Skip to main content
Wiley - PMC COVID-19 Collection logoLink to Wiley - PMC COVID-19 Collection
. 2021 May 16;35(6):1141–1158. doi: 10.1111/fcp.12683

Chronic use of renin‐angiotensin‐aldosterone system blockers and mortality in COVID‐19: A multicenter prospective cohort and literature review

Nathalie Gault 1,2,, Marina Esposito‐Farèse 1,3, Matthieu Revest 4, Jocelyn Inamo 5, André Cabié 6, Élisabeth Polard 7, Jean‐Sébastien Hulot 8,9, Jade Ghosn 10, Catherine Chirouze 11, Laurène Deconinck 10, Jean‐Luc Diehl 12,13, Julien Poissy 14, Olivier Epaulard 15, Benjamin Lefèvre 16,17, Lionel Piroth 18, Etienne De Montmollin 19,20, Eric Oziol 21, Manuel Etienne 22, Cédric Laouénan 1,2,20, Patrick Rossignol 23,24, Dominique Costagliola 25, Emmanuelle Vidal‐Petiot 26,27,; the French‐Covid cohort investigators, study group
PMCID: PMC8250758  PMID: 33876439

Abstract

Aims

The role of renin‐angiotensin‐aldosterone system (RAAS) blockers on the course of coronavirus disease 2019 (COVID‐19) is debated. We assessed the association between chronic use of RAAS blockers and mortality among inpatients with COVID‐19 and explored reasons for discrepancies in the literature.

Methods and results

We included adult hypertensive patients from a prospective nationwide cohort of 3512 inpatients with COVID‐19 up to June 30, 2020. Cox proportional hazard models with various adjustment or propensity weighting methods were used to estimate the hazard ratios (HR) of 30‐day mortality for chronic users versus non‐users of RAAS blockers. We analyzed data of 1160 hypertensive patients: 719 (62%) were male and 777 (67%) were older than 65 years. The main comorbidities were diabetes (n = 416, 36%), chronic cardiac disease (n = 401, 35%), and obesity (n = 340, 29%); 705 (61%) received oxygen therapy. We recorded 135 (11.6%) deaths within 30 days of diagnosis. We found no association between chronic use of RAAS blockers and mortality (unadjusted HR = 1.13, 95% CI [0.8–1.6]; propensity inverse probability treatment weighted HR = 1.09 [0.86‐1.39]; propensity standardized mortality ratio weighted HR = 1.08 [0.79–1.47]). Our comprehensive review of previous studies highlighted that significant associations were mostly found in unrestricted populations with inappropriate adjustment, or with biased in‐hospital exposure measurement.

Conclusion

Our results do not support previous concerns regarding these drugs, nor a potential protective effect as reported in previous poorly designed studies and meta‐analyses. RAAS blockers should not be discontinued during the pandemic, while in‐hospital management of these drugs will be clarified by randomized trials. NCT04262921.

Keywords: angiotensin antagonists, COVID‐19, hypertension, mortality, propensity score, RAAS blockers


Abbreviations

ACE

angiotensin‐converting enzyme

ACE2

angiotensin‐converting enzyme 2

ARBs

angiotensin receptor blockers

CI

confidence interval

COVID‐19

coronavirus disease 2019

MICE

multiple imputation by chain equations

RAAS

renin‐angiotensin‐aldosterone system

SARS‐CoV‐2

severe acute respiratory syndrome coronavirus 2

1. INTRODUCTION

The potential influence of renin‐angiotensin‐aldosterone system (RAAS) blockers on the course of coronavirus disease 2019 (COVID‐19) has been a matter of controversy.

Early in the pandemic, it has been suggested that cardiovascular comorbidities such as hypertension, diabetes, and coronary heart disease were risk factors for severe COVID‐19 [1, 2, 3] with the potential explanation that these conditions are frequently treated with RAAS blockers. The underlying rationale came from animal studies showing an increased expression of angiotensin‐converting enzyme 2 (ACE2), the receptor for severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), in the presence of angiotensin‐converting enzyme (ACE) inhibitors and/or angiotensin receptor blockers (ARBs) [4, 5]. However, other animal[6] and human [7] studies did not confirm these findings, and more importantly, there are no data demonstrating an increased expression of the transmembrane ACE2 protein in the lungs [8].

Conversely, robust animal data showed that ACE2 might be beneficial in the context of acute lung injury [9, 10]. Indeed, ACE2 converts angiotensin II to angiotensin 1–7, a peptide with vasodilating, antifibrotic, and anti‐inflammatory properties, opposite to those of angiotensin II. Therefore, modulating ACE‐angiotensin II and ACE2‐angiotensin (1–7) pathways using RAAS blockers might actually be beneficial in patients with COVID‐19 [11], especially as ACE2 might be downregulated during SARS‐CoV‐2 infection [8, 10].

While several clinical trials are ongoing to establish whether RAAS blockers should be maintained, discontinued, or even introduced de novo in patients with COVID‐19, a number of observational studies have attempted to establish the association between chronic use of RAAS blockers and the risk of contracting the infection and/or developing a severe or lethal form of COVID‐19. Several large studies consistently ruled out a significant association between the chronic use of RAAS blockers and the risk of a positive test for SARS‐CoV‐2 [12, 13, 14]. Conversely, studies on the association between exposure to RAAS blockers and severity of the disease have yielded discrepant results, largely explained by disparities in study design, selected populations, study size, exposure measurement, and adjustment methodologies—if any [14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

The aim of this pharmacoepidemiologic study was to analyze the association between the chronic use of RAAS blockers and mortality of COVID‐19 in a large national multicenter prospective cohort of hospitalized patients in France.

2. METHODS

The French COVID Cohort (ClinicalTrials NCT04262921) of inpatients with RT‐PCR virologically confirmed COVID‐19 was set up at the end of January 2020 in 198 centers in France [24]. Patients were included at admission and followed daily during hospital stay, and at 1, 3 and 6 months after discharge. The study was sponsored by INSERM (the French national institute for health and medical research). As at end of June 2020, 3512 patients admitted to hospital with COVID‐19 were included in the cohort. We analyzed data from adult patients with a history of hypertension. The diagnosis of hypertension was gathered from the medical history based on the medical interview at admission, independently of blood pressure measurement at admission, and of the use of antihypertensive medication. In patients with hypertension, chronic treatment with RAAS blockers was collected. Patients with missing data regarding treatment prior to admission and pregnant women were excluded from the present analyses (Figure 1). Exposure was defined as the chronic use of RAAS blockers (i.e., either ACE inhibitors or ARBs reported as part the chronic treatment at inclusion in the cohort). Patients reporting neither ACE inhibitors nor ARBs were considered as non‐users. The outcome was death within 30 days of diagnosis.

FIGURE 1.

FIGURE 1

Flowchart of patients’ selection from the French COVID Cohort

2.1. Statistical analyses

Baseline characteristics were reported according to the chronic use of any RAAS blocker. Propensity score for the use of RAAS blockers was calculated by logistic regressions performed on five imputed datasets. Multiple imputations by chain equations (MICE) were performed for baseline characteristic with less than 20% missing values. Propensity score included the following variables collected at admission and assumed to be associated with the outcome: age, gender, healthcare worker, microbiology laboratory worker, geographical region of inclusion, chronic cardiac disease, chronic pulmonary disease, chronic kidney disease, immunosuppressive therapy, immunosuppressive disease, chronic neurological disorder including dementia, obesity, diabetes, malnutrition, and number of days with symptoms before positive RT‐PCR. Overlapping of propensity score distributions among users and non‐users of RAAS blockers was checked graphically. The propensity score distribution among treated and non‐treated patients showed good overlap (Figure S1). After weighting, no more imbalances are observed (Figure S2).

Hazard ratios of mortality for patients with chronic use of RAAS blockers versus non‐use and their 95% confidence interval (CI) were estimated using Cox proportional hazard models with adjustment and two types of weighting (inverse probability of treatment and standardized mortality ratio), in order to control for confounding.

In secondary analyses, patients receiving both ACE inhibitors and ARBs were excluded, and ACE inhibitors and ARBs were analyzed separately.

A sensitivity analysis included additional variables in the propensity score, which reflected severity at admission, and may be intermediaries in the causal diagram leading to overfitting: symptoms at admission (respiratory rate ≥30/min; systolic blood pressure <90 mm Hg or diastolic blood pressure ≤60 mm Hg), need for oxygen therapy within 2 days after admission, and level of C‐reactive protein at admission.

All P‐values are two‐sided. Statistically significant level was predefined at 5%. Detailed methods are described in the Methods S1.

2.2. Comprehensive review of the literature

We performed a review of observational studies and meta‐analyses—excluding preprints—on the association between RAAS blockers and outcome of COVID‐19 published until November 2020. We systematically searched PubMed with no language restriction and starting from January 2020, using the terms “Renin‐angiotensin‐(aldosterone)‐system,” “angiotensin converting enzyme 2,” “angiotensin converting enzyme inhibitors,” ”angiotensin receptor blockers,” “coronary artery disease” or their acronyms, and synonyms or various combinations of those words to identify systematic reviews, observational studies, trials, and meta‐analyses describing the relationship between RAAS blockers and outcome in COVID‐19. We also screened cited reports from the full texts of original articles for other relevant research, and all individual studies from reviews and meta‐analyses were analyzed for potential relevance. We screened reports by title and abstract, and title and full text in letters, to identify articles relevant for the study aim. Two authors independently extracted structured information on design, setting, population, exposure, outcomes, statistical methods, results, and conclusion of the authors.

3. RESULTS

Between February 28 and June 30, 2020, 3512 patients were included in the French COVID Cohort, of whom 1160 hypertensive patients were analyzed (Figure 1). Median age was 70 years (interquartile range 61;78), 62% (n = 719) were male. The most common comorbidities, besides hypertension, were diabetes (n = 416, 36%), chronic cardiac disease (n = 401, 35%), and obesity (n = 340, 29%); 61% (n = 705) received oxygen therapy within 2 days of admission (Table 1). Detailed laboratory results are reported in Table S1. Median follow‐up was 57 (95% CI [46‐77]) days, and 135 (11.6%) patients died within 30 days of diagnosis.

TABLE 1.

Patients’ characteristics at admission in the total population and in users versus non‐users of RAAS blockers

Total

N = 1160

Non‐users

N = 481

Chronic users

N = 679

Age (years) 70 [61:78] 70 [60:80] 70 [61:77]
Older than 65 years 777 (67) 314 (65.3) 463 (68.2)
Male 719 (62) 279 (58) 440 (64.8)
Healthcare worker (39 imputed data for missing values) 59 (5.1) 30 (6.2) 28 (4.2)
Microbiology laboratory worker (40 imputed data for missing values) 6 (0.6) 3 (0.7) 3 (0.4)
French region of hospitalization
East 98 (8.4) 33 (6.9) 65 (9.6)
North 117 (10.1) 47 (9.8) 70 (10.3)
Other 610 (52.5) 262 (54.5) 348 (51.3)
Parisian area 335 (28.9) 139 (28.9) 196 (28.9)
Smoking status (150 imputed data for missing values)
Current smoker 65 (5.6) 32 (6.74) 33 (4.8)
Former smoker 383 (33.03) 136 (28.36) 247 (36.35)
Never smoked 712 (61.36) 312 (64.91) 400 (58.85)
Performance status a (293 missing values)
0 423 (48.79) 157 (44.86) 266 (51.45)
1 226 (26.07) 89 (25.43) 137 (26.5)
2 98 (11.3) 47 (13.43) 51 (9.86)
3 73 (8.42) 34 (9.71) 39 (7.54)
4 47 (5.42) 23 (6.57) 24 (4.64)
Obesity (28 imputed data for missing values) 340 (29.28) 126 (26.15) 214 (31.55)
Diabetes (1 imputed data for missing value) 416 (35.9) 152 (31.68) 264 (38.88)
Chronic cardiac disease (4 imputed data for missing values) 401 (34.6) 158 (32.8) 243 (35.7)
Chronic pulmonary disease or asthma (3 imputed data for missing values) 231 (19.9) 96 (20) 135 (19.9)
Chronic kidney disease (4 imputed data for missing values) 199 (17.2) 83 (17.3) 115 (17)
Malnutrition (19 imputed data for missing values) 36 (3.1) 17 (3663) 19 (2.8)
Chronic neurological disorder or dementia (2 imputed data for missing values) 120 (10.3) 62 (12.8) 58 (8.5)
Immunosuppressive disease 305 (26.29) 144 (29.94) 161 (23.71)
Immunosuppressive therapy (23 imputed data for missing values) 78 (6.81) 45 (9.56) 33 (4.86)
Time from first symptoms to positive RT‐PCR, median [Q1:Q3] (46 imputed data for missing values) 6 [3:9] 6 [2:9] 6 [3:10]
Anosmia (260 missing values) 94 (10.44) 33 (8.8) 61 (11.62)
Agueusia (259 missing values) 115 (12.76) 40 (10.61) 75 (14.31)
Oxygen therapy (116 imputed data for missing values) 705 (60.76) 276 (57.38) 429 (63.15)
eGFR (ml/min/1.73 m2), median [Q1:Q3] (646 missing values) 78.8 [53.57:91.71] 80.17 [57.18:91.67] 77.72 [48.93:91.83]
Creatinine (µmol/L), median [Q1:Q3] (417 missing values) 84 [67:112] 82.5 [65.88:110.55] 86 [69.2:114.2]
C‐reactive protein (mg/L), median [Q1:Q3] (352 missing values) 77.5 [32.98:135.18] 82.6 [31:138] 74.3 [36.6:132]

Abbreviations: Q1: first quartile; Q3: third quartile; SD, standard deviation.

a

Performance status was collected according to the Eastern Cooperative Oncology Group (ECOG) [53].

b

According to the Chronic Kidney Disease EPIdemiology collaboration [54]. Data are expressed with N (%) unless otherwise specified.

We found no significant association between chronic use of RAAS blockers and mortality, with any of the adjustment methods. Consistent results were found for the risk of mortality with the chronic use of ACE inhibitors or ARBs analyzed separately (Table 2), as well as in the sensitivity analyses (Table S3).

TABLE 2.

Hazard ratios of 30‐day mortality in users versus non‐users of RAAS blockers

HR [95% CI] p‐value
Chronic users of ACE inhibitors or ARBs versus non‐users
Unadjusted 1.13 [0.8–1.6] 0.48
Adjusted a 1.07 [0.75–1.52] 0.71
IPT weighted 1.09 [0.86–1.39] 0.46
SMR weighted 1.08 [0.79–1.47] 0.65
Chronic users of ACE inhibitors versus non‐users
Unadjusted 1.15 [0.76–1.76] 0.50
Adjusted a 1.04 [0.68–1.6] 0.85
IPT weighted 1.06 [0.79–1.42] 0.72
SMR weighted 1.14 [0.71–1.82] 0.58
Chronic users of ARBs versus non‐users
Unadjusted 1.14 [0.76–1.7] 0.53
Adjusted a 1.13 [0.75–1.69] 0.55
IPT weighted 1.12 [0.85–1.48] 0.43
SMR weighted 1.07 [0.7–1.64] 0.75
a

Adjusted for age, gender, diabetes, obesity, chronic heart disease, renal failure, region of inclusion.

Our comprehensive review of the literature included 65 published studies, of which 11 were meta‐analyses (Figures S3 and Table S4). Among the 56 individual studies (two of which combined an individual study and a meta‐analysis [25, 26]), 12 included both in‐ and outpatients and 44 included only inpatients. Among the 44 inpatients studies, 30 assessed the effect of chronic use and 12 the effect of in‐hospital use, 3 of which assessed both chronic and in‐hospital use [27, 28, 29]. Timing of exposure measurement was uncertain in five of 44. Only 34 of 56 individual studies reported results among hypertensive patients. A significant (deleterious) association between RAAS blockers and prognosis of COVID‐19 was found in most studies conducted in unselected populations before or after insufficient adjustment, but not among hypertensive patients or in properly adjusted studies. Conversely, a significant association in favor of a seemingly protective effect of treatment was found in most studies based on in‐hospital use of treatment.

4. DISCUSSION

In this multicenter hospital‐based cohort of 1160 hypertensive patients with COVID‐19, using various adjustment strategies to reduce bias due to potential confounders, chronic use of RAAS blockers was not associated with an increased risk of mortality.

Previous studies conducted among inpatients with hypertension, although smaller‐scaled, had mostly yielded similar conclusions [14, 15, 20, 30, 31, 32]. Most large studies conducted in both outpatients and inpatients with hypertension were also in line with our results [14, 31, 33], except for one study reporting a protective effect of RAAS blockers among outpatients [34].

Of note, in our study, careful adjustment for comorbidities and age had no major impact on the results since even unadjusted analyses did not show a significant association between exposure to RAAS blockers and mortality. This is in line with previous studies conducted in patients with hypertension (Table S4). Indeed, RAAS blockers are among first‐line antihypertensive therapies [35], so that patients receiving RAAS blockers do not drastically differ from other hypertensive patients with regard to baseline characteristics. Conversely, analyses conducted in unrestricted populations showed an increased unadjusted risk for a severe or fatal outcome of the disease in patients chronically treated with RAAS blockers [12, 15, 19, 22, 36]. However, this increased risk was systematically ironed out when proper adjustment was performed [12, 15, 19, 20]. In unrestricted populations, patients receiving RAAS blockers had more comorbidities such as hypertension, diabetes, and chronic kidney disease and were older than patients without these medications, so that baseline characteristics between users and non‐users markedly differed. This important methodological consideration is best illustrated by studies that reported analyses both in the total population (not restricted to hypertensive patients) and in the subgroup of patients with hypertension. For instance, in a nationwide population‐based cohort study using the Korean Health Insurance Review and Assessment including 5179 confirmed COVID‐19 cases among whom 1157 had hypertension, the unadjusted OR for mortality in users was 3.88 (95% CI 2.48‐6.05) in the total population and 0.74 (0.43‐1.28) in hypertensive patients, whereas these ORs were 0.88 (0.53–1.44) and 0.71 (0.40‐1.26) after adjustment [20].

The setting of the study—unrestricted population versus patients with an indication for RAAS blockers (hypertension in the vast majority of the studies)—is therefore crucial to take into account when interpreting the results. In our review, several meta‐analyses pooled studies including total populations and hypertensive patients [37, 38], which call their conclusions into question. In emulated trials, harmonization of selection criteria is one of the major recommendations when attempting to estimate the causal effect of treatments [39].

In our study, as in many previous studies, the selection of hospitalized patients may generate a collider bias, whereby patients with RAAS blockers may be admitted for less severe disease and hence have better outcomes [28, 40, 41, 42]. This bias is much more likely to occur in even more specific settings (such as intensive care unit admission) [43], or in studies conducted in unrestricted populations (i.e., with no indication for RAAS blockers), due to a larger baseline imbalance, as explained above. Still, to account for potential different severity at inclusion between groups of exposure, we performed a separate adjustment for baseline severity, which did not modify the results. This sensitivity analysis has been separated from the main adjustment model because baseline severity may actually lie on the causal pathway between exposure and outcome, in which case, taking it into account would lead to overfitting.

In contrast with the studies mentioned above, others have shown results in favor of a protective effect of RAAS blockers, giving the impression of overall discrepant results. However, careful analysis of study designs showed that the vast majority of these studies did not rely in chronic exposure to treatment, before diagnosis, but rather on “in‐hospital” use [23, 44] or, very similarly, on chronic use continued in‐hospital or after diagnosis [27, 45, 46]. Such study design generates a major bias because RAAS blockers are continued in patients with less severe disease and discontinued in patients with the most severe forms of the disease (for reasons such as hypotension, acute kidney injury, or ICU admission). A combination of reverse causality and immortal time bias, or the so‐called “healthy user‐sick stopper” bias, therefore explains this seemingly protective effect [28].

We have outlined how meta‐analyses have incorporated data from different populations, with unadjusted results in unselected patients weighting toward an increased risk associated with RAAS blockers. Conversely, and probably even worse with regard to methodological considerations, most meta‐analyses [37, 38, 47, 48, 49, 50] have pooled studies based on chronic exposure together with studies based on in‐hospital exposure. This erroneous study selection led a number of meta‐analysis to conclude in favor of a beneficial effect of RAAS blockers[38, 47, 48, 50]. Further meta‐analyses should take into account study populations and design as well as classification of exposure before pooling the results.

Altogether, our results, combined with a comprehensive analysis of previous studies, allow concluding that chronic use of RAAS blockers is not associated with outcome of COVID‐19.

As of November 2020, seven randomized clinical trials (e.g., REPLACE‐COVID in the United States, NCT04338009, BRACE CORONA in Argentina, NCT04364893, or ACORES‐2 in France, NCT04329195) have been designed to study whether these drugs should be continued or discontinued upon hospital admission in chronically treated patients. The recently published results of the REPLACE‐COVID and BRACE CORONA trials did not support discontinuing treatment with RAAS blockers in patients with COVID‐19 admitted to hospital [51, 52].

Conversely, based on solid experimental evidence mostly published after the SARS‐CoV‐1 outbreak [9, 10, 11], other authors have argued that antagonizing the RAAS may actually be beneficial in patients with COVID‐19 and that these drugs should not only be continued, but maybe even introduced do novo in previously untreated SARS‐CoV‐2 patients. As of November 2020, 21 trials have been designed to randomize patients with COVID‐19, to receive an ARB or a comparator (e.g., CLARITY in Australia, NCT04394117, COVID‐Aging, NCT04359953, and COVERAGE NCT04356495, in France, or STAR‐COVID in Mexico, NCT04510662). Results of these randomized trials will be crucial to help clinicians managing ARBs and ACE inhibitors after hospital admission.

Strengths of our study include its size and multicenter design. In addition, the French COVID Cohort was implemented very early in the pandemic, so that the entire “first wave” period is reflected in the study, whereas previous studies were very often restricted to a shorter period of observation. Overall, our results reflect real‐word data on the association between chronic use of RAAS blockers and outcome of the disease in patients with hypertension admitted for COVID‐19 and are not biased by inappropriate measurement of exposure and have therefore an important impact for patient care.

Our study has some limitations. First, hypertension was collected from the medical interview of the patient, so that misclassification may have occurred. However, we have no reason to believe a potential imprecision in the diagnosis of hypertension would introduce a major bias in our analysis. Importantly, blood pressure measurement at admission was not included in the definition of hypertension as we believe this stressful context may have induced elevated values in otherwise normotensive patients. Another limitation of the study is that the use of ACE inhibitors and ARBs was only collected in patients with a history of hypertension, so that their potential influence on outcome in patients with other indications for these treatments could not be assessed. However, as previously shown in several studies, most of the patients with an indication for RAAS blockers have hypertension. Moreover, blood pressure‐lowering treatments other that ACEIs and ARBs were not collected, so that the association between other antihypertensive treatments, such as mineralocorticoid antagonists, and outcome could not be analyzed. In addition, as in all previous studies based on chronic prescription of treatment, real adherence to treatment could not be ascertained. Furthermore, our sample is far from exhaustive in France, but we ensured a nationwide coverage of centers and provide a far more representative sample than a single hospital or regional database. Finally, as our cohort did not include outpatients, the association between treatment and outcome was only assessed in the most severe patients, requiring hospital admission. Such a selection of the population may alter the association between the exposure to RAAS blockers and outcome.

In conclusion, our analysis conducted in a multicenter prospective French cohort of patients hospitalized with COVID‐19 found no significant association between chronic use of RAAS blockers and mortality of COVID‐19 in hypertensive patients. These results, combined with a comprehensive review of all related studies published up to the end of November 2020 enabling us to provide epidemiological explanations for seemingly discrepant results, provide solid data to support that these treatments should not be discontinued during the pandemic.

ETHICS APPROVAL, PATIENT CONSENT

The research complies with the Declaration of Helsinki. The study protocol was approved by the French Ethics Committee (CPP‐Ile‐de‐France VI, ID RCB: 2020‐A00256‐33), and we obtained the consent of each participant or its surrogate.

CONFLICT OF INTERESTS

MR received travel funding from Pfizer, outside the submitted work. APHP, which employs JSH, has received research grants from Bioserenity, Sanofi, Servier, and Novo Nordisk. JSH received speaker, advisory board, or consultancy fees from Amgen, Astra Zeneca, Bayer, Bristol‐Myers Squibb, Novartis, Novo Nordisk, WeHealth, outside the submitted work. BL reports travel funding from ViiV (2019) and Gilead (2020), outside the submitted work. PR reports personal fees (consulting) from Idorsia and G3P and honoraria from AstraZeneca, Bayer, Boehringer Ingelheim, CVRx, Fresenius, Grunenthal, Novartis, Novo Nordisk, Sequana medical, Servier, Stealth Peptides, Ablative Solutions, Corvidia, Relypsa, Vifor, and Vifor Fresenius Medical Care Renal Pharma; outside the submitted work. PR is the cofounder of CardioRenal (outside the submitted work). DC reports HIV grants from Janssen (2017‐2018, 2019‐2020) and MSD France (2015‐2017), personal fees from Janssen (2018), MSD France (2017) and Gilead (2018, 2020) for lectures on HIV, and personal fees from Merck Switzerland (2017) for consultancy on multiple sclerosis, outside the submitted work. EVP received fees and travel funding from Servier, outside the submitted work.

AUTHOR CONTRIBUTIONS

NG, MEF, MR, JI, AC, EP, CL, PR, DC, and EVP contributed to the conception or design of the work. All authors contributed to the acquisition, analysis, or interpretation of data for the work. NG, MEF, MR, JI, EP, JSH, CL, PR, DC, and EVP drafted the manuscript. All authors critically revised the manuscript and gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

Supporting information

Supplementary Material

ACKNOWLEDGMENT

The authors thank the scientific advisory board: Dominique Costagliola, Patrick Yeni, Astrid Vabret, Hervé Raoul, and Laurence Weiss.

THE FRENCH COVID COHORT STUDY GROUP (SCIENTIFIC, EXECUTIVE AND STEERING COMMITTEES)

Name Last name Mail address @ Affiliation
Marie BARTOLI marie.bartoli@anrs.fr ANRS, Paris, France
Alpha DIALLO alpha.diallo@inserm.fr ANRS, Paris, France
Soizic LE MESTRE soizic.le mestre@inserm.fr ANRS, Paris, France
Noémie MERCIER noemie.mercier@inserm.fr ANRS, Paris, France
Christelle PAUL christelle.paul@inserm.fr ANRS, Paris, France
Ventzislava PETROV‐SANCHEZ ventzislava.petrov-sanchez@anrs.fr ANRS, Paris, France
Catherine CHIROUZE catherine.chirouze@univ-fcomte.fr CHRU Jean Minjoz, Besançon, France
Claire ANDREJAK andrejak.claire@chu-amiens.fr CHU Amiens, France
Denis MALVY denis.malvy@chu-bordeaux.fr CHU Bordeaux, France
François DUBOS Francois.DUBOS@CHRU-LILLE.FR CHU Lille, France
Patrick ROSSIGNOL p.rossignol@chru-nancy.fr CHU Nancy, France
Manuel ETIENNE Manuel.Etienne@chu-rouen.fr CHU Rouen, France
François BOMPART fbompart@dndi.org Drugs for Neglected Diseases initiative, Geneva, Switzerland
Tristan GIGANTE T.GIGANTE@chru-nancy.fr F‐CRIN INI‐CRCT, Nancy, France
Morgane GILG M.GILG@chru-nancy.fr F‐CRIN INI‐CRCT, Nancy, France
Bénédicte ROSSIGNOL B.ROSSIGNOL@chru-nancy.fr F‐CRIN INI‐CRCT, Nancy, France
Claire LEVY‐MARCHAL claire.levy-marchal@inserm.fr F‐CRIN INI‐CRCT, Paris, France
Marine BELUZE marine.beluze@aphp.fr F‐CRIN Partners Platform, Paris, France
Delphine BACHELET delphine.bachelet@aphp.fr Hôpital Bichat, Paris, France
Krishna BHAVSAR krishna.bhavsar@aphp.fr Hôpital Bichat, Paris, France
Lila BOUADMA lila.bouadma@aphp.fr Hôpital Bichat, Paris, France
Anissa CHAIR anissa.chair@aphp.fr Hôpital Bichat, Paris, France
Camille COUFFIGNAL camille.couffignal@aphp.fr Hôpital Bichat, Paris, France
Charlene DA SILVEIRA charlene.dasilveira@aphp.fr Hôpital Bichat, Paris, France
Marie‐Pierre DEBRAY marie-pierre.debray@aphp.fr Hôpital Bichat, Paris, France
Diane DESCAMPS diane.descamps@aphp.fr Hôpital Bichat, Paris, France
Xavier DUVAL xavier.duval@aphp.fr Hôpital Bichat, Paris, France
Philippine ELOY philippine.eloy@aphp.fr Hôpital Bichat, Paris, France
Marina ESPOSITO‐FARESE marina.esposito-farese@aphp.fr Hôpital Bichat, Paris, France
Nadia ETTALHAOUI nadia.ettalhaoui@aphp.fr Hôpital Bichat, Paris, France
Nathalie GAULT nathalie.gault@aphp.fr Hôpital Bichat, Paris, France
Jade GHOSN jade.ghosn@aphp.fr Hôpital Bichat, Paris, France
Isabelle GORENNE isabelle.gorenne@aphp.fr Hôpital Bichat, Paris, France
Isabelle HOFFMANN isabelle.hoffmann@aphp.fr Hôpital Bichat, Paris, France
Ouifiya KAFIF ouifiya.kafif@aphp.fr Hôpital Bichat, Paris, France
Sabrina KALI sabrina.kali@aphp.fr Hôpital Bichat, Paris, France
Antoine KHALIL antoine.khalil@aphp.fr Hôpital Bichat, Paris, France
Cédric LAOUÉNAN cedric.laouenan@aphp.fr Hôpital Bichat, Paris, France
Samira LARIBI samira.laribi@aphp.fr Hôpital Bichat, Paris, France
Minh LE minh.le@aphp.fr Hôpital Bichat, Paris, France
Quentin LE HINGRAT quentin.lehingrat@aphp.fr Hôpital Bichat, Paris, France
François‐Xavier LESCURE xavier.lescure@aphp.fr Hôpital Bichat, Paris, France
Jean Christophe LUCET jean-christophe.lucet@aphp.fr Hôpital Bichat, Paris, France
France MENTRÉ france.mentre@inserm.fr Hôpital Bichat, Paris, France
Jimmy Mullaert jimmy.mullaert@inserm.fr Hôpital Bichat, Paris, France
Nathan PEIFFER‐SMADJA nathan.peiffer-smadja@inserm.fr Hôpital Bichat, Paris, France
Gilles PEYTAVIN gilles.peytavin@aphp.fr Hôpital Bichat, Paris, France
Carine ROY carine.roy@aphp.fr Hôpital Bichat, Paris, France
Marion SCHNEIDER marion.schneider2@aphp.fr Hôpital Bichat, Paris, France
Nassima SI MOHAMMED nassima.simohammed@aphp.fr Hôpital Bichat, Paris, France
Lysa TAGHERSET lysa.tagherset@aphp.fr Hôpital Bichat, Paris, France
Coralie TARDIVON coralie.tardivon@aphp.fr Hôpital Bichat, Paris, France
Marie‐Capucine TELLIER marie-capucine.tellier@aphp.fr Hôpital Bichat, Paris, France
Jean‐François TIMSIT jean-francois.timsit@aphp.fr Hôpital Bichat, Paris, France
Théo TRIOUX theo.trioux@aphp.fr Hôpital Bichat, Paris, France
Sarah TUBIANA sarah.tubiana@aphp.fr Hôpital Bichat, Paris, France
Benoit VISSEAUX benoit.visseaux@aphp.fr Hôpital Bichat, Paris, France
Yazdan YAZDANPANAH yazdan.yazdanpanah@aphp.fr Hôpital Bichat, Paris, France
Dominique DEPLANQUE Dominique.DEPLANQUE@chru-lille.fr Hôpital Calmette, Lille, France
Jean‐Sébastien HULOT jean-sebastien.hulot@aphp.fr Hôpital Européen Georges Pompidou, Paris, France
Noémie VANEL Noemie.VANEL@ap-hm.fr Hôpital la Timone, Marseille, France
Romain BASMACI romain.basmaci@aphp.fr Hôpital Louis Mourier, Colombes, France
Olivier PICONE olivier.picone@aphp.fr Hôpital Louis Mourier, Colombes, France
François ANGOULVANT francois.angoulvant@aphp.fr Hôpital Necker, Paris, France
Florentia KAGUELIDOU florentia.kaguelidou@aphp.fr Hôpital Robert Debré, Paris, France
Justine PAGES justine.pages@aphp.fr Hôpital Robert Debré, Paris, France
Christelle TUAL christelle.tual@chu-rennes.fr Inserm CIC‐1414, Rennes, France
Aurélie VEISLINGER Aurelie.VEISLINGER@chu-rennes.fr Inserm CIC‐1414, Rennes, France
Sandrine COUFFIN‐CADIERGUES sandrine.couffin-cadiergues@inserm.fr Inserm sponsor, Paris, France
Hélène ESPEROU helene.esperou@inserm.fr Inserm sponsor, Paris, France
Ikram HOUAS ikram.houas@inserm.fr Inserm sponsor, Paris, France
Salma JAAFOURA salma.jaafoura@inserm.fr Inserm sponsor, Paris, France
Aurélie PAPADOPOULOS aurelie.papadopoulos@inserm.fr Inserm sponsor, Paris, France
Alexandra COELHO alexandra.coelho@inserm.fr Inserm UMR 1018, Paris, France
Alphonsine DIOUF alphonsine.diouf@inserm.fr Inserm UMR 1018, Paris, France
Alexandre HOCTIN alexandre.hoctin@inserm.fr Inserm UMR 1018, Paris, France
Marina MAMBERT marina.mambert@inserm.fr Inserm UMR 1018, Paris, France
Maude BOUSCAMBERT maude.bouscambert-duchamp@chu-lyon.fr Inserm UMR 1111, Lyon, France
Alexandre GAYMARD alexandre.gaymard@chu-lyon.fr Inserm UMR 1111, Lyon, France
Bruno LINA bruno.lina@chu-lyon.fr Inserm UMR 1111, Lyon, France
Manuel ROSA‐CALATRAVA manuel.rosa-calatrava@univ-lyon1.fr Inserm UMR 1111, Lyon, France
Olivier TERRIER olivier.terrier@univ-lyon1.fr Inserm UMR 1111, Lyon, France
Dehbia BENKERROU dehbia.benkerrou@iplesp.upmc.fr Inserm UMR 1136, Paris, France
Céline DORIVAL celine.dorival@iplesp.upmc.fr Inserm UMR 1136, Paris, France
Amina MEZIANE amina.meziane@iplesp.upmc.fr Inserm UMR 1136, Paris, France
François TÉOULÉ francois.teoule@iplesp.upmc.fr Inserm UMR 1136, Paris, France
Jérémie GUEDJ jeremie.guedj@inserm.fr Inserm UMR 1137, Paris, France
Hervé LE NAGARD herve.lenagard@inserm.fr Inserm UMR 1137, Paris, France
Guillaume LINGAS guillaume.lingas@inserm.fr Inserm UMR 1137, Paris, France
Nadège NEANT nadege.neant@inserm.fr Inserm UMR 1137, Paris, France
Laurent ABEL laurent.abel@inserm.fr Inserm UMR 1163, Paris, France
Mathilde DESVALLÉE mathilde.desvallees@u-bordeaux.fr Inserm UMR 1219, Bordeaux, France
Coralie KHAN coralie.khan@u-bordeaux.fr Inserm UMR 1219, Bordeaux, France
Sylvie BEHILILL sylvie.behillil@pasteur.fr Pasteur Institute, Paris, France
Vincent ENOUF vincent.enouf@pasteur.fr Pasteur Institute, Paris, France
Hugo MOUQUET hugo.mouquet@pasteur.fr Pasteur Institute, Paris, France
Sylvie VAN DER WERF sylvie.van-der-werf@pasteur.fr Pasteur Institute, Paris, France
Minerva CERVANTES‐GONZALEZ minerva.cervantes@inserm.fr REACTing, Paris, France
Eric d’ORTENZIO eric.dortenzio@inserm.fr REACTing, Paris, France
Oriane PUÉCHAL oriane.puechal@inserm.fr REACTing, Paris, France
Caroline SEMAILLE caroline.semaille@anses.fr REACTing, Paris, France
Marion NORET mnoret@ch-annecygenevois.fr RENARCI, Annecy, France
Yves LEVY yves.levy@inserm.fr Vaccine Research Institute (VRI), Inserm UMR 955, Créteil, France
Aurélie WIEDEMANN aurelie.wiedemann@inserm.fr Vaccine Research Institute (VRI), Inserm UMR 955, Créteil, France

THE FRENCH COVID COHORT INVESTIGATORS GROUP

Name Last name Mail address @ Affiliation
Mélanie RORIZ Rorizm@ch-agen-nerac.fr Agen ‐ Médecine Interne
Patrick RISPAL rispalp@ch-agen-nerac.fr Agen ‐ Médecine Interne
Sarah REDL redls@ch-agen-nerac.fr Agen ‐ Médecine Interne
Laurent LEFEBVRE llefebvre@ch-aix.fr Aix en Provence ‐ SMIT
Pascal GRANIER pgranier@ch-aix.fr Aix en Provence ‐ SMIT
Laurence MAULIN lmaulin@ch-aix.fr Aix en Provence ‐ SMIT
Cédric JOSEPH joseph.cedric@chu-amiens.fr Amiens ‐ SMIT/Réanimation
Julien MOYET moyet.julien@chu-amiens.fr Amiens ‐ SMIT/Réanimation
Cinthia RAMES rames.cinthia@chu-amiens.fr Amiens ‐ SMIT/Réanimation
Rafael MAHIEU Rafael.Mahieu@chu-angers.fr Angers ‐ SMIT
Alexandra DUCANCELLE alexandra.ducancelle@univ-angers.fr Angers ‐ SMIT
Vincent DUBEE vincent.dubee@chu-angers.fr Angers ‐ SMIT
Stéphane SALLABERRY ssallaberry@ch-annecygenevois.fr Annecy ‐ Réanimation
Aldric MANUEL amanuel@ch-annecygenevois.fr Annecy ‐ SMIT
Gabriel MACHEDA gmacheda@ch-annecygenevois.fr Annecy ‐ SMIT
Mylène MAILLET mmaillet@ch-annecygenevois.fr Annecy ‐ SMIT
Patrick IMBERT pimbert@ch-annecygenevois.fr Annecy ‐ SMIT
Amélie VALRAN avalran@ch-annecygenevois.fr Annecy ‐ SMIT
Jean‐Charles GAGNARD jeancharles.gagnard@gmail.com Antony ‐ Médecine interne
Guillermo GIORDANO GIORDANO.Guillermo@ch-avignon.fr Avignon ‐ SMIT
Clara MOUTON PERROT mouttonperrot.clara@gmail.com Avignon ‐ SMIT
Vincent PESTRE PESTRE.Vincent@ch-avignon.fr Avignon ‐ SMIT
Cécile FICKO cecile.ficko@gmail.com Bégin ‐SMIT
Marie GOMINET marie.gominet@intradef.gouv.fr Bégin ‐SMIT
Aurore BOUSQUET aurorebousquet@yahoo.fr Bégin ‐SMIT
Charline VAUCHY cvauchy@chu-besancon.fr Besancon ‐ SMIT
Kévin BOUILLER kbouiller@chu-besancon.fr Besancon ‐ SMIT
Maïder PAGADOY mpagadoy@chu-besancon.fr Besancon ‐ SMIT
Quentin LEPILLER q1lepiller@chu-besancon.fr Besancon ‐ SMIT
Noémie TISSOT noemie.tissot@univ-fcomte.fr Besancon ‐ SMIT
Cyril LE BRIS cyril.le-bris@ch-beziers.fr Beziers ‐ SMIT/Réanimation
Benoit THILL benoit.thill@ch-beziers.fr Beziers ‐ SMIT/Réanimation
Marie‐Laure CASANOVA marie-laure.casanova@ch-beziers.fr Beziers ‐ SMIT/Réanimation
Georges LE FALHER georges.le-falher@ch-beziers.fr Beziers ‐ SMIT/Réanimation
Eric OZIOL eric.oziol@ch-beziers.fr Beziers ‐ SMIT/Réanimation
Hugues CORDEL hugues.cordel@aphp.fr Bobigny ‐ Avicenne ‐ SMIT
Nathalie DOURNON nathaliedournon@gmail.com Bobigny ‐ Avicenne ‐ SMIT
Olivier BOUCHAUD olivier.bouchaud@aphp.fr Bobigny ‐ Avicenne ‐ SMIT
Duc NGUYEN duc.nguyen@chu-bordeaux.fr Bordeaux ‐ SMIT
Segolene GREFFE segolene.greffe@aphp.fr Boulogne Billancourt ‐ A. Paré ‐Médecine interne
Camille BOUISSE cbouisse@ch-bourg01.fr Bourg en Bresse ‐ Infectiologie/Réanimation
Nicholas SEDILLOT nsedillot@ch-bourg01.fr Bourg en Bresse ‐ Infectiologie/Réanimation
Damien BOUHOUR dbouhour@ch-bourg01.fr Bourg en Bresse ‐ Infectiologie/Réanimation
Camille CHASSIN cchassin@ghnd.fr Bourgoin‐Jallieu ‐ Médecine interne
Erwan L'HER erwan.lher@chu-brest.fr Brest ‐ Réanimation
Laetitia BODENES Laetitia.bodenes@chu-brest.fr Brest ‐ Réanimation
Nicolas FERRIERE nicoferriere@yahoo.fr Brest ‐ Réanimation
Séverine ANSART severine.ansart@chu-brest.fr Brest ‐ SMIT
Cécile TROMEUR cecile.tromeur@chu-brest.fr Brest ‐ SMIT
Dewi GUELLEC dewi.guellec@chu-brest.fr Brest ‐ SMIT
Antoine MERCKX antoine.merckx@ch-cahors.fr Cahors ‐ SMIT
Felix DJOSSOU felix.djossou@ch-cayenne.fr Cayenne ‐ SMIT/Réanimation
Mayka MERGEAYFABRE mayka.mergeayfabre@ch-cayenne.fr Cayenne ‐ SMIT/Réanimation
Arsène KPANGON amadohoue.kpangon@ch-cayenne.fr Cayenne ‐ SMIT/Réanimation
Vincent PEIGNE vincent.peigne@ch-metropole-savoie.fr Chambery ‐ SMIT
Carola PIEROBON carola.pierobon@ch-metropole-savoie.fr Chambery ‐ SMIT
Marie‐Christine CARRET mariechristine.carret@ch-metropole-savoie.fr Chambery ‐ SMIT
Florence JEGO florence.jego@ch-metropole-savoie.fr Chambery ‐ SMIT
Margaux ISNARD margaux.isnard@ch-metropole-savoie.fr Chambery ‐ SMIT
Johann AUCHABIE johann.auchabie@ch-cholet.fr Chollet ‐ Réanimation
Anthony Lemeur anthony.lemeur@ch-cholet.fr Chollet ‐ Réanimation
Thierry MAZZONI thierry.mazzoni@ch-cholet.fr Chollet ‐ Réanimation
Roxane COURTOIS roxane.courtois@ch-cholet.fr Chollet ‐ SMIT
Olivier LESENS olesens@chu-clermontferrand.fr Clermont‐Ferrand ‐ SMIT
Martin MARTINOT Martin.martinot@ch-colmar.fr Colmar ‐ SMIT
Jeanne SIBIUDE Jeanne.sibiude@aphp.fr Colombes ‐ Louis Mourier ‐ Gynécologie
Laurent MANDELBROT laurent.mandelbrot@aphp.fr Colombes ‐ Louis Mourier ‐ Gynécologie
Marie LACOSTE mlacoste@ch-alpes-leman.fr Contamine sur Arve ‐ Infectiologie/Réanimation
Jean‐Daniel LELIEVRE jean-daniel.lelievre@aphp.fr Créteil ‐ Mondor ‐ SMIT
Brigitte ELHARRAR Brigitte.elharrar@chicreteil.fr Créteil CHIC ‐ Médecine interne
Valerie GARRAIT valerie.garrait@chicreteil.fr Créteil CHIC ‐ Médecine interne
Isabelle DELACROIX isabelle.delacroix@chicreteil.fr Créteil CHIC ‐ Médecine interne
Thomas MAITRE thomas.maitre@chicreteil.fr Créteil CHIC ‐ Médecine interne
Jean Baptiste ASSIE jean-baptiste.assie@inserm.fr Créteil CHIC ‐ Médecine interne
Elsa NYAMANKOLLY NYAMANKOLLYe@ch-dax.fr Dax ‐ SMIT/Réanimation
Adrien AUVET auveta@ch-dax.fr Dax ‐ SMIT/Réanimation
Anne‐Hélène BOIVIN helene.boivin@ght40.fr Dax ‐ SMIT/Réanimation
Younes KERROUMI ykerroumi@hopital-dcss.org Diaconesses CSS ‐ Médecine interne
Vanina MEYSSONNIER vmeyssonnier@hopital-dcss.org Diaconesses CSS ‐ Médecine interne
Oryane MABIALA omabiala@for.paris Diaconesses CSS ‐ Médecine interne
François Xavier CATHERINE francois-xavier.catherine@chu-dijon.fr Dijon ‐ SMIT
Mathieu BLOT mathieu.blot@chu-dijon.fr Dijon ‐ SMIT
Sophie MAHY sophie.mahy@chu-dijon.fr Dijon ‐ SMIT
Marielle BUISSON marielle.buisson@chu-dijon.fr Dijon ‐ SMIT
Lionel PIROTH lionel.piroth@chu-dijon.fr Dijon ‐ SMIT
Valentine CAMPANA Valentine.CAMPANA@chu-martinique.fr Fort de France ‐ SMIT
Jérémie PASQUIER jeremie.pasquier@chu-martinique.fr Fort de France ‐ SMIT
André CABIE andre.cabie@chu-martinique.fr Fort de France ‐ SMIT
Pierre‐François SANDRINE sandrine.pierre-francois@chu-martinique.fr Fort de France ‐ SMIT
Jean‐Marie TURMEL jean-marie.turmel@chu-martinique.fr Fort de France ‐ SMIT
Simon BESSIS simon.bessis@aphp.fr Garches ‐ SMIT
Olivier EPAULARD OEpaulard@chu-grenoble.fr Grenoble ‐ SMIT
Nicolas TERZI nterzi@chu-grenoble.fr Grenoble ‐ SMIT
Jean‐François PAYEN JFPayen@chu-grenoble.fr Grenoble ‐ SMIT
Laurence BOUILLET lbouillet@chu-grenoble.fr Grenoble ‐ SMIT
Rebecca HAMIDFAR rhamidfar@chu-grenoble.fr Grenoble ‐ SMIT
Marion LE MARECHAL mlemarechal@chu-grenoble.fr Grenoble ‐ SMIT
Elodie CURLIER elodie.curlier@chu-guadeloupe.fr Guyane ‐ Guadeloupe ‐Réanimation ‐ SMIT
Rachida OUISSA rachida.ouissa@chu-guadeloupe.fr Guyane ‐ Guadeloupe ‐Réanimation ‐ SMIT
Isabelle FABRE mfabre@ghnd.fr Guyane ‐ Guadeloupe ‐Réanimation ‐ SMIT
Pierre‐Marie ROGER pierre-marie.roger@chu-guadeloupe.fr Guyane ‐ Guadeloupe ‐Réanimation ‐ SMIT
Samuel Markowicz samuel.markowicz@chu-guadeloupe.fr Guyane ‐ Guadeloupe ‐Réanimation ‐ SMIT
Olivier PICONE olivier.picone@aphp.fr Gynécologie,Hôpital Louis Mourrier, Colombe
Cécile GOUJARD cecile.goujard@aphp.fr Kremlin‐Bicêtre ‐SMIT/Médecine interne
Stéphane JAUREGUIBERRY stephane.jaureguiberry@aphp.fr Kremlin‐Bicêtre ‐SMIT/Médecine interne
Antoine CHERET antoine.cheret@aphp.fr Kremlin‐Bicêtre ‐SMIT/Médecine interne
Gwenhaël COLIN gwenhael.colin@chd-vendee.fr La Roche Sur Yon ‐ Infectiologie
Romain DECOURS romain.decours@chd-vendee.fr La Roche Sur Yon ‐ Infectiologie
Thomas GUIMARD thomas.guimard@chd-vendee.fr La Roche Sur Yon ‐ Infectiologie
Vincent Langlois vincent.langlois@ch-havre.fr, Le Havre ‐ MI / Pneumologie
Laure GOUBERT laure.goubert@ch-havre.fr Le Havre ‐ MI / Pneumologie
Stéphanie COUSSE stephanie.cousse@ch-havre.fr Le Havre ‐ MI / Pneumologie
Hikombo HITOTO hhitoto@ch-lemans.fr Le Mans CH ‐ SMIT
Julien POISSY julien.poissy@chru-lille.fr Lille ‐ Réanimation
Saad NSEIR saadalla.nseir@chru-lille.fr Lille ‐ Réanimation
Sébastien PREAU sebastien.preau@chru-lille.fr Lille ‐ Réanimation
Mercé JOURDAIN merce.jourdain@chru-lille.fr Lille ‐ Réanimation
Raphaël FAVORY raphael.favory@chru-lille.fr Lille ‐ Réanimation
Karine FAURE karine.faure@chru-lille.fr Lille ‐ SMIT
Fanny VUOTTO Fanny.VUOTTO@CHRU-LILLE.FR Lille ‐ SMIT
Marie‐Charlotte CHOPIN Mariecharlotte.CHOPIN@CHRU-LILLE.FR Lille ‐ SMIT
Sarah STABLER stabler.sarah@gmail.com Lille ‐ SMIT
Jules BAUER bauerjules@gmail.com Lille ‐ SMIT
Marc LAMBERT Marc.LAMBERT@chru-lille.fr Lille Calmette ‐ SMIT
Arnaud SCHERPEREEL Arnaud.SCHERPEREEL@chru-lille.fr Lille Calmette ‐ SMIT
Ryadh POKEERBUX ryadh.pokeerbux@chru-lille.fr Lille Calmette ‐ SMIT
Stéphanie FRY Stephanie.FRY@chru-lille.fr Lille Calmette ‐ SMIT
Cécile YELNIK CECILE.YELNIK@chru-lille.fr Lille Calmette ‐ SMIT
Laurent BITKER laurent.bitker@chu-lyon.fr Lyon ‐ Réanimation
Mehdi MEZIDI mehdi.mezidi@chu-lyon.fr Lyon ‐ Réanimation
Hodane YONIS hodane.yonis@chu-lyon.fr Lyon ‐ Réanimation
Nicolas BENECH nicolas.benech@chu-lyon.fr Lyon ‐ SMIT
Thomas PERPOINT thomas.perpoint@chu-lyon.fr Lyon ‐ SMIT
Anne CONRAD anne.conrad@chu-lyon.fr Lyon ‐ SMIT
Muriel DORET‐DION muriel.doret-dion@chu-lyon.fr Lyon ‐ Hôpital Mère Enfant ‐ Gynécologie
Pierre‐Adrien BOLZE pierre-adrien.bolze@chu-lyon.fr Lyon Sud ‐ Obstétrique
Simon‐Djamel THIBERVILLE thiberville.sd@ch-manosque.fr Manosque ‐ SMIT
Moïse MACHADO mmachado@ghef.fr Marne la Vallee‐ SMIT
Audrey BARRELET abarrelet@ghef.fr Marne la Vallee‐ SMIT
Alexandra BEDOSSA abedossa@ghef.fr Marne la Vallee‐ SMIT
Stanislas REBAUDET s.rebaudet@hopital-europeen.fr Marseille ‐ SMIT
Frédérique RETORNAZ f.retornaz@hopital-europeen.fr Marseille ‐ SMIT
Myriam BENNANI M.BENNANI@hopital-europeen.fr Marseille ‐ SMIT
Hortense DROUET h.drouet@hopital-europeen.fr Marseille ‐ SMIT
Bertrand DUSSOL bertrand.dussol@ap-hm.fr Marseille conception ‐ Néphrologie
Marc LEONE marc.leone@ap-hm.fr Marseille Nord ‐ La Timone ‐ Réanimation
Bruno PASTENE bruno.pastene@ap-hm.hm Marseille Nord ‐ La Timone ‐ Réanimation
Karine BEZULIER karine.bezulier@ap-hm.fr Marseille Nord ‐ La Timone ‐ Réanimation
Axelle BRACONNIER a.braconnier@hotmail.fr Mayotte ‐ Gynécologie
Sylvain DIAMANTIS Sylvain.diamantis@ghsif.fr Melun ‐ SMIT
Catherine CHAKVEATZE eka.chakvetadze@aphp.fr Melun ‐ SMIT
Clara FLATEAU clara.flateau@ghsif.fr Melun ‐ SMIT
Vincent DINOT v.dinot@chr-metz-thionville.fr Metz ‐ Réanimation
Rostane GACI r.gaci@chr-metz-thionville.fr Metz ‐ Réanimation
Nadia OUAMARA n.ouamara@chr-metz-thionville.fr Metz ‐ Réanimation
Guillaume LOUIS g.louis@chr-metz-thionville.fr Metz ‐ Réanimation
Cyril CADOZ c.cadoz@chr-metz-thionville.fr Metz ‐ Réanimation
Hajnal‐Gabriela ILLES gabriela.illes@ch-mdm.fr Mont de Marsan ‐ SMIT
Bouchra LOUTFI bouchra.loutfi@ch-mdm.fr Mont de Marsan ‐ SMIT
Jérôme DIMET jerome.dimet@ght40.fr Mont de Marsan ‐ SMIT
Vincent LE MOING v-le_moing@chu-montpellier.fr Montpellier ‐ SMIT
Nathalie PANSU n-pansu@chu-montpellier.fr Montpellier ‐ SMIT
Clément LE BIHAN c-lebihan@chu-montpellier.fr Montpellier ‐ SMIT
Antoine KIMMOUN a.kimmoun@chru-nancy.fr Nancy ‐ Réanimation
Bruno LEVY b.levy@chru-nancy.fr Nancy ‐ Réanimation
Maximilen SAINT GILLES M.SAINTGILLES@chru-nancy.fr Nancy ‐ Réanimation
François GOEHRINGER f.goehringer@chru-nancy.fr Nancy ‐ SMIT
Christian RABAUD c.rabaud@chru-nancy.fr Nancy ‐ SMIT
Sibylle BEVILACQUA s.bevilacqua@chru-nancy.fr Nancy ‐ SMIT
Benjamin LEFEVRE B.LEFEVRE@chru-nancy.fr Nancy ‐ SMIT
Anne GUILLAUMOT a.guillaumot@chru-nancy.fr Nancy ‐ SMIT
Anne Sophie BOUREAU annesophie.boureau@chu-nantes.fr Nantes ‐ Gériatrie
Clotilde ALLAVENA Clotilde.ALLAVENA@chu-nantes.fr Nantes ‐ SMIT
Sabelline BOUCHEZ Sabelline.BOUCHEZ@chu-nantes.fr Nantes ‐ SMIT
Romain GUERY dr.guery@groupeconfluent.fr Nantes ‐ SMIT
Paul LE TURNIER Paul.LETURNIER@chu-nantes.fr Nantes ‐ SMIT
Cécile MEAR‐PASSARD cecile.passard@chu-nantes.fr Nantes ‐ SMIT
Christophe RAPP christophe.rapp@ahparis.org Neuilly sur Seine ‐ Médecine Interne
Stéphane LASRY stephane.lasry@ahparis.org Neuilly sur Seine ‐ Médecine Interne
Thierry CARMOI thierry.carmoi@ahparis.org Neuilly sur Seine ‐ Médecine Interne
Elisa DEMONCHY demonchy.e@chu-nice.fr Nice ‐ SMIT
Céline MICHELANGELLI michelangeli.c@chu-nice.fr Nice ‐ SMIT
Karine RISSO risso.k@chu-nice.fr Nice ‐ SMIT
Paul LOUBET Paul.LOUBET@chu-nimes.fr Nimes ‐ SMIT
Alberto SOTTO albert.sotto@chu-nimes.fr Nimes ‐ SMIT
Didier Laureillard didier.laureillard@chu-nimes.fr Nimes ‐ SMIT
Etienne DE MONTMOLLIN etienne.demontmollin@aphp.fr Paris ‐ Bichat ‐ Réanimation
Juliette PATRIER juliette.patrier@aphp.fr Paris ‐ Bichat ‐ Réanimation
Paul Henri WICKY paul-henri.wicky@aphp.fr Paris ‐ Bichat ‐ Réanimation
Lucie LE FEVRE lucie.lefevre@aphp.fr Paris ‐ Bichat ‐ Réanimation
Pierre JACQUET Pierre.jaquet@aphp.fr Paris ‐ Bichat ‐ Réanimation
Raphael BORIE raphael.borie@aphp.fr Paris ‐ Bichat ‐ SMIT
Tiphaine GOULENOK tiphaine.goulenok@aphp.fr Paris ‐ Bichat ‐ SMIT
Dominique LUTON dominique.luton@aphp.fr Paris ‐ Bichat ‐ SMIT
Lauren DECONINCK bastien.deconninck@aphp.fr Paris ‐ Bichat ‐ SMIT
Sylvie LE GAC sylvie.legac@aphp.fr Paris ‐ Bichat ‐ SMIT
Cecile AZOULAY cecile.azoulay@aphp.fr Paris ‐ Cochin ‐ CIC Vaccinologie
Nicolas CARLIER nicolas.carlier@aphp.fr Paris ‐ Cochin ‐ CIC Vaccinologie
Liem LUONG liem.luong@aphp.fr Paris ‐ Cochin ‐ CIC Vaccinologie
Marie LACHATRE marie.lachatre@aphp.fr Paris ‐ Cochin ‐ CIC Vaccinologie
Odile LAUNAY odile.launay@aphp.fr Paris ‐ Cochin ‐ CIC Vaccinologie
Jean‐Luc DIEHL jean-luc.diehl@aphp.fr Paris ‐ HEGP ‐ Réanimation
Marine LIVROZET marine.livrozet@aphp.fr Paris ‐ HEGP ‐ Réanimation
Bernard CHOLLEY bernard.cholley@aphp.fr Paris ‐ HEGP ‐ Réanimation
Jean‐Benoit ARLET jean-benoit.arlet@aphp.mssante.fr Paris ‐ HEGP ‐ Réanimation
Olivier SANCHEZ manuel.sanchez@aphp.fr Paris ‐ HEGP ‐ Réanimation
Victoria MANDA victoria.manda@aphp.fr Paris ‐ Lariboisière ‐ SMIT
Laurène AZEMAR laurene.azemar@aphp.fr Paris ‐ Lariboisière ‐ SMIT
Guylaine CASTOR‐ALEXANDRE guylaine.alexandre@aphp.fr Paris ‐ Lariboisière ‐ SMIT
Jeanne TRUONG jeanne.truong@aphp.fr Paris ‐ Robert Debré ‐ Pédiatrie
Karine LACOMBE karine.lacombe2@aphp.fr Paris ‐ Saint Antoine ‐ SMIT
Thibault CHIARABINI Thibault.chiarabini@aphp.fr Paris ‐ Saint Antoine ‐ SMIT
Bénédicte LEFEBVRE benedicte.lefebvre2@aphp.fr Paris ‐ Saint Antoine ‐ SMIT
Nathalie DE CASTRO nathalie.de-castro@aphp.fr Paris ‐ Saint Louis ‐ Réanimation
Geoffrey LIEGEON geoffroy.liegeon@aphp.fr Paris ‐ Saint Louis ‐ Réanimation
Diane PONSCARME diane.ponscarme@aphp.fr Paris ‐ Saint Louis ‐ Réanimation
Julie CHAS julie.chas@aphp.fr Paris ‐ Tenon ‐SMIT
Valérie GABORIEAU valerie.gaborieau@ch-pau.fr Pau ‐ SMIT/Réanimation
Eve LE COUSTUMIER eve.lecoustumier@ch-pau.fr Pau ‐ SMIT/Réanimation
Walter PICARD walter.picard@ch-pau.fr Pau ‐ SMIT/Réanimation
Jean‐Benoit ZABBE marion.zabbe@ch-perigueux.fr Perigueux ‐ SMIT
Florent PEELMAN florent.peelman@ch-perigueux.fr Perigueux ‐ SMIT
Edouard SOUM edouard.soum@ch-perigueux.fr Perigueux ‐ SMIT
Hugues AUMAÎTRE hugues.aumaitre@ch-perpignan.fr Perpignan ‐ SMIT
Blandine RAMMAERT blandine.rammaert@chu-poitiers.fr Poitiers ‐ SMIT
Gwenaël Le Moal Gwenaël.LEMOAL@chu-poitiers.fr Poitiers ‐ SMIT
Isabelle PIRONNEAU Isabelle.PIRONNEAU@chu-poitiers.fr Poitiers ‐ SMIT
Anne Sophie RESSEGUIER annesophie.resseguier@ch-lepuy.fr Puy en Velay ‐ Médecine interne
Nadia SAIDANI n.saidani@ch-cornouaille.fr Quimper ‐ MIIS
Firouzé BANI‐SADR fbanisadr@chu-reims.fr Reims ‐ SMIT
Maxime HENTZIEN mhentzien@chu-reims.fr Reims ‐ SMIT
Yohan N'GUYEN ynguyen@chu-reims.fr Reims ‐ SMIT
Juliette ROMARU jromaru@chu-reims.fr Reims ‐ SMIT
Kévin DIDIER kdidier@chu-reims.fr Reims ‐ SMIT
Isabelle ENDERLE Isabelle.ENDERLE@chu-rennes.fr Rennes ‐ Gynécologie
Fabrice LAINE Fabrice.Laine@chu-rennes.fr Rennes ‐ SMIT
Matthieu LESOUHAITIER mathieu.LESOUHAITIER@chu-rennes.fr Rennes ‐ SMIT
Matthieu REVEST matthieu.revest@chu-rennes.fr Rennes ‐ SMIT
Pierre TATTEVIN pierre.tattevin@chu-rennes.fr Rennes ‐ SMIT
Jean‐Marc CHAPPLAIN jean-marc.chapplain@chu-rennes.fr Rennes ‐ SMIT
Manuel ETIENNE Manuel.Etienne@chu-rouen.fr Rouen ‐ SMIT
Véronique LEMEE Veronique.Lemee@chu-rouen.fr Rouen ‐ SMIT
Eglantine FERRAND DEVOUGE E.Ferrand-Devouge@chu-rouen.fr Rouen ‐ SMIT
Kévin ALEXANDRE kevin.alexandre@chu-rouen.fr Rouen ‐ SMIT
Elise ARTAUD‐MACCARI Elise.Artaud-Macari@chu-rouen.fr Rouen ‐ SMIT
Nathalie ALLOU nathalie.allou@chu-reunion.fr Saint Denis ‐ Saint Pierre ‐ SMIT
Marie LAGRANGE marie.lagrange-xelot@chu-reunion.fr Saint Denis ‐ Saint Pierre ‐ SMIT
Julien JABOT jabot974@gmail.com Saint Denis ‐ Saint Pierre ‐ SMIT
Elisabeth BOTELHO‐NEVERS elisabeth.botelho-nevers@chu-st-etienne.fr Saint Etienne ‐ SMIT
Amandine GAGNEUX‐BRUNON amandine.gagneux-brunon@chu-st-etienne.fr Saint Etienne ‐ SMIT
Tiffany TROUILLON tiffany.trouillon@chu-st-etienne.fr Saint Etienne ‐ SMIT
Corinne DANIEL c.daniel@chsaintmartin.fr Saint Martin ‐ Médecine UDSMT
Benoît ROZE b.roze@ch-saintonge.fr Saintes ‐ Réanimation
Delphine BREGEAUD d.bregeaud@ch-saintonge.fr Saintes ‐ Réanimation
Younes AIT TAMLIHAT y.ait-tamlihat@ch-saintonge.fr Saintes ‐ Réanimation
Ali HACHEMI ali.hachemi@ch-soissons.fr Soissons ‐ Infectiologie
Hélène SALVATOR h.salvator@hopital-foch.org Suresnes ‐ Hopital Foch ‐ DRCI
Erwan FOURN e.fourn@hopital-foch.org Suresnes ‐ Hopital Foch ‐ DRCI
David ZUCMAN d.zucman@hopital-foch.org Suresnes ‐ Hopital Foch ‐ DRCI
Marie‐Laure CHABI‐CHAVILLAT ml.chabi-charvillat@hopital-foch.com Suresnes ‐ Hopital Foch ‐ DRCI
Aurélie MARTIN a.martin@hopital-foch.com Suresnes ‐ Hopital Foch ‐ DRCI
Eric DELAVEUVE e.delaveuve@chr-metz-thionville.fr Thionville ‐ Bel Air ‐ SMIT/Réanimation
Coline JAUD‐FISCHER C.JAUDFISCHER@chru-nancy.fr Thionville ‐ Bel Air ‐ SMIT/Réanimation
Paul DUNAND paul.m.dunand@gmail.com Thionville ‐ Bel Air ‐ SMIT/Réanimation
François BISSUEL f-bissuel@ch-hopitauxduleman.fr Thonon les Bains ‐ Pneumologie
Karen DELAVIGNE delavigne.karen@iuct-oncopole.fr Toulouse ‐ Hématologie/Médecine interne
Alexa DEBARD debard.a@chu-toulouse.fr Toulouse ‐ SMIT
Pierre DELOBEL delobel.p@chu-toulouse.fr Toulouse ‐ SMIT
Benjamine SARTON sarton.b@chu-toulouse.fr Toulouse ‐ SMIT
Stella Rousset rousset.st@chu-toulouse.fr Toulouse ‐ SMIT
Guillaume MARTIN‐BLONDEL martin-blondel.g@chu-toulouse.fr Toulouse ‐ SMIT
Laurent GUILLEMINAULT guilleminault.l@chu-toulouse.fr Toulouse Larrey ‐ Pneumologie
Marlène MURRIS murris.m@chu-toulouse.fr Toulouse Larrey ‐ Pneumologie
Agnès SOMMET agnes.sommet@univ-tlse3.fr Toulouse Larrey ‐ Pneumologie
Olivier LAIREZ lairez.o@chu-toulouse.fr Toulouse‐cardiologie
Eric SENNEVILLE esenneville@ch-tourcoing.fr Tourcoing ‐ SMIT
Olivier ROBINEAU olivier.robineau82@gmail.com Tourcoing ‐ SMIT
Agnès MEYBECK ameybeck@ch-tourcoing.fr Tourcoing ‐ SMIT
Denis GAROT d.garot@chu-tours.fr Tours ‐ Réanimation
Laurent PLANTIER laurent.plantier@univ-tours.fr Tours ‐ Réanimation
Valérie GISSOT valerie.gissot@univ-tours.fr Tours ‐ Réanimation
Emmanuelle MERCIER emercier@med.univ-tours.fr Tours ‐ Réanimation
Charlotte SALMON GANDONNIERE charlotte.salmon.gandonniere@gmail.com Tours ‐ Réanimation
Adrien LEMAIGNEN adrien.lemaignen@chu-tours.fr Tours ‐ SMIT
Julie MANKIKIAN J.MANKIKIAN@chu-tours.fr Tours ‐ SMIT
Thomas FLAMENT T.FLAMENT@chu-tours.fr Tours ‐ SMIT
Grégory CORVAISIER gregory.corvaisier@ch-bretagne-atlantique.fr Vannes ‐ SMIT
Delphine LARIVIERE delphine.lariviere@ch-bretagne-atlantique.fr Vannes ‐ SMIT
Marie LANGELOT‐RICHARD marie.langelot-richard@ch-bretagne-atlantique.fr Vannes ‐ SMIT
Pauline CARAUX PAZ pauline.caraux-paz@chiv.fr Villeneuve Saint Georges ‐ SMIT
Laurent RICHIER laurent.richier@aphp.fr Villeneuve Saint Georges ‐ SMIT
Danielle JAAFAR danielle.jaafar@chiv.fr Villeneuve Saint Georges ‐ SMIT
Claudine BADR claudine.Badr@chiv.fr Villeneuve Saint Georges ‐ SMIT
Fara DIOP Fara.Diop@chiv.fr Villeneuve Saint Georges ‐ SMIT

Gault N, Esposito‐Farèse M, Revest M, et al. Chronic use of renin‐angiotensin‐aldosterone system blockers and mortality in COVID‐19: A multicenter prospective cohort and literature review. Fundam Clin Pharmacol. 2021;35:1141-1158. 10.1111/fcp.12683

Funding information

This work was supported by the REACTing (REsearch & ACtion emergING infectious diseases) consortium and by the French Ministry of Health [grant number PHRC20‐0424]. The sources of funding had no role in the design, steering, interpretation of results, and decision for publication of the study. The sponsor, INSERM, had the responsibility for the research, getting ethical and regulatory approvals, data quality monitoring, and patient safety.

Contributor Information

Nathalie Gault, Email: nathalie.gault@aphp.fr.

Emmanuelle Vidal‐Petiot, Email: emmanuelle.vidal-petiot@aphp.fr.

the French‐Covid cohort investigators, study group:

Marie Bartoli, Alpha Diallo, Soizic Le Mestre, Noémie Mercier, Christelle Paul, Ventzislava Petrov‐Sanchez, Claire Andrejak, Denis Malvy, François Dubos, François Bompart, Tristan Gigante, Morgane Gilg, Bénédicte Rossignol, Claire Léy‐Marchal, Marine Beluze, Delphine Bachelet, Krishna Bhavsar, Lila Bouadma, Anissa Chair, Camille Couffignal, Charlene Da Silveira, Marie‐Pierre Debray, Diane Descamps, Xavier Duval, Philippine Eloy, Marina Esposito‐Farèse, Nadia Ettalhaoui, Isabelle Gorenne, Isabelle Hoffmann, Ouifiya Kafif, Sabrina Kali, Antoine Khalil, Cédric Laouénan, Samira Laribi, Minh Lê, Quentin Le Hingrat, François‐Xavier Lescure, Jean‐Christophe Lucet, France Mentré, Jimmy Mullaert, Nathan Peiffer‐Smadja, Gilles Peytavin, Carine Roy, Marion Schneider, Nassima Si Mohammed, Lysa Tagherset, Coralie Tardivon, Marie‐Capucine Tellier, Jean‐François Timsit, Théo Trioux, Sarah Tubiana, Benoît Visseaux, Yazdan Yazdanpanah, Dominique Deplanque, Noémie Vanel, Romain Basmaci, Olivier Picone, François Angoulvant, Florentia Kaguelidou, Justine Pages, Christelle Tual, Aurélie Veislinger, Sandrine Couffin‐Cadiergues, Hélène Esperou, Ikram Houas, Salma Jaafoura, Aurélie Papadopoulos, Alexandra Coelho, Alphonsine Diouf, Alexandre Hoctin, Marina Mambert, Maude Bouscambert, Alexandre Gaymard, Bruno Lina, Manuel Rosa‐calatrava, Olivier Terrier, Dehbia Benkerrou, Céline Dorival, Amina Meziane, François Téoulé, Jérémie Guedj, Hervé Le Nagard, Guillaume Lingas, Nadège Neant, Laurent Abel, Mathilde Desvallée, Coralie Khan, Sylvie Behilill, Vincent Enouf, Hugo Mouquet, Sylvie Van der werf, Minerva Cervantes‐gonzalez, Eric D’Ortenzio, Oriane Puéchal, Caroline Semaille, Marion Noret, Yves Levy, Aurélie Wiedemann, Mélanie Roriz, Patrick Rispal, Sarah Redl, Laurent Lefebvre, Pascal Granier, Laurence Maulin, Cédric Joseph, Julien Moyet, Cinthia Rames, Rafael Mahieu, Alexandra Ducancelle, Vincent Dubee, Stéphane Sallaberry, Aldric Manuel, Gabriel Macheda, Mylène Maillet, Patrick Imbert, Amélie Valran, Jean‐Charles Gagnard, Guillermo Giordano, Clara Mouton Perrot, Vincent Pestre, Cécile Ficko, Marie Gominet, Aurore Bousquet, Charline Vauchy, Kévin Bouiller, Maïder Pagadoy, Quentin Lepiller, Noémie Tissot, Cyril Le Bris, Benoit Thill, Marie‐Laure Casanova, Georges Le Falher, Hugues Cordel, Nathalie Dournon, Olivier Bouchaud, Duc Nguyen, Segolène Greffe, Camille Bouisse, Nicholas Sedillot, Damien Bouhour, Camille Chassin, Erwan L'her, Laetitia Bodenes, Nicolas Ferriere, Séverine Ansart, Cécile Tromeur, Dewi Guellec, Antoine Merckx, Felix Djossou, Mayka Mergeayfabre, Arsène Kpangon, Vincent Peigne, Carola Pierobon, Marie‐Christine Carret, Florence Jego, Margaux Isnard, Johann Auchabie, Anthony Lemeur, Thierry Mazzoni, Roxane Courtois, Olivier Lesens, Martin Martinot, Jeanne Sibiude, Laurent Mandelbrot, Marie Lacoste, Jean‐Daniel Lelievre, Brigitte Elharrar, Valerie Garrait, Isabelle Delacroix, Thomas Maitre, Jean‐Baptiste Assie, Elsa Nyamankolly, Adrien Auvet, Anne‐Hélène Boivin, Younes Kerroumi, Vanina Meyssonnier, Oryane Mabiala, François Xavier Catherine, Mathieu Blot, Sophie Mahy, Marielle Buisson, Valentine Campana, Jérémie Pasquier, Pierre‐François Sandrine, Jean‐Marie Turmel, Simon Bessis, Nicolas Terzi, Jean‐François Payen, Laurence Bouillet, Rebecca Hamidfar, Marion Le Marechal, Elodie Curlier, Rachida Ouissa, Isabelle Fabre, Pierre‐Marie Roger, Samuel Markowicz, Olivier Picone, Cécile Goujard, Stéphane Jaureguiberry, Antoine Cheret, Gwenhaël Colin, Romain Decours, Thomas Guimard, Vincent Langlois, Laure Goubert, Stéphanie Cousse, Hikombo Hitoto, Saad Nseir, Sébastien Preau, Mercé Jourdain, Raphaël Favory, Karine Faure, Fanny Vuotto, Marie‐Charlotte Chopin, Sarah Stabler, Jules Bauer, Marc Lambert, Arnaud Scherpereel, Ryadh Pokeerbux, Stéphanie Fry, Cécile Yelnik, Laurent Bitker, Mehdi Mezidi, Hodane Yonis, Nicolas Benech, Thomas Perpoint, Anne Conrad, Muriel Doret‐Dion, Pierre‐Adrien Bolze, Simon‐Djamel Thiberville, Moïse Machado, Audrey Barrelet, Alexandra Bedossa, Stanislas Rebaudet, Frédérique Retornaz, Myriam Bennani, Hortense Drouet, Bertrand Dussol, Marc Leone, Bruno Pastene, Karine Bezulier, Axelle Braconnier, Sylvain Diamantis, Catherine Chakveatze, Clara Flateau, Vincent Dinot, Rostane Gaci, Nadia Ouamara, Guillaume Louis, Cyril Cadoz, Hajnal‐Gabriela Illes, Bouchra Loutfi, Jérôme Dimet, Vincent Le Moing, Nathalie Pansu, Clément Le Bihan, Antoine Kimmoun, Bruno Levy, Maximilen Saint Gilles, François Goehringer, Christian Rabaud, Sibylle Bevilacqua, Benjamin Lefèvre, Anne Guillaumot, Anne‐Sophie Boureau, Clotilde Allavena, Sabelline Bouchez, Romain Guery, Paul Le Turnier, Cécile Mear‐Passard, Christophe Rapp, Stéphane Lasry, Thierry Carmoi, Elisa Demonchy, Céline Michelangelli, Karine Risso, Paul Loubet, Alberto Sotto, Didier Laureillard, Etienne De Montmollin, Juliette Patrier, Paul Henri Wicky, Lucie Lefevre, Pierre Jacquet, Raphael Borie, Tiphaine Goulenok, Dominique Luton, Laurène Deconinck, Sylvie Le Gac, Cecile Azoulay, Nicolas Carlier, Liem Luong, Marie Lachatre, Odile Launay, Marine Livrozet, Bernard Cholley, Jean‐Benoit Arlet, Olivier Sanchez, Victoria Manda, Laurène Azemar, Guylaine Castor‐Alexandre, Jeanne Truong, Karine Lacombe, Thibault Chiarabini, Bénédicte Lefebvre, Nathalie De Castro, Geoffrey Liegeon, Diane Ponscarme, Julie Chas, Valérie Gaborieau, Eve Le Coustumier, Walter Picard, Jean‐Benoit Zabbe, Florent Peelman, Edouard Soum, Hugues Aumaître, Blandine Rammaert, Gwenaël Le Moal, Isabelle Pironneau, Anne Sophie Resseguier, Nadia Saidani, Firouzé Bani‐Sadr, Maxime Hentzien, Yohan N'guyen, Juliette Romaru, Kévin Didier, Isabelle Enderle, Fabrice Laine, Matthieu Lesouhaitier, Pierre Tattevin, Jean‐Marc Chapplain, Véronique Lemee, Eglantine Ferrand Devouge, Kévin Alexandre, Elise Artaud‐Maccari, Nathalie Allou, Marie Lagrange, Julien Jabot, Elisabeth Botelho‐Nevers, Amandine Gagneux‐Brunon, Tiffany Trouillon, Corinne Daniel, Benoît Roze, Delphine Bregeaud, Younes Ait Tamlihat, Ali Hachemi, Hélène Salvator, Erwan Fourn, David Zucman, Marie‐Laure Chabi‐Chavillat, Aurélie Martin, Eric Delaveuve, Coline Jaud‐Fischer, Paul Dunand, François Bissuel, Karen Delavigne, Alexa Debard, Pierre Delobel, Benjamine Sarton, Stella Rousset, Guillaume Martin‐Blondel, Laurent Guilleminault, Marlène Murris, Agnès Sommet, Olivier Lairez, Eric Senneville, Olivier Robineau, Agnès Meybeck, Denis Garot, Laurent Plantier, Valérie Gissot, Emmanuelle Mercier, Charlotte Salmon Gandonniere, Adrien Lemaignen, Julie Mankikian, Thomas Flament, Grégory Corvaisier, Delphine Lariviere, Marie Langelot‐Richard, Pauline Caraux Paz, Laurent Richier, Danielle Jaafar, Claudine Badr, and Fara Diop

DATA AVAILABILITY STATEMENT

Data can be made available upon reasonable request.

REFERENCES

  • 1. Richardson S, Hirsch JS, Narasimhan M et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID‐19 in the New York City Area. JAMA. 2020;323:2052–2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID‐19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239–1242. [DOI] [PubMed] [Google Scholar]
  • 3. Zhou F, Yu T, Du R et al. Clinical course and risk factors for mortality of adult inpatients with COVID‐19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Ferrario CM, Jessup J, Chappell MC et al. Effect of angiotensin‐converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin‐converting enzyme 2. Circulation. 2005;111:2605–2610. [DOI] [PubMed] [Google Scholar]
  • 5. Soler MJ, Ye M, Wysocki J, William J, Lloveras J, Batlle D. Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using telmisartan. Am J Physiol Renal Physiol. 2009;296:F398–F405. [DOI] [PubMed] [Google Scholar]
  • 6. Wu C, Ye D, Mullick AE et al. Effects of renin‐angiotensin inhibition on ACE2 and TMPRSS2 expression: insights into COVID‐19. Hypertension. 2020;76:e29–e30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Sama IE, Ravera A, Santema BT et al. Circulating plasma concentrations of angiotensin‐converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin–aldosterone inhibitors. Eur Heart J. 2020;41:1810–1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Kreutz R, Algharably EAE, Azizi M et al. Hypertension, the renin‐angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID‐19. Cardiovasc Res. 2020;116:1688–1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Imai Y, Kuba K, Rao S et al. Angiotensin‐converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Kuba K, Imai Y, Rao S et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus‐induced lung injury. Nat Med. 2005;11:875–879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin‐angiotensin‐aldosterone system inhibitors in patients with covid‐19. N Engl J Med. 2020;382:1653–1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Fosbøl EL, Butt JH, Østergaard L et al. Association of angiotensin‐converting enzyme inhibitor or angiotensin receptor blocker use with COVID‐19 diagnosis and mortality. JAMA. 2020;324:168–177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin‐angiotensin‐aldosterone system blockers and the risk of Covid‐19. N Engl J Med. 2020;382:2431–2440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Reynolds HR, Adhikari S, Pulgarin C et al. Renin‐angiotensin‐aldosterone system inhibitors and risk of Covid‐19. N Engl J Med. 2020;382:2441–2448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Andrea C, Francesco M, Antonio N et al. Renin‐angiotensin‐aldosterone system inhibitors and outcome in patients with SARS‐CoV‐2 pneumonia: a case series study. Hypertension. 2020;76:e10–e12. [DOI] [PubMed] [Google Scholar]
  • 16. Bean DM, Kraljevic Z, Searle T et al. Angiotensin‐converting enzyme inhibitors and angiotensin II receptor blockers are not associated with severe COVID‐19 infection in a multi‐site UK acute hospital trust. Eur J Heart Fail. 2020;22:967–974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Feng Y, Ling Y, Bai T et al. COVID‐19 with different severities: a multicenter study of clinical features. Am J Respir Crit Care Med. 2020;201:1380–1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Huang Z, Cao J, Yao Y et al. The effect of RAS blockers on the clinical characteristics of COVID‐19 patients with hypertension. Ann Transl Med. 2020;8:430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Iaccarino G, Grassi G, Borghi C, Ferri C, Salvetti M, Volpe M. Age and multimorbidity predict death among COVID‐19 patients: results of the SARS‐RAS study of the Italian Society of Hypertension. Hypertension. 2020;76:366–372. [DOI] [PubMed] [Google Scholar]
  • 20. Jung Sun‐Young, Choi Jae Chol, You Seung‐Hun, Kim Won‐Young. Association of Renin‐angiotensin‐aldosterone System Inhibitors With Coronavirus Disease 2019 (COVID‐19)‐ Related Outcomes in Korea: A Nationwide Population‐based Cohort Study. Clinical Infectious Diseases. 2020;71 (16):2121–2128. 10.1093/cid/ciaa624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Li J, Wang X, Chen J, Zhang H, Deng A. Association of renin‐angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for Coronavirus Disease 2019 (COVID‐19) Infection in Wuhan. China. JAMA Cardiol. 2020;5:1–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Mehta N, Kalra A, Nowacki AS et al. Association of use of angiotensin‐converting Enzyme inhibitors and angiotensin II receptor blockers with testing positive for coronavirus disease 2019 (COVID‐19). JAMA Cardiol. 2020;5:1020–1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Zhang P, Zhu L, Cai J et al. Association of inpatient use of angiotensin‐converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID‐19. Circ Res. 2020;126:1671–1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Yazdanpanah Y. Impact on disease mortality of clinical, biological and virological characteristics at hospital admission and over time in COVID‐19 patients. J Med Virol. 2021;93:2149–2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Chen C, Wang F, Chen P et al. Mortality and pre‐hospitalization use of renin‐angiotensin system inhibitors in hypertensive covid‐19 patients. J Am Heart Assoc. 2020;9:e017736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Gao C, Cai Y, Zhang K et al. Association of hypertension and antihypertensive treatment with COVID‐19 mortality: a retrospective observational study. Eur Heart J. 2020;41:2058–2066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Chaudhri I, Koraishy FM, Bolotova O et al. Outcomes associated with the use of RAAS Blockade in hospitalized patients with SARS‐CoV‐2 infection. Kidney360. 2020;1:801–809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Lahens A, Mullaert J, Gressens S et al. Association between RAAS blockers and outcome in COVID‐19: analysing in‐hospital exposure generates a biased seemingly protective effect of treatment. J Hypertens. 2021;39:367–375. [DOI] [PubMed] [Google Scholar]
  • 29. Martínez‐Del Río J, Piqueras‐Flores J, Martín N‐S et al. Comparative analysis between the use of renin‐angiotensin system antagonists and clinical outcomes of hospitalized patients with COVID‐19 respiratory infection. Med Clin (Engl Ed). 2020;155:473–481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Tedeschi S, Giannella M, Bartoletti M et al. Clinical impact of renin‐angiotensin system inhibitors on in‐hospital mortality of patients with hypertension hospitalized for COVID‐19. Clin Infect Dis. 2020;71:899–901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Son M, Seo J, Yang S. Association between renin‐angiotensin‐aldosterone system inhibitors and COVID‐19 infection in South Korea. Hypertension. 2020;76:742–749. [DOI] [PubMed] [Google Scholar]
  • 32. Lafaurie M, Martin‐Blondel G, Delobel P, Charpentier S, Sommet A, Moulis G. Outcome of patients hospitalized for COVID‐19 and exposure to angiotensin‐converting enzyme inhibitors and angiotensin‐receptor blockers in France: results of the ACE‐CoV study. Fundam Clin Pharmacol. 2021;35:194–203. [DOI] [PubMed] [Google Scholar]
  • 33. de Abajo FJ, Rodríguez‐Martín S, Lerma V et al. Use of renin‐angiotensin‐aldosterone system inhibitors and risk of COVID‐19 requiring admission to hospital: a case‐population study. Lancet. 2020;395:1705–1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Savarese Gianluigi, Benson Lina, Sundström Johan, Lund Lars H.. Association between renin–angiotensin–aldosterone system inhibitor use and COVID‐19 hospitalization and death: a 1.4 million patient nationwide registry analysis. European Journal of Heart Failure. 2020. 10.1002/ejhf.2060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Williams B, Mancia G, Spiering W et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–3104. [DOI] [PubMed] [Google Scholar]
  • 36. Liabeuf Sophie, Moragny Julien, Bennis Youssef, Batteux Benjamin, Brochot Etienne, Schmit Jean Luc, Lanoix Jean‐Philippe, Andrejak Claire, Ganry Olivier, Slama Michel, Maizel Julien, Mahjoub Yazine, Masmoudi Kamel, Gras‐Champel Valérie. Association between renin–angiotensin system inhibitors and COVID‐19 complications. European Heart Journal ‐ Cardiovascular Pharmacotherapy. 2020. 10.1093/ehjcvp/pvaa062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Grover Abhinav, Oberoi Mansi. A systematic review and meta‐analysis to evaluate the clinical outcomes in COVID‐19 patients on angiotensin‐converting enzyme inhibitors or angiotensin receptor blockers. European Heart Journal ‐ Cardiovascular Pharmacotherapy. 2021;7 (2):148–157. 10.1093/ehjcvp/pvaa064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Guo X, Zhu Y, Hong Y. Decreased mortality of COVID‐19 with renin‐angiotensin‐aldosterone system inhibitors therapy in patients with hypertension: a meta‐analysis. Hypertension. 2020;76:e13–e14. [DOI] [PubMed] [Google Scholar]
  • 39. Lodi S, Phillips A, Lundgren J et al. Effect estimates in randomized trials and observational studies: comparing apples with apples. Am J Epidemiol. 2019;188:1569–1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Cole SR, Platt RW, Schisterman EF et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39:417–420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Cohen JB, D'Agostino‐McGowan L, Jensen ET, Rigdon J, South AM. Evaluating sources of bias in observational studies of angiotensin‐converting enzyme inhibitor/angiotensin II receptor blocker use during coronavirus disease 2019: beyond confounding. J Hypertens. 2021;39:795–805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Griffith GJ, Morris TT, Tudball MJ et al. Collider bias undermines our understanding of COVID‐19 disease risk and severity. Nat Commun. 2020;11:5749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Jung C, Bruno RR, Wernly B et al. Inhibitors of the renin‐angiotensin‐aldosterone system and Covid‐19 in critically ill elderly patients. Eur Heart J Cardiovasc Pharmacother. 2021;16:76–77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Zhou F, Liu YM, Xie J et al. Comparative impacts of ACE (angiotensin‐converting enzyme) inhibitors versus angiotensin II receptor blockers on the risk of COVID‐19 mortality. Hypertension. 2020;76:e15–e17. [DOI] [PubMed] [Google Scholar]
  • 45. Cannata F, Chiarito M, Reimers B et al. Continuation versus discontinuation of ACE inhibitors or angiotensin II receptor blockers in COVID‐19: effects on blood pressure control and mortality. Eur Heart J Cardiovasc Pharmacother. 2020;6:412–414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Lam KW, Chow KW, Vo J et al. Continued in‐hospital angiotensin‐converting enzyme inhibitor and angiotensin II receptor blocker use in hypertensive COVID‐19 patients is associated with positive clinical outcome. J Infect Dis. 2020;222:1256–1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Baral R, White M, Vassiliou VS. Effect of renin‐angiotensin‐aldosterone system Inhibitors in patients with COVID‐19: a systematic review and meta‐analysis of 28,872 patients. Curr Atheroscler Rep. 2020;22:61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Zhang X, Yu J, Pan LY, Jiang HY. ACEI/ARB use and risk of infection or severity or mortality of COVID‐19: A systematic review and meta‐analysis. Pharmacol Res. 2020;158:104927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Bavishi C, Whelton PK, Mancia G, Corrao G, Messerli FH. Renin‐angiotensin‐system inhibitors and all‐cause mortality in patients with COVID‐19: a systematic review and meta‐analysis of observational studies. J Hypertens. 2021;39:784–794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Chu Chang, Zeng Shufei, Hasan Ahmed A., Hocher Carl‐Friedrich, Krämer Bernhard K., Hocher Berthold. Comparison of infection risks and clinical outcomes in patients with and without SARS‐CoV‐2 lung infection under renin–angiotensin–aldosterone system blockade: Systematic review and meta‐analysis. British Journal of Clinical Pharmacology. 2020. 10.1111/bcp.14660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Cohen JB, Hanff TC, William P et al. Continuation versus discontinuation of renin‐angiotensin system inhibitors in patients admitted to hospital with COVID‐19: a prospective, randomised, open‐label trial. Lancet Respir Med. 2021;9:275–284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Lopes RD, Macedo AVS, de Barros ESPGM et al. Effect of discontinuing vs continuing angiotensin‐converting enzyme inhibitors and angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID‐19: a randomized clinical trial. JAMA. 2021;325:254–264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Oken MM, Creech RH, Tormey DC et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5:649–655. [PubMed] [Google Scholar]
  • 54. Levey AS, Stevens LA, Schmid CH et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;5:604–612. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Material

Data Availability Statement

Data can be made available upon reasonable request.


Articles from Fundamental & Clinical Pharmacology are provided here courtesy of Wiley

RESOURCES