Skip to main content
European Heart Journal logoLink to European Heart Journal
. 2021 Feb 13;42(20):1959–1971. doi: 10.1093/eurheartj/ehaa1108

Genetic insight into sick sinus syndrome

Rosa B Thorolfsdottir 1,#, Gardar Sveinbjornsson 2,#, Hildur M Aegisdottir 3, Stefania Benonisdottir 4, Lilja Stefansdottir 5, Erna V Ivarsdottir 6, Gisli H Halldorsson 7, Jon K Sigurdsson 8, Christian Torp-Pedersen 9, Peter E Weeke 10, Søren Brunak 11, David Westergaard 12, Ole B Pedersen 13, Erik Sorensen 14, Kaspar R Nielsen 15, Kristoffer S Burgdorf 16, Karina Banasik 17, Ben Brumpton 18, Wei Zhou 19, Asmundur Oddsson 20, Vinicius Tragante 21, Kristjan E Hjorleifsson 22,23, Olafur B Davidsson 24, Sridharan Rajamani 25, Stefan Jonsson 26, Bjarni Torfason 27,28, Atli S Valgardsson 29, Gudmundur Thorgeirsson 30,31,32, Michael L Frigge 33, Gudmar Thorleifsson 34, Gudmundur L Norddahl 35, Anna Helgadottir 36, Solveig Gretarsdottir 37, Patrick Sulem 38, Ingileif Jonsdottir 39,40,41, Cristen J Willer 42,43,44, Kristian Hveem 45,46,47, Henning Bundgaard 48, Henrik Ullum 49,50, David O Arnar 51,52,53, Unnur Thorsteinsdottir 54,55, Daniel F Gudbjartsson 56,57, Hilma Holm 58,, Kari Stefansson 59,60,; DBDS Genomic Consortium 2
PMCID: PMC8140484  PMID: 33580673

Abstract

Aims

The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development.

Methods and results

We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1–1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P =1.6 × 10−20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05).

Conclusion

We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.

Keywords: Sick sinus syndrome, GWAS, KRT8, Mendelian randomization, Atrial fibrillation

Graphical Abstract

graphic file with name ehaa1108f5.jpg

Summary of genetic insight into the pathogenesis of SSS and the role of risk factors in its development. Variants at six loci (named by corresponding gene names) were identified through GWAS and their unique phenotypic associations provide insight into distinct pathways underlying SSS. Investigation of the role of risk factors in SSS development supported a causal role for AF and heart rate and provided convincing evidence against causality for BMI, cholesterol (HDL and non-HDL), triglycerides and T2D. Mendelian randomization did not support causality for CAD, ischaemic stroke, heart failure, PR interval or QRS duration (not shown in figure). Red and blue arrows represent positive and negative associations, respectively.


See page 1972 for the editorial comment on this article (doi: 10.1093/eurheartj/ehab209)

Introduction

Sick sinus syndrome (SSS) is a complex cardiac arrhythmia and the leading indication for permanent pacemaker implantation worldwide.1 It is characterized by pathological sinus bradycardia, sinoatrial block, or alternating atrial brady- and tachyarrhythmias. Symptoms include fatigue, reduced exercise capacity, and syncope.2  ,  3 Few studies have been conducted on the basic mechanisms of SSS and therapeutic limitations reflect an incomplete understanding of the pathophysiology. No specific treatment option is aimed at underlying pathways and trying to determine who benefits from cardiac pacing can be challenging.4 A better understanding of mechanisms leading to SSS is crucial for improvements in treatment and prevention and genetic studies provide an opportunity to gain such insight.

Coding variants in several genes, including HCN4, SCN5A, and GNB2, have been implicated in rare familial SSS through linkage analysis and candidate gene methods.5–15 In the only published genome-wide association study (GWAS) of SSS to date, we identified a strong association with a missense variant in MYH6, encoding the alpha-heavy chain subunit of cardiac myosin. This was the first GWAS discovery implicating a cardiac structural or contractile unit as a primary cause of arrhythmia.16

Age is the strongest risk factor for SSS,17 potentially reflecting degenerative fibrosis and electrical remodelling of the SA node and the atria in general.18–20 SSS often coexists with the more common atrial fibrillation (AF)21 and the two arrhythmias are thought to predispose to each other.22 We have previously examined the role of AF in SSS development through Mendelian randomization,23 a method using sequence variants associated with a risk factor (AF) as unbiased proxy indicators to determine whether the risk factor can cause a disease (SSS).24  ,  25 The study supported causality,23 likely mediated through atrial remodelling.26  ,  27 Several other traits have been associated with SSS while the nature of the associations has not been ascertained. These include body mass index (BMI), height, heart rate, and cardiovascular diseases such as hypertension, myocardial infarction, heart failure, and stroke.17

To gain insight into the pathogenesis of SSS, we performed a large GWAS of over 6000 cases and one million controls of European descent. We used polygenic scores (PGSs) and Mendelian randomization to determine the nature of the associations of risk factors with SSS and in particular whether they contribute to the cause of the disease.

Methods

The study design is two-fold (Supplementary material online, Figure S1). First, we performed a meta-analysis of GWASs, searching for associations of sequence variants with SSS. In total 6469 SSS cases were compared to 1 000 187 controls in a meta-analysis of material from deCODE genetics Iceland, the Copenhagen Hospital Biobank Cardiovascular Study (CHB-CVS)/Danish Blood Donor Study (DBDS), and the UK Biobank,28 with follow-up in the Norwegian Nord-Trøndelag Health Study (HUNT).29 Second, we performed PGS analysis and Mendelian randomization to examine the role of putative risk factors in SSS development (for detailed methods, see Supplementary material online).

Sick sinus syndrome study populations

The deCODE genetics SSS sample consisted of 3577 Icelanders diagnosed with SSS and 347 764 controls. The CHB-CVS included 2209 SSS cases. The control group included blood donors from the DBDS (N > 99 000)30 and SSS cases were also compared to subjects in CHB-CVS with other cardiovascular conditions (N > 89 000). The SSS population from the UK Biobank consisted of 403 cases and 403 181 controls.28 The HUNT cohort consisted of 280 Norwegian SSS cases and 69 141 controls recruited through a population-based health survey conducted in the Nord-Trøndelag County, Norway.29 In all four cohorts, SSS diagnosis was based on International Classification of Diseases 9th (ICD-9: 427.8) or 10th revision (ICD-10: I49.5) from hospitals and/or outpatient clinics. The cohorts are described in more detail in Supplementary material online, Methods and Supplementary material online, Table S1.

Genotyping

The deCODE study was based on whole-genome sequence data from 28 075 Icelanders participating in various disease projects. The 32.9 million variants that passed quality threshold were imputed into 127 175 Icelanders who had been genotyped using Illumina SNP chips. Finally, genotype probabilities for untyped relatives were calculated based on Icelandic genealogy.31 Genotyping for CHB-CVS and DBDS was performed at deCODE using a north European sequencing panel of 15 576 individuals (including 8429 Danes) for imputation into those chip typed (methods manuscript in preparation). Genotyping in the UK Biobank has been described in detail elsewhere.32–35 Illumina HumanCoreExome arrays were used for genotyping in the HUNT cohort.

Genome-wide association study: statistical analysis

We performed a meta-analysis of GWAS of 6189 SSS cases and 931 046 controls from deCODE genetics, CHB-CVS/DBDS, and the UK Biobank. We then tested genome-wide significant and suggestive variants (Supplementary material online, Methods) among 280 cases and 69 141 controls from the Norwegian HUNT study. We used logistic regression to test for association between sequence variants and SSS and other case–control phenotypes, treating phenotype status as the response and allele count as a covariate. Other available individual characteristics that correlate with phenotype status were included in the model as nuisance variables. SSS associations were tested under additive, recessive, and full genotypic models. The full genotypic model includes separate parameters for heterozygotes and homozygotes. We corrected the threshold for genome-wide significance for multiple testing with a weighted Bonferroni adjustment using as weights the enrichment of variant classes with predicted functional impact among association signals estimated from the Icelandic data.36 Significance thresholds were 1.3 × 10−7 for variants with high impact, 2.6 × 10−8 for variants with moderate impact (including missense), 2.4 × 10−9 for low-impact variants, 1.2 × 10−9 for other variants in Dnase I hypersensitivity sites, and 7.5 × 10−10 for all other variants.36 We used linear regression to test variant associations with quantitative phenotypes, treating the quantitative measurement as response and the genotype as covariate. These included endophenotypes of SSS, chronotropic response to exercise (N = 7746), and electrocardiogram (ECG) measurements (N ∼ 73 000) (see Supplementary material online, Methods for detail).

Analysis of genetic risk shared by sick sinus syndrome and putative risk factors

We used PGSs for 17 exposure phenotypes to examine their correlation with SSS (Supplementary material online, Table S2). The phenotypes were chosen because of reported epidemiological associations with SSS or other cardiovascular conditions (see Supplementary material online, Methods). The PGSs were generated using summary statistics from the largest available GWASs (training sample) for each phenotype that do not include deCODE data (Supplementary material online, Table S2 and Supplementary material online, Figure S1). Subsequently, they were tested for association with the risk of SSS among 2556 chip-typed individuals from deCODE (target sample). P-values were corrected using genomic control.37

The use of PGSs to detect association between exposure and outcome is a robust method such that the absence of association in a well-powered PGS analysis provides strong evidence against causality.25 However, finding association in PGS analysis does not confirm causality.38  ,  39 For the eight PGSs that associated with SSS, we performed a 2-sample Mendelian randomization analysis, equivalent to a fixed effect MR-Egger40 using published genome-wide significant SNPs from the largest available GWAS on each exposure phenotype as genetic instruments.41–49 To estimate the causal effect, we regressed the published effects of the SNPs on the respective exposure phenotype against their SSS effects in deCODE, CHB-CVS/DBDS, and the UK Biobank, using minor allele frequency (MAF) × (1 − MAF) as weights. For the ECG measurements PR interval and QRS duration, effects in milliseconds were converted to standard deviations (SDs) according to one SD in the Icelandic data so that all causal estimates in a Mendelian randomization forest plot correspond to equal odds ratio (OR) or SD changes for binary and quantitative traits, respectively. For significant associations, we performed further sensitivity analysis to detect outliers (funnel plots) and tested for directional pleiotropy using the MR-Egger intercept test (see Supplementary Material online, Methods).40

Results

Six sick sinus syndrome loci

In a GWAS comparing 6469 SSS cases to 1 000 187 controls, variants at six loci satisfied our criteria for genome-wide significance (Table 1, Supplementary material online, Table S3, Figure 1, and Supplementary material online, Figure S2), with ORs ranging from 1.12 to 8.88. One is at a novel SSS locus, a low-frequency missense variant, p.Gly62Cys (MAF = 1.1–1.8% in the four cohorts) in the gene KRT8 on chromosome 12. This variant has not been associated with arrhythmias or ECG traits before. The other variants are the rare Icelandic SSS missense variant p.Arg721Trp in the sarcomere gene MYH6,16 common variants at two AF loci, PITX2  50 and ZFHX3,51 and two ECG loci, TTN/CCDC141  52 and SCN10A.52–54 We have previously reported secondary associations of variants at the four AF and ECG loci with SSS.23  ,  52 At the TTN/CCDC141 locus, we report associations of two missense variants, p.Thr811Ile in TTN and p.Glu382Asp in CCDC141, that are weakly correlated (R  2 = 0.20, D’ = 0.64, Supplementary material online, Table S4).

Table 1.

Association results for lead variants at loci reaching genome-wide significance in a meta-analysis of sick sinus syndrome including 6469 cases and 1 000 187 controls

Locus number Rs-name/Chr: position (hg38) Effect allele/other EAFa (%) Variant annotation Coding change Closest gene OR (95% CI) P-value P-value threshold
1 rs387906656b/chr14:23396970 A/G 0.34 Missense p.Arg721Trp MYH6 8.88 (6.97–11.32) 7.5 × 10−70 2.6 × 10−8
2 rs7689774/chr4:110782354 T/G 20.07 Intergenic MIR297, PITX2 1.21 (1.15–1.26) 2.0 × 10−15 1.2 × 10−9
3 rs11554495/chr12:52904798 A/C 1.64 Missense p.Gly62Cys KRT8 1.62 (1.43–1.84) 9.4 × 10−14 2.6 × 10−8
4 rs12932445/chr16:73035989 C/T 20.10 Intronic ZFHX3 1.16 (1.11–1.21) 8.1 × 10−10 1.2 × 10−9
5 rs35813871c/chr2:178785681 A/G 26.63 Missense p.Thr811Ile TTN 1.13 (1.09–1.18) 5.7 × 10−9 2.6 × 10−8
rs34883828c/chr2:178905448 A/C 15.23 Missense p.Glu382Asp CCDC141 1.15 (1.09–1.21) 1.1 × 10−7 2.6 × 10−8
6 rs6795970/chr3:38725184 A/G 35.78 Missense p.Val1073Ala SCN10A 1.12 (1.07–1.16) 2.5 × 10−8 2.6 × 10−8

CI, confidence interval; OR, odds ratio.

a

Effect allele frequency in Iceland (deCODE).

b

Variant exclusive to Iceland.

c

p.Thr811Ile in TTN and p.Glu382Asp in CCDC141 are weakly correlated: R2= 0.20, D’ = 0.64.

Figure 1.

Figure 1

Regional plot of the KRT8 locus on chromosome 12q13. The plot depicts association results (P-values) with SSS (N = 6189) in a meta-analysis with data from deCODE, the CHB-CVS/DBDS, and the UK Biobank. The y-axis shows the −log10  P-value and x-axis shows the genomic position (hg38). The lead variant of the signal (p.Gly62Cys) is labelled as a diamond and coloured purple. Other variants are coloured according to correlation (R  2) with the lead variant in the deCODE data. The plot includes variants common to the three datasets as well as variants specific to the Icelandic deCODE data.

High penetrance of sick sinus syndrome among homozygotes for p.Gly62Cys in KRT8

The SSS association of p.Gly62Cys in KRT8 was discovered with the additive model (Table 1 and Supplementary material online, Tables S5 and S6). However, homozygotes of p.Gly62Cys have a higher risk of SSS than assumed under the additive model (Table 2, homozygous genotypic OR > 1.622 = 2.62, P  full vs. additive = 2.1 × 10−8). We observed an OR of 1.44 for heterozygotes (95% CI = 1.26–1.65) and 13.99 for homozygotes (95% CI = 8.16–23.98), compared to non-carriers (P-value for the full genotypic model = 1.6 × 10−20, Table 2). None of the other SSS associations deviated from the additive model (P >0.05). KRT8 encodes the intermediate filament keratin 8 (K8, Supplementary material online, Figure S3) which is widely expressed, including in the heart,55 and we detected its expression (52.1 ± 30.2 transcripts per million) in our cardiac samples from right atria (n = 169, Supplementary material online, Methods). Neither p.Gly62Cys nor two correlated variants (R  2 > 0.6) associated with the expression of KRT8 or nearby genes (1 Mb) in our cardiac samples (Supplementary material online, Table S7) or in GTEx.55

Table 2.

Association of p.Gly62Cys in KRT8 with sick sinus syndrome in the deCODE, CHB-CVS/DBDS, UK Biobank, and HUNT samples under the full genotypic model, calculating independent risk among heterozygotes and homozygotes

Rs-name/Pos (hg38) Effect allele/other Coding change Gene Cohort N EAF (%) Risk for heterozygous carriers, OR (95% CI) Risk for homozygous carriers, OR (95% CI) P-value for full genotypic modela
rs11554495/chr12:52904798 A/C p.Gly62Cys KRT8 deCODE 3577 1.64 1.42 (1.17–1.72) 12.95 (4.58–36.63) 1.5 × 10−9
CHB-CVS 2209 1.77 1.34 (1.08–1.66) 16.13 (6.24–41.67) 2.6 × 10−10
UK Biobank 403 1.05 2.35 (1.42–3.88) 17.90 (0.74–435.16) 0.00012
HUNT 280 1.15 1.55 (0.77–2.91) 0.00b 0.50
Combined 6469 1.44 (1.26–1.65) 13.99 (8.16–23.98) 1.6 × 10−20

CI, confidence interval; EAF, effect allele frequency; OR, odds ratio; Pos, position; SSS, sick sinus syndrome.

a

The full genotypic model (P  full = 1.6 × 10−20) deviates significantly from the additive model (P  additive  = 9.4 × 10−14). P for deviation from the additive model = 2.1 × 10−8.

b

Among 14 homozygotes in the HUNT study, none had SSS (P-value for homozygotes = 0.97).

About 1 in 5000 individuals from the four European populations in this study is homozygous for p.Gly62Cys in KRT8, consistent with the Hardy–Weinberg equilibrium (P = 0.071–0.82). To evaluate the penetrance of SSS among homozygous carriers of p.Gly62Cys, we analysed the two largest SSS datasets in the study, deCODE and CHB-CVS/DBDS. Considering that SSS is a late onset disease, the observed penetrance is relatively high although incomplete (Figure 2). Eight out of 36 genotyped Icelandic homozygotes (aged 23–88 years, mean 59.9) had SSS (Supplementary material online, Table S8) and 10 out of 79 homozygotes (aged 27–103 years, mean 62.1) in CHB-CVS/DBDS. Homozygotes were not significantly younger at SSS diagnosis than heterozygotes or non-carriers (P =0.53 in deCODE and P =0.26 in CHB-CVS/DBDS, Supplementary material online, Table S9).

Figure 2.

Figure 2

Cumulative incidence curves for SSS age of onset based on KRT8 p.Gly62Cys genotype (A) in deCODE and (B) in CHB-CVS/DBDS. Aalen–Johansen estimator was used, treating death as a competing risk.56 Age of onset was determined by the first registered ICD diagnosis of SSS available to us and thus represents an upper range (Supplementary material online, Methods).

Diverse associations of sick sinus syndrome variants with other phenotypes

We tested the associations of the SSS variants with other phenotypes in deCODE, CHB-CVS/DBDS, and the UK Biobank datasets (Supplementary material online, Tables S10–S14). In addition to SSS, p.Gly62Cys in KRT8 associated with pacemaker implantation (OR heterozygotes = 1.28, 95% CI = 1.13–1.45, OR homozygotes = 9.17, 95% CI = 2.89–29.09, P =1.9 × 10−8). The variant did not associate with other arrhythmias or cardiovascular diseases, with electrolyte or hormonal disturbances that are linked to the development of SSS (potassium, calcium, thyroid stimulating hormone)57 or with the suggested consequence of p.Gly62Cys in candidate gene studies58 (pancreatitis/lipase, liver disease, Bonferroni-adjusted significance threshold of P =0.05/23 = 0.0022, Supplementary material online, Tables S10 and S11). Furthermore, p.Gly62Cys did not associate with any of the 122 ECG parameters (N up to 72 825, Supplementary material online, Table S13).

The associations of SSS variants with AF varied. p.Gly62Cys in KRT8 (Supplementary material online, Tables S10 and S11) and the missense variants in TTN/CCDC141 (Supplementary material online, Table S12) did not associate with the risk of AF, applying a Bonferroni-corrected significance threshold of P < 0.05/14 = 0.0036. The TTN/CCDC141 variants are located within 300 kbp from previously reported AF variants41 and are independent of them (R  2 < 0.2, Supplementary material online, Figure S4). The other four SSS loci have been reported to affect AF but their pattern of association with the two phenotypes differ. p.Arg721Trp in MYH6  23 associates stronger with SSS than AF but the reverse applies to variants at PITX2. At ZFHX3, the effects on AF and SSS are comparable.41  ,  50  ,  51  ,  59  ,  60 p.Val1073Ala in SCN10A is one of the top AF variants at this locus (Supplementary material online, Figure S5), but the allele that increases the risk of SSS protects against AF (Supplementary material online, Table S12).53  ,  61

All the SSS variants increased the risk of pacemaker implantation (Supplementary material online, Tables S10–S12), as expected since SSS is the most common reason for this procedure. We have previously described in detail the associations of p.Arg721Trp in MYH6 with coarctation of the aorta, other congenital malformations of the heart, aortic valve stenosis, and heart failure23  ,  62  ,  63 (Supplementary material online, Table S12). We note that p.Glu382Asp in CCDC141 associated with both second- and third-degree atrioventricular block (AVB)52 and the association with third-degree AVB was genome-wide significant (P =1.3 × 10−14, OR = 1.27, 95% CI = 1.20–1.35) and more significant than the SSS association. Another notable association is that of the PITX2 variant with heart failure (Supplementary material online, Table S12) as recently reported in a GWAS of heart failure.47 None of the SSS variants associated with chronotropic response to exercise (Supplementary material online, Tables S15 and S16) in our dataset. However, the SCN10A and CCDC141 loci have been reported to associate with heart rate profile during exercise in larger studies of UK Biobank data.64  ,  65

Genetically predicted atrial fibrillation and lower heart rate associate with sick sinus syndrome

PGSs are powerful tools for detecting associations between phenotypes.38 We generated PGSs for 17 exposure phenotypes using summary statistics from the largest available GWASs (Supplementary material online, Table S2) and tested them for association with SSS in deCODE data. Eight PGSs, for AF, heart rate, coronary artery disease (CAD), height, QRS duration, PR interval, ischaemic stroke, and heart failure, associated with SSS while those for BMI, type 2 diabetes (T2D), non-HDL cholesterol, HDL cholesterol, triglycerides, and hypertension/blood pressure traits did not (Bonferroni-adjusted significance threshold of P =0.05/17 = 0.0029, Supplementary material online, Table S17). The PGS for heart rate was the only one to inversely associate with SSS risk.

We then performed Mendelian randomization to determine the causality of the associations between the eight exposures and SSS, using genome-wide significant SNPs from GWAS of the exposure phenotypes as instruments (see Methods). Genetic predisposition to AF and genetically determined heart rate and height associated with the risk of SSS but the height association did not remain after accounting for AF in a multivariate analysis (Figures 3  and  4A and B).66–68 With few exceptions, the effects of AF variants on SSS are proportional to their effects on AF (P =7.8 × 10−14, Figure 4A and Supplementary material online, Figure S6A). The greatest deviation from the expected SSS effect was for the association at SCN10A (tagged by rs6790693, OR for AF = 1.06, OR for SSS = 0.89, Supplementary material online, Figure S6A). Mendelian randomization did not support causality for CAD, ischaemic stroke, heart failure, PR interval, or QRS duration (Figure 3 and Supplementary material online, Figure S7).

Figure 3.

Figure 3

Forest plot showing causal effect estimates from a Mendelian randomization analysis of putative risk factors on SSS. We regressed published effects of SNPs on the respective exposure phenotype against their SSS effects in deCODE, CHB-CVS/DBDS, and the UK Biobank. The causal estimates are the slopes from the regression lines where a one unit change in the exposure phenotypes equals a one standard deviation change for quantitative traits and an odds ratio of 2.7 for binary exposure phenotypes. The forest plot shows the causal estimates, 95% confidence intervals, and corresponding P-values from the Mendelian randomization analysis. *For height, the result from a multivariate analysis accounting for AF effects is shown.

Figure 4.

Figure 4

Visualization of significant associations from Mendelian randomization analysis. Effects of published variants on two phenotypes plotted against their effects on SSS in deCODE, CHB-CVS/DBDS, and the UK Biobank (y-axes, N = 6189). The x-axes depict (A) published AF effects41  ,  42 and (B) heart rate effects in UK Biobank.43 The equations for the regression lines are shown and the coefficients of determination (R2).

Discussion

Traditionally, SSS has been considered as a collection of conditions with a variety of causes, intrinsic and extrinsic to the SA node.69 In line with this notion, we identified sequence variants associating with SSS at six loci implicating several distinct pathways in SSS development. One of the SSS associations is novel, with a low-frequency missense variant, p.Gly62Cys in KRT8. One is with the reported p.Arg721Trp in MYH6,16 and four confirm loci previously implicated in SSS secondarily to AF, at PITX2,50 and ZFHX3,51 or ECG traits, at SCN10A  53 and TTN/CCDC141.  52 The leading variants at four of the SSS loci are missense.

KRT8 encodes K8, a cytoskeletal intermediate filament protein widely expressed, including in skeletal muscle and the heart.55 Historically, keratins have been described as epithelial-specific intermediate filaments70 and mutations affecting keratin function have almost exclusively been associated with diseases of the skin and other epithelial tissues.71  ,  72 The association of p.Gly62Cys in KRT8 with SSS described here supports the notion of a role for K8 in the human heart, as previously suggested by animal studies.73–76 Experiments have revealed loss-of-function effects of p.Gly62Cys, that is located in the head domain of K8 (Supplementary material online, Figure S3).77  ,  78 Glycine at position 62 is a conserved amino acid (GERP79 score 1.73) and the variant introduces cysteine into a protein otherwise devoid of cysteine residues. This interrupts intermediate filament assembly in vitro  77 and prevents K8 from serving as a phosphate ‘sponge’ for stress-activated kinases that mediate apoptosis.78 Thus, the variant could increase the risk of SSS either by affecting the structural or cardioprotective role of K8.77  ,  78

In addition to p.Gly62Cys in KRT8, lead variants at two other SSS loci are missense variants in genes encoding structural components of the heart. MYH6 encodes the alpha-myosin heavy chain (αMHC) and TTN encodes the giant protein titin, both of which are key components of the sarcomere.80  ,  81 Since the identification of MYH6 in the first GWAS of SSS,16 structural components of cardiomyocytes have increasingly been implicated in atrioventricular conduction and arrhythmias, in particular AF.23  ,  41  ,  82  ,  83 However, the variants at KRT8, MYH6 and TTN do not mediate their risk through AF because they either do not associate with AF (KRT8 and TTN) or have a stronger effect on SSS risk (MYH6).

K8, αMHC, and titin have a common role in cardiac adaptive responses to stress which may be of relevance to their association with SSS. αMHC allows greater economy in force generation than the homologous beta chain and a shift in their relative expression plays a major role in regulating myocardial contractile activity.84  ,  85 Likewise, the isoform switch of titin alters ventricular filling81  ,  86 and K8 is upregulated under stress to maintain structural integrity.76 The expression of all three genes is modified in human heart failure.76  ,  84  ,  87 Thus, whether or not the SSS variants in KRT8, MYH6 and TTN directly affect the SA node, it is possible that they could contribute to inadequate cardiac output and symptom development in SSS by interrupting adaptive increase in stroke volume.

The SSS variants at PITX2 and ZFHX3 point to genes encoding transcription factors.88  ,  89 They likely mediate their effects on SSS through AF since these have consistently been the strongest AF loci in GWAS.42  ,  50  ,  51 Conversely, p.Val1073Ala in SCN10A has opposite effects on the two arrhythmias. The allele that increases the risk of SSS protects against AF.53  ,  61 It also prolongs the PR interval53  ,  54  ,  61 and duration of the QRS complex.52  ,  54  SCN10A encodes the neuronal sodium channel isoform Nav1.8. A plausible mechanism behind the unique phenotypic effects of p.Val1073Ala involves Nav1.8s role in the way in which the autonomic nervous system affects the heart.90–92 In support of this, animal studies have shown that blockade of Nav1.8 in intracardiac autonomic neurons in the ganglionated plexi (GP) suppresses AF inducibility.90  ,  91 The same applies to GP ablation in patients with AF.93–95 However, GP ablation is controversial due to observed adverse events,96–98 including development of SSS and pacemaker implantation.99 The opposite effects of p.Val1073Ala on SSS and AF risk support concerns that GP ablation for AF treatment may cause SSS and links this adverse effect to Nav1.8 function specifically.

Our genetic analyses shed light on pathways contributing to the development of SSS and the role of risk factors. In particular, they provide insight into the intricate and debated relationship between SSS and AF.22 Our Mendelian randomization analysis reveals a strong association between genetic predisposition for AF and risk of SSS. This is consistent with our previous report23 and likely reflects causality. Pacing-induced AF has been shown to impair SA node function in dogs100 and AF causes regional atrial substrate changes around the SA node in humans.27 Pathobiological pathways common to AF and SSS, such as inflammation, interstitial atrial fibrosis, and alterations in intracellular Ca2+ dynamics, may also contribute to this trend.22  ,  26  ,  101

Importantly, our results also show that SSS does not only occur as a consequence of AF or pathways common to AF. This is evident in the case of SSS variants at KRT8 and TTN/CCDC141 that do not associate with the risk of AF in a large dataset. p.Gly62Cys in KRT8 is the only SSS variant that does not associate with other arrhythmias, ECG traits, or cardiovascular diseases in our dataset. Thus, this variant in particular may point to a mechanism that is specific to SSS development. We observe a genome-wide significant association of p.Glu382Asp in CCDC141 with third-degree AVB, the first one reported for complete heart block. Therefore, this locus points to a mechanism linking the functions of the AV and SA nodes and does not mediate the risk of SSS as a consequence of AF. The complexity of the relationship between SSS and AF is further evident by the opposite effects of the SCN10A locus on the two arrhythmias. Finally, since SSS variants do not consistently associate with AF, our data do not suggest a strong causal role for SSS in the development of AF.

Heart rate variants associate inversely with SSS, consistent with epidemiological observation,17 potentially because bradycardia is an integral part of the SSS diagnosis. However, lower heart rate could also represent a direct marker of biological processes affecting SSS, such as fibrosis or altered autonomic neural input. Finally, lack of associations with powerful PGSs based on large datasets serves as convincing evidence against causality.25 In particular, this applies to BMI, cholesterol, triglycerides, and T2D.

Several of our findings have direct clinical implications. In particular, the causal role of AF in SSS development emphasizes the need for heightened awareness of potential SSS among patients with AF, especially those with unspecific symptoms. Furthermore, the strong association of the SSS variant p.Glu382Asp in CCDC141 with AVB encourages consideration of dual chamber pacemaker implantation in SSS patients carrying this variant. Lastly, the SCN10A locus points to SSS as a potential adverse effect of GP ablation therapy for AF.

The major strength of the study is the large SSS sample set and extensive phenotypic and genotypic data for the same datasets. Different proportions of comorbidities and drug use in SSS cases and controls could constitute confounding; however, the consistent associations of SSS variants with both SSS and pacemaker implantation across cohorts support their true effect on cardiac conduction. Furthermore, if a specific comorbidity would explain one of the SSS associations, this would be evident by a stronger effect on that phenotype. The strength of Mendelian randomization in determining causality includes less concern for confounding and reverse causation than in observational studies since sequence variants associated with the exposure (e.g. AF) are randomized during meiosis and this process is unaffected by the presence of the outcome (SSS) later in life.24 For heart failure, a limitation of the Mendelian randomization analysis is that variants identified in GWAS are not ideal instruments because of their association with potential confounders (e.g. AF, CAD, and BMI).47

Conclusion

In this large genetic study, we found six SSS loci, some of which also associate with other arrhythmias and cardiac electrical function. One of the associations is with a missense variant in the intermediate filament gene KRT8 that confers high risk of SSS among homozygous carriers. Mendelian randomization analysis suggests that AF and lower heart rate are directly involved in SSS development. PGS analysis provides convincing evidence against causality for BMI, cholesterol, triglycerides, and T2D. On the other hand, the data also show that SSS can result from perturbation of pathways unrelated to AF. In particular, p.Gly62Cys at KRT8 does not associate with any other cardiovascular traits and points to a mechanism that is specific to SSS development.

Supplementary material

Supplementary material is available at European Heart Journal online.

Data availability

The Icelandic population WGS data has been deposited at the European Variant Archive under accession code PRJEB15197. We declare that the data supporting the findings of this study are available within the article, its Supplementary material online and upon reasonable request. The genome-wide association scan summary data will be made available at http://www.decode.com/summarydata.

Supplementary Material

ehaa1108_Supplementary_Data

Acknowledgements

We thank all the study subjects for their valuable participation as well as our colleagues that contributed to data collection, sample handling, and genotyping.

Contributor Information

Rosa B Thorolfsdottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Gardar Sveinbjornsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Hildur M Aegisdottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Stefania Benonisdottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Lilja Stefansdottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Erna V Ivarsdottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Gisli H Halldorsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Jon K Sigurdsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Christian Torp-Pedersen, Department of Clinical Research and Cardiology, Nordsjaelland Hospital, Dyrehavevej 29, Hillerød 3400, Denmark.

Peter E Weeke, Department of Cardiology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.

Søren Brunak, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark.

David Westergaard, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark.

Ole B Pedersen, Department of Clinical Immunology, Naestved Hospital, Ringstedgade 77B, Naestved 4700, Denmark.

Erik Sorensen, Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.

Kaspar R Nielsen, Department of Clinical Immunology, Aalborg University Hospital North, Urbansgade 36, Aalborg 9000, Denmark.

Kristoffer S Burgdorf, Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.

Karina Banasik, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark.

Ben Brumpton, Department of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, Trondheim 7030, Norway.

Wei Zhou, Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA.

Asmundur Oddsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Vinicius Tragante, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Kristjan E Hjorleifsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland; Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd. MC 305-16, Pasadena, CA 91125, USA.

Olafur B Davidsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Sridharan Rajamani, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Stefan Jonsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Bjarni Torfason, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland; Department of Cardiothoracic Surgery, Landspitali—The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland.

Atli S Valgardsson, Department of Cardiothoracic Surgery, Landspitali—The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland.

Gudmundur Thorgeirsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland; Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland; Department of Medicine, Landspitali—The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland.

Michael L Frigge, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Gudmar Thorleifsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Gudmundur L Norddahl, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Anna Helgadottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Solveig Gretarsdottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Patrick Sulem, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Ingileif Jonsdottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland; Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland; Department of Immunology, Landspitali—The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland.

Cristen J Willer, Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA; Department of Internal Medicine: Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109 -5368, USA; Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI 48109 -5618, USA.

Kristian Hveem, K.G. Jebsen Center for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, Trondheim 7491, Norway; Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway; HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Forskningsveien 2, Levanger 7600, Norway.

Henning Bundgaard, Department of Cardiology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.

Henrik Ullum, Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark; Statens Serum Institut, Artillerivej 5, Copenhagen 2300, Denmark.

David O Arnar, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland; Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland; Department of Medicine, Landspitali—The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland.

Unnur Thorsteinsdottir, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland; Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.

Daniel F Gudbjartsson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland; School of Engineering and Natural Sciences, University of Iceland, Hjardarhagi 4, Reykjavik 107, Iceland.

Hilma Holm, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.

Kari Stefansson, deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland; Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.

DBDS Genomic Consortium:

Steffen Andersen, Christian Erikstrup, Thomas F Hansen, Henrik Hjalgrim, Gregor Jemec, Poul Jennum, Mette Nyegaard, Mie T Bruun, Mikkel Petersen, Thomas Werge, and Per I Johansson

Funding

This work was partly supported by NordForsk through the funding to PM Heart, project number 90580, the Innovation Fund Denmark (IFD) under File No. 8114-00033B and the Technology Development Fund, Iceland, project number 90580.

Conflict of interest: The following authors affiliated with deCODE genetics/Amgen, Inc., are employed by the company: R.B.T., G.S., H.M.A., S.B., L.S., E.V.I., G.H.H., J.K.S., A.O., V.T., K.E.H., O.B.D., S.R., S.J., G.T., M.L.F., G.T., G.L.N., A.H., S.G., P.S., I.J., D.O.A., U.T., D.F.G., H.H., and K.S.. D.W. received grants from Novo Nordisk Foundation during the conduct of the study. S.B. is a board member for Proscion A/S and Intomics A/S.

References

  • 1. Mond  HG, Proclemer  A.  The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009—a World Society of Arrhythmia's project. Pacing Clin Electrophysiol  2011;34:1013–1027. [DOI] [PubMed] [Google Scholar]
  • 2. Ferrer  MI.  The sick sinus syndrome. Circulation  1973;47:635–641. [DOI] [PubMed] [Google Scholar]
  • 3. Fuster  V, Harrington  RA, Narula  J, Eapen  ZJ, Hurst’s the Heart. 14th ed.  New York: McGraw-Hill Education; 2017. [Google Scholar]
  • 4. Brignole  M, Auricchio  A, Baron-Esquivias  G, Bordachar  P, Boriani  G, Breithardt  OA, Cleland  J, Deharo  JC, Delgado  V, Elliott  PM, Gorenek  B, Israel  CW, Leclercq  C, Linde  C, Mont  L, Padeletti  L, Sutton  R, Vardas  PE.  2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace  2013;15:1070–1118. [DOI] [PubMed] [Google Scholar]
  • 5. Le Scouarnec  S, Bhasin  N, Vieyres  C, Hund  TJ, Cunha  SR, Koval  O, Marionneau  C, Chen  B, Wu  Y, Demolombe  S, Song  LS, Le Marec  H, Probst  V, Schott  JJ, Anderson  ME, Mohler  PJ.  Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease. Proc Natl Acad Sci USA  2008;105:15617–15622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Zhu  YB, Luo  JW, Jiang  F, Liu  G.  Genetic analysis of sick sinus syndrome in a family harboring compound CACNA1C and TTN mutations. Mol Med Rep  2018;17:7073–7080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Benson  DW, Wang  DW, Dyment  M, Knilans  TK, Fish  FA, Strieper  MJ, Rhodes  TH, George  AL.  Jr.,  Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Investig  2003;112:1019–1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Makita  N, Sasaki  K, Groenewegen  WA, Yokota  T, Yokoshiki  H, Murakami  T, Tsutsui  H.  Congenital atrial standstill associated with coinheritance of a novel SCN5A mutation and connexin 40 polymorphisms. Heart Rhythm  2005;2:1128–1134. [DOI] [PubMed] [Google Scholar]
  • 9. Makiyama  T, Akao  M, Tsuji  K, Doi  T, Ohno  S, Takenaka  K, Kobori  A, Ninomiya  T, Yoshida  H, Takano  M, Makita  N, Yanagisawa  F, Higashi  Y, Takeyama  Y, Kita  T, Horie  M.  High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol  2005;46:2100–2106. [DOI] [PubMed] [Google Scholar]
  • 10. Ishikawa  T, Ohno  S, Murakami  T, Yoshida  K, Mishima  H, Fukuoka  T, Kimoto  H, Sakamoto  R, Ohkusa  T, Aiba  T, Nogami  A, Sumitomo  N, Shimizu  W, Yoshiura  KI, Horigome  H, Horie  M, Makita  N.  Sick sinus syndrome with HCN4 mutations shows early onset and frequent association with atrial fibrillation and left ventricular noncompaction. Heart Rhythm  2017;14:717–724. [DOI] [PubMed] [Google Scholar]
  • 11. Milanesi  R, Baruscotti  M, Gnecchi-Ruscone  T, DiFrancesco  D.  Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med  2006;354:151–157. [DOI] [PubMed] [Google Scholar]
  • 12. Nof  E, Luria  D, Brass  D, Marek  D, Lahat  H, Reznik-Wolf  H, Pras  E, Dascal  N, Eldar  M, Glikson  M.  Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation  2007;116:463–470. [DOI] [PubMed] [Google Scholar]
  • 13. Stallmeyer  B, Kuß  J, Kotthoff  S, Zumhagen  S, Vowinkel  K, Rinné  S, Matschke  LA, Friedrich  C, Schulze-Bahr  E, Rust  S, Seebohm  G, Decher  N, Schulze-Bahr  E.  A mutation in the G-protein gene GNB2 causes familial sinus node and atrioventricular conduction dysfunction. Circ Res  2017;120:e33–e44. [DOI] [PubMed] [Google Scholar]
  • 14. Lodder  EM, De Nittis  P, Koopman  CD, Wiszniewski  W, Moura de Souza  CF, Lahrouchi  N, Guex  N, Napolioni  V, Tessadori  F, Beekman  L, Nannenberg  EA, Boualla  L, Blom  NA, de Graaff  W, Kamermans  M, Cocciadiferro  D, Malerba  N, Mandriani  B, Akdemir  ZHC, Fish  RJ, Eldomery  MK, Ratbi  I, Wilde  AAM, de Boer  T, Simonds  WF, Neerman-Arbez  M, Sutton  VR, Kok  F, Lupski  JR, Reymond  A, Bezzina  CR, Bakkers  J, Merla  G.  GNB5 mutations cause an autosomal-recessive multisystem syndrome with sinus bradycardia and cognitive disability. Am J Hum Genet  2016;99:704–710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Kuß  J, Stallmeyer  B, Goldstein  M, Rinné  S, Pees  C, Zumhagen  S, Seebohm  G, Decher  N, Pott  L, Kienitz  MC, Schulze-Bahr  E.  Familial sinus node disease caused by a gain of GIRK (G-protein activated inwardly rectifying K(+) channel) channel function. Circ Genom Precis Med  2019;12:e002238. [DOI] [PubMed] [Google Scholar]
  • 16. Holm  H, Gudbjartsson  DF, Sulem  P, Masson  G, Helgadottir  HT, Zanon  C, Magnusson  OT, Helgason  A, Saemundsdottir  J, Gylfason  A, Stefansdottir  H, Gretarsdottir  S, Matthiasson  SE, Thorgeirsson  GM, Jonasdottir  A, Sigurdsson  A, Stefansson  H, Werge  T, Rafnar  T, Kiemeney  LA, Parvez  B, Muhammad  R, Roden  DM, Darbar  D, Thorleifsson  G, Walters  GB, Kong  A, Thorsteinsdottir  U, Arnar  DO, Stefansson  K.  A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat Genet  2011;43:316–320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Jensen  PN, Gronroos  NN, Chen  LY, Folsom  AR, deFilippi  C, Heckbert  SR, Alonso  A.  Incidence of and risk factors for sick sinus syndrome in the general population. J Am Coll Cardiol  2014;64:531–538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Demoulin  JC, Kulbertus  HE.  Histopathological correlates of sinoatrial disease. Br Heart J  1978;40:1384–1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Lien  WP, Lee  YS, Chang  FZ, Lee  SY, Chen  CM, Tsai  HC.  The sick sinus syndrome: natural history of dysfunction of the sinoatrial node. Chest  1977;72:628–634. [DOI] [PubMed] [Google Scholar]
  • 20. Morris  GM, Kalman  JM.  Fibrosis, electrics and genetics. Perspectives in sinoatrial node disease. Circ J  2014;78:1272–1282. [DOI] [PubMed] [Google Scholar]
  • 21. Gomes  JA, Kang  PS, Matheson  M, Gough  WB  Jr., El-Sherif  N.  Coexistence of sick sinus rhythm and atrial flutter-fibrillation. Circulation  1981;63:80–86. [DOI] [PubMed] [Google Scholar]
  • 22. Kezerashvili  A, Krumerman  AK, Fisher  JD.  Sinus node dysfunction in atrial fibrillation: cause or effect?  J Atr Fibrillation  2008;1:30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Thorolfsdottir  RB, Sveinbjornsson  G, Sulem  P, Helgadottir  A, Gretarsdottir  S, Benonisdottir  S, Magnusdottir  A, Davidsson  OB, Rajamani  S, Roden  DM, Darbar  D, Pedersen  TR, Sabatine  MS, Jonsdottir  I, Arnar  DO, Thorsteinsdottir  U, Gudbjartsson  DF, Holm  H, Stefansson  K.  A missense variant in PLEC increases risk of atrial fibrillation. J Am Coll Cardiol  2017;70:2157–2168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Davey Smith  G, Hemani  G.  Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet  2014;23:R89–98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Burgess  S, Davey Smith  G, Davies  NM, Dudbridge  F, Gill  D, Glymour  MM, Hartwig  FP, Holmes  MV, Minelli  C, Relton  CL, Theodoratou  E.  Guidelines for performing Mendelian randomization investigations. Wellcome Open Res  2020;4:186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Akoum  N, McGann  C, Vergara  G, Badger  T, Ranjan  R, Mahnkopf  C, Kholmovski  E, Macleod  R, Marrouche  N.  Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant. J Cardiovasc Electrophysiol  2012;23:44–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Chang  HY, Lin  YJ, Lo  LW, Chang  SL, Hu  YF, Li  CH, Chao  TF, Yin  WH, Chen  SA.  Sinus node dysfunction in atrial fibrillation patients: the evidence of regional atrial substrate remodelling. Europace  2013;15:205–211. [DOI] [PubMed] [Google Scholar]
  • 28. Sudlow  C, Gallacher  J, Allen  N, Beral  V, Burton  P, Danesh  J, Downey  P, Elliott  P, Green  J, Landray  M, Liu  B, Matthews  P, Ong  G, Pell  J, Silman  A, Young  A, Sprosen  T, Peakman  T, Collins  R.  UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med  2015;12:e1001779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Krokstad  S, Langhammer  A, Hveem  K, Holmen  TL, Midthjell  K, Stene  TR, Bratberg  G, Heggland  J, Holmen  J.  Cohort profile: the HUNT study, Norway. Int J Epidemiol  2013;42:968–977. [DOI] [PubMed] [Google Scholar]
  • 30. Hansen  TF, Banasik  K, Erikstrup  C, Pedersen  OB, Westergaard  D, Chmura  PJ, Nielsen  K, Thorner  L, Hjalgrim  H, Paarup  H, Larsen  MAH, Petersen  M, Jennum  P, Andersen  S, Nyegaard  M, Jemec  GBE, Olesen  J, Werge  T, Johansson  PI, Sorensen  E, Brunak  S, Ullum  H, Burgdorf  KS.  DBDS genomic cohort, a prospective and comprehensive resource for integrative and temporal analysis of genetic, environmental and lifestyle factors affecting health of blood donors. BMJ Open  2019;9:e028401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Gudbjartsson  DF, Helgason  H, Gudjonsson  SA, Zink  F, Oddson  A, Gylfason  A, Besenbacher  S, Magnusson  G, Halldorsson  BV, Hjartarson  E, Sigurdsson  GT, Stacey  SN, Frigge  ML, Holm  H, Saemundsdottir  J, Helgadottir  HT, Johannsdottir  H, Sigfusson  G, Thorgeirsson  G, Sverrisson  JT, Gretarsdottir  S, Walters  GB, Rafnar  T, Thjodleifsson  B, Bjornsson  ES, Olafsson  S, Thorarinsdottir  H, Steingrimsdottir  T, Gudmundsdottir  TS, Theodors  A, Jonasson  JG, Sigurdsson  A, Bjornsdottir  G, Jonsson  JJ, Thorarensen  O, Ludvigsson  P, Gudbjartsson  H, Eyjolfsson  GI, Sigurdardottir  O, Olafsson  I, Arnar  DO, Magnusson  OT, Kong  A, Masson  G, Thorsteinsdottir  U, Helgason  A, Sulem  P, Stefansson  K.  Large-scale whole-genome sequencing of the Icelandic population. Nat Genet  2015;47:435–444. [DOI] [PubMed] [Google Scholar]
  • 32. Evangelou  E, Warren  HR, Mosen-Ansorena  D, Mifsud  B, Pazoki  R, Gao  H, Ntritsos  G, Dimou  N, Cabrera  CP, Karaman  I, Ng  FL, Evangelou  M, Witkowska  K,, Tzanis  E, Hellwege  JN, Giri  A, Velez Edwards  DR, Sun  YV, Cho  K, Gaziano  JM, Wilson  PWF, Tsao  PS, Kovesdy  CP, Esko  T, Magi  R, Milani  L, Almgren  P, Boutin  T,, Debette  S, Ding  J, Giulianini  F, Holliday  EG, Jackson  AU, Li-Gao  R, Lin  WY, Luan  J, Mangino  M, Oldmeadow  C,, Prins  BP, Qian  Y, Sargurupremraj  M, Shah  N, Surendran  P, Theriault  S, Verweij  N, Willems  SM, Zhao  JH, Amouyel  P, Connell  J, de Mutsert  R, Doney  ASF, Farrall  M, Menni  C, Morris  AD, Noordam  R, Pare  G, Poulter  NR, Shields  DC, Stanton  A, Thom  S, Abecasis  G, Amin  N, Arking  DE, Ayers  KL, Barbieri  CM, Batini  C, Bis  JC, Blake  T,, Bochud  M, Boehnke  M, Boerwinkle  E, Boomsma  DI, Bottinger  EP, Braund  PS, Brumat  M, Campbell  A, Campbell  H, Chakravarti  A, Chambers  JC, Chauhan  G,, Ciullo  M, Cocca  M, Collins  F, Cordell  HJ, Davies  G, de Borst  MH, de Geus  EJ, Deary  IJ, Deelen  J, Del Greco  MF, Demirkale  CY, Dorr  M, Ehret  GB, Elosua  R, Enroth  S,, Erzurumluoglu  AM, Ferreira  T, Franberg  M, Franco  OH, Gandin  I, Gasparini  P, Giedraitis  V, Gieger  C, Girotto  G, Goel  A,, Gow  AJ, Gudnason  V, Guo  X, Gyllensten  U, Hamsten  A, Harris  TB, Harris  SE, Hartman  CA, Havulinna  AS,, Hicks  AA, Hofer  E, Hofman  A, Hottenga  JJ, Huffman  JE, Hwang  SJ,, Ingelsson  E,, James  A, Jansen  R, Jarvelin  MR, Joehanes  R, Johansson  A, Johnson  AD,, Joshi  PK, Jousilahti  P,, Jukema  JW, Jula  A, Kahonen  M, Kathiresan  S, Keavney  BD, Khaw  KT, Knekt  P, Knight  J, Kolcic  I, Kooner  JS, Koskinen  S, Kristiansson  K, Kutalik  Z, Laan  M, Larson  M, Launer  LJ, Lehne  B, Lehtimaki  T,, Liewald  DCM, Lin  L, Lind  L, Lindgren  CM, Liu  Y, Loos  RJF,, Lopez  LM, Lu  Y, Lyytikainen  LP, Mahajan  A, Mamasoula  C, Marrugat  J, Marten  J, Milaneschi  Y, Morgan  A, Morris  AP, Morrison  AC, Munson  PJ,, Nalls  MA, Nandakumar  P, Nelson  CP, Niiranen  T, Nolte  IM, Nutile  T, Oldehinkel  AJ, Oostra  BA, O'Reilly  PF, Org  E,, Padmanabhan  S, Palmas  W, Palotie  A, Pattie  A, Penninx  B, Perola  M, Peters  A, Polasek  O, Pramstaller  PP, Nguyen  QT, Raitakari  OT, Ren  M, Rettig  R, Rice  K, Ridker  PM, Ried  JS, Riese  H,, Ripatti  S, Robino  A, Rose  LM, Rotter  JI, Rudan  I, Ruggiero  D, Saba  Y, Sala  CF, Salomaa  V, Samani  NJ, Sarin  AP, Schmidt  R, Schmidt  H, Shrine  N, Siscovick  D, Smith  AV, Snieder  H, Sober  S, Sorice  R, Starr  JM, Stott  DJ, Strachan  DP, Strawbridge  RJ, Sundstrom  J, Swertz  MA, Taylor  KD, Teumer  A, Tobin  MD, Tomaszewski  M, Toniolo  D, Traglia  M, Trompet  S, Tuomilehto  J, Tzourio  C, Uitterlinden  AG, Vaez  A, van der Most  PJ, van Duijn  CM, Vergnaud  AC, Verwoert  GC, Vitart  V, Volker  U, Vollenweider  P, Vuckovic  D, Watkins  H, Wild  SH, Willemsen  G, Wilson  JF, Wright  AF, Yao  J, Zemunik  T, Zhang  W, Attia  JR, Butterworth  AS, Chasman  DI, Conen  D,, Cucca  F, Danesh  J, Hayward  C, Howson  JMM, Laakso  M, Lakatta  EG, Langenberg  C, Melander  O, Mook-Kanamori  DO, Palmer  CNA, Risch  L, Scott  RA,, Scott  RJ, Sever  P, Spector  TD, van der Harst  P, Wareham  NJ, Zeggini  E, Levy  D, Munroe  PB, Newton-Cheh  C, Brown  MJ, Metspalu  A, Hung  AM, O'Donnell  CJ,, Edwards  TL,, Psaty  BM, Tzoulaki  I, Barnes  MR, Wain  LV, Elliott  P, Caulfield  MJ.  Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet  2018;50:1412–1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Welsh  S, Peakman  T, Sheard  S, Almond  R.  Comparison of DNA quantification methodology used in the DNA extraction protocol for the UK Biobank cohort. BMC Genomics  2017;18:26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Bycroft  C, Freeman  C, Petkova  D, Band  G, Elliott  LT, Sharp  K, Motyer  A, Vukcevic  D, Delaneau  O, O’Connell  J, Cortes  A, Welsh  S, Young A, Effingham MMcVean  G, Leslie  S, Donnelly  P, Marchini  J. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018;562:203–209 . [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Walter  K, Min  JL, Huang  J, Crooks  L, Memari  Y, McCarthy  S, Perry  JR, Xu  C, Futema  M, Lawson  D, Iotchkova  V, Schiffels  S, Hendricks  AE, Danecek  P, Li  R, Floyd  J, Wain  LV, Barroso  I, Humphries  SE, Hurles  ME, Zeggini  E, Barrett  JC, Plagnol  V, Richards  JB, Greenwood  CM, Timpson  NJ, Durbin  R, Soranzo  N; UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature  2015;526:82–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Sveinbjornsson  G, Albrechtsen  A, Zink  F, Gudjonsson  SA, Oddson  A, Masson  G, Holm  H, Kong  A, Thorsteinsdottir  U, Sulem  P, Gudbjartsson  DF, Stefansson  K.  Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat Genet  2016;48:314–317. [DOI] [PubMed] [Google Scholar]
  • 37. Bulik-Sullivan  BK, Loh  PR, Finucane  HK, Ripke  S, Yang  J, Patterson  N, Daly  MJ, Price  AL, Neale  BM; Schizophrenia Working Group of the Psychiatric Genomics Consortium. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet  2015;47:291–295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Richardson  TG, Harrison  S, Hemani  G, Davey Smith  G.  An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome. Elife  2019;8:e43657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Stearns  FW.  One hundred years of pleiotropy: a retrospective. Genetics  2010;186:767–773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Burgess  S, Thompson  SG.  Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol  2017;32:377–389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Nielsen  JB, Thorolfsdottir  RB, Fritsche  LG, Zhou  W, Skov  MW, Graham  SE, Herron  TJ, McCarthy  S, Schmidt  EM, Sveinbjornsson  G, Surakka  I, Mathis  MR, Yamazaki  M, Crawford  RD, Gabrielsen  ME, Skogholt  AH, Holmen  OL, Lin  M, Wolford  BN, Dey  R, Dalen  H, Sulem  P, Chung  JH, Backman  JD, Arnar  DO, Thorsteinsdottir  U, Baras  A, O’Dushlaine  C, Holst  AG, Wen  X, Hornsby  W, Dewey  FE, Boehnke  M, Kheterpal  S, Mukherjee  B, Lee  S, Kang  HM, Holm  H, Kitzman  J, Shavit  JA, Jalife  J, Brummett  CM, Teslovich  TM, Carey  DJ, Gudbjartsson  DF, Stefansson  K, Abecasis  GR, Hveem  K, Willer  CJ.  Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet  2018;50:1234–1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Roselli  C, Chaffin  MD, Weng  LC, Aeschbacher  S, Ahlberg  G, Albert  CM, Almgren  P, Alonso  A, Anderson  CD, Aragam  KG, Arking  DE, Barnard  J, Bartz  TM, Benjamin  EJ, Bihlmeyer  NA, Bis  JC, Bloom  HL, Boerwinkle  E, Bottinger  EB, Brody  JA, Calkins  H, Campbell  A, Cappola  TP, Carlquist  J, Chasman  DI, Chen  LY, Chen  YI, Choi  EK, Choi  SH, Christophersen  IE, Chung  MK, Cole  JW, Conen  D, Cook  J, Crijns  HJ, Cutler  MJ, Damrauer  SM, Daniels  BR, Darbar  D, Delgado  G, Denny  JC, Dichgans  M, Dorr  M, Dudink  EA, Dudley  SC, Esa  N, Esko  T, Eskola  M, Fatkin  D, Felix  SB, Ford  I, Franco  OH, Geelhoed  B, Grewal  RP, Gudnason  V, Guo  X, Gupta  N, Gustafsson  S, Gutmann  R, Hamsten  A, Harris  TB, Hayward  C, Heckbert  SR, Hernesniemi  J, Hocking  LJ, Hofman  A, Horimoto  A, Huang  J, Huang  PL, Huffman  J, Ingelsson  E, Ipek  EG, Ito  K, Jimenez-Conde  J, Johnson  R, Jukema  JW, Kaab  S, Kahonen  M, Kamatani  Y, Kane  JP, Kastrati  A, Kathiresan  S, Katschnig-Winter  P, Kavousi  M, Kessler  T, Kietselaer  BL, Kirchhof  P, Kleber  ME, Knight  S, Krieger  JE, Kubo  M, Launer  LJ, Laurikka  J, Lehtimaki  T, Leineweber  K, Lemaitre  RN, Li  M, Lim  HE, Lin  HJ, Lin  H, Lind  L, Lindgren  CM, Lokki  ML, London  B, Loos  RJF, Low  SK, Lu  Y, Lyytikainen  LP, Macfarlane  PW, Magnusson  PK, Mahajan  A, Malik  R, Mansur  AJ, Marcus  GM, Margolin  L, Margulies  KB, Marz  W, McManus  DD, Melander  O, Mohanty  S, Montgomery  JA, Morley  MP, Morris  AP, Muller-Nurasyid  M, Natale  A, Nazarian  S, Neumann  B, Newton-Cheh  C, Niemeijer  MN, Nikus  K, Nilsson  P, Noordam  R, Oellers  H, Olesen  MS, Orho-Melander  M, Padmanabhan  S, Pak  HN, Pare  G, Pedersen  NL, Pera  J, Pereira  A, Porteous  D, Psaty  BM, Pulit  SL, Pullinger  CR, Rader  DJ, Refsgaard  L, Ribases  M, Ridker  PM, Rienstra  M, Risch  L, Roden  DM, Rosand  J, Rosenberg  MA, Rost  N, Rotter  JI, Saba  S, Sandhu  RK, Schnabel  RB, Schramm  K, Schunkert  H, Schurman  C, Scott  SA, Seppala  I, Shaffer  C, Shah  S, Shalaby  AA, Shim  J, Shoemaker  MB, Siland  JE, Sinisalo  J, Sinner  MF, Slowik  A, Smith  AV, Smith  BH, Smith  JG, Smith  JD, Smith  NL, Soliman  EZ, Sotoodehnia  N, Stricker  BH, Sun  A, Sun  H, Svendsen  JH, Tanaka  T, Tanriverdi  K, Taylor  KD, Teder-Laving  M, Teumer  A, Theriault  S, Trompet  S, Tucker  NR, Tveit  A, Uitterlinden  AG, Van Der Harst  P, Van Gelder  IC, Van Wagoner  DR, Verweij  N, Vlachopoulou  E, Volker  U, Wang  B, Weeke  PE, Weijs  B, Weiss  R, Weiss  S, Wells  QS, Wiggins  KL, Wong  JA, Woo  D, Worrall  BB, Yang  PS, Yao  J, Yoneda  ZT, Zeller  T, Zeng  L, Lubitz  SA, Lunetta  KL, Ellinor  PT.  Multi-ethnic genome-wide association study for atrial fibrillation. Nat Genet  2018;50:1225–1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Guo  Y, Chung  W, Zhu  Z, Shan  Z, Li  J, Liu  S, Liang  L.  Genome-wide assessment for resting heart rate and shared genetics with cardiometabolic traits and type 2 diabetes. J Am Coll Cardiol  2019;74:2162–2174. [DOI] [PubMed] [Google Scholar]
  • 44. Yengo  L, Sidorenko  J, Kemper  KE, Zheng  Z, Wood  AR, Weedon  MN, Frayling  TM, Hirschhorn  J, Yang  J, Visscher  PM; the GIANT Consortium. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet  2018;27:3641–3649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. van der Harst  P, Verweij  N.  Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res  2018;122:433–443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Malik  R, Chauhan  G, Traylor  M, Sargurupremraj  M, Okada  Y, Mishra  A, Rutten-Jacobs  L, Giese  A-K, van der Laan  SW, Gretarsdottir  S, Anderson  CD, Chong  M, Adams  HHH, Ago  T, Almgren  P, Amouyel  P, Ay  H, Bartz  TM, Benavente  OR, Bevan  S, Boncoraglio  GB, Brown  RD  Jr., Butterworth  AS, Carrera  C, Carty  CL, Chasman  DI, Chen  W-M, Cole  JW, Correa  A, Cotlarciuc  I, Cruchaga  C, Danesh  J, de Bakker  PIW, DeStefano  AL, den Hoed  M, Duan  Q, Engelter  ST, Falcone  GJ, Gottesman  RF, Grewal  RP, Gudnason  V, Gustafsson  S, Haessler  J, Harris  TB, Hassan  A, Havulinna  AS, Heckbert  SR, Holliday  EG, Howard  G, Hsu  F-C, Hyacinth  HI, Ikram  MA, Ingelsson  E, Irvin  MR, Jian  X, Jiménez-Conde  J, Johnson  JA, Jukema  JW, Kanai  M, Keene  KL, Kissela  BM, Kleindorfer  DO, Kooperberg  C, Kubo  M, Lange  LA, Langefeld  CD, Langenberg  C, Launer  LJ, Lee  J-M, Lemmens  R, Leys  D, Lewis  CM, Lin  W-Y, Lindgren  AG, Lorentzen  E, Magnusson  PK, Maguire  J, Manichaikul  A, McArdle  PF, Meschia  JF, Mitchell  BD, Mosley  TH, Nalls  MA, Ninomiya  T, O'Donnell  MJ, Psaty  BM, Pulit  SL, Rannikmäe  K, Reiner  AP, Rexrode  KM, Rice  K, Rich  SS, Ridker  PM, Rost  NS, Rothwell  PM, Rotter  JI, Rundek  T, Sacco  RL, Sakaue  S, Sale  MM, Salomaa  V, Sapkota  BR, Schmidt  R, Schmidt  CO, Schminke  U, Sharma  P, Slowik  A, Sudlow  CLM, Tanislav  C, Tatlisumak  T, Taylor  KD, Thijs  VNS, Thorleifsson  G, Thorsteinsdottir  U, Tiedt  S, Trompet  S, Tzourio  C, van Duijn  CM, Walters  M, Wareham  NJ, Wassertheil-Smoller  S, Wilson  JG, Wiggins  KL, Yang  Q, Yusuf  SConsortium AF, Cohorts for H, Aging Research in Genomic Epidemiology C, International Genomics of Blood Pressure C, Consortium IStarnet  Bis JC, Pastinen  T, Ruusalepp  A, Schadt  EE, Koplev  S, Björkegren  JLM, Codoni  V, Civelek  M, Smith  NL, Trégouët  DA, Christophersen  IE, Roselli  C, Lubitz  SA, Ellinor  PT, Tai  ES, Kooner  JS, Kato  N, He  J, van der Harst  P, Elliott  P, Chambers  JC, Takeuchi  F, Johnson  ADBioBank Japan Cooperative Hospital G, Consortium C, Consortium E-C, Consortium EP-I, International Stroke Genetics C, Consortium M, Neurology Working Group of the CC, Network NSG, Study UKYLD, Consortium MSanghera  DK, Melander  O, Jern  C, Strbian  D, Fernandez-Cadenas  I, Longstreth  WT  Jr., Rolfs  A, Hata  J, Woo  D, Rosand  J, Pare  G, Hopewell  JC, Saleheen  D, Stefansson  K, Worrall  BB, Kittner  SJ, Seshadri  S, Fornage  M, Markus  HS, Howson  JMM, Kamatani  Y, Debette  S, Dichgans  M.  Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet  2018;50:524–537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Shah  S, Henry  A, Roselli  C, Lin  H, Sveinbjörnsson  G, Fatemifar  G, Hedman  ÅK, Wilk  JB, Morley  MP, Chaffin  MD, Helgadottir  A, Verweij  N, Dehghan  A,, Almgren  P, Andersson  C, Aragam  KG, Ärnlöv  J, Backman  JD, Biggs  ML, Bloom  HL, Brandimarto  J, Brown  MR, Buckbinder  L, Carey  DJ, Chasman  DI, Chen  X, Chen  X, Chung  J, Chutkow  W, Cook  JP, Delgado  GE, Denaxas  S, Doney  AS, Dörr  M,, Dudley  SC, Dunn  ME, Engström  G,, Esko  T, Felix  SB, Finan  C, Ford  I, Ghanbari  M, Ghasemi  S, Giedraitis  V, Giulianini  F, Gottdiener  JS, Gross  S, Guðbjartsson  DF, Gutmann  R, Haggerty  CM, van der Harst  P, Hyde  CL, Ingelsson  E, Jukema  JW, Kavousi  M, Khaw  K-T, Kleber  ME, Køber  L, Koekemoer  A, Langenberg  C, Lind  L, Lindgren  CM, London  B, Lotta  LA, Lovering  RC, Luan  Ja, Magnusson  P, Mahajan  A, Margulies  KB, März  W, Melander  O, Mordi  IR, Morgan  T, Morris  AD, Morris  AP, Morrison  AC, Nagle  MW, Nelson  CP, Niessner  A, Niiranen  T, O'Donoghue  ML, Owens  AT,, Palmer  CNA,, Parry  HM, Perola  M, Portilla-Fernandez  E, Psaty  BMRegeneron Genetics CRice  KM, Ridker  PM, Romaine  SPR, Rotter  JI, Salo  P, Salomaa  V, van Setten  J, Shalaby  AA, Smelser  DT, Smith  NL, Stender  S, Stott  DJ, Svensson  P,, Tammesoo  M-L, Taylor  KD,, Teder-Laving  M, Teumer  A,, Thorgeirsson  G, Thorsteinsdottir  U, Torp-Pedersen  C, Trompet  S, Tyl  B, Uitterlinden  AG, Veluchamy  A, Völker  U, Voors  AA, Wang  X, Wareham  NJ,, Waterworth  D, Weeke  PE, Weiss  R, Wiggins  KL, Xing  H, Yerges-Armstrong  LM, Yu  B, Zannad  F, Zhao  JH, Hemingway  H, Samani  NJ, McMurray  JJV, Yang  J, Visscher  PM, Newton-Cheh  C,, Malarstig  A, Holm  H,, Lubitz  SA, Sattar  N, Holmes  MV, Cappola  TP, Asselbergs  FW, Hingorani  AD, Kuchenbaecker  K, Ellinor  PT, Lang  CC, Stefansson  K, Smith  JG, Vasan  RS, Swerdlow  DI, Lumbers  RT.  Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun  2020;11:163–163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Ntalla  I, Weng LC, Cartwright JH, Hall AW, Sveinbjornsson G, Tucker NR, Choi SH, Chaffin MD, Roselli C, Barnes MR, Mifsud B, Warren HR, Hayward C, Marten J, Cranley JJ, Concas MP, Gasparini P, Boutin T, Kolcic I, Polasek O, Rudan I, Araujo NM, Lima-Costa MF, Ribeiro ALP, Souza RP, Tarazona-Santos E, Giedraitis V, Ingelsson E, Mahajan A, Morris AP, Del Greco MF, Foco L, Gögele M, Hicks AA, Cook JP, Lind L, Lindgren CM, Sundström J, Nelson CP, Riaz MB, Samani NJ, Sinagra G, Ulivi S, Kähönen M, Mishra PP, Mononen N, Nikus K, Caulfield MJ, Dominiczak A, Padmanabhan S, Montasser ME, O'Connell JR, Ryan K, Shuldiner AR, Aeschbacher S, Conen D, Risch L, Thériault S, Hutri-Kähönen N, Lehtimäki T, Lyytikäinen LP, Raitakari OT, Barnes CLK, Campbell H, Joshi PK, Wilson JF, Isaacs A, Kors JA, van Duijn CM, Huang PL, Gudnason V, Harris TB, Launer LJ, Smith AV, Bottinger EP, Loos RJF, Nadkarni GN, Preuss MH, Correa A, Mei H, Wilson J, Meitinger T, Müller-Nurasyid M, Peters A, Waldenberger M, Mangino M, Spector TD, Rienstra M, van de Vegte YJ, van der Harst P, Verweij N, Kääb S, Schramm K, Sinner MF, Strauch K, Cutler MJ, Fatkin D, London B, Olesen M, Roden DM, Benjamin Shoemaker M, Gustav Smith J, Biggs ML, Bis JC, Brody JA, Psaty BM, Rice K, Sotoodehnia N, De Grandi A, Fuchsberger C, Pattaro C, Pramstaller PP, Ford I, Wouter Jukema J, Macfarlane PW, Trompet S, Dörr M, Felix SB, Völker U, Weiss S, Havulinna AS, Jula A, Sääksjärvi K, Salomaa V, Guo X, Heckbert SR, Lin HJ, Rotter JI, Taylor KD, Yao J, de Mutsert R, Maan AC, Mook-Kanamori DO, Noordam R, Cucca F, Ding J, Lakatta EG, Qian Y, Tarasov KV, Levy D, Lin H, Newton-Cheh CH, Lunetta KL, Murray AD, Porteous DJ, Smith BH, Stricker BH, Uitterlinden A, van den Berg ME, Haessler J, Jackson RD, Kooperberg C, Peters U, Reiner AP, Whitsel EA, Alonso A, Arking DE, Boerwinkle E, Ehret GB, Soliman EZ, Avery CL, Gogarten SM, Kerr KF, Laurie CC, Seyerle AA, Stilp A, Assa S, Abdullah Said M, Yldau van der Ende M, Lambiase PD, Orini M, Ramirez J, Van Duijvenboden S, Arnar DO, Gudbjartsson DF, Holm H, Sulem P, Thorleifsson G, Thorolfsdottir RB, Thorsteinsdottir U, Benjamin EJ, Tinker A, Stefansson K, Ellinor PT, Jamshidi Y, Lubitz SA, Munroe PB. Multi-ancestry GWAS of the electrocardiographic PR interval identifies 210 loci underlying cardiac conduction. Nat Commun 2020;11:2542. [DOI] [PMC free article] [PubMed]
  • 49. van der Harst  P, van Setten  J,, Verweij  N, Vogler  G, Franke  L, Maurano  MT, Wang  X, Mateo Leach  I, Eijgelsheim  M, Sotoodehnia  N, Hayward  C, Sorice  R, Meirelles  O, Lyytikainen  LP, Polasek  O,, Tanaka  T, Arking  DE, Ulivi  S, Trompet  S, Muller-Nurasyid  M, Smith  AV, Dorr  M, Kerr  KF, Magnani  JW, Del Greco  MF, Zhang  W, Nolte  IM, Silva  CT, Padmanabhan  S, Tragante  V, Esko  T, Abecasis  GR,, Adriaens  ME, Andersen  K, Barnett  P,, Bis  JC, Bodmer  R,, Buckley  BM, Campbell  H, Cannon  MV, Chakravarti  A, Chen  LY, Delitala  A, Devereux  RB, Doevendans  PA, Dominiczak  AF, Ferrucci  L, Ford  I, Gieger  C, Harris  TB, Haugen  E, Heinig  M, Hernandez  DG, Hillege  HL, Hirschhorn  JN, Hofman  A, Hubner  N, Hwang  SJ,, Iorio  A, Kahonen  M, Kellis  M, Kolcic  I,, Kooner  IK, Kooner  JS, Kors  JA, Lakatta  EG, Lage  K, Launer  LJ, Levy  D, Lundby  A, Macfarlane  PW, May  D, Meitinger  T, Metspalu  A, Nappo  S, Naitza  S, Neph  S, Nord  AS, Nutile  T, Okin  PM, Olsen  JV, Oostra  BA, Penninger  JM, Pennacchio  LA, Pers  TH, Perz  S, Peters  A, Pinto  YM, Pfeufer  A, Pilia  MG, Pramstaller  PP, Prins  BP, Raitakari  OT, Raychaudhuri  S,, Rice  KM, Rossin  EJ, Rotter  JI, Schafer  S, Schlessinger  D, Schmidt  CO, Sehmi  J, Sillje  HHW, Sinagra  G, Sinner  MF, Slowikowski  K, Soliman  EZ, Spector  TD, Spiering  W, Stamatoyannopoulos  JA, Stolk  RP, Strauch  K, Tan  ST, Tarasov  KV, Trinh  B, Uitterlinden  AG, van den Boogaard  M, van Duijn  CM, van Gilst  WH, Viikari  JS, Visscher  PM, Vitart  V, Volker  U, Waldenberger  M, Weichenberger  CX, Westra  HJ,, Wijmenga  C, Wolffenbuttel  BH, Yang  J, Bezzina  CR, Munroe  PB, Snieder  H, Wright  AF, Rudan  I, Boyer  LA,, Asselbergs  FW, van Veldhuisen  DJ, Stricker  BH, Psaty  BM, Ciullo  M, Sanna  S, Lehtimaki  T, Wilson  JF, Bandinelli  S, Alonso  A,, Gasparini  P, Jukema  JW, Kaab  S, Gudnason  V, Felix  SB, Heckbert  SR, de Boer  RA, Newton-Cheh  C, Hicks  AA, Chambers  JC, Jamshidi  Y, Visel  A, Christoffels  VM, Isaacs  A, Samani  NJ, de Bakker  PIW.  52 genetic loci influencing myocardial mass. J Am Coll Cardiol  2016;68(13):1435–1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Gudbjartsson  DF, Arnar  DO, Helgadottir  A, Gretarsdottir  S, Holm  H, Sigurdsson  A, Jonasdottir  A, Baker  A, Thorleifsson  G, Kristjansson  K, Palsson  A, Blondal  T, Sulem  P, Backman  VM, Hardarson  GA, Palsdottir  E, Helgason  A, Sigurjonsdottir  R, Sverrisson  JT, Kostulas  K, Ng  MC, Baum  L, So  WY, Wong  KS, Chan  JC, Furie  KL, Greenberg  SM, Sale  M, Kelly  P, MacRae  CA, Smith  EE, Rosand  J, Hillert  J, Ma  RC, Ellinor  PT, Thorgeirsson  G, Gulcher  JR, Kong  A, Thorsteinsdottir  U, Stefansson  K.  Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature  2007;448:353–357. [DOI] [PubMed] [Google Scholar]
  • 51. Gudbjartsson  DF, Holm  H, Gretarsdottir  S, Thorleifsson  G, Walters  GB, Thorgeirsson  G, Gulcher  J, Mathiesen  EB, Njolstad  I, Nyrnes  A, Wilsgaard  T, Hald  EM, Hveem  K, Stoltenberg  C, Kucera  G, Stubblefield  T, Carter  S, Roden  D, Ng  MC, Baum  L, So  WY, Wong  KS, Chan  JC, Gieger  C, Wichmann  HE, Gschwendtner  A, Dichgans  M, Kuhlenbaumer  G, Berger  K, Ringelstein  EB, Bevan  S, Markus  HS, Kostulas  K, Hillert  J, Sveinbjornsdottir  S, Valdimarsson  EM, Lochen  ML, Ma  RC, Darbar  D, Kong  A, Arnar  DO, Thorsteinsdottir  U, Stefansson  K.  A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet  2009;41:876–878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Norland  K, Sveinbjornsson  G, Thorolfsdottir  RB, Davidsson  OB, Tragante  V, Rajamani  S, Helgadottir  A, Gretarsdottir  S, van Setten  J, Asselbergs  FW, Sverrisson  JT, Stephensen  SS, Oskarsson  G, Sigurdsson  EL, Andersen  K, Danielsen  R, Thorgeirsson  G, Thorsteinsdottir  U, Arnar  DO, Sulem  P, Holm  H, Gudbjartsson  DF, Stefansson  K.  Sequence variants with large effects on cardiac electrophysiology and disease. Nat Commun  2019;10:4803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Pfeufer  A, van Noord  C, Marciante  KD, Arking  DE, Larson  MG, Smith  AV, Tarasov  KV, Müller  M, Sotoodehnia  N, Sinner  MF, Verwoert  GC, Li  M, Kao  WHL, Köttgen  A, Coresh  J, Bis  JC, Psaty  BM, Rice  K, Rotter  JI, Rivadeneira  F, Hofman  A, Kors  JA, Stricker  BHC, Uitterlinden  AG, van Duijn  CM, Beckmann  BM, Sauter  W, Gieger  C, Lubitz  SA, Newton-Cheh  C, Wang  TJ, Magnani  JW, Schnabel  RB, Chung  MK, Barnard  J, Smith  JD, Van Wagoner  DR, Vasan  RS, Aspelund  T, Eiriksdottir  G, Harris  TB, Launer  LJ, Najjar  SS, Lakatta  E, Schlessinger  D, Uda  M, Abecasis  GR, Müller-Myhsok  B, Ehret  GB, Boerwinkle  E, Chakravarti  A, Soliman  EZ, Lunetta  KL, Perz  S, Wichmann  HE, Meitinger  T, Levy  D, Gudnason  V, Ellinor  PT, Sanna  S, Kääb  S, Witteman  JCM, Alonso  A, Benjamin  EJ, Heckbert  SR.  Genome-wide association study of PR interval. Nat Genet  2010;42:153–159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Holm  H, Gudbjartsson  DF, Arnar  DO, Thorleifsson  G, Thorgeirsson  G, Stefansdottir  H, Gudjonsson  SA, Jonasdottir  A, Mathiesen  EB, Njolstad  I, Nyrnes  A, Wilsgaard  T, Hald  EM, Hveem  K, Stoltenberg  C, Lochen  ML, Kong  A, Thorsteinsdottir  U, Stefansson  K.  Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet  2010;42:117–122. [DOI] [PubMed] [Google Scholar]
  • 55.Human Genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science  2015;348:648–660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Aalen  OO, Johansen  S.  An empirical transition matrix for nonhomogeneous Markov-chains based on censored observations. Scand Stat Theory Appl  1978;5:141–150. [Google Scholar]
  • 57. Semelka  M, Gera  J, Usman  S.  Sick sinus syndrome: a review. Am Fam Physician  2013;87:691–696. [PubMed] [Google Scholar]
  • 58. Ku  NO, Gish  R, Wright  TL, Omary  MB.  Keratin 8 mutations in patients with cryptogenic liver disease. N Engl J Med  2001;344:1580–1587. [DOI] [PubMed] [Google Scholar]
  • 59. Benjamin  EJ, Rice  KM, Arking  DE, Pfeufer  A, van Noord  C, Smith  AV, Schnabel  RB, Bis  JC, Boerwinkle  E, Sinner  MF, Dehghan  A, Lubitz  SA, D'Agostino  RB  Sr, Lumley  T, Ehret  GB, Heeringa  J, Aspelund  T, Newton-Cheh  C, Larson  MG, Marciante  KD, Soliman  EZ, Rivadeneira  F, Wang  TJ, Eiríksdottir  G, Levy  D, Psaty  BM, Li  M, Chamberlain  AM, Hofman  A, Vasan  RS, Harris  TB, Rotter  JI, Kao  WHL, Agarwal  SK, Stricker  BHC, Wang  K, Launer  LJ, Smith  NL, Chakravarti  A, Uitterlinden  AG, Wolf  PA, Sotoodehnia  N, Köttgen  A, van Duijn  CM, Meitinger  T, Mueller  M, Perz  S, Steinbeck  G, Wichmann  H-E, Lunetta  KL, Heckbert  SR, Gudnason  V, Alonso  A, Kääb  S, Ellinor  PT, Witteman  JCM.  Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet  2009;41:879–881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Nielsen  JB, Fritsche  LG, Zhou  W, Teslovich  TM, Holmen  OL, Gustafsson  S, Gabrielsen  ME, Schmidt  EM, Beaumont  R, Wolford  BN, Lin  M, Brummett  CM, Preuss  MH, Refsgaard  L, Bottinger  EP, Graham  SE, Surakka  I, Chu  Y, Skogholt  AH, Dalen  H, Boyle  AP, Oral  H, Herron  TJ, Kitzman  J, Jalife  J, Svendsen  JH, Olesen  MS, Njølstad  I, Løchen  M-L, Baras  A, Gottesman  O, Marcketta  A, O’Dushlaine  C, Ritchie  MD, Wilsgaard  T, Loos  RJF, Frayling  TM, Boehnke  M, Ingelsson  E, Carey  DJ, Dewey  FE, Kang  HM, Abecasis  GR, Hveem  K, Willer  CJ.  Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. Am J Hum Genet  2018;102:103–115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Ritchie  MD, Denny  JC, Zuvich  RL, Crawford  DC, Schildcrout  JS, Bastarache  L, Ramirez  AH, Mosley  JD, Pulley  JM, Basford  MA, Bradford  Y, Rasmussen  LV, Pathak  J, Chute  CG, Kullo  IJ, McCarty  CA, Chisholm  RL, Kho  AN, Carlson  CS, Larson  EB, Jarvik  GP, Sotoodehnia  N, Manolio  TA, Li  R, Masys  DR, Haines  JL, Roden  DM.  Genome- and phenome-wide analyses of cardiac conduction identifies markers of arrhythmia risk. Circulation  2013;127:1377–1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Bjornsson  T, Thorolfsdottir  RB, Sveinbjornsson  G, Sulem  P, Norddahl  GL, Helgadottir  A, Gretarsdottir  S, Magnusdottir  A, Danielsen  R, Sigurdsson  EL, Adalsteinsdottir  B, Gunnarsson  SI, Jonsdottir  I, Arnar  DO, Helgason  H, Gudbjartsson  T, Gudbjartsson  DF, Thorsteinsdottir  U, Holm  H, Stefansson  K.  A rare missense mutation in MYH6 associates with non-syndromic coarctation of the aorta. Eur Heart J  2018;39:3243–3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Helgadottir  A, Thorleifsson  G, Gretarsdottir  S, Stefansson  OA, Tragante  V, Thorolfsdottir  RB, Jonsdottir  I, Bjornsson  T, Steinthorsdottir  V, Verweij  N, Nielsen  JB, Zhou  W, Folkersen  L, Martinsson  A, Heydarpour  M, Prakash  S, Oskarsson  G, Gudbjartsson  T, Geirsson  A, Olafsson  I, Sigurdsson  EL, Almgren  P, Melander  O, Franco-Cereceda  A, Hamsten  A, Fritsche  L, Lin  M, Yang  B, Hornsby  W, Guo  D, Brummett  CM, Abecasis  G, Mathis  M, Milewicz  D, Body  SC, Eriksson  P, Willer  CJ, Hveem  K, Newton-Cheh  C, Smith  JG, Danielsen  R, Thorgeirsson  G, Thorsteinsdottir  U, Gudbjartsson  DF, Holm  H, Stefansson  K.  Genome-wide analysis yields new loci associating with aortic valve stenosis. Nat Commun  2018;9:987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ramŕez J, Duijvenboden SV, Ntalla I, Mifsud B, Warren HR, Tzanis E, Orini M, Tinker A, Lambiase PD, Munroe PB. Thirty loci identified for heart rate response to exercise and recovery implicate autonomic nervous system. Nat Commun 2018;9:1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Verweij N, van de Vegte YJ, van der Harst P. Genetic study links components of the autonomous nervous system to heart-rate profile during exercise. Nat Commun 2018;9:898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Rosenberg  MA, Patton  KK, Sotoodehnia  N, Karas  MG, Kizer  JR, Zimetbaum  PJ, Chang  JD, Siscovick  D, Gottdiener  JS, Kronmal  RA, Heckbert  SR, Mukamal  KJ.  The impact of height on the risk of atrial fibrillation: the Cardiovascular Health Study. Eur Heart J  2012;33:2709–2717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Schmidt  M, Botker  HE, Pedersen  L, Sorensen  HT.  Adult height and risk of ischemic heart disease, atrial fibrillation, stroke, venous thromboembolism, and premature death: a population based 36-year follow-up study. Eur J Epidemiol  2014;29:111–118. [DOI] [PubMed] [Google Scholar]
  • 68. Levin  M, Judy  R, Gill  D, Vujkovic  M, Hyman  M, Nazarian  S, Rader  D, Voight  B, Damrauer  S. Genetics of height and risk of atrial fibrillation: a Mendelian randomization study. PLoS Medicine 2019;17:e1003288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Dobrzynski  H, Boyett  MR, Anderson  RH.  New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation  2007;115:1921–1932. [DOI] [PubMed] [Google Scholar]
  • 70. Pan  X, Hobbs  RP, Coulombe  PA.  The expanding significance of keratin intermediate filaments in normal and diseased epithelia. Curr Opin Cell Biol  2013;25:47–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Coulombe  PA, Omary  MB.  ‘Hard’ and ‘soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol  2002;14:110–122. [DOI] [PubMed] [Google Scholar]
  • 72. Moll  R, Divo  M, Langbein  L.  The human keratins: biology and pathology. Histochem Cell Biol  2008;129:705–733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. O'Neill  A, Williams  MW, Resneck  WG, Milner  DJ, Capetanaki  Y, Bloch  RJ.  Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with the membrane skeleton at costameres. Mol Biol Cell  2002;13:2347–2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Ursitti  JA, Lee  PC, Resneck  WG, McNally  MM, Bowman  AL, O'Neill  A, Stone  MR, Bloch  RJ.  Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J Biol Chem  2004;279:41830–41838. [DOI] [PubMed] [Google Scholar]
  • 75. Stone  MR, O'Neill  A, Catino  D, Bloch  RJ.  Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19. Mol Biol Cell  2005;16:4280–4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Papathanasiou  S, Rickelt  S, Soriano  ME, Schips  TG, Maier  HJ, Davos  CH, Varela  A, Kaklamanis  L, Mann  DL, Capetanaki  Y.  Tumor necrosis factor-alpha confers cardioprotection through ectopic expression of keratins K8 and K18. Nat Med  2015;21:1076–1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Owens  DW, Wilson  NJ, Hill  AJ, Rugg  EL, Porter  RM, Hutcheson  AM, Quinlan  RA, van Heel  D, Parkes  M, Jewell  DP, Campbell  SS, Ghosh  S, Satsangi  J, Lane  EB.  Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients. J Cell Sci  2004;117:1989–1999. [DOI] [PubMed] [Google Scholar]
  • 78. Ku  NO, Omary  MB.  A disease- and phosphorylation-related nonmechanical function for keratin 8. J Cell Biol  2006;174:115–125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Cooper  GM, Stone  EA, Asimenos  G, Green  ED, Batzoglou  S, Sidow  A.  Distribution and intensity of constraint in mammalian genomic sequence. Genome Res  2005;15:901–913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. England  J, Loughna  S.  Heavy and light roles: myosin in the morphogenesis of the heart. Cell Mol Life Sci  2013;70:1221–1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81. Granzier  HL, Labeit  S.  The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res  2004;94:284–295. [DOI] [PubMed] [Google Scholar]
  • 82. Gudbjartsson  DF, Holm  H, Sulem  P, Masson  G, Oddsson  A, Magnusson  OT, Saemundsdottir  J, Helgadottir  HT, Helgason  H, Johannsdottir  H, Gretarsdottir  S, Gudjonsson  SA, Njolstad  I, Lochen  ML, Baum  L, Ma  RC, Sigfusson  G, Kong  A, Thorgeirsson  G, Sverrisson  JT, Thorsteinsdottir  U, Stefansson  K, Arnar  DO.  A frameshift deletion in the sarcomere gene MYL4 causes early-onset familial atrial fibrillation. Eur Heart J  2017;38:27–34. [DOI] [PubMed] [Google Scholar]
  • 83. Thorolfsdottir  RB, Sveinbjornsson  G, Sulem  P, Nielsen  JB, Jonsson  S, Halldorsson  GH, Melsted  P, Ivarsdottir  EV, Davidsson  OB, Kristjansson  RP, Thorleifsson  G, Helgadottir  A, Gretarsdottir  S, Norddahl  G, Rajamani  S, Torfason  B, Valgardsson  AS, Sverrisson  JT, Tragante  V, Holmen  OL, Asselbergs  FW, Roden  DM, Darbar  D, Pedersen  TR, Sabatine  MS, Willer  CJ, Lochen  ML, Halldorsson  BV, Jonsdottir  I, Hveem  K, Arnar  DO, Thorsteinsdottir  U, Gudbjartsson  DF, Holm  H, Stefansson  K.  Coding variants in RPL3L and MYZAP increase risk of atrial fibrillation. Commun Biol  2018;1:68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Miyata  S, Minobe  W, Bristow  MR, Leinwand  LA.  Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res  2000;86:386–390. [DOI] [PubMed] [Google Scholar]
  • 85. James  J, Martin  L, Krenz  M, Quatman  C, Jones  F, Klevitsky  R, Gulick  J, Robbins  J.  Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions. Circulation  2005;111:2339–2346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Cazorla  O, Freiburg  A, Helmes  M, Centner  T, McNabb  M, Wu  Y, Trombitás  K, Labeit  S, Granzier  H.  Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res  2000;86:59–67. [DOI] [PubMed] [Google Scholar]
  • 87. Nagueh  SF, Shah  G, Wu  Y, Torre-Amione  G, King  NM, Lahmers  S, Witt  CC, Becker  K, Labeit  S, Granzier  HL.  Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation  2004;110:155–162. [DOI] [PubMed] [Google Scholar]
  • 88. Piedra  ME, Icardo  JM, Albajar  M, Rodriguez-Rey  JC, Ros  MA.  Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell  1998;94:319–324. [DOI] [PubMed] [Google Scholar]
  • 89. Berry  FB, Miura  Y, Mihara  K, Kaspar  P, Sakata  N, Hashimoto-Tamaoki  T, Tamaoki  T.  Positive and negative regulation of myogenic differentiation of C2C12 cells by isoforms of the multiple homeodomain zinc finger transcription factor ATBF1. J Biol Chem  2001;276:25057–25065. [DOI] [PubMed] [Google Scholar]
  • 90. Chen  X, Yu  L, Shi  S, Jiang  H, Huang  C, Desai  M, Li  Y, Barajas-Martinez  H, Hu  D.  Neuronal Nav1.8 channels as a novel therapeutic target of acute atrial fibrillation prevention. J Am Heart Assoc  2016;5:e004050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Qi  B, Wei  Y, Chen  S, Zhou  G, Li  H, Xu  J, Ding  Y, Lu  X, Zhao  L, Zhang  F, Chen  G, Zhao  J, Liu  S.  Nav1.8 channels in ganglionated plexi modulate atrial fibrillation inducibility. Cardiovasc Res  2014;102:480–486. [DOI] [PubMed] [Google Scholar]
  • 92. Jabbari  J, Olesen  MS, Yuan  L, Nielsen  JB, Liang  B, Macri  V, Christophersen  IE, Nielsen  N, Sajadieh  A, Ellinor  PT, Grunnet  M, Haunso  S, Holst  AG, Svendsen  JH, Jespersen  T; on behalf of LuCamp. Common and rare variants in SCN10A modulate the risk of atrial fibrillation. Circ Cardiovasc Genet  2015;8:64–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Katritsis  DG, Pokushalov  E, Romanov  A, Giazitzoglou  E, Siontis  GC, Po  SS, Camm  AJ, Ioannidis  JP.  Autonomic denervation added to pulmonary vein isolation for paroxysmal atrial fibrillation: a randomized clinical trial. J Am Coll Cardiol  2013;62:2318–2325. [DOI] [PubMed] [Google Scholar]
  • 94. Nakagawa  H, Scherlag  BJ, Patterson  E, Ikeda  A, Lockwood  D, Jackman  WM.  Pathophysiologic basis of autonomic ganglionated plexus ablation in patients with atrial fibrillation. Heart Rhythm  2009;6:S26–34. [DOI] [PubMed] [Google Scholar]
  • 95. Pokushalov  E, Romanov  A, Katritsis  DG, Artyomenko  S, Shirokova  N, Karaskov  A, Mittal  S, Steinberg  JS.  Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: a randomized comparison. Heart Rhythm  2013;10:1280–1286. [DOI] [PubMed] [Google Scholar]
  • 96. Buckley  U, Rajendran  PS, Shivkumar  K.  Ganglionated plexus ablation for atrial fibrillation: just because we can, does that mean we should?  Heart Rhythm  2017;14:133–134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Lo  LW, Scherlag  BJ, Chang  HY, Lin  YJ, Chen  SA, Po  SS.  Paradoxical long-term proarrhythmic effects after ablating the "head station" ganglionated plexi of the vagal innervation to the heart. Heart Rhythm  2013;10:751–757. [DOI] [PubMed] [Google Scholar]
  • 98. Osman  F, Kundu  S, Tuan  J, Jeilan  M, Stafford  PJ, Ng  GA, Ng GA. Ganglionic plexus ablation during pulmonary vein isolation—predisposing to ventricular arrhythmias?  Indian Pacing Electrophysiol J  2010;10:104–107. [PMC free article] [PubMed] [Google Scholar]
  • 99. Driessen  AHG, Berger  WR, Krul  SPJ, van den Berg  NWE, Neefs  J, Piersma  FR, Chan Pin Yin  D, de Jong  J, van Boven  WP, de Groot  JR.  Ganglion plexus ablation in advanced atrial fibrillation: the AFACT study. J Am Coll Cardiol  2016;68:1155–1165. [DOI] [PubMed] [Google Scholar]
  • 100. Elvan  A, Wylie  K, Zipes  DP.  Pacing-induced chronic atrial fibrillation impairs sinus node function in dogs. Electrophysiological remodeling. Circulation  1996;94:2953–2960. [DOI] [PubMed] [Google Scholar]
  • 101. Mesubi  OO, Anderson  ME.  Atrial remodelling in atrial fibrillation: CaMKII as a nodal proarrhythmic signal. Cardiovasc Res  2016;109:542–557. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ehaa1108_Supplementary_Data

Data Availability Statement

The Icelandic population WGS data has been deposited at the European Variant Archive under accession code PRJEB15197. We declare that the data supporting the findings of this study are available within the article, its Supplementary material online and upon reasonable request. The genome-wide association scan summary data will be made available at http://www.decode.com/summarydata.


Articles from European Heart Journal are provided here courtesy of Oxford University Press

RESOURCES