 480–490. [DOI] [PubMed] [Google Scholar]
  • 54. Hann Bonnekoh PG, Scheldt P., Friede RL (1989) Myelin phagocytosis by peritoneal macrophages in organ cultures of mouse peripheral nerve. A new model for studying myelin phagocytosis in vitro . J Neuropathol Exp Neurol 48: 140–153. [DOI] [PubMed] [Google Scholar]
  • 55. Hann PG, Beuche W., Neumann U., Friede RL (1988) The rate of Wallerian degeneration in the absence of immunoglobulins. A study in chick and mouse peripheral nerve. Brain Res 451: 126–132. [DOI] [PubMed] [Google Scholar]
  • 56. Hartung H‐P, Jung S., Stoll G., Zielasek J., Schmidt B., Archelos JJ, Toyka KV (1992) Inflammatory mediators in demyelinating disorders of the CNS and the PNS. J Neuroimmunol 40: 197–210. [DOI] [PubMed] [Google Scholar]
  • 57. Hartung H‐P, Schäfer B., Heininger G., Toyka VK (1988) The role of macrophages and eicosanoids to the pathogenesis of experimental allergic neuritis. Brair 111: 1039–1059. [DOI] [PubMed] [Google Scholar]
  • 58. Hartung H‐P, Schäfer B., Holninger K., Toyka KV (1988) Suppression of experimental autoimmune neuritis cy the oxygen, radical scavengers superoxide dismutase and catalase. Ann Neurol 23: 453–460. [DOI] [PubMed] [Google Scholar]
  • 59. Hartung H‐P, Toyka KV (1990) T‐cell and macrophage activation in experimental autoimmune neuritis and Guilain‐Barré syndrome. Ann Neurol 27 (Suppl.): S57–S63. [DOI] [PubMed] [Google Scholar]
  • 60. Hays AP, Lee SSL, Latov N. (1988) Immune reactive C3d on the surface of myelin sheaths in neuropathy. J Neuroimmunol 18: 231–244. [DOI] [PubMed] [Google Scholar]
  • 61. Hickey WF, Vass K., Lassmann H. (1992) Bone marrow‐derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol 51: 246–256. [DOI] [PubMed] [Google Scholar]
  • 62. Hirsonberg DL, Schwartz M. (1995) Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: a basis for an immune‐brain barrier. J Neuroimmunol 61: 89–96. [DOI] [PubMed] [Google Scholar]
  • 63. Hoffman M., Weinberg JB (1987) Tumor necrosis factor‐α induces increased hydrogen peroxide production and Fc receptor expression, but not increased la antigen expression by peritoneal macrophages. J Leukocyte Biol 42: 704–707. [DOI] [PubMed] [Google Scholar]
  • 64. Huitinga I., Damoiseaux JGMC, Döpp EA, Dijkstra CD (1993) Treatment with anti‐CR3 antibodies ED7 and EDS suppresses experimental allergic encephalomyelits in Lewis rats. Eur J Immunol 23: 709–715. [DOI] [PubMed] [Google Scholar]
  • 65. Huitinga I., Damoiseaux JGMC, van Rooijen N., Döpp EA, Dijkstra CD (1992) Liposome mediated affection of monocytes. Immunobiol 185: 11–19. [DOI] [PubMed] [Google Scholar]
  • 66. Huitinga I., van Rooijen N., de Groot CJA, Uitdehaag BMJ, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172: 1025–1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Jadus MR, Wepsic HT (1992) The role of cytokines in graft‐versus‐host reactions and disease. Bone Marrow Transplant 10: 1–14. [PubMed] [Google Scholar]
  • 68. Jung S., Huitinga I., Schmidt B., Zieasek B., Dijksra CD, Toyka KV, Hartung H‐P (1993) Selective elimination of macrophages by dichlormethylene diphosphorate‐contaimng liposomes suppresses experimental autoimmune neuritis. J Neurol sci 119: 195–202. [DOI] [PubMed] [Google Scholar]
  • 69. Kelso A. (1989) Cytokines, structure, function and synthesis. Curr Opin Immunol 2: 215–225. [DOI] [PubMed] [Google Scholar]
  • 70. Kennedy MK, Torrance DS, Picha KS, Mohler KM (1992) Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL‐10 mRNA expression correlates with recovery. J Immunol 149: 2496–2505. [PubMed] [Google Scholar]
  • 71. Komiyama A., Novioki DL, Suzuki K. (1991) Adhesion and proliferation are enhanced in vitro in Schwann cells from nerve undergoing Wallerian degeneration. J Neurosci Res 29: 308–318. [DOI] [PubMed] [Google Scholar]
  • 72. Koski CL (1990) Characterization of complement‐fixing antibodies to peripheral nerve myelin in Guillain‐Barre syndrome. Ann Neurol 27 (suppl): S44–S47. [DOI] [PubMed] [Google Scholar]
  • 73. Koski CL, Sanders ME, Swoveland PT, Lawley J., Shin ML, Frank MM, Joiner KA (1987) Activation of terminal components of complement in patients with Guillain Barre syndrome and other demyelinating neuropathies. J Clin Invest 80: 1492–1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Koski CL, Vanguri P., Shin ML (1985) Activation of the alternative pathway of complement by human peripheral nerve myelin. J Immunol 134: 1810–1814. [PubMed] [Google Scholar]
  • 75. Lambris JD (1988) The multifunctional role of C3, the third component of complement. Immunol Today 9: 387–393. [DOI] [PubMed] [Google Scholar]
  • 76. Lamont AG, Sette A., Fujinami R., Colon SM, Miles C., Grey HM (1990) Inhibition of experimental autoimmune encephalomyelitis induction in SJL/J mice by using a peptide with high affinity for IAS molecules. J Immunol 145: 1687–1693. [PubMed] [Google Scholar]
  • 77. Lassner F., Schaller E., Steinhoff G., Wonigeit K., Walter GF, Berger A. (1989) Cellular mechanisms of rejection and regeneration in peripheral nerve allografts. Transplantation 48: 386–392. [DOI] [PubMed] [Google Scholar]
  • 78. Law SKA (1988) C3 receptors on macrophages. J Cell Sci Suppl 9: 67–97. [DOI] [PubMed] [Google Scholar]
  • 79. Linington C., Morgan BP, Scolding NJ, Wilkins P., Piddlesden S., Compston DAS (1989) The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain 112: 895–911. [DOI] [PubMed] [Google Scholar]
  • 80. Liu HM, Yang LH, Yang YJ (1995) Schwann cell properties: 3. C‐fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration. J Neuropathol Exp Neurol 54: 487–496. [PubMed] [Google Scholar]
  • 81. Löms Ziegler‐Heitbrock H‐W (1989) The biology of the monocyte system. Eur J Cell Biol 49: 1–12. [PubMed] [Google Scholar]
  • 82. Ludwin SK, Bisby MA (1992) Delayed Wallerian degeneration in the central nervous system of Ola mice: an ultra‐structural study. J Neurol Sci 109: 140–147. [DOI] [PubMed] [Google Scholar]
  • 83. Lumsden CE (1971) The immunogenesis of the multiple sclerosis plaque. Brain Res 28: 365–390. [DOI] [PubMed] [Google Scholar]
  • 84. Lunn ER, Perry VH, Brown MC, Rosen H., Gordon S. (1989) Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci 1: 27–33. [DOI] [PubMed] [Google Scholar]
  • 85. Lyon MF, Ogunkolade BW, Brown MC, Atherton DJ, Perry VH (1993) A gene affecting Wallerian nerve degeneration maps distally on chromosome 4. Proc Natl Acad Sci USA 90: 9717–9720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Meador‐Woodruff JH, Yoshino JE, Bigbee JW, Lewis BL, Devries GH (1985) Differential proliferative responses of cultured Schwann cells to axolemma and myelin‐enriched fractions. II. Morphological studies. J Neurocytol 14: 619–635. [DOI] [PubMed] [Google Scholar]
  • 87. Mithen FA, Colburn S., Birchem R. (1990) Human alpha tumor necrosis factor does not damage cultures containing rat Schwann cells and sensory neurons. Neurosci Res 9: 59–63. [DOI] [PubMed] [Google Scholar]
  • 88. Murray HW, Spitalny GL, Nathan CF (1985) Activation of mouse peritoneal macrophages in vitro and in vivo by interferon‐gamma. J Immunol 134: 1619–1622. [PubMed] [Google Scholar]
  • 89. Müller HW, Minwegen P. (1987) Nonresident macrophages in peripheral nerve of rat: effect of silica on migration, myelin phagocytosis, and apoiipoprotein E expression during Wallerian degeneration. J Neurosci Res 18: 222–229. [DOI] [PubMed] [Google Scholar]
  • 90. Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79: 319–326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Nathan CF, Prendergast TJ, Wiebe ME, Stanley ER, Platzer E., Remold HG, Welte K., Rubin BY, Murray HW (1984) Activation of human macrophages. Comparison of other cytokines with interferon‐gamma. J Exp Med 160: 600–605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Paul JA, Gregson NA (1992) An immunohistochennical study of phospholipase A2 in peripheral nerve during Wallerian degeneration. J Neuroimmunol 39: 31–48. [DOI] [PubMed] [Google Scholar]
  • 93. Perry VH, Brown MC, Gordon S. (1987) The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J Exp Med 165: 1218–1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94. Perry VH, Brown MC, Lunn ER (1991) Very slow retrograde and Wallerian degeneration in the CNS of C57BL/Ola mice. Eur J Neurosci 3: 102–105. [DOI] [PubMed] [Google Scholar]
  • 95. Perry VH, Brown MC, Lunn ER, Tree P., Gordon S. (1990) Evidence that very slow Wallerian degeneration in C57BL/Ola mice is an intrinsic property of the peripheral nerve. Eur J Neurosci 2: 802–808. [DOI] [PubMed] [Google Scholar]
  • 96. Perry VH, Tsao JW, Fearn S., Brown MC (1995) Radiation‐induced reductions in macrophage recruitment have only slight effects on myelin degeneration in sectioned peripheral nerves of mice. Eur J Neurosci 7: 271–280. [DOI] [PubMed] [Google Scholar]
  • 97. Reichert F., Levitzky R., Rotshenker S. (1996) Interleukin 6 in intact and injured mouse peripheral nerves. Eur J Neurosci 8: 530–535. [DOI] [PubMed] [Google Scholar]
  • 98. Reichert F., Saada A., Rotshenker S. (1994) Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: phagocytosis and the galactose‐specific lectin MAC‐2. J Neurosci 14: 3231–3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99. Rosen H., Gordon S. (1987) Monoclonal antibody to the murine type 3 complement receptor inhibits adhesion of myelomonocytic cells in vitro and inflammatory cell recruitment in vivo . J Exp Med 166: 1685–1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100. Russell SW, Pace JL (1987) The effects of interferons on macrophages and their precursors. Vet Immunol Immunopathol 15: 129–165. [DOI] [PubMed] [Google Scholar]
  • 101. Scheidt P., Friede RL (1987) Myelin phagocytosis in Wallerian degeneration. Properties of millipore diffusion chambers and immunohistochemical identification of cell populations, Acta Neuropathol (Berl) 75: 77–84. [DOI] [PubMed] [Google Scholar]
  • 102. Scheidt P., Waehneldt TV, Beuche W., Friede RL (1986) Changes of myelin proteins during Wallerian degeneration in situ and in millipore diffusion chambers preventing active phagocytosis. Brain Res 379: 380–384. [DOI] [PubMed] [Google Scholar]
  • 103. Schubert T., Friede RL (1981) The role of endoneural fibroblasts in myelin degradation. J Neuropathol Exp Neurol 40: 134–154. [DOI] [PubMed] [Google Scholar]
  • 104. Selmaj KW, Raine CS (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro . Ann Neurol 23: 339–346. [DOI] [PubMed] [Google Scholar]
  • 105. Sharon N. (1984) Carbohydrates as recognition determinants in phagocytosis and in lectin‐mediated killing of target cells. Biol Cell 51: 239–246. [DOI] [PubMed] [Google Scholar]
  • 106. Smith SR, Terminelli C., Kenworthy‐Bott L., Phillips DL (1991) A study of cytokine production in acute graft‐vs‐host disease. Cell Immunol 134: 336–348. [DOI] [PubMed] [Google Scholar]
  • 107. Stoll G., Griffin JW, Li CY, Trapp BD (1989) Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol 18: 671–683. [DOI] [PubMed] [Google Scholar]
  • 108. Stoll G., Hartung H‐P (1992) The role of macrophages in degeneration and immune‐mediated demyelination of the peripheral nervous system. Adv Neuroimmunol 2: 163–179. [Google Scholar]
  • 109. Stoll G., Jung S., Jander S., van der Meide P., Hartung H‐P (1993) Tumor necrosis factor‐α in immune‐mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. J Neuroimmunol 45: 175–182. [DOI] [PubMed] [Google Scholar]
  • 110. Stoll G., Trapp BD, Griffin JW (1989) Macrophage function curing Wallerian degeneration of rat optic nerve: clearance of degenerating myelin and la expression. J Neurosci 9: 2327–2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Tanaka K., Zhang Q‐L, Webster Hd (1992) Myelinated fiber regeneration after sciatic nerve crush: morphometric observations in young adult and aging mice and the effects of macrophage suppression and conditioning lesions. Exp Neurol 118: 53–61. [DOI] [PubMed] [Google Scholar]
  • 112. Thomson CE, Mitchell IS, Griffiths IR, Morrison S. (1991) Retarded Wallerian degeneration following peripheral nerve transection in C57BL/6/Ola mice is associated with delayed down‐regulation of the PO gene. Brain Res 538: 157–160. [DOI] [PubMed] [Google Scholar]
  • 113. Trotter J., DeJong LJ, Smith ME (1986) Opsonization with antimyelin antibody increases the uptake and intracellular metabolism of myelin in inflammatory macrophages. J Neurochem 47: 779–789. [DOI] [PubMed] [Google Scholar]
  • 114. Troutt AB, Kelso A. (1992) Enumeration of lymphokine mRNA‐containing cells in vivo in a murine graft‐versus‐host reaction using the PCR. Proc Natl Acad Sci USA 89: 5276–5280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Unanue ER (1989) Macrophages, antigen‐presenting cells, and the phenomena of antigen handling and presentation. In: Fundamental Immunology, Paul WE (Ed.) pp. 95–115, Raven Press Ltd.: New York . [Google Scholar]
  • 116. van Rooijen N. (1989) The liposome‐mediated macrophage ‘suicide’ technique. J Immunol Methods 124: 1–6. [DOI] [PubMed] [Google Scholar]
  • 117. van Rooijen N., Kors N., V.d. Ende M., Dijkstra CD (1990) Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome‐encapsulated dichloromethylene diphosphonate. Cell Tissue Res 260: 215–222. [DOI] [PubMed] [Google Scholar]
  • 118. van Rooijen N., Sanders A. (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174: 83–93. [DOI] [PubMed] [Google Scholar]
  • 119. Vanguri P., Shin ML (1986) Activation of complement by myelin: identification of CI‐binding proteins of human myelin from central nervous tissue, J Neurochem 46: 1535–1541. [DOI] [PubMed] [Google Scholar]
  • 120. Vass K., Hickey WF, Schmidt RE, Lassmann H. (1993) Bone marrow‐derived elements in the peripheral nervous system. An Immunohistochemical and ultrastructural investigation in chimeric rats. Lab Invest 69: 275–282. [PubMed] [Google Scholar]
  • 121. Venezie RD, Toews AD, Morell P. (1995) Macrophage recruitment in different models of nerve injury: lysozyme as a marker for active phagocytosis, J Neurosci Res 40: 99–107. [DOI] [PubMed] [Google Scholar]
  • 122. Vriesendoro FJ, Flynn RE, Pappoila MA, Koski CL (1995) Complement depletion affects demyelination and Inflammation in experimental allergic neuritis. J Neuroimmunol 58: 157–165. [DOI] [PubMed] [Google Scholar]
  • 123. Waller A. (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibers. Phil Trans R Soc Lond (Biol) 140: 423–429. [Google Scholar]
  • 124. Wright SD, Silverstein SC (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158: 2016–2023. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES