Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(4):695–705. doi: 10.1111/j.1750-3639.1999.tb00551.x

Fibrillogenesis of Tau: Insights from Tau Missense Mutations in FTDP‐17

Shu‐Hui Yen 1,, Michael Hutton 2, Michael DeTure 1, Li‐Wen Ko 1, Parimala Nacharaju 1
PMCID: PMC8098577  PMID: 10517508

Abstract

Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP‐17) is a neurological disorder associated with tau pathology. Tau deposits in FTDP‐17 brains consist of polymerized filaments of hyperphosphorylated tau, the morphology of which is determined by the nature of the tau gene mutation observed in each case. A number of mutations associated with FTDP‐17 have been identified in the 5'splice site of exon 10 and in exons 9–13 of the tau gene. The exon 10 5'splice site mutations disrupt alternative splicing and thus alter the ratio of 4R and 3R Tau isoforms. The majority of Tau missense mutations decrease its ability to bind tubulin and promote microtubule assembly. The extent of reduction varies depending on the site and nature of the mutation. Some Tau missense mutations also have a direct effect on the rate and the extent of tau filament formation. In the presence of polymerization‐inducing agents such as heparin or arachidonic acid, mutant tau forms polymers more efficiently than wild type tau in vitro. Tau mutations affect polymerization at both nucleation and elongation phases. One mutation (R406W) is also known to alter the susceptibility of tau to phosphorylation. Expression of mutant tau in cultured cells changes the cytoskeletal integrity of CHO and COS‐7 cells, but none of the tau transfected cells display tau filament inclusions. These findings suggest involvement of at least two mechanisms in the pathogenesis of FTDP‐17.

Full Text

The Full Text of this article is available as a PDF (292.4 KB).

References

  • 1. Arawaja S, Usami M, Sahara N, Schellenberg GD, Lee G, Mori H (1999) The tau mutation (Val 337met) disrupts cytoskeletal networks of microtubules. NeuroReport 10: 993–997. [DOI] [PubMed] [Google Scholar]
  • 2. Arrasate M, Perez M, Armas‐Portela R, Avila J (1999) Polymerization of tau peptides into fibrillary structures. The effect of FTDP‐17 mutations. FEBS Lett 446: 199–202. [DOI] [PubMed] [Google Scholar]
  • 3. Bancher C, Brunner C, Lassmann H, Budke H, Jellinger J, Wiche G, Seitelberger F, Grundke‐Iqbal I, Iqbal K, Wisniewski HM (1991) Neurofibrillary tangles in Alzheimer's disease and progressive supranuclear palsy: antigenic similarities and differences. Microtubule‐associated protein tau antigenicity is prominent in all types of tangles. Brain Res 539: 11–18. [DOI] [PubMed] [Google Scholar]
  • 4. Baum L, Seger R, Woodgett JR, Kawabata S, Maruyama K, Koyama M, Silver J, Saitoh T (1995) Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement. Brain Res 34: 1–17. [DOI] [PubMed] [Google Scholar]
  • 5. Braak H, Braak E, Grundke‐lqbal K (1986) Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci Lett 65: 351–355. [DOI] [PubMed] [Google Scholar]
  • 6. Buee Scherrer V, Hof PR, Buee L, Leveugle B, Vermersch P, Perl DP, Olanow CW, Delacourte A (1996) Hyperphosphorylated tau proteins differentiate corticobasal degeneration and Pick's disease. Acta Neuropathol 91: 351–359. [DOI] [PubMed] [Google Scholar]
  • 7. Bugiani O, Murrell JR, Giaccone G, Hasegawa M, Ghigo G, Tabaton M, Morbin M, Primavera A, Carella F, Solaro C, Grisoli M, Savoiardo M, Spillantini MG, Tagliavini F, Goedert M, Ghetti B (1999) Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol 58: 595–605. [DOI] [PubMed] [Google Scholar]
  • 8. Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50′s selectivity for Alzheimer's disease pathology. J Biol Chem 271: 32789–32795. [DOI] [PubMed] [Google Scholar]
  • 9. Clark LN, Poorkaj P, Wszolek Z, Geschwind DH, Nasreddine ZS, Miller B, Li D, Payami H, Awert F, Markopoulou K, Andreadis A, D'Souza I, Lee VM, Reed L, Trojanowski JQ, Zhukareva V, Bird T, Schellenberg G, Wilhelmsen KC (1998) Pathogenic implications of mutations in the tau gene in pallido‐ponto‐nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci USA 95: 13103–13107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Crowther RA, Olesen OF, Smith MJ, Jakes R, Goedert M (1994) Assembly of Alzheimer‐like filaments from full‐length tau protein. FEBS Letter 337: 135–138. [DOI] [PubMed] [Google Scholar]
  • 11. Dayanandan R, Van Slegtenhorst M, Mack TGA, Ko L, Yen SH, Leroy K, Brion JP, Anderton BH, Hutton M, Lovestone S (1999) Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett 446: 228–232. [DOI] [PubMed] [Google Scholar]
  • 12. Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y (1998) Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and phosphorylation. Ann Neurol 43: 193–204. [DOI] [PubMed] [Google Scholar]
  • 13. Deture M, Yen S, Ko L, Nacharaju P, Lewis J, Van Slegtenhorst M, Hutton M, Yen SH (1999) Missense tau mutations identified in FTDP‐17 have a small effect on tau‐microtubule interactions. Brain Res (in Press). [DOI] [PubMed] [Google Scholar]
  • 14. Dickson DW, Feany MB, Yen S‐H, Mattiace LA; Davies P (1998) Cytoskeletal pathology in non‐Alzheimer degenerative dementia: new lesions in diffuse Lewy body disease, Pick's disease, and corticobasal degeneration. J Neural Transm 47: 31–46. [DOI] [PubMed] [Google Scholar]
  • 15. Dickson DW (1998) Pick's disease: a modern approach. Brain Pathol 8: 339–354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intra‐nuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993. [DOI] [PubMed] [Google Scholar]
  • 17. Drewes G, Ebneth A, Mandelkow EM (1998) MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 23: 307–311. [DOI] [PubMed] [Google Scholar]
  • 18. Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103: 2739–2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Dudek SM, Johnson GVW (1993) Transglutaminase catalyzes the formation of SDS‐insoluble, Alz50‐reactive polymers of tau. J Neurochem 61: 1159–1162. [DOI] [PubMed] [Google Scholar]
  • 20. Feany MB, Ksiezak‐Reding H, Liu WK, Vincent I, Yen SH, Dickson DW (1995) Epitope expression and hyperphosphorylation of tau protein in corticobasal degeneration: Differentiation from progressive supranuclear palsy. Acta Neuropathol 90: 37–43. [DOI] [PubMed] [Google Scholar]
  • 21. Forno LS (1986) The Lewy body in Parkinson's disease In: Yahr MD, Bergmann KJ (eds) Parkinson's Disease, Advances in Neurology, Vol. 45, Raven Press: New York pp. 35–43. [PubMed] [Google Scholar]
  • 22. Friedhoff P, von Bergen M, Mandelkow EM, Davies P, Mandelkow E (1999) A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Sci Acad USA 95: 15712–15717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule‐associated protein tau: sequences and localization in Neurofibrillary tangles of Alzheimer's disease. Neuron 3: 519–526. [DOI] [PubMed] [Google Scholar]
  • 24. Goedert M, Jakes R, Crowther RA, Cohen P, Vanmechelen E, Vandermeeren M, Cras P (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer's disease: Identification of phosphorylation sites in tau protein. Biochem J 301: 871–877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Goedert M, Jakes R, Spillantini M, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule‐associated protein tau into Alzheimer‐like filaments induced by sulfated glycosaminoglycans. Nature 383: 550–553. [DOI] [PubMed] [Google Scholar]
  • 26. Goedert M, Jakes R, Crowther A (1999) Effects of frontotemporal dementia FTDP‐17 mutations on heparin‐induced assembly of tau filaments. FEBS Lett: 450: 306–311. [DOI] [PubMed] [Google Scholar]
  • 27. Hasegawa M, Crowther RA, Jakes B, Goedert M (1997) Alzheimer's‐like changes in microtubule‐associated protein tau induced by sulfated glycosaminoglycans‐inhibition of microtubule binding, stimulation of phosphorylation, and filament assembly depend on the degree of sulfation. J Biol Chem 272: 33118–33124. [DOI] [PubMed] [Google Scholar]
  • 28. Hasegawa M, Smith MJ, Goedert M (1998) Tau proteins with FTDP‐17 mutations have a reduced ability to promote microtubule assembly. FEBS Lett 437: 207–210. [DOI] [PubMed] [Google Scholar]
  • 29. Hasegawa M, Smith MJ, Iijima M, Tabira T, Goedert M (1999) FTDP‐17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Letter 443: 93–96. [DOI] [PubMed] [Google Scholar]
  • 30. Himmler A (1989) Structure of the bovine tau gene: alternatively spliced transcripts generates a protein family. Mol Cell Biol 9: 1389–1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Hirano A, Zimmerman HM (1962) Alzheimer's neurofibrillary changes. Arch Neurol 7: 73–88. [DOI] [PubMed] [Google Scholar]
  • 32. Hoffman R, Lee VM‐Y, Leight S, Varga I, Otvos L Jr (1997) Unique Alzheimer's disease paired helical filament specific epitopes involve double phosphorylation at specific sites. Biochemistry 36: 8114–8124. [DOI] [PubMed] [Google Scholar]
  • 33. Hong M, Zhukareva V, Vogelsberg‐Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM (1998) Mutation‐specific functional impairments in distinct tau isoforms of hereditary FTDP‐17. Science 282: 1914–1917. [DOI] [PubMed] [Google Scholar]
  • 34. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering‐Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, De Graaff E, Wauters E, Van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski JQ, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd P, Hayward N, Kwok JBJ, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, Van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′‐splice‐ site‐mutations in tau with the inherited dementia FTDP‐17. Nature 393: 702–705. [DOI] [PubMed] [Google Scholar]
  • 35. Jicha GA, Lane E, Vincent I, Otvos L Jr, Hoffman R. Davies P (1997) A conformation‐ and phosphorylation‐dependent antibody recognizing the paired helical filaments of Alzheimer's disease. J Neurochem 69: 2087–2095. [DOI] [PubMed] [Google Scholar]
  • 36. Jicha GA, Rockwood JM, Berenfeld B, Hutton M, Davies P (1999) Altered conformation of recombinant frontotemporal dementia‐17 mutant tau proteins. Neurosci Lett 260: 153–156. [DOI] [PubMed] [Google Scholar]
  • 37. Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E (1996) RNA stimulates aggregation of microtubule‐associated protein tau into Alzheimer‐like paired helical filaments. FEBS Lett 399: 344–349. [DOI] [PubMed] [Google Scholar]
  • 38. Kenessey A, Yen S‐H, Liu W‐K, Yang X‐R, Dunlop DS (1995) Detection of D‐aspartate in tau proteins associated with Alzheimer paired helical filaments. Brain Res 675: 183–189. [DOI] [PubMed] [Google Scholar]
  • 39. Kidd M (1964) Alzheimer's disease‐an electron microscopical study. Brain 67: 307–320. [DOI] [PubMed] [Google Scholar]
  • 40. Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989) Developmentally regulated expression of specific tau sequence. Neuron 2: 1389–1397. [DOI] [PubMed] [Google Scholar]
  • 41. Ksiezak‐Reding H, Yen SH (1991) Structural stability of paired helical filaments requires microtubule‐binding domains of tau: a model for self‐association. Neuron 6: 717–728. [DOI] [PubMed] [Google Scholar]
  • 42. Ksiezak‐Reding H, Morgan K, Mattiace LA, Davies P, Liu WK, Yen SH, Weidenheim K, Dickson DW (1994) Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration. Am J Pathol 145: 1496–508. [PMC free article] [PubMed] [Google Scholar]
  • 43. Ko LW, Ko EC, Nacharaju P, Liu WK, Chang E, Kenessey A, Yen SH (1999) An immunochemical study on tan glycation in paired helical filaments. Brain Res 830: 301–313. [DOI] [PubMed] [Google Scholar]
  • 44. Liu WK, Ksiezak‐Reding H, Yen (1991) Abnormal tau proteins from Alzheimer's disease brains. Purification and amino acid analysis. J Biol Chem 266: 21723–21727. [PubMed] [Google Scholar]
  • 45. Liu W‐K, Dickson DW, Yen SH (1994) Amino acid residues 226–240 of t, which encompass the first Iys‐ser‐pro site of t, are partially phosphorylated in Alzheimer paired helical filament‐t. J Neurochem 62: 1055–1061. [DOI] [PubMed] [Google Scholar]
  • 46. LoPresti P, Szuchet S, Papasozomenos SC, Zinkowski PR, Binder LI (1995) Functional implications for the microtubule‐associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci USA 92: 10369–10373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Lovestone S, Reynolds CH (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neurosci 78: 309–324. [DOI] [PubMed] [Google Scholar]
  • 48. Mandelkow EM, Schweers O, Drews G, Biernat J, Gustke N, Trinczek B, Mandelkow E (1996) Structure, microtubule interactions and phosphorylation of tau. Ann NY Acad Sci 777: 96–106. [DOI] [PubMed] [Google Scholar]
  • 49. Matsumura N, Yamazaki T, Ihara Y (1999) Stable expression in Chinese hamster ovary cells of mutated tau genes causing frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP‐17). Am J Pathol 154: 1649–1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Mori H, Kondo J, Ihara Y (1987) Ubiquitin in a component of paired helical filaments in Alzheimer's disease. Science 235: 1641–1644. [DOI] [PubMed] [Google Scholar]
  • 51. Morishima‐Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Watanabe A, Titani K, Ihara Y (1995) Hyperphosphorylation of tau in PHF. Neurobiol Aging 16: 365–367. [DOI] [PubMed] [Google Scholar]
  • 52. Nacharaju P, Lewis J, Easson C, Yen S, Hackett J, Hutton M, Yen SH (1999) Accelerated filament formation from tau protein with specific FTDP‐17 missense mutations. FEBS Lett 447: 195–199. [DOI] [PubMed] [Google Scholar]
  • 53. Nishimura T, Ideda K, Akiyama H, Kondo H, Kato M, Li F, Iseki E, Kosaka K (1995) Immunohistochemical investigation of tau‐positive structures in the cerebral cortex of patients with progressive supranuclear palsy. Neurosci Lett 201: 123–126. [DOI] [PubMed] [Google Scholar]
  • 54. Paudel H, Li W (1999) Heparin‐induced conformational change in microtubule‐associated protein tau as detected by chemical cross‐linking and phosphopeptide mapping. J Biol Chem 274: 8029–8038. [DOI] [PubMed] [Google Scholar]
  • 55. Perez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J (1996) Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau‐tau interaction. J Neurochem 67: 1183–1190. [DOI] [PubMed] [Google Scholar]
  • 56. Perry G, Siedlak SL, Richey P, Kawai M, Cras P, Kalaria RN, Galloway PG, Scardina M, Cordell B, Greenberg BD, Ledbetter SR, Gambetti P (1991) Association of heparan sulfate proteoglycan containing lesions of Alzheimer's disease and Down's syndrome. J Neurosci 11: 3679–3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Poorkaji P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A, Wiederholt WC, Raskin M, Schellenberg GD (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43: 815–825. [DOI] [PubMed] [Google Scholar]
  • 58. Probst A, Tolnay M, Langui D, Goedert M, Spillantini MG (1996) Pick's disease: hyperphosphorylated tau protein segregates to the somatoaxonal compartment. Acta Neuropathol 92: 588–596. [DOI] [PubMed] [Google Scholar]
  • 59. Prusiner SB (1996) Human prion diseases and neurodegeneration. Curr Topics Microbiol Immunol 207: 1–17. [DOI] [PubMed] [Google Scholar]
  • 60. Qi Z, Shu XD, Goedert M, Fujita DJ, Wang JH (1998) Effect of heparin on phosphorylation site specificity of neuronal cdc2‐kinase. FEBS Lett 423: 227–230. [DOI] [PubMed] [Google Scholar]
  • 61. Reed LA, Grabowski TJ, Schmidt ML, Morris JC, Goate A, Solodkin A, Van Hoesen GW, Schelper RL, Talbot CJ, Wragg MA, Trojanowski JQ (1997) Autosomal dominant dementia with widespread neurofibrillary tangles. Ann Neurol 42: 564–572. [DOI] [PubMed] [Google Scholar]
  • 62. Reed LA, Schmidt ML, Wszolek ZK, Balin BJ, Soontornniyomkij V, Lee VM, Trojanowski JQ, Schelper RL (1998) The neuropathology of a chromosome 17‐linked autosomal dominant parkinsonism and dementia (“pallido‐ponto‐nigral degeneration”). J Neuropathol Exp Neurol 57: 588–601. [DOI] [PubMed] [Google Scholar]
  • 63. Rizzu P, Van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A, Niermeijer MF, Hillebrand M, Ravid R, Oostra BA, Goedert M, Van Duijn CM, Heutink P (1999) High prevalence of mutations in the microtubule‐associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Hum Gen 64: 414–421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Roberts GW (1988) Immunocytochemistry of neurofibrillary tangles in dementia pugilistica and Alzheimer's disease: Evidence for common genesis. Lancet 2: 1456–458. [DOI] [PubMed] [Google Scholar]
  • 65. Schmidt MML, Huang R, Martin JA, Henley J, Mawal‐Dewan M, Hurting HI, Lee VM, Trojanowski JQ (1996) Neurofibrillary tangles in Progressive supranuclear palsy contain the same tau epitopes identified in Alzheimer's disease PHF‐tau. J Neuropathol Exp Neurol 55: 534–539. [DOI] [PubMed] [Google Scholar]
  • 66. Schneider A, Bieeernat J, Von Bergen M, Mandelkow E, Mandelkow EM (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38: 3549–3558. [DOI] [PubMed] [Google Scholar]
  • 67. Schweers O, Schonbrunn‐Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for b‐structure. J Biol Chem 269: 24290–24297. [PubMed] [Google Scholar]
  • 68. Schweers O, Mandelkow EM, Biernat J, Mandelkow E (1995) Oxidation of cysteine‐322 in the repeat domain of microtubule‐associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci USA 92: 8463–8467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Sergeant N, Wattez A, Delacourte A (1999) Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: Tau pathologies with exclusively “exon 10” isoforms. J Neurochem 72: 1243–1249. [DOI] [PubMed] [Google Scholar]
  • 70. Shankar SK, Yanagihara R, Garruto RM, Grundke‐Iqbal I, Kosik KS, Gajdusek DC (1989) Immunocytochemical characterization of neurofibrillary tangles in amyotrophic lateral sclerosis and parkinsonism‐dementia of Guam. Ann Neurol 25: 146–151. [DOI] [PubMed] [Google Scholar]
  • 71. Snow A, Mar H, Nochlin D, Dekiguchi RT, Kimata K, Koooike Y, Wright TN (1990) Early accumulation of heparan sulfate in neurons and in the beta‐amyloid protein with the neurofibrillary tangles of Alzheimer's disease. Am J Pathol 137: 1253–1270. [PMC free article] [PubMed] [Google Scholar]
  • 72. Spillantini MG, Crowther RA, Goedert M (1996) Comparison of the neurofibrillary pathology in Alzheimer's disease and familial presenile dementia with tangles. Acta Neuropathol 92: 42–48. [DOI] [PubMed] [Google Scholar]
  • 73. Spillantini MG, Goedert M, Crowther RA, Murrell JR, Farlow MR, Ghetti B (1997) Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci USA 94: 4112–4118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Spillantini MG, Bird TD, Ghetti B (1998) Frontotemporal dementia and Parkinsonism linked to chromosome 17: A new group of tauopathies. Brain Path 8: 387–402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopapthy with presenile dementia. Proc Natl Acad Sci USA 95: 7737–7741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Spillantini MG, Crowther RA, Kamphorst W, Heutink P, Van Swieten JC (1998) Tau pathology in two Dutch families with mutations in the microtubule‐binding region of tau. Am J Pathol 153: 1359–1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Takamatsu J, Kondo A, Ikegami K, Kimura T, Fujii H, Mitsuyama Y, Hashizume Y (1998) Selective expression of Ser 199/202 phosphorylated tau in a case of frontotemporal dementia. Dementia Geriatr Cognitive Dis 9: 82–89. [DOI] [PubMed] [Google Scholar]
  • 78. Wang J‐Z; Grundke‐Iqbal I; Iqbal K (1996) Glycosylation of microtubule‐associated protein tau: An abnormal posttranslational modification in Alzheimer's disease. Nature Med 2: 871–875. [DOI] [PubMed] [Google Scholar]
  • 79. Wille H, Drewes G, Biernat J, Mandelkow EM, Mandelkow E (1992) Alzheimer‐like paired helical filaments and antiparallel dimers formed from microtubule‐associated protein tau in vitro . Cell Biol 118: 573–584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Wilson DM, Binder LI (1997) Free fatty acids stimulate the polymerization of tau and amyloid b peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer's disease. Am J Pathol 150: 2181–2195. [PMC free article] [PubMed] [Google Scholar]
  • 81. Wischik, CM , Novak M, Edwards PC, Kklug A, Tichelaar W, Crowther RA (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85: 4884–4888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Wisniewski HM, Terry RD, Hirano A (1970) Neurofibrillary pathology. J Neuropathol Exp Neurol 29: 163–176, 1970. [PubMed] [Google Scholar]
  • 83. Wolozin BL, Davies P (1987) Alzheimer‐related neuronal protein A68: specificity and distribution. Ann Neurol 22: 521–526. [DOI] [PubMed] [Google Scholar]
  • 84. Yagishita S, Itoh Y, Nan W, Amano N (1981) Reappraisal of the fine structure of Alzheimer's neurofibrillary tangles. Acta Neuropathol 54: 239–246. [DOI] [PubMed] [Google Scholar]
  • 85. Yan S‐D, Chen X, Schmid A‐M, Brett J, Godman G, Zou Y‐S, Scott CW, Caputo C, Frappier T, Smith MA, Perry G, Yen SH, Stern D (1994) Glycated tau protein in Alzheimer disease: A mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 91: 7787–7791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Yen SH, Liu W‐K, Hall F, Yan SD, Stern D; Dickson DW (1995) Alzheimer neurofibriiiary lesions: Molecular nature and potential roles of different components. Neurobiol Aging 16: 381–387. [DOI] [PubMed] [Google Scholar]
  • 87. Yen SH, Nacharaju P, Ko L, Kenessey G, Liu WK (1998) Microtubule‐associated protein tau: Biochemical modifications, degradation, and Alzheimer's disease In: Wang E, Snyder DS (eds) Handbook of the Aging Brain, Academic Press: San Diego pp. 153–169. [Google Scholar]
  • 88. Zheng‐Fischhofer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E (1998) Sequential phosphorylation of tau by glycogen synthase kinase‐3‐beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer‐specific epitope of antibody AT100 and requires a paired‐helical filament‐like conformation. Eur J Biochem 252: 542–552. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES