Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Apr 9;77(Pt 5):500–503. doi: 10.1107/S2056989021003339

Lithium dipotassium citrate monohydrate, LiK2C6H5O7(H2O)

Andrew J Cigler a, James A Kaduk a,*
PMCID: PMC8100261  PMID: 34026253

The crystal structure of lithium dipotassium citrate has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques.

Keywords: powder diffraction, density functional theory, citrate lithium, potassium

Abstract

The crystal structure of dilithium potassium citrate monohydrate, Li+·2K+·C6H5O7 3−·H2O or LiK2C6H5O7·H2O, has been solved by direct methods and refined against laboratory X-ray powder diffraction data, and optimized using density functional techniques. The complete citrate trianion is generated by a crystallographic mirror plane, with two C and three O atoms lying on the reflecting plane, and chelates to three different K cations. The KO8 and LiO4 coordination polyhedra share edges and corners to form layers lying parallel to the ac plane. An intra­molecular O—H⋯O hydrogen bond occurs between the hydroxyl group and the central carboxyl­ate group of the citrate anion as well as a charge-assisted inter­molecular O—H⋯O link between the water mol­ecule and the terminal carboxyl­ate group. There is also a weak C—H⋯O hydrogen bond.

Chemical context  

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018). The study was extended to lithium hydrogen citrates in Cigler & Kaduk (2018), to sodium hydrogen citrates in Cigler & Kaduk (2019a ), to sodium dirubidium citrates in Cigler & Kaduk (2019b ) and to dilithium potassium citrate (Cigler & Kaduk, 2019c ). We now report the synthesis and structure of the title compound, LiK2C6H5O7(H2O), which represents a further extension to lithium dipotassium citrates.graphic file with name e-77-00500-scheme1.jpg

Structural commentary  

The structure of LiK2C6H5O7(H2O) was solved and refined from powder data and optimized by density functional theory (DFT) calculations (see Experimental section) and is illustrated in Fig. 1. The root-mean-square Cartesian displacement of the hon-hydrogen atoms in the refined and optimized structures is 0.047 Å (Fig. 2). The excellent agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014). All of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul geometry check (Macrae et al., 2020). The citrate anion occurs in the trans,trans-conformation (about C2—C3 and the symmetry-related atoms), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018). Since C3, the central C6/O15/O16 carboxyl­ate group and the O17—H18 hy­droxy group lie on the mirror plane, they exhibit the normal planar arrangement. The Mulliken overlap populations indicate that both the Li—O and K—O bonds have some covalent character, but that the Li—O bonds are more covalent.

Figure 1.

Figure 1

The crystal structure of LiK2C6H5O7(H2O) with the atom numbering and 50% probability spheroids.

Figure 2.

Figure 2

Comparison of the refined and optimized structures of LiK2C6H5O7(H2O). The refined structure is in red, and the DFT-optimized structure is in blue.

The C6H5O7 3– citrate anion doubly chelates to three different K19 ions though O11/O16, O11/O15 and O12/O17. Each citrate oxygen atom bridges multiple metal atoms. K19 is eight-coordinate (irregular), with a bond-valence sum (in valence units) of 1.04 and Li20 (site symmetry m) is tetra­hedral with a bond-valence sum of 1.10. Atom O21 of the water mol­ecule of crystallization also lies on a (100) mirror plane.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) method suggests that we might expect a blocky morphology for lithium dipotassium citrate monohydrate. A 2nd order spherical harmonic preferred orientation model was included in the refinement; the texture index was 1.000, indicating that preferred orientation was not present for this rotated capillary specimen.

Supra­molecular features  

The KO8 and LiO4 coordination polyhedra share edges and corners to form layers lying parallel to the ac plane (Fig. 3). The only traditional hydrogen bonds are an intra­molecular O17—H18⋯O16 inter­action between the hydroxyl group and the central carboxyl­ate group (Table 1), and a charge-assisted hydrogen bond between the water mol­ecule O21—H22 and O11. By the correlation of Rammohan & Kaduk (2018), these hydrogen bonds contribute 13.2 and 13.4 kcal mol−1, respectively, to the crystal energy. There is also a weak C2—H7⋯O11 hydrogen bond (Table 1).

Figure 3.

Figure 3

The crystal structure of LiK2C6H5O7(H2O), viewed down the c axis.

Table 1. Hydrogen-bond geometry (Å, °) for kadu1697_DFT .

D—H⋯A D—H H⋯A DA D—H⋯A
O21—H22⋯O11 0.98 1.73 2.687 164
O17—H18⋯O16 0.98 1.90 2.581 124
C2—H7⋯O11i 1.09 2.47 3.396 142

Symmetry code: (i) -x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}.

Database survey  

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018). A reduced cell search in the Cambridge Structural Database (Groom et al., 2016) yielded two hits, but no citrate structures. A few weak unindexed peaks were identified as 2.0 wt% dilithium potassium citrate (Cigler & Kaduk, 2019c ).

Synthesis and crystallization  

Masses of 0.3777 g of Li2CO3 (5.00 mmol, Sigma-Aldrich) and 1.3851 g of K2CO3 (10.0 mmol, Sigma-Aldrich) were added to a solution of 2.0325 g of citric acid (10.0 mmol, Sigma–Aldrich) monohydrate in 15 ml of water. After the fizzing subsided, the clear solution was dried first at 450 K to yield a sticky solid. The solid was heated at 477 K to yield a white foam. Further heating at 505 K yielded additional expansion of the foam, and slight discoloration. This foam was amorphous. Storage of the foam under ambient conditions yielded a puddle. Heating this puddle to 394 K yielded a glassy solid. Adding two drops of water to this solid yielded a paste, which yielded the title compound as a crystalline white powder after heating to 394 K for 15 min.

Refinement  

The pattern of LiK2C6H5O7(H2O) was indexed using Jade 9.8 (MDI, 2017). EXPO2014 (Altomare et al., 2013) suggested the space group Pmn21, which was confirmed by successful solution and refinement of the structure. The structure of LiK2C6H5O7(H2O) was solved by direct methods as implemented in EXPO2014 (Altomare et al., 2013), which located all the non-hydrogen atoms including the lithium atom. The positions of H7 and H8 were calculated using Materials Studio (Dassault, 2018). The position of the active hydrogen atom H18 was deduced from the potential intra­molecular hydrogen-bonding pattern, and the position of H22 was deduced from the hydrogen-bonding pattern. Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987) and the asymmetry correction of Finger et al. (1994) was applied and the microstrain broadening model of Stephens (1999). The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement using Materials Studio. Crystal data, data collection and structure refinement (Fig. 4) details are summarized in Table 2. The U iso values for C2 and C3 were constrained to be equal, and those of H7 and H8 were constrained to be 1.3× that of these carbon atoms. The U iso of C1, C5, C6 and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3× this value. The background was modeled by a three-term shifted Chebyshev polynomial. A ten-term diffuse scattering function was used to describe the scattering from the capillary and any amorphous material. The structure of dilithium potassium citrate, Li2KC6H5O7 (Cigler & Kaduk, 2019c ), was included as a second phase in the Rietveld refinement but its atomic positional and displacement parameters were not refined.

Figure 4.

Figure 4

Observed, calculated, and difference patterns of LiK2C6H5O7(H2O). The red crosses represent the observed data points, the green solid line the calculated pattern, and the magenta line the difference (observed - calculated) pattern. The vertical scale is multiplied by a factor of 8 above 23° 2θ.

Table 2. Experimental details.

  KADU1697_phase_1
Crystal data
Chemical formula Li+·2K+·C6H5O7 3−·H2O
M r 292.25
Crystal system, space group Orthorhombic, P m n21
Temperature (K) 300
a, b, c (Å) 10.24878 (19), 5.86577 (14), 8.19290 (16)
V3) 492.53 (1)
Z 2
Radiation type Kα1, Kα2, λ = 0.709237, 0.713647 Å
Specimen shape, size (mm) Cylinder, 12 × 0.7
 
Data collection
Diffractometer PANalytical Empyrean
Specimen mounting Glass capillary
Data collection mode Transmission
Scan method Step
2θ values (°) min = 1.008, 2θmax = 49.988, 2θstep = 0.017
 
Refinement
R factors and goodness of fit R p = 0.034, R wp = 0.044, R exp = 0.015, R(F 2) = 0.04860, χ2 = 8.940
No. of parameters 56
No. of restraints 14
(Δ/σ)max 0.49

Computer programs: EXPO2014 (Altomare et al., 2013), GSAS (Toby & Von Dreele, 2013), Mercury (Macrae et al., 2020), DIAMOND (Crystal Impact, 2015), and publCIF (Westrip, 2010).

A density functional geometry optimization was carried out using CRYSTAL14 (Dovesi et al., 2014). The basis sets for the H, C, N, and O atoms were those of Gatti et al. (1994), and the basis set for K was that of Peintinger et al. (2013). The calculation was run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, using 8 k-points and the B3LYP functional, and took two hours.

Supplementary Material

Crystal structure: contains datablock(s) KADU1697_publ, kadu1697_DFT, KADU1697_overall, KADU1697_phase_1, KADU1697_phase_2, KADU1697_p_01. DOI: 10.1107/S2056989021003339/hb7968sup1.cif

e-77-00500-sup1.cif (358.2KB, cif)

Supporting information file. DOI: 10.1107/S2056989021003339/hb7968KADU1697_phase_1sup2.cml

CCDC references: 2074045, 2074046, 2074047

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.

supplementary crystallographic information

Lithium dipotassium citrate monohydrate (KADU1697_phase_1). Crystal data

Li+·2K+·C6H5O73·H2O c = 8.19290 (16) Å
Mr = 292.25 V = 492.53 (1) Å3
Orthorhombic, Pmn21 Z = 2
Hall symbol: P 2ac -2 Dx = 1.971 Mg m3
a = 10.24878 (19) Å T = 300 K
b = 5.86577 (14) Å

Lithium dipotassium citrate monohydrate (KADU1697_phase_1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2488 (7) 0.5454 (12) 0.9115 (17) 0.0155 (10)*
C2 0.1204 (5) 0.6153 (14) 0.8359 (11) 0.010 (2)*
C3 0.0 0.5097 (15) 0.9185 0.010 (2)*
C6 0.0 0.2480 (14) 0.8941 (14) 0.0155 (10)*
H7 0.125 0.5784 0.7037 0.013 (3)*
H8 0.1091 0.8242 0.8467 0.013 (3)*
O11 0.2709 (4) 0.3382 (8) 0.9343 (12) 0.0155 (10)*
O12 0.3320 (4) 0.6995 (7) 0.9364 (12) 0.0155 (10)*
O15 0.0 0.1757 (12) 0.7512 (12) 0.0155 (10)*
O16 0.0 0.1310 (11) 1.0247 (12) 0.0155 (10)*
O17 0.0 0.5645 (12) 1.0886 (8) 0.0155 (10)*
H18 0.0 0.4231 1.1176 0.0201 (13)*
K19 0.20108 (18) −0.0384 (3) 1.1763 (10) 0.0333 (7)*
Li20 0.0 0.213 (4) 1.526 (3) 0.04*
O21 0.5 0.1259 (10) 0.9430 (16) 0.018 (3)*
H22 0.4268 0.1937 0.9402 0.04*

Lithium dipotassium citrate monohydrate (KADU1697_phase_1). Geometric parameters (Å, º)

C1—C2 1.510 (3) O16—C6 1.271 (6)
C1—O11 1.250 (5) O16—K19 2.604 (4)
C1—O12 1.260 (6) O16—K19i 2.604 (4)
C2—C1 1.510 (3) O17—C3 1.430 (7)
C2—C3 1.538 (3) O17—H18 0.863 (7)
C2—H7 1.105 (10) O17—K19iii 3.192 (5)
C2—H8 1.234 (8) O17—K19viii 3.192 (5)
C3—C2 1.538 (3) H18—O17 0.863 (7)
C3—C2i 1.538 (3) K19—H8ix 2.704 (4)
C3—C6 1.548 (3) K19—O11 3.053 (5)
C3—O17 1.430 (7) K19—O11x 2.765 (5)
C6—C3 1.548 (3) K19—O12xi 2.833 (5)
C6—O15 1.245 (7) K19—O12ix 2.934 (5)
C6—O16 1.271 (6) K19—O15xii 3.226 (3)
H7—C2 1.105 (10) K19—O16 2.604 (4)
H8—C2 1.234 (8) K19—O17xi 3.192 (5)
O11—C1 1.250 (5) K19—O21xiii 3.047 (7)
O11—K19 3.053 (5) Li20—O12xiv 1.941 (12)
O11—K19ii 2.765 (5) Li20—O12ix 1.941 (12)
O12—C1 1.260 (6) Li20—O15xv 1.86 (2)
O12—K19iii 2.833 (5) Li20—O21xiii 2.11 (2)
O12—K19iv 2.934 (5) O21—K19xvi 3.047 (7)
O12—Li20v 1.941 (12) O21—K19ii 3.047 (7)
O15—C6 1.245 (7) O21—Li20xvi 2.11 (2)
O15—K19vi 3.226 (3) O21—H22xvii 0.908 (5)
O15—K19ii 3.226 (3) O21—H22ix 0.908 (5)
O15—Li20vii 1.86 (2) H22—O21xviii 0.908 (5)
C2—C1—O11 118.9 (6) O11—K19—O12xi 80.28 (12)
C2—C1—O12 117.5 (6) O11—K19—O12ix 90.49 (12)
O11—C1—O12 123.4 (6) O11—K19—O15xii 94.67 (13)
C1—C2—C3 114.1 (5) O11—K19—O16 66.39 (15)
C1—C2—H7 108.2 (6) O11—K19—O17xi 122.22 (14)
C1—C2—H8 108.8 (6) O11—K19—O21xiii 138.24 (16)
C3—C2—H7 112.7 (6) O11x—K19—O12xi 97.83 (17)
C3—C2—H8 107.0 (6) O11x—K19—O12ix 83.53 (13)
H7—C2—H8 105.6 (5) O11x—K19—O15xii 66.25 (14)
C2—C3—C2i 106.8 (6) O11x—K19—O16 133.62 (19)
C2—C3—C6 110.0 (5) O11x—K19—O17xi 77.00 (13)
C2—C3—O17 109.8 (5) O11x—K19—O21xiii 54.18 (14)
C2i—C3—C6 110.0 (5) O12xi—K19—O12ix 157.86 (7)
C2i—C3—O17 109.8 (5) O12xi—K19—O15xii 63.05 (15)
C6—C3—O17 110.4 (7) O12xi—K19—O16 104.54 (18)
C3—C6—O15 117.3 (8) O12xi—K19—O17xi 75.75 (14)
C3—C6—O16 115.3 (8) O12xi—K19—O21xiii 136.58 (15)
O15—C6—O16 127.4 (9) O12ix—K19—O15xii 98.08 (14)
C1—O11—K19 139.3 (6) O12ix—K19—O16 89.80 (17)
C1—O11—K19ii 121.5 (6) O12ix—K19—O17xi 125.68 (15)
K19—O11—K19ii 93.48 (13) O12ix—K19—O21xiii 61.00 (17)
C1—O12—K19iii 100.4 (5) O15xii—K19—O16 159.7 (2)
C1—O12—K19iv 106.9 (5) O15xii—K19—O17xi 118.28 (14)
C1—O12—Li20v 148.3 (8) O15xii—K19—O21xiii 117.64 (16)
K19iii—O12—K19iv 94.68 (12) O16—K19—O17xi 70.13 (18)
K19iii—O12—Li20v 90.8 (7) O16—K19—O21xiii 82.6 (2)
K19iv—O12—Li20v 101.5 (7) O17xi—K19—O21xiii 66.53 (17)
C6—O15—K19vi 105.29 (16) O12xiv—Li20—O12ix 125.0 (14)
C6—O15—K19ii 105.29 (16) O12xiv—Li20—O15xv 114.1 (8)
C6—O15—Li20vii 153.2 (10) O12xiv—Li20—O21xiii 97.2 (8)
K19vi—O15—K19ii 143.4 (2) O12ix—Li20—O15xv 114.1 (8)
K19vi—O15—Li20vii 80.9 (3) O12ix—Li20—O21xiii 97.2 (8)
K19ii—O15—Li20vii 80.9 (3) O15xv—Li20—O21xiii 102.1 (11)
C6—O16—K19 127.43 (14) K19xvi—O21—K19ii 85.1 (2)
C6—O16—K19i 127.43 (14) K19xvi—O21—Li20xvi 94.2 (5)
K19—O16—K19i 104.7 (3) K19xvi—O21—H22xvii 64.4 (7)
C3—O17—H18 93.0 (6) K19xvi—O21—H22ix 132.6 (7)
C3—O17—K19iii 112.5 (4) K19ii—O21—Li20xvi 94.2 (5)
C3—O17—K19viii 112.5 (4) K19ii—O21—H22xvii 132.6 (7)
H18—O17—K19iii 129.8 (3) K19ii—O21—H22ix 64.4 (7)
H18—O17—K19viii 129.8 (3) Li20xvi—O21—H22xvii 55.8 (4)
K19iii—O17—K19viii 80.43 (16) Li20xvi—O21—H22ix 55.8 (4)
O11—K19—O11x 158.80 (9) H22xvii—O21—H22ix 110.0 (8)

Symmetry codes: (i) −x, y, z; (ii) −x+1/2, −y, z−1/2; (iii) x, y+1, z; (iv) −x+1/2, −y+1, z−1/2; (v) x+1/2, −y+1, z−1/2; (vi) x−1/2, −y, z−1/2; (vii) x, y, z−1; (viii) −x, y+1, z; (ix) −x+1/2, −y+1, z+1/2; (x) −x+1/2, −y, z+1/2; (xi) x, y−1, z; (xii) x+1/2, −y, z+1/2; (xiii) x−1/2, −y, z+1/2; (xiv) x−1/2, −y+1, z+1/2; (xv) x, y, z+1; (xvi) x+1/2, −y, z−1/2; (xvii) x+1/2, −y+1, z+1/2; (xviii) x−1/2, −y+1, z−1/2.

(KADU1697_phase_2). Crystal data

C6H5KLi2O7 β = 80.6064°
Mr = 242.08 γ = 83.1095°
Triclinic, P1 V = 416.59 Å3
a = 6.48415 Å Z = 2
b = 6.68334 Å Dx = 1.930 Mg m3
c = 9.81709 Å T = 300 K
α = 87.6373°

(KADU1697_phase_2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.15531 0.06638 0.32685 0.05983*
C2 −0.02851 0.23221 0.35291 0.02275*
C3 0.1869 0.25126 0.26327 0.02275*
C4 0.24628 0.42934 0.33775 0.02275*
C5 0.4347 0.52818 0.26817 0.05983*
C6 0.118 0.34833 0.12921 0.05983*
H7 0.00819 0.21576 0.46276 0.02058*
H8 −0.13090 0.38187 0.34466 0.02958*
H9 0.28351 0.37630 0.44379 0.02958*
H10 0.10450 0.54936 0.35301 0.02958*
O11 −0.30929 0.02453 0.41739 0.05983*
O12 −0.10754 −0.03339 0.21622 0.05983*
O13 0.53582 0.66706 0.29883 0.05983*
O14 0.54742 0.43056 0.16909 0.05983*
O15 0.00612 0.52016 0.14052 0.05983*
O16 0.2083 0.21459 0.0417 0.05983*
O17 0.32695 0.07281 0.22514 0.05983*
H18 0.394 0.1785 0.2331 0.06878*
K19 0.74052 0.18609 −0.02971 0.04605*
Li20 0.74351 0.74584 0.16276 0.05*
Li21 0.55124 0.10113 0.63762 0.05*

(KADU1697_phase_2). Geometric parameters (Å, º)

C1—C2 1.5101 O15—K19i 3.5935
C1—O11 1.2736 O15—K19v 2.7841
C1—O12 1.2730 O15—Li20i 2.1241
C2—C1 1.5101 O16—C6 1.2859
C2—C3 1.5407 O16—K19i 3.2514
C3—C2 1.5407 O16—K19 3.3912
C3—C4 1.5404 O16—K19iii 2.6637
C3—C6 1.5507 O16—Li20v 1.9919
C3—O17 1.4328 O17—C3 1.4328
C4—C3 1.5404 O17—K19 3.4878
C4—C5 1.5099 O17—K19iii 2.7561
C5—C4 1.5099 O17—Li21vii 1.9464
C5—O13 1.2711 K19—O12viii 3.0147
C5—O14 1.2695 K19—O12iii 2.8647
C6—C3 1.5507 K19—O13v 3.4733
C6—O15 1.2813 K19—O14 2.6496
C6—O16 1.2859 K19—O14v 3.3644
O11—C1 1.2736 K19—O15viii 3.5935
O11—Li21i 2.2575 K19—O15v 2.7841
O11—Li21ii 2.0220 K19—O16 3.3912
O12—C1 1.2730 K19—O16viii 3.2514
O12—K19i 3.0147 K19—O16iii 2.6637
O12—K19iii 2.8647 K19—O17 3.4878
O12—Li20iv 1.9891 K19—O17iii 2.7561
O13—C5 1.2711 Li20—O12ix 1.9891
O13—K19v 3.4733 Li20—O13 1.8439
O13—Li20 1.8439 Li20—O14 2.582
O13—Li21vi 1.6920 Li20—O15viii 2.1241
O14—C5 1.2695 Li20—O16v 1.9919
O14—O13 2.0573 Li21—O11viii 2.2575
O14—K19 2.6496 Li21—O11ii 2.0220
O14—K19v 3.3644 Li21—O13vi 1.6920
O14—Li20 2.582 Li21—O17vii 1.9464
O15—C6 1.2813
C2—C1—O11 119.5504 C3—O17—H18 67.1832
C2—C1—O12 120.5205 C3—O17—K19iii 122.505
O11—C1—O12 119.9213 C3—O17—Li21vii 121.6382
C1—C2—C3 120.0207 H18—O17—K19iii 140.8897
C2—C3—C4 97.8299 H18—O17—Li21vii 97.505
C2—C3—C6 100.9126 K19iii—O17—Li21vii 104.7899
C2—C3—O17 119.4522 O12viii—K19—O12iii 93.0913
C4—C3—C6 103.978 O12viii—K19—O14 80.1974
C4—C3—O17 124.1292 O12viii—K19—O15v 112.4929
C6—C3—O17 107.4222 O12viii—K19—O16viii 58.136
C3—C4—C5 116.8773 O12viii—K19—O16iii 64.5695
C4—C5—O13 135.3652 O12viii—K19—O17iii 112.5733
C4—C5—O14 114.8354 O12iii—K19—O14 151.5549
O13—C5—O14 108.1461 O12iii—K19—O15v 66.0201
C3—C6—O15 116.7212 O12iii—K19—O16viii 59.37
C3—C6—O16 99.9634 O12iii—K19—O16iii 66.8873
O15—C6—O16 143.2807 O12iii—K19—O17iii 64.5387
C1—O11—Li21i 138.7284 O14—K19—O15v 90.893
C1—O11—Li21ii 120.5833 O14—K19—O16viii 94.4416
Li21i—O11—Li21ii 99.3848 O14—K19—O16iii 131.1798
C1—O12—K19i 113.4217 O14—K19—O17iii 143.4371
C1—O12—K19iii 139.176 O15v—K19—O16viii 56.1366
C1—O12—Li20iv 126.3908 O15v—K19—O16iii 132.5368
K19i—O12—K19iii 86.9087 O15v—K19—O17iii 112.9108
K19i—O12—Li20iv 83.8856 O16viii—K19—O16iii 94.3136
K19iii—O12—Li20iv 89.1605 O16viii—K19—O17iii 121.6786
C5—O13—Li20 116.3317 O16iii—K19—O17iii 48.0157
C5—O13—Li21vi 130.5031 O12ix—Li20—O13 114.3245
Li20—O13—Li21vi 96.8988 O12ix—Li20—O15viii 96.8417
C5—O14—K19 171.2327 O12ix—Li20—O16v 99.9031
C6—O15—K19v 108.1884 O13—Li20—O15viii 109.5957
C6—O15—Li20i 161.8601 O13—Li20—O16v 138.1587
K19v—O15—Li20i 88.7083 O15viii—Li20—O16v 88.3426
C6—O16—K19i 85.8733 O11viii—Li21—O11ii 80.6152
C6—O16—K19iii 137.0461 O11viii—Li21—O13vi 127.2048
C6—O16—Li20v 125.4341 O11viii—Li21—O17vii 113.934
K19i—O16—K19iii 85.6864 O11ii—Li21—O13vi 109.7009
K19i—O16—Li20v 78.6777 O11ii—Li21—O17vii 109.0825
K19iii—O16—Li20v 93.8091 O13vi—Li21—O17vii 110.782

Symmetry codes: (i) x−1, y, z; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z; (iv) x−1, y−1, z; (v) −x+1, −y+1, −z; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y, −z+1; (viii) x+1, y, z; (ix) x+1, y+1, z.

(kadu1697_DFT). Crystal data

C6H7K2LiO8 b = 5.8658 Å
Mr = 292.25 c = 8.1929 Å
Orthorhombic, Pmn21 V = 492.53 Å3
Hall symbol: P 2ac -2 Z = 2
a = 10.2488 Å

(kadu1697_DFT). Data collection

h = → l = →
k = →

(kadu1697_DFT). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.25085 0.55039 0.91138 0.01550*
C2 0.12106 0.61656 0.83349 0.01010*
H7 0.12406 0.56332 0.70555 0.01310*
H8 0.10941 0.80147 0.83534 0.01310*
O11 0.27114 0.34238 0.94262 0.01550*
O12 0.33128 0.71110 0.93752 0.01550*
K19 0.19597 −0.04778 1.18244 0.03330*
H22 0.42322 0.21715 0.95731 0.04000*
C3 0.00000 0.51342 0.91548 0.01010*
C6 0.00000 0.25095 0.89891 0.01550*
O15 0.00000 0.16665 0.75711 0.01550*
O16 0.00000 0.14035 1.03069 0.01550*
O17 0.00000 0.57368 1.08543 0.01550*
H18 0.00000 0.42546 1.14047 0.02010*
Li20 0.00000 0.19424 0.52218 0.04000*
O21 0.50000 0.11887 0.94174 0.01800*

(kadu1697_DFT). Bond lengths (Å)

C1—C2 1.525 C3—C6 1.546
C1—O11 1.264 C3—O17 1.437
C1—O12 1.270 C6—O15 1.263
C2—C3 1.535 C6—O16 1.260
C2—H7 1.094 O15—Li20 1.932
C2—H8 1.091 O16—K19vii 2.607
O11—K19i 2.765 O17—H18 0.979
O12—K19ii 2.889 O17—K19iii 3.098
O12—K19iii 2.820 O17—K19viii 3.098
O12—Li20iv 1.944 Li20—O12ii 1.944
K19—O12iv 2.889 Li20—O12ix 1.944
K19—O16 2.607 Li20—O21i 1.951
K19—O11v 2.765 O21—Li20v 1.951
K19—O17vi 3.098 O21—K19i 2.953
K19—O12vi 2.820 O21—K19x 2.953
K19—O21v 2.953 O21—H22 0.984
H22—O21ii 0.984 O21—H22xi 0.984
C3—C2vii 1.535

Symmetry codes: (i) −x+1/2, −y, z−1/2; (ii) −x+1/2, −y+1, z−1/2; (iii) x, y+1, z; (iv) −x+1/2, −y+1, z+1/2; (v) −x+1/2, −y, z+1/2; (vi) x, y−1, z; (vii) −x, y, z; (viii) −x, y+1, z; (ix) x−1/2, −y+1, z−1/2; (x) x+1/2, −y, z−1/2; (xi) −x+1, y, z.

(kadu1697_DFT). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O21—H22···O11 0.98 1.73 2.687 164
O17—H18···O16 0.98 1.90 2.581 124
C2—H7···O11ii 1.09 2.47 3.396 142

Symmetry code: (ii) −x+1/2, −y+1, z−1/2.

References

  1. Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.
  2. Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars.
  3. Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170. [DOI] [PubMed]
  4. Cigler, A. J. & Kaduk, J. A. (2019a). Acta Cryst. E75, 223–227. [DOI] [PMC free article] [PubMed]
  5. Cigler, A. J. & Kaduk, J. A. (2019b). Acta Cryst. E75, 432–437. [DOI] [PMC free article] [PubMed]
  6. Cigler, A. J. & Kaduk, J. A. (2019c). Acta Cryst. E75, 410–413. [DOI] [PMC free article] [PubMed]
  7. Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  8. Dassault Systems. (2018). Materials Studio. BIOVIA, San Diego, California, USA.
  9. Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.
  10. Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D’Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.
  11. Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.
  12. Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.
  13. Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.
  14. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  15. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  16. MDI. (2017). Jade 9.8. Materials Data Inc., Livermore, California, USA.
  17. Peintinger, M. F., Oliveira, D. V. & Bredow, T. (2013). J. Comput. Chem. 34, 451–459. [DOI] [PubMed]
  18. Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252. [DOI] [PubMed]
  19. Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.
  20. Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. [DOI] [PMC free article] [PubMed]
  21. Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.
  22. Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) KADU1697_publ, kadu1697_DFT, KADU1697_overall, KADU1697_phase_1, KADU1697_phase_2, KADU1697_p_01. DOI: 10.1107/S2056989021003339/hb7968sup1.cif

e-77-00500-sup1.cif (358.2KB, cif)

Supporting information file. DOI: 10.1107/S2056989021003339/hb7968KADU1697_phase_1sup2.cml

CCDC references: 2074045, 2074046, 2074047

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES