Skip to main content
Metabolites logoLink to Metabolites
. 2021 Jun 30;11(7):430. doi: 10.3390/metabo11070430

Potential Metabolic Biomarkers in Adult Asthmatics

Soyoon Sim 1, Youngwoo Choi 1, Hae-Sim Park 1,*
Editors: María M Escribese1, André Moreira1, Ibon Eguiluz-Gracia1, Craig Wheelock1, Alma Villaseñor1
PMCID: PMC8306564  PMID: 34209139

Abstract

Asthma is the most common chronic airway inflammation, with multiple phenotypes caused by complicated interactions of genetic, epigenetic, and environmental factors. To date, various determinants have been suggested for asthma pathogenesis by a new technology termed omics, including genomics, transcriptomics, proteomics, and metabolomics. In particular, the systematic analysis of all metabolites in a biological system, such as carbohydrates, amino acids, and lipids, has helped identify a novel pathway related to complex diseases. These metabolites are involved in the regulation of hypermethylation, response to hypoxia, and immune reactions in the pathogenesis of asthma. Among them, lipid metabolism has been suggested to be related to lung dysfunction in mild-to-moderate asthma. Sphingolipid metabolites are an important mediator contributing to airway inflammation in obese asthma and aspirin-exacerbated respiratory disease. Although how these molecular variants impact the disease has not been completely determined, identification of new causative factors may possibly lead to more-personalized and precise pathway-specific approaches for better diagnosis and treatment of asthma. In this review, perspectives of metabolites related to asthma and clinical implications have been highlighted according to various phenotypes.

Keywords: asthma, biomarker, diagnosis, inflammation, lipid, metabolite, treatment

1. Introduction

Asthma is characterized by chronic airway inflammation with complex interactions among genetic, epigenetic, and environmental factors [1,2], resulting in constant attempts to understand asthma pathogenesis underlying each phenotype. Although the classification of asthma phenotypes as eosinophilic, non-eosinophilic, or paucigranulocytic phenotypes has enabled intensive treatment and improved clinical outcomes [3], attempts to develop novel approaches are needed to unveil the pathogenic mechanisms of asthma. Since the emergence of new technologies, “omics,” their application in medical research has been rapidly growing [4]. In particular, metabolomics is one of the latest approaches to detect metabolites for phenotype categorization and biomarker discovery in diverse diseases [5]. Metabolites are the intermediate or end products of cellular metabolism required for the maintenance of biological homeostasis and normal cell function [6]. Therefore, alteration in metabolites reflects physiological or pathological states [7]. With the integration of multiple omics, metabolomics is becoming a more powerful tool in clinical application for early diagnosis, prognosis, and treatment of diseases [8]. Despite an increase in metabolomic studies on asthma, it is not clear how metabolites act as key determinants for each phenotype [9]. This review highlights recent progress in the genomic, transcriptomic, proteomic, and metabolomic signatures involved in the pathogenesis of asthma, suggesting the potential for applying this approach in precision medicine.

2. Risk Factors in Asthma Pathogenesis

2.1. Genetic and Epigenetic Factors

Asthma pathogenesis is still poorly understood, as the airways are influenced by multiple environmental and genetic factors. Accumulating evidence has supported the genetic traits of asthma [10,11], suggesting specific genes involved in some phenotypes of asthma. The conventional studies on asthma-related genes were performed with linkage analysis and positional cloning. More recently, since the first introduction of genomic-wide association studies (GWAS) in asthma [12], multiple genetic variants were validated to explore disease-related regions showing differences in DNA sequences between normal and asthma groups [13]. These findings brought a huge improvement to asthma genetics by identifying novel genetic factors for asthma. However, the gene-gene interaction still remains a problem to solve in genomic analysis [14]. In addition, epigenetic studies have been highlighted focusing on genomic adaption to environmental stimuli, such as DNA methylation, histone modification, or non-coding RNAs, which are not caused by alterations in DNA sequences [15]. With the application of epigenome-wide association studies (EWAS) in asthma, DNA methylation has been suggested to mediate gene expression in immune cells, including T cell polarization [16] or monocyte differentiation [17]. In particular, methylation of cytosine at the carbon-5 position in CpG dinucleotides is regarded as a key factor for initiating a transcription and regulating cell-specific genes in inflammatory diseases [18].

2.2. Environmental Factors

Environmental exposure could impact a rapid increase in the prevalence of asthma in populations with a similar genetic background where allergen exposure is a crucial risk factor for asthma [19]. Sensitization to allergens, such as dust mites and animal dander, is related to Th2 immune response with IgE production and eosinophilia, contributing to the development and exacerbation of allergic asthma [20,21]. Other environmental factors, including smoking, air or occupational pollutants, and virus or bacterial infection, are involved in innate immunity and trigger asthma exacerbation [22]. Air pollutants, including particulate matter, nitrogen dioxide, and sulfur dioxide, are known to aggravate inflammatory response related to oxidative stress and injury in the airways, driving enhanced risk of sensitization to inhaled allergens and symptom exacerbation [23,24].

3. Identification of “Omics” Markers in Asthma

3.1. Genomics

Numerous genetic studies have revealed that multiple genes are involved in the development and progress of asthma by linkage analysis and association studies. In particular, linkage analysis with positional cloning identified diverse genetic markers related to asthma in chromosomal loci [25,26,27,28,29,30,31,32]. In addition, candidate genes association studies identified asthma-related traits, focusing on different allele frequencies of a single nucleotide polymorphism in case-control studies [33]. Since the application of GWAS to asthma, large meta-analyses in European [34] and American cohorts [35] have identified variable genetic determinants (Table 1). Nevertheless, GWAS have the limitations of a small sample population and lack of significant associations [36]. Moreover, the susceptibility of genetic variants for asthma was not replicated across all relevant studies [34].

Table 1.

Summary of genomic analysis in adult asthmatics.

Linkage Studies with Positional Cloning
ADAM33 20p13 [25]
DPP10 2q14 [26]
PHF11 13q14 [27]
GPRA 7p14 [28]
HLA-G 6p21 [29]
CYFIP2 5q33 [30]
IRAK3 12q14 [31]
OPN3 1q [32]
Candidate gene association studies
Asthma IL10 1q31 [37]
IL1RN 2q14 [38]
IL1B 2q14 [39]
HNMT 2q22 [40]
CTLA4 2q33 [41]
CCR3 3p21 [42]
CCR5 3p21 [43,44]
TLR9 3p21.3 [45]
MUC7 4q13-21 [46]
PGDS 4q21-22 [47]
CSF2 5q31 [37]
IL4 5q31 [48,49]
IL13 5q31 [50,51,52]
UGRP1 5q31-34 [53]
ADRB2 5q32-34 [54,55]
LTC4S 5q35 [56,57]
HLA-DRB1 6p21 [58,59,60,61]
HLA-DPB1 6p21 [62]
TNF 6p21 [58,63,64,65,66]
LTA 6p21 [58,65]
TAP1 6p21 [67,68]
PAFAH 6p21 [69,70,71]
EDN1 6p21 [72]
EOTAXIN2 7q11 [73]
CFTR 7q31 [74,75,76,77]
NOS3 7q36 [37,78]
C5 9q34 [37]
SDF1 10q11 [37]
CC16/CC10 11q12-13 [79,80,81]
FCER1B 11q12-13 [82,83,84,85,86,87,88]
GSTP1 11q13 [89]
AICDA 12p13 [90]
STAT6 12q13 [91]
NOS1 12q24 [92,93]
ACT 14q32 [94]
IL4RA 16p12 [95,96,97,98,99]
RANTES 17q11-12 [100,101]
ACE 17q23 [102,103]
TBXA2R 19p13 [104]
Asthma severity CTLA4 2q33 [105]
IL4 5q31 [106]
ADRB2 5q32-34 [107]
PAFAH 6p21 [69]
IL4RA 16p12 [97]
TGFB1 19q13 [108]
Eosinophil counts IL10 1q31 [72]
STAT6 12q13 [109]
NOS1 12q24 [72]
EOTAXIN1 17q21 [110]
Total IgE in general population CTLA4 2q33 [41]
IL4 5q31 [111]
CD14 5q31 [112,113]
HLA-DRB1 6p21 [114,115,116]
PAFAH 6p21 [70]
IFNGR1 6q23 [117]
FCER1B 11q13 [84]
AICDA 12p13 [90]
IFNG 12q21 [118]
NOS1 12q24 [72]
IL4RA 16p12 [95,99,119,120]
TGFB1 19q13 [121]
IFNGR2 21q22 [117]
IL13RA1 Xq13 [51]
Total IgE in asthmatics IL10 1q31 [121,122]
CTLA4 2q33 [123]
IL4 5q31 [124]
NOS3 7q36 [125]
FCER1B 11q13 [87]
EOTAXIN1 17q21 [73]
Specific IgE IL4 5q31 [126]
HLA-DPB1 6p21 [127,128]
PAFAH 6p21 [70]
NOS3 7q36 [125]
FCER1B 11q13 [129]
AHR/BHR IL10 1q31 [37]
CTLA4 2q33 [41,105]
CSF2 5q31 [37]
IL13 5q31 [50]
ADRB2 5q32-34 [130,131]
LTC4S 5q35 [37]
TNF 6p21 [37,132,133]
LTA 6p21 [132]
NOS3 7q36 [37]
FCER1B 11q13 [129]
ACT 14q32 [94]
IL4RA 16p12 [95]
NOS2A 17cen-q11 [37]
FEV1/FVC IL4 5q31 [134]
ADRB2 5q32-34 [135]
LTC4S 5q35 [136]
IL4RA 16p12 [106]
EOTAXIN1 17q21 [110]
Genome-wide association studies
CRCT1 1q21 [137]
IL6R 1q21 [137,138]
PYHIN1 1q23 [35,137]
DENND1B/CRB1 1q31 [137]
IL18R1/IL1RL1/IL1RL2 2q12 [34,35,137,138,139]
DPP10 2q12.3-q14.2 [140]
D2HGDH 2q37 [137]
USP38/GAB1 4q31 [137,141]
PDE4D 5q12 [142]
TSLP/SLC22A5 5q22 [34,137,139,141,143]
RAD50/NDFIP1 5q31 [137,144]
ADRA1B 5q33 [140]
IL13 5q [34,144]
HLA-DP/DQ/DR 6p21 [34,137,143,144,145,146]
BTNL2 6p21 [137]
CDHR3 8q24 [137]
TEK 9p21 [143]
IL-33 9p24 [34,138]
PTGES 9q34 [143]
GATA3 10p14 [141]
JMJDIC/REEP3 10q21 [143]
CDK2/IKZF4 12q13 [137]
RORA 15q22 [34,35,137]
SMAD3 15q22 [34,137]
ORMDL3/GSMDB/IKZF3 17q21 [34,35,137,138,139]
PRNP 20pter-p12 [140]
IL2RB 22q12.3 [34,35,137,138]

ADAM33, a disintegrin and metalloproteinase 33; DPP10, dipeptidyl peptidase 10; PHF11, PHD finger protein 11; GPRA, G-protein-coupled receptor for asthma susceptibility; HLA-G, human leukocyte antigen-G; CYFIP2, cytoplasmic FMR1-interacting protein 2; IRAK3, IL-1 receptor-associated kinase 3; OPN3, opsin 3; AHR, airway hyperresponsiveness; BHR, bronchial hyperresponsiveness; FEV1, forced expiratory volume; FVC, forced vital capacity; IL, interleukin; HNMT, histamine N-methyltransferase; CTLA4, cytotoxic T lymphocyte antigen 4; CCR, CC chemokine receptor; TLR, toll-like receptor; MUC, mucin; PGDS, prostaglandin D synthase; CSF2, colony stimulating factor 2; UGRP1, uterus globulin associated protein 1; ADRB2, adrenoceptor beta 2; LTC4S, leukotriene C4 synthase; TNF, tumor necrosis factor; LTA, lymphotoxin alpha; TAP1, antigen peptide transporter 1; PAFAH, platelet activating factor acetylhydrolase; EDN1, endothelin 1; CFTR, cystic fibrosis transmembrane conductance regulator; NOS, nitric oxide synthase; SDF1, stromal cell-derived factor 1; CC, clara cell secretory protein; FCER1B, high affinity immunoglobulin epsilon receptor subunit beta; GSTP1, glutathione S-transferase Pi 1; AICDA, activation induced cytidine deaminase; STAT6, signal transducer and activator of transcription 6; ACT, alpha-1-antichymotrypsin; IL4RA, interleukin 4 receptor alpha; RANTES, regulated on activation, normal T cell expressed and secreted; ACE, angiotensin converting enzyme; TBXA2R, thromboxane A2 receptor; TGFB1, transforming growth factor beta 1; IFNGR, interferon gamma receptor 1; IFNG, interferon gamma; IL13RA1, interleukin 13 receptor alpha 1; CRCT1; cysteine-rich C-terminal 1; IL6R, interleukin 6 receptor; PYHIN1, pyrin, and HIN domain family member 1; D2NND1B, DENN domain containing 1B; CRB1, crumbs cell polarity complex component 1; IL18R1, interleukin 18 receptor 1; IL1RL, interleukin 1 receptor like; D2HGDH, D-2-hydroxyglutarate dehydrogenase; USP38, ubiquitin specific peptidase 38; GAB1, growth factor receptor bound protein 2-associated binding protein 1; PDE4D, phosphodiesterase 4D; TSLP, thymic stromal lymphopoietin; SLC22A5, solute carrier family 22 member 5; RAD50, RAD50 double strand break repair protein; NDFIP1, Nedd4 family interacting protein 1; ADRA1B, adrenoceptor alpha 1B; HLA, major histocompatibility complex; BTNL2, butyrophilin like 2; CDHR3, cadherin related family member 3; TEK, TEK receptor tyrosine kinase; PTGES, prostaglandin E synthase; GATA3, GATA binding protein 3; JMJD1C, jumonji domain containing 1C; REEP3, receptor accessory protein 3; CDK2, cyclin dependent kinase 2; IKZF, IKAROS family zinc finger; RORA, RAR related orphan receptor A; SMAD3, mothers against decapentaplegic homolog 3; ORMDL3, ORMDL sphingolipid biosynthesis regulator 3; GSMDB, gasdermin B; PRNP, prion protein; IL2RB, interleukin 2 receptor subunit beta.

3.2. Transcriptomics

Transcriptomics quantifies transcripts in organisms to identify differentially expressed genes under specific conditions. The main analyzing tools for transcriptomics include microarrays and RNA sequencing [147]. Transcriptomics is usually carried out in blood because of its great efficiency and convenience for analyzing gene expression [148]. Some studies have performed transcriptomic analysis in blood [149,150], bronchial tissue [151,152,153,154], sputum [155,156,157,158,159], nasal brushings [160], bronchoalveolar lavage fluid (BALF) [161], and mixed samples [162], facilitating differential phenotypes in asthma. Finally, recent studies found 90 novel genetic classifiers for asthma, which could be utilized as potential biomarkers [160]. In addition, several studies have investigated distinct gene profiles to determine the severity of asthma (Table 2).

Table 2.

Summary of transcriptomic analyses in adult asthmatics.

Population Methods Purpose Findings Ref.
Blood
Exacerbation sample in adult asthmatics (n = 118) Microarray and
qPCR with pathway analysis
To identify the exacerbation-associated gene expression patterns in PBMC TLR activation pathway with elevations in type 1 interferon and IL-15 genes is associated with asthma exacerbation. [149]
Nonsmoking SA/smoking SA/nonsmoking mild to moderate asthma/nonsmoking controls (n = 246/88/77/87) Microarray with WGCNA To find the transcriptional differences between subgroups of asthmatics and non-asthmatics in whole blood Differentially expressed genes in immune cells of severe asthmatics.
Gene sets related to chemotaxis, mobilization, migration, and infiltration of myeloid cells contribute to asthma severity.
[150]
Airway epithelial cell
nonsmoking asthma/nonsmoking HCs/smoking controls
(n = 42/28/16)
Microarray and qPCR To explore the distinct gene expression related to airway dysfunction and corticosteroid treatment in epithelial cells of asthmatics Identification of 22 differentially expressed genes in asthmatics.
IL-13-derived asthma-associated genes (CLCA1, periostin, and serpinB2) are decreased by corticosteroid treatment with an improvement in lung function.
[151]
Asthmatics/HCs
(n = 42/28)
Microarray and qPCR To define the molecular phenotypes based on type 2 cytokines-induced gene expression in epithelial brushings of asthmatics Phenotyping of asthma as Th2-high and Th2-low based on CLCA1, periostin, and sepinB2 gene expression.
Th2-high asthma has worse clinical outcomes (lower lung function, higher serum IgE, and blood/airway eosinophilia) and inflammatory features (subepithelial fibrosis and increase of mucin stores).
[152]
Nonsmoking SA/smoking SA/mild-to-moderate asthma/HCs
(n = 46/16/34/41)
Microarray To investigate the pathogenesis of severe asthma and the influences of blood, sputum, and submucosal eosinophils or neutrophils on the gene expression in bronchial brushing 7 genes (COX-2, ADAM-7, SLCO1A2, TMEFF2, TRPM-1, and 2 unnamed genes) are positively correlated with blood and submucosal eosinophilia with thick lamina reticularis and elevated FENO. [153]
SA/moderate asthma with ICS/mild asthma with ICS/mild-to-moderate asthma with no ICS/HCs
(n = 51/19/22/37/26)
Microarray with WGCNA, LIMMA, and pathway analysis To identify specific genetic networks to be associated with asthma severity Asthma severity has a positive correlation with a network related to mitosis/cell division and T2 inflammation, but a negative correlation with a network related to epithelial growth/repair, cell integrity/remodeling, and neuronal function/development. [154]
Sputum
Asthmatics/HCs
(n = 59/13)
Microarray and qPCR with GO and pathway analysis To establish 3 distinct transcriptional asthma phenotypes (TAPs) considering clinical status and gene expression in the sputum of asthmatics Classification of asthma phenotypes as eosinophilic, neutrophilic, or paucigranulocytic asthma based on the predominance of immune cells in sputum.
IL-1 and TNF-α/NF-κB pathways are involved in the pathogenesis of neutrophilic asthma.
[155]
Asthmatics/HCs
(n = 37/15)
qPCR To determine genetic profiling related to Th2 cytokines in the sputum cells of asthmatics for the categorization of asthma phenotypes Standardization of IL-4, IL-5, and IL-13 gene expression for classification as Th2-high and Th2-low subtypes (Th2 gene mean).
Th2-high asthma has poor clinical outcomes (low lung function and blood eosinophilia) with elevation in mast cell/eosinophil-related genes.
[156]
Asthmatics/HCs
(n = 106/20)
Microarray and qPCR To validate genetic biomarkers for inflammatory phenotypes of asthma and prediction of ICS treatment response Identification of 23 differentially expressed genes across eosinophilic, neutrophilic, and paucigranulocytic phenotypes.
The 3 genes for eosinophilic asthma (CLC, CPA3, and DNASE1L3) and 3 for neutrophilic asthma (IL1B, ALPL, and CXCR2) are validated with distinct alterations after ICS treatments.
[157]
Asthmatics/HCs
(n = 84/27)
RNA seq with WGCNA and pathway analysis To identify genetic networks in sputum immune cells of asthmatics for clustering them into T2-high and T2-low subgroups High T2-network gene expression in the T2-high asthma comes from the interaction of various immune cells (eosinophils, mast cells, basophils, and dendritic cells), leading to severe airway dysfunction.
CD8+T cell network gene expression is lower in T2-low asthma and negatively correlated with body mass index.
[158]
Elderly asthmatics/HCs
(n = 55/10)
Microarray with GSEA and cluster analysis To find distinct biological mechanisms with genetic profiling in sputum cells for clustering of elderly asthmatics Identification of 2 molecular clusters in elderly asthmatics with increased OXPHOS and EMT gene sets, respectively.
The OXPHOS/UPR system related to oxidative stress leads to inflammatory response and immune function dysregulation in the airways of elderly asthmatics.
The EMT gene sets contribute to airway remodeling with lower lung function in elderly asthmatics.
[159]
Nasal brushings
Mild-to-moderate asthmatics/HCs
(n = 66/124)
Microarray and RNA seq with pathway and classification analysis To validate nasal brush-based classifier genes for the diagnosis of asthma Identification of 90 genes as a nasal classifier for mild-to-moderate asthma [160]
BALF
SA/moderate asthma with ICS/mild asthma with ICS/mild-to-moderate asthma with no ICS/HCs
(n = 44/15/18/40/37)
LIMMA, WGCNA, GO and pathway analysis To determine severity-related genes and influence of β-agonist use on gene expression in BAL immune cells Higher BAL neutrophils with increased gene expression related to TNF-α and type 1 interferon pathway in SA.
Several severity-related genes are within or close to asthma susceptibility loci (5q, 17q, 1p).
A specific gene network related to cAMP signaling is associated with asthma severity and β-agonist exposure.
[161]
Mixed
Adult/childhood-onset SA
(n = 253/158)
Microarray with GSVA To identify gene signatures in adult-onset compared to childhood-onset SA using diverse samples (nasal brushings, bronchial brushings, and sputum) Identification of 5 differentially expressed gene signatures in nasal brushings, 6 in bronchial brushings, and 3 in sputum.
Specific genes related to immune cells (eosinophils, mast cell, ILC3) and type 2 inflammation are up-regulated in adult-onset SA.
[162]

HCs, healthy controls; SA, severe asthma; ICS, inhaled corticosteroid; qPCR; quantitative PCR; WGCNA, weighted gene co-expression network analysis; LIMMA, linear models for microarray data; GO, gene ontology; GSCA, gene set co-expression analysis; PBMC, peripheral blood mononuclear cell; BALF, bronchoalveolar lavage fluid; TLR, toll-like receptor; CLCA1, chloride accessory 1; COX-2, cyclooxygenease-2; ADAM-7, a disintegrin and metalloproteinase domain-containing protein 7; SLCO1A2, solute carrier organic anion transporter family member 1A2; TMEFF2, transmembrane protein with epidermal growth factor like and two follistatin like domains 2; TRPM-1, transient receptor potential cation channel subfamily M member 1; CLC. Charcot-leydon crystal protein; CPA3, carboxypeptidase A3; DNASE1L3, deoxyribonuclease 1-like 3; ALPL, alkaline phosphatase, tissue-nonspecific isozyme; CXCR2, chemokine (C-X-C motif) receptor 2; OXPHOS, oxidative phosphorylation; UPR, unfolded protein response; EMT, epithelial-mesenchymal transition; cAMP, cyclic adenosine 3′,5′-monophosphate; ILC3, innate lymphoid cell 3.

3.3. Proteomics

Proteomic studies include protein identification, quantification or localization, post-translational modification, and protein-protein interactions [163]. Liquid chromatography is a typical analyzing tool for proteomics with coupling of mass spectrometry (MS) [164]. Several studies have performed proteomic analysis and identified different protein profiles of asthmatics in serum [165], sputum [166,167], BALF [168,169,170,171], or bronchial biopsy [172] (Table 3). Commonly, these proteins have been found to be involved in multiple biological processes, such as immune response, defense response, lipid metabolism, molecular transport, cell adhesion, and complement activation [166,168,172].

Table 3.

Summary of proteomic analyses in adult asthmatics.

Population Methods Purpose Findings Ref.
Serum
AIA/ATA/HCs
(n = 30/24/21)
2D-PAGE, MALDI-TOF MS, and ELISA To investigate differentially expressed proteins in AIA Identification of distinct protein expression in AIA as complement components, modified albumin, apolipoprotein, PRO2619, hypothetical protein, and SPOCD1 protein.
C3a and C4a levels are higher in AIA and correlated with FEV1, suggesting the pathogenic role of complements in AIA.
[165]
Sputum
Asthmatics with EIB/those without EIB/HCs
(n = 5/5/5)
LC-MS/MS with GO and network analysis To determine the contribution of specific proteins to asthma and susceptibility for EIB 10 up-regulated (SERPINA1) and 7 down-regulated proteins (S100A9, S100A8, SMR3B, and SCGB1A1) in asthmatics are related to defense response, inflammation, and protease inhibitory activity.
9 proteins including C3 and HPX are susceptible to EIB in asthmatics.
[166]
UA/PC/CA/COPD/HCs
(n = 20/35/21/21/8)
2D-PAGE, MALDI-TOF MS, and ELISA To identify biomarkers for severe UA with neutrophilic inflammation 6 increased and 7 decreased proteins in severe uncontrolled asthma with neutrophilic inflammation are related to inflammatory/immunity/enzyme activity, cysteine protease inhibitor, signaling, and cytoskeleton functions.
S100A9 is suggested as a UA biomarker contributing to neutrophilic airway inflammation and steroid resistance.
[167]
BALF
Asthmatics/HCs
(n = 4/3)
SDS-PAGE, nano-HPLC-MS/MS, and ELISA with GO analysis To verify protein expression changes before and after segmental allergen challenge in asthmatics Alterations in protein expression related to diverse biological functions after segmental allergen challenge in asthmatics.
Several signature proteins released from immune cells (CLC, MBP, EDN, ECP, CRISP-3, and MMP-9) are elevated after challenge.
Differentially expressed proteins are involved in various molecular functions (hydrolase activity, protein binding, and calcium ion binding) and biological process (immune response, lipid metabolism, transport, and signal transduction).
[168]
Atopic asthmatics/HCs
(n = 6/6)
2D-PAGE, MALDI-TOF MS, and ELISA with functional analysis To demonstrate the influences of IL-4 stimulation on gelsolin secretion in BALF of asthmatics Higher concentrations of IL-4 and gelsolin in BALF of asthmatics.
IL-4 treatment induces gelsolin expression in airway epithelial cells of asthmatics for mucus viscosity control and innate antimicrobial activity.
[169]
Asthmatics/HCs
(n = 11/19)
2D-PAGE, SDS-PAGE, and MS/MS To investigate the oxidative mechanisms in asthmatic airways and allergen-induced mouse models Lower activity of catalase function in asthmatics contributes to increased oxidative stress, driving chronic and severe airway inflammation. [170]
Mild asthmatics/HCs
(n = 4/4)
Affinity chromatography and ESI LC-MS/MS with functional analysis To identify the function of galectins in asthmatic airways Differential airway localization of galectin-3 in epithelium, endothelium, smooth muscle cells, and fibroblasts, as well as galectin-8 in plasma cells.
Distinct profiles of galectin-bound proteins in asthmatics suggest its linkage with eosinophilic inflammation and airway remodeling.
[171]
Bronchial biopsy
Asthmatics/HCs
(n = 12/3)
iTRAQ LC-MS/MS with functional and pathway analysis To determine distinct proteins and related biological pathways related to asthmatics and their alterations by ICS treatment. Identification of 7 significantly different proteins between asthmatics and HCs related to multiple biological functions (hematological system development/function, lipid metabolism, molecular transport, signaling, and tissue development).
ICS treatment alters protein expression related to immune cell trafficking, tissue development, and hematological systems development/function.
[172]

AIA, aspirin-induced asthma; ATA, aspirin-tolerant asthma; HCs, healthy controls; EIB, exercise-induced bronchoconstriction; UA, uncontrolled asthma; PC, partially controlled asthma; CA, controlled asthma; COPD, chronic obstructive pulmonary diseases; 2D-PAGE, two-dimensional gel electrophoresis; MALDI, matrix-assisted laser desorption and ionization; TOF, time-of-flight; MS, mass spectrometry; LC, liquid chromatography; HPLC, high-performance liquid chromatography; ESI, electrospray ionization; iTRAQ, isobaric tag for relative and absolute quantitation; SPOCD1, spen paralogue and orthologue C-terminal domain containing 1; SERPINA1, serpin peptidase inhibitor; S100A9, S100 calcium binding protein A9; S100A8, S100 calcium-binding protein A8; SMR3B, submaxillary gland androgen-regulated protein 3B; SCGB1A1, secretoglobin; HPX, hemopexin; CLC, charcot-leyden crystal protein; MBP, major basic protein; EDN, eosinophil-derived neurotoxin; ECP, eosinophil cationic protein; CRISP-3, cysteine-rich secretory proteins; MMP-9, matrix metalloproteinase-9.

3.4. Metabolomics

Metabolomics is an analysis of low molecular compounds involved in biological processes [6]. For metabolic profiling, MS has been widely employed because of its simplicity and sensitivity [173]. Through its combination with chromatography, MS has become a more powerful tool with high resolution and accuracy, extending its application across biological and medical fields [174]. In addition, nuclear magnetic resonance (NMR) spectroscopy was introduced for an alternative analytic tool, using the differences in the direction and speed of nuclear spin on the magnetic field [175]. Metabolic profiling could be performed in various biospecimens according to its purpose (Table 4). Most studies have used blood [176,177,178,179,180,181,182,183,184], urine [185,186,187], or sputum samples [184], since they are easy to collect and are reflective of whole body metabolism [188]. A few studies have analyzed exhaled breath condensate [189,190,191,192,193] and BALF because of their relevance to the airway physiology [194].

Table 4.

Summary of metabolomic analyses in adult asthmatics.

Population Methods Purpose Findings Ref.
Blood
Asthmatics/HCs
(n = 147/2778)
ESI-MS/MS To investigate lipid metabolic biomarkers associated with asthma candidate genes by genomic and metabolomic analysis in the sera of asthmatics 151 different metabolites between asthmatics and HCs.
2 significant metabolites (PC.ae.C42:1 and PC.ae.C42:5) are associated with current asthma.
6 SNPs exert effects on the production of asthma-associated metabolites: 2 SNPs at 17q21 (PSMD3, MED24) on PC.ae.C42:4, PC.ae.C42:5, PC.ae.C44:5, PC.ae.C44:6, and 1 SNP at TSLP gene on PC.aa.C34:4, SM.C20:2 and IL1RL1 gene on SM.C20:2.
[176]
Asthmatics/HCs
(n = 39/26)
1H-NMR To demonstrate distinct metabolic profiling in the sera of asthmatics and identify the potential biomarkers for asthma 10 significant metabolites in asthmatics: increase of methionine and glutamine and decrease of formate, choline, histidine, acetate, glucose, phosphocholine, arginine, and methanol.
FEV1 has a positive correlation with choline and arginine, but a negative correlation with acetone.
[177]
Asthmatics/HCs
(n = 17/17)
GC-TOF-MS To explore metabolic changes and related mechanisms in the sera of mild asthmatics for novel prognostic markers 14 significant metabolites in asthmatics and 8 potential clinical indicators for asthma: succinic acid, 3,4-dihydroxybenzoic acid, inosine, 5-aminovaleric acid, phenylalanine, ascorbate, dehydroascorbic acid, and 2-ketovateric acid.
Specific metabolic pathways (TCA cycle, hypoxia metabolism, and urea cycle) are associated with asthma.
[178]
Mild/moderate/severe asthmatics/HCs
(n = 12/20/22/22)
LC-HRMS, MS/MS To determine distinct serum metabolic profiles related to asthma severity and steroid treatment 15 significant metabolites across mild/moderate/severe asthma and HCs.
6 significant metabolites are correlated with ICS doses: DHEA-S, cortisone, ProHyp, pipecolate, N-palmitoyltaurine, and cortisol.
2 primary metabolic clusters are correlated with asthma severity: decrease of DHEA-S and increase of OEA, S1P, N-palmitoltaurine, 22-hydroxycholesterol, and xanthine.
Targeted analysis for lipid metabolites reveals increases in specific ceramides, sphingomyelins, eicosanoids, and fatty acids and their correlation with asthma severity and ICS doses.
[179]
EA/NEA/HCs
(n = 13/16/15)
UPLC-MS/MS To identify differential metabolic patterns and pathways in specific clinical inflammatory phenotypes 18 potential metabolites for diagnostic biomarkers for EA and NEA.
3 significant metabolic pathways related to glycerophospholipid, retinol, and sphingolipid for asthma pathogenesis.
[180]
Allergic asthma/HCs
(n = 32/50)
GC-NICI-MS To investigate the role of prostaglandin D2 and its metabolites in the early asthmatic response to allergens Targeted analysis in plasma shows early increase in 9α,11β-Prostaglandin F2 after allergen challenge induced by mast cell activation. [181]
NSA/SA/HCs
(n = 10/10/10)
UHLPC-MS/MS, GC/MS To determine the involvement of biochemical metabolism in asthma and its severity 25 significant metabolites for asthmatics mostly related with lipid metabolism, 16 for severe asthma with steroid/amino acid metabolism, and 13 for high FENO with amino acid/lipid/bile acid metabolism.
Increased taurine, nicotinamide, AMP, and arachidonate in asthmatics.
Decreased 1-steraroyylglycerol, degydroisoandrosterone sulfate, and androsterone sulfate in severe asthma.
Contribution of valine, isoleucine, and ornithine to high FENO in asthmatics.
[182]
Asthmatics/HCs
(n = 35/32)
UHPLC-MS/MS To identify the role of lipid metabolism for asthma and IgE levels by lipidomic analysis in plasma 10 lipid species for asthma diagnosis: PE(38:1), PE(18:1p/22:6), PE(20:0/18:1), SM(d18:1/18:1), TG(17:0/18:1/18:1), TG(16:0/16:0/18:1), PI(16:0/20:4), PG(44:9), Cer(d16:0/27:2), and LPC(22:4).
Correlation of PE(20:0/18:1) and TG(16:0/16:0/18:1) IgE levels in asthmatics.
[183]
Urine
Asthmatics
(n = 10)
GC×GC-TOF-MS
H-NMR
To identify the urinary metabolic changes related to asthma exacerbation Contribution of lipid peroxidation to asthma exacerbation with an increase of alkanes and aldehydes in urine.
Threonine, alanine, carnitine acetylcarnitine, and trimethylamine-N-oxide are increased; acetate, citrate, malonate, Hippurate, dimethylglycine, and phenylacetylglutamine are decreased in exacerbated condition.
[185]
Asthmatics
(n = 57)
GC×GC-TOF-MS To demonstrate the influences of metabolites related to lipid peroxidation on asthma and its clinical parameters Increase of urine metabolites related to lipid peroxidation in asthma related to clinical characteristics (asthma severity scores, FEV1, FENO, blood eosinophils, and serum IgE). [186]
Smoking SA/nonsmoking SA/nonsmoking mild-to-moderate asthma/HCs
(n = 109/302/86/100)
MS To investigate urinary eicosanoid metabolism in asthma for its phenotyping and association with asthma therapeutic agents Higher concentration of urinary metabolites related to PGD2, PGF2α, PGE2, TXA2, isoprostanes, and CysLTs pathway in SA.
Lower concentration of 2,3-dinor-TXB2 and 8,12-iso-iPF-VI in the OCS-treated group and 2,3-dinor-11β-PGF, LTE4, and 11-dehydro-TXB2 in the omalizumab-treated group.
Correlation of urinary LTE4 with T2 inflammation markers in asthma (low lung function, blood/sputum eosinophils, and serum IgE/periostin/IL-13).
[187]
Exhaled breath condensate (EBC)
Asthmatics/HCs
(n = 82/35)
1H-NMR To determine EBC metabolomic profiles for phenotype comparisons and ICS use 5 distinct spectral regions for asthmatics (0.16-0.18, 0.78-0.84, 0.88-0.94, 7.36-7.42, and 7.44-7.52 ppm)
2 significant spectra regions for sputum eosinophilia, 7 for sputum neutrophilia, 1 for asthma control, and 8 for steroid use.
[189]
SA/mild-to-moderate asthma
(n = 15/21)
UHPLC-ESI-MS
1H-NMR
To validate discriminating metabolites of SA from mild-to-moderate asthma Contribution of amino acid (lysine) and lipid metabolism (eicosanoids, phospholipids, and unsaturated fatty acids) to asthma severity. [190]
Mild asthma/HCs
(n = 55/55)
NMR To identify differential NMR profiles of asthma in different operating temperature (−27.3 and −4.8 °C) for standardization of EBC collection. Separation of asthmatics at −27.3 °C from HCs at −4.8 °C by uracil, urocanic acid, succinate, SFA, Phe, hippurate, trimethylamine, Val, and Tyr; from HCs at −27.3 °C by propionate, 4OH-phenylacetate, Val, acetate, SFA, Pro, Tyr, Arg, trans-aconitate, and Phe.
Separation of asthmatics at −4.8 °C from HCs at −27.3 °C by Phe, succinate, Val, propionate, SFA, methanol, uracil, Pro, formate, isobutyrate, and urocanic acid; from HCs at −4.8 °C by SFA, Val, adenosine, Hippurate, Ala, formate, urocanic acid, Pro, acetate, ethanol, methanol, and Ile.
[191]
Asthmatics/HCs
(n = 89/20)
NMR To determine distinct metabolic patterns of asthma and its endotypes NMR spectra region at 7 ppm for distinguishing asthmatics from HCs by up-regulation of isopropanol and N,N, dimethylglycine and by down-regulation of ammonia.
Classifying asthmatics as 3 clusters characterized (1) by low exacerbation ratio, (2) by high exhaled nitric oxide, and (3) by low blood eosinophils but high blood neutrophils.
Contribution of high acetate, acetone, formic acid, methanol, and N,N, dimethylglycine concentrations as well as low concentrations of ammonia and hydroxybutyrate to asthma severity.
[192]
OA/LA/HCs
(n = 25/30/30/25)
1H-NMR To investigate metabolic profiles and pathways for class-specific metabolic types Confirmation of carbohydrate signals (3.9-3.2 ppm) in OA.
23 and 17 metabolic pathways for OA distinct from HCs and LA, respectively, mostly related to energy metabolism (methane) and carbohydrate metabolism (glyoxylate/dicarboxylate and pyruvate).
Differential metabolic profiling in OA: increases in glucose, butyrate, and acetoin and decreases in formate, tyrosine, ethanol, ethylene glycol, methanol, n-valerate, acetate, SFA, and propionate compared to HCs; increases in glucose, n-valerate, acetoin, isovalerate, and 1,2-propanediol and decreases in formate, ethnol, methanol, acetone, propionate, acetate, lactate, and SFA compared to LA.
[193]
Mixed
OA/LA
(n = 11/22)
GC-TOF-MS To identify obesity-associated metabolites for obese asthma in sputum and blood 11 metabolic signatures in sputum for OA related to xanthine, gluconic lactone, shikimic acid, indole-3-acetate, L-glutamic acid, 4-aminobutyric acid, benzoate, and phytosphingosine pathways.
Metabolic signatures in serum of OA: increase of valine, uric acid, N-Methy-DL-alanine, and β-glycerophosphoric acid as well as decrease of asparagine 1, and d-glyceric acid.
3 metabolic signatures in PBMCs of OA: increases in 3-ydroxynorvaline 2 and decreases in 3-hydroxybutyric acid, linolenic acid, and isoleucine.
[184]

HCs, healthy controls; EA, eosinophilic asthma; NEA, non-eosinophilic asthma; OA, obese asthma; LA, lean asthma; MMA, mild-to-moderate asthma; MS, mass spectrometry; H-NMR, proton nuclear magnetic resonance; TOF, time-of-flight; HRMS, high resolution mass spectrometry; UPLC, ultra performance liquid chromatography; UHLPC, ultra high performance liquid chromatography; NICI, negative ion chemical ionization; SNP, single nucleotide polymorphism; PC.ae, acyl-alkyl-phosphatidylcholine; PC.aa, diacyl-phosphatidylcholine; SM, sphingomyelin; PSMD3, proteasome 26S subunit, non-ATPase 3; MED24, mediator complex subunit 24; TSLP, thymic stromal lymphopoietin; IL1RL1, interleukin-1 receptor-like 1; TCA, tricarboxylic acid; ICS, inhaled corticosteroid; DHEA-S, dehydroepiandrosterone sulfate; ProHyp, prolylhydroxyproline; S1P, sphinosine-1-phosphate; AMP, adenosine 5′-monohosphate; PE, phosphatidylethanolamine; SM, sphingomyelin; TG, triglyceride; PI, phosphatidylinositol; PG, phosphatidylglycerol; Cer, ceramide; LPC, lysophosphatidylcholine; PGD2, prostaglandin D2; PGF, prostaglandin F; PGE2, prostaglandin E2; CysLT; cysteinyl leukotriene; LTE4, leukotriene E4; TXA2, thromboxane A2; TXB2; thromboxane B2; SFA, saturated fatty acids; PBMC, peripheral blood mononuclear cells.

3.5. Limitation of “Omics” in Biomaker Identification for Asthma

“Omics” enabled the comprehensive evaluation of holistic molecules in an organism. This advantage leads to the advances in biomarker discovery in medical fields [195]. Genomics is the first study of the omics and aims to search for genetic variants associated with specific diseases [4]. Although it has provided a comprehensive understanding for asthma, it could not explain a mild to moderate asthmatic state [196]. Moreover, the number of samples or replication tests was not sufficient [33]. In contrast, transcriptomics focuses on the differential gene expression and activity of functional genes in patients [197]. Nevertheless, DNA or mRNA expression may not represent the biological function of genes at the protein levels due to translational regulation or post-translational modification [198]. Proteomics reflects pathological changes at the time because cytokines or chemokines are important protein related to the severity of inflammatory diseases [199]. In asthma, transcriptomics and proteomics could be applicable to a wide range of cell types and biological samples including blood, BALF, sputum, and bronchial or nasal brushings [200]. However, they could not provide overall information underlying diseases due to a large variability in sample types or disease states [201]. To overcome these limitations, metabolomics was suggested as one of the latest omics technologies. In particular, its application is rapidly increasing in asthma for the detection of volatile organic compounds in EBC with a noninvasive way [202]. However, the lack of replication or standards of metabolic profiling in different biospecimens is still challenging [9]. Despite the outstanding achievements of omics studies, they are still considered insufficient to mainly be utilized in clinical practices. Therefore, the integration of multiple omics could complement the limitation of each technology.

4. Metabolic Pathways Involved in Asthma

4.1. Amino Acid Metabolism

Amino acids are involved in multiple biological functions including growth, maintenance or development, regulation of gene expression/cell signaling, and synthesis of nitrogen/protein/energy substrates for homeostasis in organisms [203]. Moreover, they are known as crucial regulators of metabolic pathways for immune responses and anti-oxidant activities [204]. In particular, arginine has been suggested to affect the development of asthma. It synthesizes nitric oxide (NO) by NO synthase (NOS) composed of 3 isoforms, neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) [205]. In asthmatic patients, expression of iNOS and arginase-1/2 were upregulated in the serum or epithelium and immune cells of the airways, leading to higher levels of exhaled NO and more severe symptoms [206,207,208]. Furthermore, arginase metabolism is involved in the regulation of T-cell function, driving Th2 airway inflammation [208]. However, suppressive roles of arginase-2 have been reported in severe eosinophilic and neutrophilic inflammation in asthma [209]. In addition to arginine, higher levels of β-alanine [185] and lysine [190] were detected in patients with severe asthma. However, another study showed conflicting results with decreased levels of arginine, alanine, leucine, valine, and histidine in asthmatics [177]. Therefore, further studies on various phenotypes of asthma are needed to clarify with this pathway.

4.2. Lipid Metabolism

The importance of lipid mediators in respiratory diseases is highlighted due to their involvement in various biological functions, such as cell structural components, energy sources/metabolism, signal transduction, and material transport [210]. Among several types of lipids, fatty acids are known to be relevant to diverse mechanisms of inflammatory response in chronic airway diseases [211]. Moreover, arachidonic acids have been identified to contribute to asthma pathogenesis as precursors of eicosanoids including leukotrienes, prostaglandins, thromboxane, lipoxins, and hydroxyeicosatetraenoic acids [212]. In particular, urinary leukotriene E4 (LTE4) has been widely used for a diagnosis of a distinct phenotype of severe eosinophilic asthma, referred as aspirin-exacerbated respiratory disease (AERD) [213]. In addition to fatty acids, several studies reported that sphingosine-1-phosphate (S1P) levels were increased in asthmatics and correlated with asthma severity [214,215,216]. Furthermore, increased levels of S1P (derived from various inflammatory cells) were found in patients with AERD [217]. Despite the controversial functions of lipids, it is certain that they are key mediators in asthma pathogenesis. Therefore, lipids might be potent biomarkers for specific phenotypes of asthma and promising candidates for new therapeutic targets.

5. Changes in Metabolite Profiles According to the Phenotype of Asthma

5.1. Mild-to-Moderate Asthma

Asthma has been classified as mild, moderate, or severe types according to the severity of symptoms and frequency of asthma exacerbation. Mild-to-moderate asthma can be defined as a controlled one by step 1-4 treatments [218]. Several studies have performed metabolic analyses to identify metabolic determinants related to the severity of asthma. As a result, increased 8 (α-linolenic acid, linoleic acid, oleic acid, linoleoyl ethanolamide, dodecanedioic acid, linoleates, methylcysteine, and theobromine) and decreased 6 metabolites (indole-3-acetate, lysine, lyso-platelet activating factor C16:0, methionine, phenylalanine, and phenylacetyl glutamine) were identified in metabolic profiles of mild asthmatics compared to healthy controls [179]. In addition, lipidomic analysis found lipid metabolism dysregulation in moderate asthma positively correlated with asthma severity, but not in mild asthma when compared to healthy controls [183].

5.2. Severe Asthma

According to the GINA guidelines, severe asthma (SA) is characterized by uncontrolled or partially controlled symptoms, despite consistent demands for high-dose inhaled corticosteroids (ICSs) with an additional controller or oral corticosteroids (OCSs) [218]. Metabolic analysis in SA found significant differences of metabolites, especially in amino acid metabolism with higher levels of β-alanine [182] or lysine [190]. Moreover, a lipidomic analysis revealed that 22 metabolites are changed in SA. Several lipid mediators, including sphingolipids (sphingomyelin, ceramide, and S1P), free fatty acids, and eicosanoids (LTE4) are positively correlated with asthma severity [179,186]. In addition, the resistance to steroids is one of the clinical characteristics in SA [219]. In particular, distinct metabolic profiles are noted in severe asthmatics using ICSs or OCSs with decreased steroid metabolites. Moreover, linoleic acids from polyunsaturated fatty acids drive steroid refractory response and contribute to asthma severity with airway epithelial injury [220,221].

5.3. Obese Asthma

Obese asthma is classified as a distinct phenotype of asthma with persistent symptoms and resistance to conventional medication [222]. With the increasing of the obese population, obesity now accounts for 11% of adult asthmatics [223]. Although obesity is one of the risk factors for asthma, the mechanisms are poorly understood and needed to be clarified [224]. Several studies have suggested that the metabolic dysregulation is related to development and progress of asthma [225,226]. With omics technologies, distinct metabolic changes have been identified in obese subjects [227]. In particular, high-fat diets tend to increase the concentrations of ceramide, sphingomyelin, and S1P in multiple tissue and organs [228]. Among them, ceramide could contribute to airway hyperresponsiveness, suggesting a possible correlation with asthma severity [229]. Moreover, elevated levels of C18:0 and C:20 were found in the sera of obese asthmatics [230]. Although the exact mechanisms are not comprehended yet, clinical and experimental research have suggested the specific metabolic changes in obese asthma.

6. Clinical Implications and Perspectives of Various Metabolites

Due to the sensitivity to biological alterations, metabolites can serve to search for novel biomarkers and pathological mechanisms for asthma phenotypes (Table 5). The application of metabolomic analysis provides new insights into the classification of asthma phenotypes in terms of the dynamic network between genetic and environmental factors [6]. In addition, the integrated omics has been used from early diagnosis to monitoring treatment response in diseases [231]. Therefore, metabolomics may lead to a precise discrimination of asthmatic patients, but also improvement in a search for new therapeutic targets in asthma as well [232]. Furthermore, the metabolic therapy is a novel concept comprising restrictive diet control or nutritional supplements with relatively easy and safe interventions. Although metabolomics is highlighted for biomarker identification for asthma, the efficacy and safety of metabolic signatures should be validated for their practical uses in clinical courses. Based on integrative omics studies in asthma, metabolites may realize the implementation of personalized medication and expand treatment options for asthmatics in a combination with current medications.

Table 5.

Metabolic signatures for asthma and its phenotypes.

Significant Metabolic Signatures Population or Phenotype Sample AUC Values Ref.
Carbohydrates
Glucose A/H serum, ↓ [177]
O > L/ON EBC [193]
Monosaccharide N > E > H serum [180]
Maltose A/H plasma, ↑ [182]
Maltotriose A/H plasma, ↑ [182]
D-Glyceric acid O < L serum [184]
D-Glucoheptose 1 O > L sputum [184]
Amino acid Metabolism
Alanine A/H EBC, ↑ [191]
N-Methyl-DL-alanine O > L serum [184]
Arginine A/H serum, ↓ [177]
A/H EBC, ↑ [191]
Glutamine A/H serum, ↑ [177]
L-glutamic acid O > L sputum [184]
β-glutamic acid 1 O > L sputum [184]
Histidine A/H serum, ↓ [177]
Isoleucine O < L PBMCs [184]
A/H EBC, ↑ [191]
Methionine A/H serum, ↑ [177]
Phenylalanine A/H EBC, ↑ [191]
Proline A/H EBC, ↑ [191]
Tyrosine A/H EBC, ↓ [191]
O < L/ON EBC [193]
Valine O > L serum [184]
A/H EBC, ↓ [191]
Taurine A/H plasma, ↑ [182]
Gly-pro O > L sputum [184]
5-Aminobaleric acid A/H serum, ↑ 0.948 [178]
N,N-Dimethylglycine A/H EBC, ↑ [192]
3-Hydroxynorvaline 2 O < L PBMCs [184]
Lipid metabolism
Choline A/H serum, ↓ [177]
Glycerolipids Phosphatidylcholine (20:4/16:1) H > N > E serum [180]
Phosphatidylcholine (18:1/2:0) N > E > H serum [180]
Phosphatidylcholine (16:0/18:1) E > N > H serum [180]
Acyl-alkyl-phosphatidylcholine (C42:4) A/H serum, ↑ [176]
Acyl-alkyl-phosphatidylcholine (C42:5) A/H serum, ↑ [176]
Acyl-alkyl-phosphatidylcholine (C44:5) A/H serum, ↑ [176]
Acyl-alkyl-phosphatidylcholine (C44:6) A/H serum, ↑ [176]
Phosphatidylethanolamine A/H plasma, ↑ [182]
Phosphatidylethanolamine (38:1) A/H plasma, ↑ 0.746 [183]
Phosphatidylethanolamine (18:1p/22:6) A/H plasma, ↑ 0.731 [183]
Phosphatidylethanolamine (20:0/18:1) A/H plasma, ↑ 0.710 [183]
Phosphatidylethanolamine (18:3/14:0) E > N > H serum [180]
Phosphatidylglycerol (44:0) A/H plasma, ↓ 0.675 [183]
Glycerophosphorylcholine A/H plasma, ↑ [182]
H > N > E serum [180]
Β-glycerophosphorate O > L serum [184]
Lysophosphatidylcholine (18:1) E > N > H serum [180]
Lysophosphatidylcholine (22:4) A/H plasma, ↓ 0.689 [183]
Phosphatidylinositol A/H plasma, ↓ 0.723 [183]
Triglyceride (17:0/18:0/18:0) A/H plasma, ↑ 0.714 [183]
Triglyceride (16:0/16:0/18:1) A/H plasma, ↑ 0.661 [183]
O-phosphocholine A/H serum, ↓ [177]
Fatty acids Saturated fatty acid A/H EBC, ↓ [191]
O < L/ON EBC [193]
Arachidonic acid N > E > H serum [180]
Arachidonate (20:4n6) A/H plasma, ↑ [182]
Isobutyrate A/H EBC, ↑ [191]
Linolenic acid O < L PBMCs [184]
N-palmitoyltaurine SA serum, ↓ [179]
Oleamide A/H plasma, ↓ [182]
n-valerate O > L EBC [193]
O < ON EBC [193]
Isovalerate O > L EBC [193]
Sphingolipids Sphingosine A/H plasma, ↑ [182]
Sphingosine-1-phosphate SA serum, ↑ [179]
Sphingomyelin (d18:1/18:1) A/H plasma, ↑ 0.731 [183]
Phytosphingosine H > N > E serum [180]
Phytosphingosine 2 O > L sputum [184]
Sphinganine H > N > E serum [180]
Ceramide (d16:0/27:2) A/H plasma, ↓ 0.690 [183]
Eicosanoids Leukotriene E4 SA, T2 urine, ↑ [187]
Tetranor prostaglandin D metabolites SA, T2 urine, ↑ [187]
2,3-dinor-11β-PGF SA, T2 urine, ↑ [187]
8-iso-PGF SA urine, ↑ [187]
2,3-dinor-8-iso-PGF SA urine, ↑ [187]
Sterol/Steroids Androsterone sulfate A/H plasma, ↓ [182]
Epiandrosterone sulfate A/H plasma, ↓ [182]
Dehydroepiandrosterone sulfate SA serum, ↓ [179]
Glycodeoxycholate A/H plasma, ↑ [182]
Taurocholate A/H plasma, ↑ [182]
Lathosterol A/H plasma, ↑ [182]
Retinol H > N > E serum [180]
Carboxylic acid
Acetate A/H serum, ↓ [180]
A/H EBC, ↑/↓ [180]
O < L/ON EBC [180]
Butyrate A/H EBC, ↑ [180]
O > ON EBC [180]
Formate A/H serum, ↓ [180]
A/H EBC, ↓ [180]
O < L/ON EBC [180]
Propionate A/H’ EBC, ↑ [180]
O < L/ON EBC [180]
TCA cycle
Succinic acid A/H serum, ↑ 0.976 [191]
A/H EBC, ↑/↓ [191]
Nucleoside/Nucleotide
Inosine A/H serum, ↑ 0.962 [178]
Adenosine A/H EBC, ↓ [191]
Other organic compounds
Acetoin O > L/ON EBC [193]
Alcohol Ethanol A/H EBC, ↑ [191]
O < L/ON EBC [193]
Ethylene glycol O < ON EBC [193]
Isopropanol A/H EBC, ↑ [192]
Methanol A/H serum, ↓ [177]
A/H EBC, ↑ [177]
A/H EBC, ↑ [191]
O < L/ON EBC [191]
1,2-propanediol O > L EBC [193]
Amines Trimethylamine A/H EBC, ↓ [191]
Ascorbate A/H serum, ↑ 0.917 [178]
3-aminopropionitrile 1 O > L sputum [184]
Benzene 3,4-Dihydroxybenzoic acid A/H serum, ↑ 0.965 [178]
Hippurate A/H EBC, ↓ [191]
3-Hydroxybutyric acid O > L sputum [184]
Ketones bodies Acetone A/H serum, ↓ [177]
O < L EBC [193]
2-Ketovaleric acid A/H serum, ↑ 0.874 [178]
Lactate O < L EBC [193]
Urocanic acid A/H EBC, ↓ [191]
Dehydroascorbic acid A/H serum, ↑ 0.896 [178]
Urea A/H plasma, ↓ [182]
A/H EBC, ↑ [192]
Uric acid O > L serum, ↑ [184]
Xanthine O > L sputum [184]
Inorganic compounds
Ammonia A/H EBC, ↓ [192]
Pyrophosphate-3 O > L sputum [184]

A, asthmatics; H, healthy controls; O, obese asthmatics; L, lean asthmatics; ON, obese non-asthmatics; E, eosinophilic asthma; N, non-eosinophilic asthma; SA, severe asthma; T2, type 2 inflammation marker; ↓, lower in asthma; ↑, higher in asthma.

Author Contributions

S.S. wrote the paper and created the tables. Y.C. revised the manuscript. H.-S.P. provided overall supervision for the entire study. All authors have read and agreed to the published version of the manuscript.

Funding

The work was supported by the Korean Health Technology R & D Project through the Korea Health Industry Development Institute (KHIDI) grant funded by the Ministry of Health and Welfare, Republic of Korea (HR16C0001). This research received no external funding.

Conflicts of Interest

The authors declare no competing financial interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Kuruvilla M.E., Lee F.E., Lee G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019;56:219–233. doi: 10.1007/s12016-018-8712-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Miller R.L., Ho S.M. Environmental epigenetics and asthma: Current concepts and call for studies. Am. J. Respir. Crit. Care Med. 2008;177:567–573. doi: 10.1164/rccm.200710-1511PP. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Carr T.F., Zeki A.A., Kraft M. Eosinophilic and Noneosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2018;197:22–37. doi: 10.1164/rccm.201611-2232PP. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Hasin Y., Seldin M., Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:83. doi: 10.1186/s13059-017-1215-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Zhang A., Sun H., Wang X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl. Biochem. Biotechnol. 2012;168:1718–1727. doi: 10.1007/s12010-012-9891-5. [DOI] [PubMed] [Google Scholar]
  • 6.Johnson C.H., Ivanisevic J., Siuzdak G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016;17:451–459. doi: 10.1038/nrm.2016.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Zhang A., Sun H., Yan G., Wang P., Wang X. Metabolomics for Biomarker Discovery: Moving to the Clinic. BioMed Res. Int. 2015;2015:354671. doi: 10.1155/2015/354671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Karczewski K.J., Snyder M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018;19:299–310. doi: 10.1038/nrg.2018.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Kelly R.S., Dahlin A., McGeachie M.J., Qiu W., Sordillo J., Wan E.S., Wu A.C., Lasky-Su J. Asthma Metabolomics and the Potential for Integrative Omics in Research and the Clinic. Chest. 2017;151:262–277. doi: 10.1016/j.chest.2016.10.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Thomsen S.F., van der Sluis S., Kyvik K.O., Skytthe A., Backer V. Estimates of asthma heritability in a large twin sample. Clin. Exp. Allergy. 2010;40:1054–1061. doi: 10.1111/j.1365-2222.2010.03525.x. [DOI] [PubMed] [Google Scholar]
  • 11.Dold S., Wjst M., von Mutius E., Reitmeir P., Stiepel E. Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch. Dis. Child. 1992;67:1018–1022. doi: 10.1136/adc.67.8.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.El-Husseini Z.W., Gosens R., Dekker F., Koppelman G.H. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir. Med. 2020;8:1045–1056. doi: 10.1016/S2213-2600(20)30363-5. [DOI] [PubMed] [Google Scholar]
  • 13.Bush W.S., Moore J.H. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 2012;8:e1002822. doi: 10.1371/journal.pcbi.1002822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Willis-Owen S.A.G., Cookson W.O.C., Moffatt M.F. The Genetics and Genomics of Asthma. Annu. Rev. Genom. Hum. Genet. 2018;19:223–246. doi: 10.1146/annurev-genom-083117-021651. [DOI] [PubMed] [Google Scholar]
  • 15.Weinhold B. Epigenetics: The science of change. Environ. Health Perspect. 2006;114:A160–A167. doi: 10.1289/ehp.114-a160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Brand S., Kesper D.A., Teich R., Kilic-Niebergall E., Pinkenburg O., Bothur E., Lohoff M., Garn H., Pfefferle P.I., Renz H. DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J. Allergy Clin. Immunol. 2012;129:1602–1610.e6. doi: 10.1016/j.jaci.2011.12.963. [DOI] [PubMed] [Google Scholar]
  • 17.Gunawardhana L.P., Gibson P.G., Simpson J.L., Benton M.C., Lea R.A., Baines K.J. Characteristic DNA methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma. Epigenetics. 2014;9:1302–1316. doi: 10.4161/epi.33066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Deaton A.M., Webb S., Kerr A.R., Illingworth R.S., Guy J., Andrews R., Bird A. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 2011;21:1074–1086. doi: 10.1101/gr.118703.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Baxi S.N., Phipatanakul W. The role of allergen exposure and avoidance in asthma. Adolesc Med. State Art Rev. 2010;21:57–71, viii–ix. [PMC free article] [PubMed] [Google Scholar]
  • 20.Platts-Mills T., Leung D.Y., Schatz M. The role of allergens in asthma. Am. Fam. Physician. 2007;76:675–680. [PubMed] [Google Scholar]
  • 21.Holt P.G., Macaubas C., Stumbles P.A., Sly P.D. The role of allergy in the development of asthma. Nature. 1999;402:B12–B17. doi: 10.1038/35037009. [DOI] [PubMed] [Google Scholar]
  • 22.Wenzel S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012;18:716–725. doi: 10.1038/nm.2678. [DOI] [PubMed] [Google Scholar]
  • 23.Guarnieri M., Balmes J.R. Outdoor air pollution and asthma. Lancet. 2014;383:1581–1592. doi: 10.1016/S0140-6736(14)60617-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Orellano P., Quaranta N., Reynoso J., Balbi B., Vasquez J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLoS ONE. 2017;12:e0174050. doi: 10.1371/journal.pone.0174050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Van Eerdewegh P., Little R.D., Dupuis J., Del Mastro R.G., Falls K., Simon J., Torrey D., Pandit S., McKenny J., Braunschweiger K., et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature. 2002;418:426–430. doi: 10.1038/nature00878. [DOI] [PubMed] [Google Scholar]
  • 26.Allen M., Heinzmann A., Noguchi E., Abecasis G., Broxholme J., Ponting C.P., Bhattacharyya S., Tinsley J., Zhang Y., Holt R., et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat. Genet. 2003;35:258–263. doi: 10.1038/ng1256. [DOI] [PubMed] [Google Scholar]
  • 27.Zhang Y., Leaves N.I., Anderson G.G., Ponting C.P., Broxholme J., Holt R., Edser P., Bhattacharyya S., Dunham A., Adcock I.M., et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat. Genet. 2003;34:181–186. doi: 10.1038/ng1166. [DOI] [PubMed] [Google Scholar]
  • 28.Laitinen T., Polvi A., Rydman P., Vendelin J., Pulkkinen V., Salmikangas P., Makela S., Rehn M., Pirskanen A., Rautanen A., et al. Characterization of a common susceptibility locus for asthma-related traits. Science. 2004;304:300–304. doi: 10.1126/science.1090010. [DOI] [PubMed] [Google Scholar]
  • 29.Nicolae D., Cox N.J., Lester L.A., Schneider D., Tan Z., Billstrand C., Kuldanek S., Donfack J., Kogut P., Patel N.M., et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am. J. Hum. Genet. 2005;76:349–357. doi: 10.1086/427763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Noguchi E., Yokouchi Y., Zhang J., Shibuya K., Shibuya A., Bannai M., Tokunaga K., Doi H., Tamari M., Shimizu M., et al. Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am. J. Respir. Crit. Care Med. 2005;172:183–188. doi: 10.1164/rccm.200409-1223OC. [DOI] [PubMed] [Google Scholar]
  • 31.Balaci L., Spada M.C., Olla N., Sole G., Loddo L., Anedda F., Naitza S., Zuncheddu M.A., Maschio A., Altea D., et al. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am. J. Hum. Genet. 2007;80:1103–1114. doi: 10.1086/518259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.White J.H., Chiano M., Wigglesworth M., Geske R., Riley J., White N., Hall S., Zhu G., Maurio F., Savage T., et al. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum. Mol. Genet. 2008;17:1890–1903. doi: 10.1093/hmg/ddn087. [DOI] [PubMed] [Google Scholar]
  • 33.Hoffjan S., Nicolae D., Ober C. Association studies for asthma and atopic diseases: A comprehensive review of the literature. Respir. Res. 2003;4:14. doi: 10.1186/1465-9921-4-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Moffatt M.F., Gut I.G., Demenais F., Strachan D.P., Bouzigon E., Heath S., von Mutius E., Farrall M., Lathrop M., Cookson W., et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010;363:1211–1221. doi: 10.1056/NEJMoa0906312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Torgerson D.G., Ampleford E.J., Chiu G.Y., Gauderman W.J., Gignoux C.R., Graves P.E., Himes B.E., Levin A.M., Mathias R.A., Hancock D.B., et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 2011;43:887–892. doi: 10.1038/ng.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Kim K.W., Ober C. Lessons Learned From GWAS of Asthma. Allergy Asthma Immunol. Res. 2019;11:170–187. doi: 10.4168/aair.2019.11.2.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Bourgain C., Hoffjan S., Nicolae R., Newman D., Steiner L., Walker K., Reynolds R., Ober C., McPeek M.S. Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am. J. Hum. Genet. 2003;73:612–626. doi: 10.1086/378208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Mao X.Q., Kawai M., Yamashita T., Enomoto T., Dake Y., Sasaki S., Kataoka Y., Fukuzumi T., Endo K., Sano H., et al. Imbalance production between interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1Ra) in bronchial asthma. Biochem. Biophys. Res. Commun. 2000;276:607–612. doi: 10.1006/bbrc.2000.3516. [DOI] [PubMed] [Google Scholar]
  • 39.Karjalainen J., Nieminen M.M., Aromaa A., Klaukka T., Hurme M. The IL-1beta genotype carries asthma susceptibility only in men. J. Allergy Clin. Immunol. 2002;109:514–516. doi: 10.1067/mai.2002.121948. [DOI] [PubMed] [Google Scholar]
  • 40.Yan L., Galinsky R.E., Bernstein J.A., Liggett S.B., Weinshilboum R.M. Histamine N-methyltransferase pharmacogenetics: Association of a common functional polymorphism with asthma. Pharmacogenetics. 2000;10:261–266. doi: 10.1097/00008571-200004000-00007. [DOI] [PubMed] [Google Scholar]
  • 41.Howard T.D., Postma D.S., Hawkins G.A., Koppelman G.H., Zheng S.L., Wysong A.K., Xu J., Meyers D.A., Bleecker E.R. Fine mapping of an IgE-controlling gene on chromosome 2q: Analysis of CTLA4 and CD28. J. Allergy Clin. Immunol. 2002;110:743–751. doi: 10.1067/mai.2002.128723. [DOI] [PubMed] [Google Scholar]
  • 42.Fukunaga K., Asano K., Mao X.Q., Gao P.S., Roberts M.H., Oguma T., Shiomi T., Kanazawa M., Adra C.N., Shirakawa T., et al. Genetic polymorphisms of CC chemokine receptor 3 in Japanese and British asthmatics. Eur. Respir. J. 2001;17:59–63. doi: 10.1183/09031936.01.17100590. [DOI] [PubMed] [Google Scholar]
  • 43.Hall I.P., Wheatley A., Christie G., McDougall C., Hubbard R., Helms P.J. Association of CCR5 ▵32 with reduced risk of asthma. Lancet. 1999;354:1264–1265. doi: 10.1016/S0140-6736(99)03425-X. [DOI] [PubMed] [Google Scholar]
  • 44.McGinnis R., Child F., Clayton S., Davies S., Lenney W., Illig T., Wjst M., Spurr N., Debouck C., Hajeer A.H., et al. Further support for the association of CCR5 allelic variants with asthma susceptibility. Eur. J. Immunogenet. 2002;29:525–528. doi: 10.1046/j.1365-2370.2002.00357.x. [DOI] [PubMed] [Google Scholar]
  • 45.Lazarus R., Klimecki W.T., Raby B.A., Vercelli D., Palmer L.J., Kwiatkowski D.J., Silverman E.K., Martinez F., Weiss S.T. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): Frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case–control disease association studies. Genomics. 2003;81:85–91. doi: 10.1016/s0888-7543(02)00022-8. [DOI] [PubMed] [Google Scholar]
  • 46.Kirkbride H.J., Bolscher J.G., Nazmi K., Vinall L.E., Nash M.W., Moss F.M., Mitchell D.M., Swallow D.M. Genetic polymorphism of MUC7: Allele frequencies and association with asthma. Eur. J. Hum. Genet. 2001;9:347–354. doi: 10.1038/sj.ejhg.5200642. [DOI] [PubMed] [Google Scholar]
  • 47.Noguchi E., Shibasaki M., Kamioka M., Yokouchi Y., Yamakawa-Kobayashi K., Hamaguchi H., Matsui A., Arinami T. New polymorphisms of haematopoietic prostaglandin D synthase and human prostanoid DP receptor genes. Clin. Exp. Allergy. 2002;32:93–96. doi: 10.1046/j.0022-0477.2001.01261.x. [DOI] [PubMed] [Google Scholar]
  • 48.Noguchi E., Shibasaki M., Arinami T., Takeda K., Yokouchi Y., Kawashima T., Yanagi H., Matsui A., Hamaguchi H. Association of asthma and the interleukin-4 promoter gene in Japanese. Clin. Exp. Allergy. 1998;28:449–453. doi: 10.1046/j.1365-2222.1998.00256.x. [DOI] [PubMed] [Google Scholar]
  • 49.Noguchi E., Nukaga-Nishio Y., Jian Z., Yokouchi Y., Kamioka M., Yamakawa-Kobayashi K., Hamaguchi H., Matsui A., Shibasaki M., Arinami T. Haplotypes of the 5’ region of the IL-4 gene and SNPs in the intergene sequence between the IL-4 and IL-13 genes are associated with atopic asthma. Hum. Immunol. 2001;62:1251–1257. doi: 10.1016/S0198-8859(01)00338-X. [DOI] [PubMed] [Google Scholar]
  • 50.Howard T.D., Whittaker P.A., Zaiman A.L., Koppelman G.H., Xu J., Hanley M.T., Meyers D.A., Postma D.S., Bleecker E.R. Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am. J. Respir. Cell Mol. Biol. 2001;25:377–384. doi: 10.1165/ajrcmb.25.3.4483. [DOI] [PubMed] [Google Scholar]
  • 51.Heinzmann A., Mao X.Q., Akaiwa M., Kreomer R.T., Gao P.S., Ohshima K., Umeshita R., Abe Y., Braun S., Yamashita T., et al. Genetic variants of IL-13 signalling and human asthma and atopy. Hum. Mol. Genet. 2000;9:549–559. doi: 10.1093/hmg/9.4.549. [DOI] [PubMed] [Google Scholar]
  • 52.van der Pouw Kraan T.C., van Veen A., Boeije L.C., van Tuyl S.A., de Groot E.R., Stapel S.O., Bakker A., Verweij C.L., Aarden L.A., van der Zee J.S. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun. 1999;1:61–65. doi: 10.1038/sj.gene.6363630. [DOI] [PubMed] [Google Scholar]
  • 53.Niimi T., Munakata M., Keck-Waggoner C.L., Popescu N.C., Levitt R.C., Hisada M., Kimura S. A polymorphism in the human UGRP1 gene promoter that regulates transcription is associated with an increased risk of asthma. Am. J. Hum. Genet. 2002;70:718–725. doi: 10.1086/339272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Kotani Y., Nishimura Y., Maeda H., Yokoyama M. Beta2-adrenergic receptor polymorphisms affect airway responsiveness to salbutamol in asthmatics. J. Asthma. 1999;36:583–590. doi: 10.3109/02770909909087295. [DOI] [PubMed] [Google Scholar]
  • 55.Reihsaus E., Innis M., MacIntyre N., Liggett S.B. Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell Mol. Biol. 1993;8:334–339. doi: 10.1165/ajrcmb/8.3.334. [DOI] [PubMed] [Google Scholar]
  • 56.Sanak M., Pierzchalska M., Bazan-Socha S., Szczeklik A. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am. J. Respir. Cell Mol. Biol. 2000;23:290–296. doi: 10.1165/ajrcmb.23.3.4051. [DOI] [PubMed] [Google Scholar]
  • 57.Kawagishi Y., Mita H., Taniguchi M., Maruyama M., Oosaki R., Higashi N., Kashii T., Kobayashi M., Akiyama K. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J. Allergy Clin. Immunol. 2002;109:936–942. doi: 10.1067/mai.2002.124466. [DOI] [PubMed] [Google Scholar]
  • 58.Moffatt M.F., James A., Ryan G., Musk A.W., Cookson W.O. Extended tumour necrosis factor/HLA-DR haplotypes and asthma in an Australian population sample. Thorax. 1999;54:757–761. doi: 10.1136/thx.54.9.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Kronqvist M., Johansson E., Pershagen G., Johansson S.G., van Hage-Hamsten M. Increasing prevalence of asthma over 12 years among dairy farmers on Gotland, Sweden: Storage mites remain dominant allergens. Clin. Exp. Allergy. 1999;29:35–41. doi: 10.1046/j.1365-2222.1999.00452.x. [DOI] [PubMed] [Google Scholar]
  • 60.Lara-Marquez M.L., Yunis J.J., Layrisse Z., Ortega F., Carvallo-Gil E., Montagnani S., Makhatadze N.J., Pocino M., Granja C., Yunis E. Immunogenetics of atopic asthma: Association of DRB1*1101 DQA1*0501 DQB1*0301 haplotype with Dermatophagoides spp.-sensitive asthma in a sample of the Venezuelan population. Clin. Exp. Allergy. 1999;29:60–71. doi: 10.1046/j.1365-2222.1999.00461.x. [DOI] [PubMed] [Google Scholar]
  • 61.Dekker J.W., Nizankowska E., Schmitz-Schumann M., Pile K., Bochenek G., Dyczek A., Cookson W.O., Szczeklik A. Aspirin-induced asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin. Exp. Allergy. 1997;27:574–577. doi: 10.1111/j.1365-2222.1997.tb00747.x. [DOI] [PubMed] [Google Scholar]
  • 62.Wilson A.G., Symons J.A., McDowell T.L., McDevitt H.O., Duff G.W. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc. Natl. Acad. Sci. USA. 1997;94:3195–3199. doi: 10.1073/pnas.94.7.3195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Chagani T., Pare P.D., Zhu S., Weir T.D., Bai T.R., Behbehani N.A., Fitzgerald J.M., Sandford A.J. Prevalence of tumor necrosis factor-alpha and angiotensin converting enzyme polymorphisms in mild/moderate and fatal/near-fatal asthma. Am. J. Respir. Crit. Care Med. 1999;160:278–282. doi: 10.1164/ajrccm.160.1.9808032. [DOI] [PubMed] [Google Scholar]
  • 64.Witte J.S., Palmer L.J., O’Connor R.D., Hopkins P.J., Hall J.M. Relation between tumour necrosis factor polymorphism TNFalpha-308 and risk of asthma. Eur. J. Hum. Genet. 2002;10:82–85. doi: 10.1038/sj.ejhg.5200746. [DOI] [PubMed] [Google Scholar]
  • 65.Noguchi E., Yokouchi Y., Shibasaki M., Inudou M., Nakahara S., Nogami T., Kamioka M., Yamakawa-Kobayashi K., Ichikawa K., Matsui A., et al. Association between TNFA polymorphism and the development of asthma in the Japanese population. Am. J. Respir. Crit. Care Med. 2002;166:43–46. doi: 10.1164/rccm.2110052. [DOI] [PubMed] [Google Scholar]
  • 66.Moffatt M.F., Cookson W.O. Tumour necrosis factor haplotypes and asthma. Hum. Mol. Genet. 1997;6:551–554. doi: 10.1093/hmg/6.4.551. [DOI] [PubMed] [Google Scholar]
  • 67.Lin Y.C., Lu C.C., Su H.J., Shen C.Y., Lei H.Y., Guo Y.L. The association between tumor necrosis factor, HLA-DR alleles, and IgE-mediated asthma in Taiwanese adolescents. Allergy. 2002;57:831–834. doi: 10.1034/j.1398-9995.2002.23719.x. [DOI] [PubMed] [Google Scholar]
  • 68.Ismail A., Bousaffara R., Kaziz J., Zili J., el Kamel A., Tahar Sfar M., Remadi S., Chouchane L. Polymorphism in transporter antigen peptides gene (TAP1) associated with atopy in Tunisians. J. Allergy Clin. Immunol. 1997;99:216–223. doi: 10.1016/S0091-6749(97)70099-X. [DOI] [PubMed] [Google Scholar]
  • 69.Hang L.W., Hsia T.C., Chen W.C., Chen H.Y., Tsai F.J. TAP1 gene AccI polymorphism is associated with atopic bronchial asthma. J. Clin. Lab. Anal. 2003;17:57–60. doi: 10.1002/jcla.10068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Stafforini D.M., Numao T., Tsodikov A., Vaitkus D., Fukuda T., Watanabe N., Fueki N., McIntyre T.M., Zimmerman G.A., Makino S., et al. Deficiency of platelet-activating factor acetylhydrolase is a severity factor for asthma. J. Clin. Investig. 1999;103:989–997. doi: 10.1172/JCI5574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Kruse S., Mao X.Q., Heinzmann A., Blattmann S., Roberts M.H., Braun S., Gao P.S., Forster J., Kuehr J., Hopkin J.M., et al. The Ile198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytical activities and are associated with atopy and asthma. Am. J. Hum. Genet. 2000;66:1522–1530. doi: 10.1086/302901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Ito S., Noguchi E., Shibasaki M., Yamakawa-Kobayashi K., Watanabe H., Arinami T. Evidence for an association between plasma platelet-activating factor acetylhydrolase deficiency and increased risk of childhood atopic asthma. J. Hum. Genet. 2002;47:99–101. doi: 10.1007/s100380200009. [DOI] [PubMed] [Google Scholar]
  • 73.Immervoll T., Loesgen S., Dutsch G., Gohlke H., Herbon N., Klugbauer S., Dempfle A., Bickeboller H., Becker-Follmann J., Ruschendorf F., et al. Fine mapping and single nucleotide polymorphism association results of candidate genes for asthma and related phenotypes. Hum. Mutat. 2001;18:327–336. doi: 10.1002/humu.1194. [DOI] [PubMed] [Google Scholar]
  • 74.Shin H.D., Kim L.H., Park B.L., Jung J.H., Kim J.Y., Chung I.Y., Kim J.S., Lee J.H., Chung S.H., Kim Y.H., et al. Association of Eotaxin gene family with asthma and serum total IgE. Hum. Mol. Genet. 2003;12:1279–1285. doi: 10.1093/hmg/ddg142. [DOI] [PubMed] [Google Scholar]
  • 75.Schroeder S.A., Gaughan D.M., Swift M. Protection against bronchial asthma by CFTR delta F508 mutation: A heterozygote advantage in cystic fibrosis. Nat. Med. 1995;1:703–705. doi: 10.1038/nm0795-703. [DOI] [PubMed] [Google Scholar]
  • 76.Dahl M., Tybærg-Hansen A., Lange P., Nordestgaard B.G. ΔF508 heterozygosity in cystic fibrosis and susceptibility to asthma. Lancet. 1998;351:1911–1913. doi: 10.1016/S0140-6736(97)11419-2. [DOI] [PubMed] [Google Scholar]
  • 77.Lazaro C., de Cid R., Sunyer J., Soriano J., Gimenez J., Alvarez M., Casals T., Anto J.M., Estivill X. Missense mutations in the cystic fibrosis gene in adult patients with asthma. Hum. Mutat. 1999;14:510–519. doi: 10.1002/(SICI)1098-1004(199912)14:6&#x0003c;510::AID-HUMU10&#x0003e;3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  • 78.Tzetis M., Efthymiadou A., Strofalis S., Psychou P., Dimakou A., Pouliou E., Doudounakis S., Kanavakis E. CFTR gene mutations--including three novel nucleotide substitutions—And haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease. Hum. Genet. 2001;108:216–221. doi: 10.1007/s004390100467. [DOI] [PubMed] [Google Scholar]
  • 79.Lee Y.C., Cheon K.T., Lee H.B., Kim W., Rhee Y.K., Kim D.S. Gene polymorphisms of endothelial nitric oxide synthase and angiotensin-converting enzyme in patients with asthma. Allergy. 2000;55:959–963. doi: 10.1034/j.1398-9995.2000.00724.x. [DOI] [PubMed] [Google Scholar]
  • 80.Laing I.A., Goldblatt J., Eber E., Hayden C.M., Rye P.J., Gibson N.A., Palmer L.J., Burton P.R., Le Souef P.N. A polymorphism of the CC16 gene is associated with an increased risk of asthma. J. Med. Genet. 1998;35:463–467. doi: 10.1136/jmg.35.6.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Laing I.A., Hermans C., Bernard A., Burton P.R., Goldblatt J., Le Souef P.N. Association between plasma CC16 levels, the A38G polymorphism, and asthma. Am. J. Respir. Crit. Care Med. 2000;161:124–127. doi: 10.1164/ajrccm.161.1.9904073. [DOI] [PubMed] [Google Scholar]
  • 82.Choi M., Zhang Z., Ten Kate L.P., Collee J.M., Gerritsen J., Mukherjee A.B. Human uteroglobin gene polymorphisms and genetic susceptibility to asthma. Ann. N. Y. Acad. Sci. 2000;923:303–306. doi: 10.1111/j.1749-6632.2000.tb05538.x. [DOI] [PubMed] [Google Scholar]
  • 83.Green S.L., Gaillard M.C., Song E., Dewar J.B., Halkas A. Polymorphisms of the beta chain of the high-affinity immunoglobulin E receptor (Fcepsilon RI-beta) in South African black and white asthmatic and nonasthmatic individuals. Am. J. Respir. Crit. Care Med. 1998;158:1487–1492. doi: 10.1164/ajrccm.158.5.9707099. [DOI] [PubMed] [Google Scholar]
  • 84.Hijazi Z., Haider M.Z., Khan M.R., Al-Dowaisan A.A. High frequency of IgE receptor Fc epsilonRIbeta variant (Leu181/Leu183) in Kuwaiti Arabs and its association with asthma. Clin. Genet. 1998;53:149–152. doi: 10.1111/j.1399-0004.1998.tb02664.x. [DOI] [PubMed] [Google Scholar]
  • 85.Palmer L.J., Rye P.J., Gibson N.A., Moffatt M.F., Goldblatt J., Burton P.R., Cookson W.O., Lesouef P.N. Association of FcepsilonR1-beta polymorphisms with asthma and associated traits in Australian asthmatic families. Clin. Exp. Allergy. 1999;29:1555–1562. doi: 10.1046/j.1365-2222.1999.00718.x. [DOI] [PubMed] [Google Scholar]
  • 86.Cox H.E., Moffatt M.F., Faux J.A., Walley A.J., Coleman R., Trembath R.C., Cookson W.O., Harper J.I. Association of atopic dermatitis to the beta subunit of the high affinity immunoglobulin E receptor. Br. J. Dermatol. 1998;138:182–187. doi: 10.1046/j.1365-2133.1998.02108.x. [DOI] [PubMed] [Google Scholar]
  • 87.van Hage-Hamsten M., Johansson E., Kronqvist M., Loughry A., Cookson W.O., Moffatt M.F. Associations of Fc epsilon R1-beta polymorphisms with immunoglobin E antibody responses to common inhalant allergens in a rural population. Clin. Exp. Allergy. 2002;32:838–842. doi: 10.1046/j.1365-2222.2002.01402.x. [DOI] [PubMed] [Google Scholar]
  • 88.Hizawa N., Yamaguchi E., Jinushi E., Kawakami Y. A common FCER1B gene promoter polymorphism influences total serum IgE levels in a Japanese population. Am. J. Respir. Crit. Care Med. 2000;161:906–909. doi: 10.1164/ajrccm.161.3.9903128. [DOI] [PubMed] [Google Scholar]
  • 89.Shirakawa T., Mao X.Q., Sasaki S., Enomoto T., Kawai M., Morimoto K., Hopkin J. Association between atopic asthma and a coding variant of Fc epsilon RI beta in a Japanese population. Hum. Mol. Genet. 1996;5:1129–1130. doi: 10.1093/hmg/5.8.1129. [DOI] [PubMed] [Google Scholar]
  • 90.Fryer A.A., Bianco A., Hepple M., Jones P.W., Strange R.C., Spiteri M.A. Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am. J. Respir. Crit. Care Med. 2000;161:1437–1442. doi: 10.1164/ajrccm.161.5.9903006. [DOI] [PubMed] [Google Scholar]
  • 91.Noguchi E., Shibasaki M., Inudou M., Kamioka M., Yokouchi Y., Yamakawa-Kobayashi K., Hamaguchi H., Matsui A., Arinami T. Association between a new polymorphism in the activation-induced cytidine deaminase gene and atopic asthma and the regulation of total serum IgE levels. J. Allergy Clin. Immunol. 2001;108:382–386. doi: 10.1067/mai.2001.117456. [DOI] [PubMed] [Google Scholar]
  • 92.Tamura K., Arakawa H., Suzuki M., Kobayashi Y., Mochizuki H., Kato M., Tokuyama K., Morikawa A. Novel dinucleotide repeat polymorphism in the first exon of the STAT-6 gene is associated with allergic diseases. Clin. Exp. Allergy. 2001;31:1509–1514. doi: 10.1046/j.1365-2222.2001.01191.x. [DOI] [PubMed] [Google Scholar]
  • 93.Grasemann H., Yandava C.N., Storm van’s Gravesande K., Deykin A., Pillari A., Ma J., Sonna L.A., Lilly C., Stampfer M.J., Israel E., et al. A neuronal NO synthase (NOS1) gene polymorphism is associated with asthma. Biochem. Biophys. Res. Commun. 2000;272:391–394. doi: 10.1006/bbrc.2000.2794. [DOI] [PubMed] [Google Scholar]
  • 94.Gao P.S., Kawada H., Kasamatsu T., Mao X.Q., Roberts M.H., Miyamoto Y., Yoshimura M., Saitoh Y., Yasue H., Nakao K., et al. Variants of NOS1, NOS2, and NOS3 genes in asthmatics. Biochem. Biophys. Res. Commun. 2000;267:761–763. doi: 10.1006/bbrc.1999.2030. [DOI] [PubMed] [Google Scholar]
  • 95.Malerba G., Patuzzo C., Trabetti E., Lauciello M.C., Galavotti R., Pescollderungg L., Whalen M.B., Zanoni G., Martinati L.C., Boner A.L., et al. Chromosome 14 linkage analysis and mutation study of 2 serpin genes in allergic asthmatic families. J. Allergy Clin. Immunol. 2001;107:654–658. doi: 10.1067/mai.2001.113865. [DOI] [PubMed] [Google Scholar]
  • 96.Howard T.D., Koppelman G.H., Xu J., Zheng S.L., Postma D.S., Meyers D.A., Bleecker E.R. Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am. J. Hum. Genet. 2002;70:230–236. doi: 10.1086/338242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Ober C., Leavitt S.A., Tsalenko A., Howard T.D., Hoki D.M., Daniel R., Newman D.L., Wu X., Parry R., Lester L.A., et al. Variation in the interleukin 4-receptor alpha gene confers susceptibility to asthma and atopy in ethnically diverse populations. Am. J. Hum. Genet. 2000;66:517–526. doi: 10.1086/302781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Rosa-Rosa L., Zimmermann N., Bernstein J.A., Rothenberg M.E., Khurana Hershey G.K. The R576 IL-4 receptor alpha allele correlates with asthma severity. J. Allergy Clin. Immunol. 1999;104:1008–1014. doi: 10.1016/S0091-6749(99)70082-5. [DOI] [PubMed] [Google Scholar]
  • 99.Risma K.A., Wang N., Andrews R.P., Cunningham C.M., Ericksen M.B., Bernstein J.A., Chakraborty R., Hershey G.K. V75R576 IL-4 receptor alpha is associated with allergic asthma and enhanced IL-4 receptor function. J. Immunol. 2002;169:1604–1610. doi: 10.4049/jimmunol.169.3.1604. [DOI] [PubMed] [Google Scholar]
  • 100.Mitsuyasu H., Izuhara K., Mao X.Q., Gao P.S., Arinobu Y., Enomoto T., Kawai M., Sasaki S., Dake Y., Hamasaki N., et al. Ile50Val variant of IL4R alpha upregulates IgE synthesis and associates with atopic asthma. Nat. Genet. 1998;19:119–120. doi: 10.1038/472. [DOI] [PubMed] [Google Scholar]
  • 101.Hizawa N., Yamaguchi E., Konno S., Tanino Y., Jinushi E., Nishimura M. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am. J. Respir. Crit. Care Med. 2002;166:686–690. doi: 10.1164/rccm.200202-090OC. [DOI] [PubMed] [Google Scholar]
  • 102.Fryer A.A., Spiteri M.A., Bianco A., Hepple M., Jones P.W., Strange R.C., Makki R., Tavernier G., Smilie F.I., Custovic A., et al. The -403 G-->A promoter polymorphism in the RANTES gene is associated with atopy and asthma. Genes Immun. 2000;1:509–514. doi: 10.1038/sj.gene.6363717. [DOI] [PubMed] [Google Scholar]
  • 103.Benessiano J., Crestani B., Mestari F., Klouche W., Neukirch F., Hacein-Bey S., Durand G., Aubier M. High frequency of a deletion polymorphism of the angiotensin-converting enzyme gene in asthma. J. Allergy Clin. Immunol. 1997;99:53–57. doi: 10.1016/S0091-6749(97)70300-2. [DOI] [PubMed] [Google Scholar]
  • 104.Holla L., Vasku A., Znojil V., Siskova L., Vacha J. Association of 3 gene polymorphisms with atopic diseases. J. Allergy Clin. Immunol. 1999;103:702–708. doi: 10.1016/S0091-6749(99)70246-0. [DOI] [PubMed] [Google Scholar]
  • 105.Unoki M., Furuta S., Onouchi Y., Watanabe O., Doi S., Fujiwara H., Miyatake A., Fujita K., Tamari M., Nakamura Y. Association studies of 33 single nucleotide polymorphisms (SNPs) in 29 candidate genes for bronchial asthma: Positive association a T924C polymorphism in the thromboxane A2 receptor gene. Hum. Genet. 2000;106:440–446. doi: 10.1007/s004390000267. [DOI] [PubMed] [Google Scholar]
  • 106.Lee S.Y., Lee Y.H., Shin C., Shim J.J., Kang K.H., Yoo S.H., In K.H. Association of asthma severity and bronchial hyperresponsiveness with a polymorphism in the cytotoxic T-lymphocyte antigen-4 gene. Chest. 2002;122:171–176. doi: 10.1378/chest.122.1.171. [DOI] [PubMed] [Google Scholar]
  • 107.Sandford A.J., Chagani T., Zhu S., Weir T.D., Bai T.R., Spinelli J.J., Fitzgerald J.M., Behbehani N.A., Tan W.C., Pare P.D. Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J. Allergy Clin. Immunol. 2000;106:135–140. doi: 10.1067/mai.2000.107926. [DOI] [PubMed] [Google Scholar]
  • 108.Holloway J.W., Dunbar P.R., Riley G.A., Sawyer G.M., Fitzharris P.F., Pearce N., Le Gros G.S., Beasley R. Association of beta2-adrenergic receptor polymorphisms with severe asthma. Clin. Exp. Allergy. 2000;30:1097–1103. doi: 10.1046/j.1365-2222.2000.00929.x. [DOI] [PubMed] [Google Scholar]
  • 109.Pulleyn L.J., Newton R., Adcock I.M., Barnes P.J. TGFbeta1 allele association with asthma severity. Hum. Genet. 2001;109:623–627. doi: 10.1007/s00439-001-0617-y. [DOI] [PubMed] [Google Scholar]
  • 110.Duetsch G., Illig T., Loesgen S., Rohde K., Klopp N., Herbon N., Gohlke H., Altmueller J., Wjst M. STAT6 as an asthma candidate gene: Polymorphism-screening, association and haplotype analysis in a Caucasian sib-pair study. Hum. Mol. Genet. 2002;11:613–621. doi: 10.1093/hmg/11.6.613. [DOI] [PubMed] [Google Scholar]
  • 111.Nakamura H., Luster A.D., Nakamura T., In K.H., Sonna L.A., Deykin A., Israel E., Drazen J.M., Lilly C.M. Variant eotaxin: Its effects on the asthma phenotype. J. Allergy Clin. Immunol. 2001;108:946–953. doi: 10.1067/mai.2001.120135. [DOI] [PubMed] [Google Scholar]
  • 112.Rosenwasser L.J., Klemm D.J., Dresback J.K., Inamura H., Mascali J.J., Klinnert M., Borish L. Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin. Exp. Allergy. 1995;25(Suppl. 2):74–78. doi: 10.1111/j.1365-2222.1995.tb00428.x. discussion 95–76. [DOI] [PubMed] [Google Scholar]
  • 113.Baldini M., Lohman I.C., Halonen M., Erickson R.P., Holt P.G., Martinez F.D. A Polymorphism* in the 5’ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am. J. Respir. Cell Mol. Biol. 1999;20:976–983. doi: 10.1165/ajrcmb.20.5.3494. [DOI] [PubMed] [Google Scholar]
  • 114.Koppelman G.H., Reijmerink N.E., Colin Stine O., Howard T.D., Whittaker P.A., Meyers D.A., Postma D.S., Bleecker E.R. Association of a promoter polymorphism of the CD14 gene and atopy. Am. J. Respir. Crit. Care Med. 2001;163:965–969. doi: 10.1164/ajrccm.163.4.2004164. [DOI] [PubMed] [Google Scholar]
  • 115.Moffatt M.F., Schou C., Faux J.A., Abecasis G.R., James A., Musk A.W., Cookson W.O. Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur. J. Hum. Genet. 2001;9:341–346. doi: 10.1038/sj.ejhg.5200636. [DOI] [PubMed] [Google Scholar]
  • 116.Moffatt M.F., Faux J.A., Lester S., Pare P., McCluskey J., Spargo R., James A., Musk A.W., Cookson W.O. Atopy, respiratory function and HLA-DR in Aboriginal Australians. Hum. Mol. Genet. 2003;12:625–630. doi: 10.1093/hmg/ddg059. [DOI] [PubMed] [Google Scholar]
  • 117.Spielman R.S., Ewens W.J. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet. 1996;59:983–989. [PMC free article] [PubMed] [Google Scholar]
  • 118.Gao P.S., Mao X.Q., Jouanguy E., Pallier A., Doffinger R., Tanaka Y., Nakashima H., Otsuka T., Roberts M.H., Enomoto T., et al. Nonpathogenic common variants of IFNGR1 and IFNGR2 in association with total serum IgE levels. Biochem. Biophys. Res. Commun. 1999;263:425–429. doi: 10.1006/bbrc.1999.1368. [DOI] [PubMed] [Google Scholar]
  • 119.Nagarkatti R., Rao C.B., Rishi J.P., Chetiwal R., Shandilya V., Vijayan V., Kumar R., Pemde H.K., Sharma S.K., Sharma S., et al. Association of IFNG gene polymorphism with asthma in the Indian population. J. Allergy Clin. Immunol. 2002;110:410–412. doi: 10.1067/mai.2002.127859. [DOI] [PubMed] [Google Scholar]
  • 120.Kauppi P., Lindblad-Toh K., Sevon P., Toivonen H.T., Rioux J.D., Villapakkam A., Laitinen L.A., Hudson T.J., Kere J., Laitinen T. A second-generation association study of the 5q31 cytokine gene cluster and the interleukin-4 receptor in asthma. Genomics. 2001;77:35–42. doi: 10.1006/geno.2001.6613. [DOI] [PubMed] [Google Scholar]
  • 121.Bottini N., Borgiani P., Otsu A., Saccucci P., Stefanini L., Greco E., Fontana L., Hopkin J.M., Mao X.Q., Shirakawa T. IL-4 receptor alpha chain genetic polymorphism and total IgE levels in the English population: Two-locus haplotypes are more informative than individual SNPs. Clin. Genet. 2002;61:288–292. doi: 10.1034/j.1399-0004.2002.610408.x. [DOI] [PubMed] [Google Scholar]
  • 122.Hobbs K., Negri J., Klinnert M., Rosenwasser L.J., Borish L. Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. Am. J. Respir. Crit. Care Med. 1998;158:1958–1962. doi: 10.1164/ajrccm.158.6.9804011. [DOI] [PubMed] [Google Scholar]
  • 123.Karjalainen J., Hulkkonen J., Nieminen M.M., Huhtala H., Aromaa A., Klaukka T., Hurme M. Interleukin-10 gene promoter region polymorphism is associated with eosinophil count and circulating immunoglobulin E in adult asthma. Clin. Exp. Allergy. 2003;33:78–83. doi: 10.1046/j.1365-2222.2003.01577.x. [DOI] [PubMed] [Google Scholar]
  • 124.Hizawa N., Yamaguchi E., Jinushi E., Konno S., Kawakami Y., Nishimura M. Increased total serum IgE levels in patients with asthma and promoter polymorphisms at CTLA4 and FCER1B. J. Allergy Clin. Immunol. 2001;108:74–79. doi: 10.1067/mai.2001.116119. [DOI] [PubMed] [Google Scholar]
  • 125.Suzuki I., Hizawa N., Yamaguchi E., Kawakami Y. Association between a C+33T polymorphism in the IL-4 promoter region and total serum IgE levels. Clin. Exp. Allergy. 2000;30:1746–1749. doi: 10.1046/j.1365-2222.2000.00983.x. [DOI] [PubMed] [Google Scholar]
  • 126.Holla L.I., Buckova D., Kuhrova V., Stejskalova A., Francova H., Znojil V., Vacha J. Prevalence of endothelial nitric oxide synthase gene polymorphisms in patients with atopic asthma. Clin. Exp. Allergy. 2002;32:1193–1198. doi: 10.1046/j.1365-2745.2002.01445.x. [DOI] [PubMed] [Google Scholar]
  • 127.Walley A.J., Cookson W.O. Investigation of an interleukin-4 promoter polymorphism for associations with asthma and atopy. J. Med. Genet. 1996;33:689–692. doi: 10.1136/jmg.33.8.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Stephan V., Kuehr J., Seibt A., Saueressig H., Zingsem S., Dinh T.D., Moseler M., Wahn V., Deichmann K.A. Genetic linkage of HLA-class II locus to mite-specific IgE immune responsiveness. Clin. Exp. Allergy. 1999;29:1049–1054. doi: 10.1046/j.1365-2222.1999.00610.x. [DOI] [PubMed] [Google Scholar]
  • 129.Hu C., Hsu P.N., Lin R.H., Hsieh K.H., Chua K.Y. HLA DPB1*0201 allele is negatively associated with immunoglobulin E responsiveness specific for house dust mite allergens in Taiwan. Clin. Exp. Allergy. 2000;30:538–545. doi: 10.1046/j.1365-2222.2000.00752.x. [DOI] [PubMed] [Google Scholar]
  • 130.Hill M.R., Cookson W.O. A new variant of the beta subunit of the high-affinity receptor for immunoglobulin E (Fc epsilon RI-beta E237G): Associations with measures of atopy and bronchial hyper-responsiveness. Hum. Mol. Genet. 1996;5:959–962. doi: 10.1093/hmg/5.7.959. [DOI] [PubMed] [Google Scholar]
  • 131.D’Amato M., Vitiani L.R., Petrelli G., Ferrigno L., di Pietro A., Trezza R., Matricardi P.M. Association of persistent bronchial hyperresponsiveness with beta2-adrenoceptor (ADRB2) haplotypes. A population study. Am. J. Respir. Crit. Care Med. 1998;158:1968–1973. doi: 10.1164/ajrccm.158.6.9804126. [DOI] [PubMed] [Google Scholar]
  • 132.Ulbrecht M., Hergeth M.T., Wjst M., Heinrich J., Bickeboller H., Wichmann H.E., Weiss E.H. Association of beta(2)-adrenoreceptor variants with bronchial hyperresponsiveness. Am. J. Respir. Crit. Care Med. 2000;161:469–474. doi: 10.1164/ajrccm.161.2.9902072. [DOI] [PubMed] [Google Scholar]
  • 133.Li Kam Wa T.C., Mansur A.H., Britton J., Williams G., Pavord I., Richards K., Campbell D.A., Morton N., Holgate S.T., Morrison J.F. Association between—308 tumour necrosis factor promoter polymorphism and bronchial hyperreactivity in asthma. Clin. Exp. Allergy. 1999;29:1204–1208. doi: 10.1046/j.1365-2222.1999.00638.x. [DOI] [PubMed] [Google Scholar]
  • 134.Burchard E.G., Silverman E.K., Rosenwasser L.J., Borish L., Yandava C., Pillari A., Weiss S.T., Hasday J., Lilly C.M., Ford J.G., et al. Association between a sequence variant in the IL-4 gene promoter and FEV(1) in asthma. Am. J. Respir. Crit. Care Med. 1999;160:919–922. doi: 10.1164/ajrccm.160.3.9812024. [DOI] [PubMed] [Google Scholar]
  • 135.Summerhill E., Leavitt S.A., Gidley H., Parry R., Solway J., Ober C. beta(2)-adrenergic receptor Arg16/Arg16 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am. J. Respir. Crit. Care Med. 2000;162:599–602. doi: 10.1164/ajrccm.162.2.9910108. [DOI] [PubMed] [Google Scholar]
  • 136.Sayers I., Barton S., Rorke S., Beghe B., Hayward B., Van Eerdewegh P., Keith T., Clough J.B., Ye S., Holloway J.W., et al. Allelic association and functional studies of promoter polymorphism in the leukotriene C4 synthase gene (LTC4S) in asthma. Thorax. 2003;58:417–424. doi: 10.1136/thorax.58.5.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Pickrell J.K., Berisa T., Liu J.Z., Segurel L., Tung J.Y., Hinds D.A. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 2016;48:709–717. doi: 10.1038/ng.3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Ferreira M.A., Matheson M.C., Duffy D.L., Marks G.B., Hui J., Le Souef P., Danoy P., Baltic S., Nyholt D.R., Jenkins M., et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet. 2011;378:1006–1014. doi: 10.1016/S0140-6736(11)60874-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Yan Q., Brehm J., Pino-Yanes M., Forno E., Lin J., Oh S.S., Acosta-Perez E., Laurie C.C., Cloutier M.M., Raby B.A., et al. A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. Eur. Respir. J. 2017;49 doi: 10.1183/13993003.01505-2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Mathias R.A., Grant A.V., Rafaels N., Hand T., Gao L., Vergara C., Tsai Y.J., Yang M., Campbell M., Foster C., et al. A genome-wide association study on African-ancestry populations for asthma. J. Allergy Clin. Immunol. 2010;125:336–346.e4. doi: 10.1016/j.jaci.2009.08.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Hirota T., Takahashi A., Kubo M., Tsunoda T., Tomita K., Doi S., Fujita K., Miyatake A., Enomoto T., Miyagawa T., et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 2011;43:893–896. doi: 10.1038/ng.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Himes B.E., Hunninghake G.M., Baurley J.W., Rafaels N.M., Sleiman P., Strachan D.P., Wilk J.B., Willis-Owen S.A., Klanderman B., Lasky-Su J., et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am. J. Hum. Genet. 2009;84:581–593. doi: 10.1016/j.ajhg.2009.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Almoguera B., Vazquez L., Mentch F., Connolly J., Pacheco J.A., Sundaresan A.S., Peissig P.L., Linneman J.G., McCarty C.A., Crosslin D., et al. Identification of Four Novel Loci in Asthma in European American and African American Populations. Am. J. Respir. Crit. Care Med. 2017;195:456–463. doi: 10.1164/rccm.201604-0861OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Li X., Howard T.D., Zheng S.L., Haselkorn T., Peters S.P., Meyers D.A., Bleecker E.R. Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J. Allergy Clin. Immunol. 2010;125:328–335.e311. doi: 10.1016/j.jaci.2009.11.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Noguchi E., Sakamoto H., Hirota T., Ochiai K., Imoto Y., Sakashita M., Kurosaka F., Akasawa A., Yoshihara S., Kanno N., et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet. 2011;7:e1002170. doi: 10.1371/journal.pgen.1002170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Lasky-Su J., Himes B.E., Raby B.A., Klanderman B.J., Sylvia J.S., Lange C., Melen E., Martinez F.D., Israel E., Gauderman J., et al. HLA-DQ strikes again: Genome-wide association study further confirms HLA-DQ in the diagnosis of asthma among adults. Clin. Exp. Allergy. 2012;42:1724–1733. doi: 10.1111/cea.12000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Lowe R., Shirley N., Bleackley M., Dolan S., Shafee T. Transcriptomics technologies. PLoS Comput. Biol. 2017;13:e1005457. doi: 10.1371/journal.pcbi.1005457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Liew C.C., Ma J., Tang H.C., Zheng R., Dempsey A.A. The peripheral blood transcriptome dynamically reflects system wide biology: A potential diagnostic tool. J. Lab. Clin. Med. 2006;147:126–132. doi: 10.1016/j.lab.2005.10.005. [DOI] [PubMed] [Google Scholar]
  • 149.Bjornsdottir U.S., Holgate S.T., Reddy P.S., Hill A.A., McKee C.M., Csimma C.I., Weaver A.A., Legault H.M., Small C.G., Ramsey R.C., et al. Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood. PLoS ONE. 2011;6:e21902. doi: 10.1371/journal.pone.0021902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Bigler J., Boedigheimer M., Schofield J.P.R., Skipp P.J., Corfield J., Rowe A., Sousa A.R., Timour M., Twehues L., Hu X., et al. A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts. Am. J. Respir. Crit. Care Med. 2017;195:1311–1320. doi: 10.1164/rccm.201604-0866OC. [DOI] [PubMed] [Google Scholar]
  • 151.Woodruff P.G., Boushey H.A., Dolganov G.M., Barker C.S., Yang Y.H., Donnelly S., Ellwanger A., Sidhu S.S., Dao-Pick T.P., Pantoja C., et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA. 2007;104:15858–15863. doi: 10.1073/pnas.0707413104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Woodruff P.G., Modrek B., Choy D.F., Jia G., Abbas A.R., Ellwanger A., Koth L.L., Arron J.R., Fahy J.V. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 2009;180:388–395. doi: 10.1164/rccm.200903-0392OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Wilson S.J., Ward J.A., Sousa A.R., Corfield J., Bansal A.T., De Meulder B., Lefaudeux D., Auffray C., Loza M.J., Baribaud F., et al. Severe asthma exists despite suppressed tissue inflammation: Findings of the U-BIOPRED study. Eur. Respir. J. 2016;48:1307–1319. doi: 10.1183/13993003.01129-2016. [DOI] [PubMed] [Google Scholar]
  • 154.Modena B.D., Bleecker E.R., Busse W.W., Erzurum S.C., Gaston B.M., Jarjour N.N., Meyers D.A., Milosevic J., Tedrow J.R., Wu W., et al. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. Am. J. Respir. Crit. Care Med. 2017;195:1449–1463. doi: 10.1164/rccm.201607-1407OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Baines K.J., Simpson J.L., Wood L.G., Scott R.J., Gibson P.G. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immunol. 2011;127:153–160.e9. doi: 10.1016/j.jaci.2010.10.024. [DOI] [PubMed] [Google Scholar]
  • 156.Peters M.C., Mekonnen Z.K., Yuan S., Bhakta N.R., Woodruff P.G., Fahy J.V. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J. Allergy Clin. Immunol. 2014;133:388–394. doi: 10.1016/j.jaci.2013.07.036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Baines K.J., Simpson J.L., Wood L.G., Scott R.J., Fibbens N.L., Powell H., Cowan D.C., Taylor D.R., Cowan J.O., Gibson P.G. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J. Allergy Clin. Immunol. 2014;133:997–1007. doi: 10.1016/j.jaci.2013.12.1091. [DOI] [PubMed] [Google Scholar]
  • 158.Peters M.C., Ringel L., Dyjack N., Herrin R., Woodruff P.G., Rios C., O’Connor B., Fahy J.V., Seibold M.A. A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am. J. Respir. Crit. Care Med. 2019;199:465–477. doi: 10.1164/rccm.201807-1291OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Kim B.K., Lee H.S., Sohn K.H., Lee S.Y., Cho S.H., Park H.W. Different Biological Pathways Are Up-regulated in the Elderly With Asthma: Sputum Transcriptomic Analysis. Allergy Asthma Immunol. Res. 2019;11:104–115. doi: 10.4168/aair.2019.11.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Pandey G., Pandey O.P., Rogers A.J., Ahsen M.E., Hoffman G.E., Raby B.A., Weiss S.T., Schadt E.E., Bunyavanich S. A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data. Sci. Rep. 2018;8:8826. doi: 10.1038/s41598-018-27189-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Weathington N., O’Brien M.E., Radder J., Whisenant T.C., Bleecker E.R., Busse W.W., Erzurum S.C., Gaston B., Hastie A.T., Jarjour N.N., et al. BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. Am. J. Respir. Crit. Care Med. 2019;200:837–856. doi: 10.1164/rccm.201811-2221OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Hekking P.P., Loza M.J., Pavlidis S., de Meulder B., Lefaudeux D., Baribaud F., Auffray C., Wagener A.H., Brinkman P.I., Lutter R.I., et al. Pathway discovery using transcriptomic profiles in adult-onset severe asthma. J. Allergy Clin. Immunol. 2018;141:1280–1290. doi: 10.1016/j.jaci.2017.06.037. [DOI] [PubMed] [Google Scholar]
  • 163.Aslam B., Basit M., Nisar M.A., Khurshid M., Rasool M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017;55:182–196. doi: 10.1093/chromsci/bmw167. [DOI] [PubMed] [Google Scholar]
  • 164.Barbosa E.B., Vidotto A., Polachini G.M., Henrique T., Marqui A.B., Tajara E.H. Proteomics: Methodologies and applications to the study of human diseases. Rev. Assoc. Med. Bras. 2012;58:366–375. [PubMed] [Google Scholar]
  • 165.Lee S.H., Rhim T., Choi Y.S., Min J.W., Kim S.H., Cho S.Y., Paik Y.K., Park C.S. Complement C3a and C4a increased in plasma of patients with aspirin-induced asthma. Am. J. Respir. Crit. Care Med. 2006;173:370–378. doi: 10.1164/rccm.200505-740OC. [DOI] [PubMed] [Google Scholar]
  • 166.Gharib S.A., Nguyen E.V., Lai Y., Plampin J.D., Goodlett D.R., Hallstrand T.S. Induced sputum proteome in healthy subjects and asthmatic patients. J. Allergy Clin. Immunol. 2011;128:1176–1184.e1176. doi: 10.1016/j.jaci.2011.07.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Lee T.H., Jang A.S., Park J.S., Kim T.H., Choi Y.S., Shin H.R., Park S.W., Uh S.T., Choi J.S., Kim Y.H., et al. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann. Allergy Asthma Immunol. 2013;111:268–275.e1. doi: 10.1016/j.anai.2013.06.028. [DOI] [PubMed] [Google Scholar]
  • 168.Wu J., Kobayashi M., Sousa E.A., Liu W., Cai J., Goldman S.J., Dorner A.J., Projan S.J., Kavuru M.S., Qiu Y., et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol. Cell Proteomics. 2005;4:1251–1264. doi: 10.1074/mcp.M500041-MCP200. [DOI] [PubMed] [Google Scholar]
  • 169.Candiano G., Bruschi M., Pedemonte N., Caci E., Liberatori S., Bini L., Pellegrini C., Vigano M., O’Connor B.J., Lee T.H., et al. Gelsolin secretion in interleukin-4-treated bronchial epithelia and in asthmatic airways. Am. J. Respir. Crit. Care Med. 2005;172:1090–1096. doi: 10.1164/rccm.200409-1185OC. [DOI] [PubMed] [Google Scholar]
  • 170.Ghosh S., Janocha A.J., Aronica M.A., Swaidani S., Comhair S.A., Xu W., Zheng L., Kaveti S., Kinter M., Hazen S.L., et al. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J. Immunol. 2006;176:5587–5597. doi: 10.4049/jimmunol.176.9.5587. [DOI] [PubMed] [Google Scholar]
  • 171.Cederfur C., Malmstrom J., Nihlberg K., Block M., Breimer M.E., Bjermer L., Westergren-Thorsson G., Leffler H. Glycoproteomic identification of galectin-3 and -8 ligands in bronchoalveolar lavage of mild asthmatics and healthy subjects. Biochim. Biophys. Acta. 2012;1820:1429–1436. doi: 10.1016/j.bbagen.2011.12.016. [DOI] [PubMed] [Google Scholar]
  • 172.O’Neil S.E., Sitkauskiene B., Babusyte A., Krisiukeniene A., Stravinskaite-Bieksiene K., Sakalauskas R., Sihlbom C., Ekerljung L., Carlsohn E., Lotvall J. Network analysis of quantitative proteomics on asthmatic bronchi: Effects of inhaled glucocorticoid treatment. Respir. Res. 2011;12:124. doi: 10.1186/1465-9921-12-124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Dunn W.B., Bailey N.J., Johnson H.E. Measuring the metabolome: Current analytical technologies. Analyst. 2005;130:606–625. doi: 10.1039/b418288j. [DOI] [PubMed] [Google Scholar]
  • 174.Lei Z., Huhman D.V., Sumner L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011;286:25435–25442. doi: 10.1074/jbc.R111.238691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Sahoo N., Tejaswini G., Sahu M., Muralikrishna K. An overview on NMR spectroscopy based metabolomics. Int. J. Pharm. Sci. Dev. Res. 2020;6:016–020. doi: 10.17352/ijpsdr.000029. [DOI] [Google Scholar]
  • 176.Ried J.S., Baurecht H., Stuckler F., Krumsiek J., Gieger C., Heinrich J., Kabesch M., Prehn C., Peters A., Rodriguez E., et al. Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma. Allergy. 2013;68:629–636. doi: 10.1111/all.12110. [DOI] [PubMed] [Google Scholar]
  • 177.Jung J., Kim S.H., Lee H.S., Choi G.S., Jung Y.S., Ryu D.H., Park H.S., Hwang G.S. Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin. Exp. Allergy. 2013;43:425–433. doi: 10.1111/cea.12089. [DOI] [PubMed] [Google Scholar]
  • 178.Chang C., Guo Z.G., He B., Yao W.Z. Metabolic alterations in the sera of Chinese patients with mild persistent asthma: A GC-MS-based metabolomics analysis. Acta Pharmacol. Sin. 2015;36:1356–1366. doi: 10.1038/aps.2015.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Reinke S.N., Gallart-Ayala H., Gomez C., Checa A., Fauland A., Naz S., Kamleh M.A., Djukanovic R., Hinks T.S., Wheelock C.E. Metabolomics analysis identifies different metabotypes of asthma severity. Eur. Respir. J. 2017;49 doi: 10.1183/13993003.01740-2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Pang Z., Wang G., Wang C., Zhang W., Liu J., Wang F. Serum Metabolomics Analysis of Asthma in Different Inflammatory Phenotypes: A Cross-Sectional Study in Northeast China. BioMed Res. Int. 2018;2018:2860521. doi: 10.1155/2018/2860521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Bochenek G., Nizankowska E., Gielicz A., Swierczynska M., Szczeklik A. Plasma 9alpha,11beta-PGF2, a PGD2 metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax. 2004;59:459–464. doi: 10.1136/thx.2003.013573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Comhair S.A., McDunn J., Bennett C., Fettig J., Erzurum S.C., Kalhan S.C. Metabolomic Endotype of Asthma. J. Immunol. 2015;195:643–650. doi: 10.4049/jimmunol.1500736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Jiang T., Dai L., Li P., Zhao J., Wang X., An L., Liu M., Wu S., Wang Y., Peng Y., et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021;1866:158853. doi: 10.1016/j.bbalip.2020.158853. [DOI] [PubMed] [Google Scholar]
  • 184.Liu Y., Zheng J., Zhang H.P., Zhang X., Wang L., Wood L., Wang G. Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study. Allergy Asthma Immunol. Res. 2018;10:628–647. doi: 10.4168/aair.2018.10.6.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Loureiro C.C., Duarte I.F., Gomes J., Carrola J., Barros A.S., Gil A.M., Bousquet J., Bom A.T., Rocha S.M. Urinary metabolomic changes as a predictive biomarker of asthma exacerbation. J. Allergy Clin. Immunol. 2014;133:261–263.e5. doi: 10.1016/j.jaci.2013.11.004. [DOI] [PubMed] [Google Scholar]
  • 186.Loureiro C.C., Oliveira A.S., Santos M., Rudnitskaya A., Todo-Bom A., Bousquet J., Rocha S.M. Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. Allergy. 2016;71:1362–1365. doi: 10.1111/all.12935. [DOI] [PubMed] [Google Scholar]
  • 187.Kolmert J., Gomez C., Balgoma D., Sjodin M., Bood J., Konradsen J.R., Ericsson M., Thorngren J.O., James A., Mikus M., et al. Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. Am. J. Respir. Crit. Care Med. 2021;203:37–53. doi: 10.1164/rccm.201909-1869OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Wheelock C.E., Goss V.M., Balgoma D., Nicholas B., Brandsma J., Skipp P.J., Snowden S., Burg D., D’Amico A., Horvath I., et al. Application of ‘omics technologies to biomarker discovery in inflammatory lung diseases. Eur. Respir. J. 2013;42:802–825. doi: 10.1183/09031936.00078812. [DOI] [PubMed] [Google Scholar]
  • 189.Ibrahim B., Marsden P., Smith J.A., Custovic A., Nilsson M., Fowler S.J. Breath metabolomic profiling by nuclear magnetic resonance spectroscopy in asthma. Allergy. 2013;68:1050–1056. doi: 10.1111/all.12211. [DOI] [PubMed] [Google Scholar]
  • 190.Ntontsi P., Ntzoumanika V., Loukides S., Benaki D., Gkikas E., Mikros E., Bakakos P. EBC metabolomics for asthma severity. J. Breath Res. 2020;14:036007. doi: 10.1088/1752-7163/ab9220. [DOI] [PubMed] [Google Scholar]
  • 191.Motta A., Paris D., D’Amato M., Melck D., Calabrese C., Vitale C., Stanziola A.A., Corso G., Sofia M., Maniscalco M. NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J. Proteome Res. 2014;13:6107–6120. doi: 10.1021/pr5010407. [DOI] [PubMed] [Google Scholar]
  • 192.Sinha A., Desiraju K., Aggarwal K., Kutum R., Roy S., Lodha R., Kabra S.K., Ghosh B., Sethi T., Agrawal A. Exhaled breath condensate metabolome clusters for endotype discovery in asthma. J. Transl. Med. 2017;15:262. doi: 10.1186/s12967-017-1365-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Maniscalco M., Paris D., Melck D.J., D’Amato M., Zedda A., Sofia M., Stellato C., Motta A. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J. Allergy Clin. Immunol. 2017;139:1536–1547.e5. doi: 10.1016/j.jaci.2016.08.038. [DOI] [PubMed] [Google Scholar]
  • 194.Snowden S., Dahlen S.E., Wheelock C.E. Application of metabolomics approaches to the study of respiratory diseases. Bioanalysis. 2012;4:2265–2290. doi: 10.4155/bio.12.218. [DOI] [PubMed] [Google Scholar]
  • 195.Horgan R.P., Kenny L.C. Omic technologies: Genomics, transcriptomics, proteomics and metabolomics. Obestetrician Gynaecol. 2011;13:189–195. doi: 10.1576/toag.13.3.189.27672. [DOI] [Google Scholar]
  • 196.Hodge S.E. Linkage analysis versus association analysis: Distinguishing between two models that explain disease-marker associations. Am. J. Hum. Genet. 1993;53:367–384. [PMC free article] [PubMed] [Google Scholar]
  • 197.Donovan B.M., Bastarache L., Turi K.N., Zutter M.M., Hartert T.V. The current state of omics technologies in the clinical management of asthma and allergic diseases. Ann. Allergy Asthma Immunol. 2019;123:550–557. doi: 10.1016/j.anai.2019.08.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Hegde P.S., White I.R., Debouck C. Interplay of transcriptomics and proteomics. Curr. Opin. Biotechnol. 2003;14:647–651. doi: 10.1016/j.copbio.2003.10.006. [DOI] [PubMed] [Google Scholar]
  • 199.Ivanova O., Richards L.B., Vijverberg S.J., Neerincx A.H., Sinha A., Sterk P.J., Maitland-van der Zee A.H. What did we learn from multiple omics studies in asthma? Allergy. 2019;74:2129–2145. doi: 10.1111/all.13833. [DOI] [PubMed] [Google Scholar]
  • 200.Abdel-Aziz M.I., Neerincx A.H., Vijverberg S.J., Kraneveld A.D., Maitland-van der Zee A.H. Omics for the future in asthma. Semin. Immunopathol. 2020;42:111–126. doi: 10.1007/s00281-019-00776-x. [DOI] [PubMed] [Google Scholar]
  • 201.Teran L.M., Montes-Vizuet R., Li X., Franz T. Respiratory proteomics: From descriptive studies to personalized medicine. J. Proteome Res. 2015;14:38–50. doi: 10.1021/pr500935s. [DOI] [PubMed] [Google Scholar]
  • 202.Neerincx A.H., Vijverberg S.J.H., Bos L.D.J., Brinkman P., van der Schee M.P., de Vries R., Sterk P.J., Maitland-van der Zee A.H. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr. Pulmonol. 2017;52:1616–1627. doi: 10.1002/ppul.23785. [DOI] [PubMed] [Google Scholar]
  • 203.Wu G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010;1:31–37. doi: 10.3945/an.110.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Wu G. Amino acids: Metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17. doi: 10.1007/s00726-009-0269-0. [DOI] [PubMed] [Google Scholar]
  • 205.Ricciardolo F.L., Sterk P.J., Gaston B., Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev. 2004;84:731–765. doi: 10.1152/physrev.00034.2003. [DOI] [PubMed] [Google Scholar]
  • 206.Folkerts G., Kloek J., Muijsers R.B., Nijkamp F.P. Reactive nitrogen and oxygen species in airway inflammation. Eur. J. Pharmacol. 2001;429:251–262. doi: 10.1016/S0014-2999(01)01324-3. [DOI] [PubMed] [Google Scholar]
  • 207.Xu W., Comhair S.A.A., Janocha A.J., Lara A., Mavrakis L.A., Bennett C.D., Kalhan S.C., Erzurum S.C. Arginine metabolic endotypes related to asthma severity. PLoS ONE. 2017;12:e0183066. doi: 10.1371/journal.pone.0183066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Xu W., Ghosh S., Comhair S.A., Asosingh K., Janocha A.J., Mavrakis D.A., Bennett C.D., Gruca L.L., Graham B.B., Queisser K.A., et al. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J. Clin. Investig. 2016;126:2465–2481. doi: 10.1172/JCI82925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Asosingh K., Lauruschkat C.D., Alemagno M., Frimel M., Wanner N., Weiss K., Kessler S., Meyers D.A., Bennett C., Xu W., et al. Arginine metabolic control of airway inflammation. JCI Insight. 2020;5 doi: 10.1172/jci.insight.127801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Zehethofer N., Bermbach S., Hagner S., Garn H., Muller J., Goldmann T., Lindner B., Schwudke D., Konig P. Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases. Chromatographia. 2015;78:403–413. doi: 10.1007/s10337-014-2787-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Wendell S.G., Baffi C., Holguin F. Fatty acids, inflammation, and asthma. J. Allergy Clin. Immunol. 2014;133:1255–1264. doi: 10.1016/j.jaci.2013.12.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Miyata J., Arita M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015;64:27–34. doi: 10.1016/j.alit.2014.08.003. [DOI] [PubMed] [Google Scholar]
  • 213.Park H., Choi Y., Jung C.G., Park H.S. Potential Biomarkers for NSAID-Exacerbated Respiratory Disease. Mediat. Inflamm. 2017;2017:8160148. doi: 10.1155/2017/8160148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Ammit A.J., Hastie A.T., Edsall L.C., Hoffman R.K., Amrani Y., Krymskaya V.P., Kane S.A., Peters S.P., Penn R.B., Spiegel S., et al. Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J. 2001;15:1212–1214. doi: 10.1096/fj.00-0742fje. [DOI] [PubMed] [Google Scholar]
  • 215.Kim S.H., Jung H.W., Kim M., Moon J.Y., Ban G.Y., Kim S.J., Yoo H.J., Park H.S. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy. 2020;75:1991–2004. doi: 10.1111/all.14236. [DOI] [PubMed] [Google Scholar]
  • 216.Bahlas S., Damiati L.A., Al-Hazmi A.S., Pushparaj P.N. Decoding the Role of Sphingosine-1-Phosphate in Asthma and Other Respiratory System Diseases Using Next Generation Knowledge Discovery Platforms Coupled With Luminex Multiple Analyte Profiling Technology. Front. Cell Dev. Biol. 2020;8:444. doi: 10.3389/fcell.2020.00444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Trinh H.K., Kim S.C., Cho K., Kim S.J., Ban G.Y., Yoo H.J., Cho J.Y., Park H.S., Kim S.H. Exploration of the Sphingolipid Metabolite, Sphingosine-1-phosphate and Sphingosine, as Novel Biomarkers for Aspirin-exacerbated Respiratory Disease. Sci. Rep. 2016;6:36599. doi: 10.1038/srep36599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. [(accessed on 15 May 2021)];2021 Available online: www.ginasthma.org.
  • 219.Pite H., Morais-Almeida M., Rocha S.M. Metabolomics in asthma: Where do we stand? Curr. Opin. Pulm. Med. 2018;24:94–103. doi: 10.1097/MCP.0000000000000437. [DOI] [PubMed] [Google Scholar]
  • 220.Panda L., Gheware A., Rehman R., Yadav M.K., Jayaraj B.S., Madhunapantula S.V., Mahesh P.A., Ghosh B., Agrawal A., Mabalirajan U. Linoleic acid metabolite leads to steroid resistant asthma features partially through NF-kappaB. Sci. Rep. 2017;7:9565. doi: 10.1038/s41598-017-09869-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Mabalirajan U., Rehman R., Ahmad T., Kumar S., Singh S., Leishangthem G.D., Aich J., Kumar M., Khanna K., Singh V.P., et al. Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Sci. Rep. 2013;3:1349. doi: 10.1038/srep01349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Lessard A., Turcotte H., Cormier Y., Boulet L.P. Obesity and asthma: A specific phenotype? Chest. 2008;134:317–323. doi: 10.1378/chest.07-2959. [DOI] [PubMed] [Google Scholar]
  • 223.Peters U., Dixon A.E., Forno E. Obesity and asthma. J. Allergy Clin. Immunol. 2018;141:1169–1179. doi: 10.1016/j.jaci.2018.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Leiria L.O., Martins M.A., Saad M.J. Obesity and asthma: Beyond T(H)2 inflammation. Metabolism. 2015;64:172–181. doi: 10.1016/j.metabol.2014.10.002. [DOI] [PubMed] [Google Scholar]
  • 225.Periyalil H.A., Gibson P.G., Wood L.G. Immunometabolism in obese asthmatics: Are we there yet? Nutrients. 2013;5:3506–3530. doi: 10.3390/nu5093506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Rastogi D., Fraser S., Oh J., Huber A.M., Schulman Y., Bhagtani R.H., Khan Z.S., Tesfa L., Hall C.B., Macian F. Inflammation, metabolic dysregulation, and pulmonary function among obese urban adolescents with asthma. Am. J. Respir. Crit. Care Med. 2015;191:149–160. doi: 10.1164/rccm.201409-1587OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 227.Xie B., Waters M.J., Schirra H.J. Investigating potential mechanisms of obesity by metabolomics. J. BioMed Biotechnol. 2012;2012:805683. doi: 10.1155/2012/805683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Choi S., Snider A.J. Sphingolipids in High Fat Diet and Obesity-Related Diseases. Mediat. Inflamm. 2015;2015:520618. doi: 10.1155/2015/520618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Sturgill J.L., Khosravi M., Allegood J., 2 S.S. Ceramide as a Key Player in Obesity Exacerbated Asthma. Am. J. Respir. Crit. Care Med. 2019;199 doi: 10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A1281. [DOI] [Google Scholar]
  • 230.Choi Y., Kim M., Kim S.J., Yoo H.J., Kim S.H., Park H.S. Metabolic shift favoring C18:0 ceramide accumulation in obese asthma. Allergy. 2020;75:2858–2866. doi: 10.1111/all.14366. [DOI] [PubMed] [Google Scholar]
  • 231.Gowda G.A., Zhang S., Gu H., Asiago V., Shanaiah N., Raftery D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 2008;8:617–633. doi: 10.1586/14737159.8.5.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Checkley W., Deza M.P., Klawitter J., Romero K.M., Klawitter J., Pollard S.L., Wise R.A., Christians U., Hansel N.N. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir. Med. 2016;121:59–66. doi: 10.1016/j.rmed.2016.10.011. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Metabolites are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES