Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Aug 7;26(4):546–567. doi: 10.1007/s12257-020-0374-1

Plant Platforms for Efficient Heterologous Protein Production

Siddhesh B Ghag 1,, Vinayak S Adki 2, Thumballi R Ganapathi 3,, Vishwas A Bapat 4
PMCID: PMC8346785  PMID: 34393545

Abstract

Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.

Keywords: biopharmaceuticals, clinical trials, magnifection, protein, plantibodies, vaccines, therapeutics

Acknowledgements

SBG would like to thank UM-DAE Centre for Excellence in Basic Sciences, Mumbai for constant support and encouragement and Department of Science and Technology (Govt. of India) for DST-INSPIRE Faculty award. VAB thanks National Academy of Sciences, India (NASI) for the honorary scientist fellowship.

Conflict of Interest Authors declare that no conflict of interest exists.

Ethical Statement Neither ethical approval nor informed consent was required for this study.

Footnotes

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Siddhesh B. Ghag, Email: siddhesh.ghag@cbs.ac.in

Thumballi R. Ganapathi, Email: trgana@barc.gov.in

References

  • 1.Mahmoud K. Recombinant protein production: strategic technology and a vital research tool. Res. J. Cell. Mol. Biol. 2007;1:9–22. [Google Scholar]
  • 2.Rai M, Padh H. Expression systems for production of heterologous proteins. Curr. Sci. 2001;80:1121–1128. [Google Scholar]
  • 3.Chen R, Yang S, Zhang L, Zhou Y J. Advanced strategies for production of natural products in yeast. iScience. 2020;23:100879. doi: 10.1016/j.isci.2020.100879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kutyna D R, Borneman A R. Heterologous production of flavour and aroma compounds in Saccharomyces cerevisiae. Genes. 2018;9:326. doi: 10.3390/genes9070326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Levisson M, Araya-Cloutier C, de Bruijn W J C, van der Heide M, Lopez J M S, Daran J M, Vincken J P, Beekwilder J. Toward developing a yeast cell factory for the production of prenylated flavonoids. J. Agric. Food Chem. 2019;67:13478–13486. doi: 10.1021/acs.jafc.9b01367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Burnett M J B, Burnett A C. Therapeutic recombinant protein production in plants: Challenges and opportunities. Plants People Planet. 2019;2:121–132. doi: 10.1002/ppp3.10073. [DOI] [Google Scholar]
  • 7.Abd-Aziz N, Tan B C, Rejab N A, Othman R Y, Khalid N. A new plant expression system for producing pharmaceutical proteins. Mol. Biotechnol. 2020;62:240–251. doi: 10.1007/s12033-020-00242-2. [DOI] [PubMed] [Google Scholar]
  • 8.Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical analysis of the commercial potential of plants for the production of recombinant proteins. Front. Plant Sci. 2019;10:720. doi: 10.3389/fpls.2019.00720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Iyappan G, Omosimua R O, Sathishkumar R. Enhanced Production of therapeutic proteins in plants: Novel expression strategies. pp. 333–351. In: Sathishkumar R, Kumar S R, Hema J, Baskar V, editors. Advances in Plant Transgenics: Methods and Applications. Singapore, Singapore: Springer; 2019. [Google Scholar]
  • 10.Von Schaewen A, Jeong I S, Rips S, Fukudome A, Tolley J, Nagashima Y, Fischer K, Kaulfuerst-Soboll H, Koiwa H. Improved recombinant protein production in Arabidopsis thaliana. Plant Signal Behav. 2018;13:e1486149. doi: 10.1080/15592324.2018.1486149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Walsh G. Biopharmaceutical benchmarks 2014. Nat. Biotechnol. 2014;32:992–1000. doi: 10.1038/nbt.3040. [DOI] [PubMed] [Google Scholar]
  • 12.Ritala A, Häkkinen S T, Schillberg S. Molecular pharming in plants and plant cell cultures: a great future ahead? Pharm. Bioprocess. 2014;2:223–226. doi: 10.4155/pbp.14.21. [DOI] [Google Scholar]
  • 13.Itakura K, Hirose T, Crea R, Riggs A D, Heyneker H L, Bolivar F, Boyer H W. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science. 1977;198:1056–1063. doi: 10.1126/science.412251. [DOI] [PubMed] [Google Scholar]
  • 14.Su X, Schmitz G, Zhang M, Mackie R I, Cann I K O. Heterologous gene expression in filamentous fungi. Adv. Appl. Microbiol. 2012;81:1–61. doi: 10.1016/B978-0-12-394382-8.00001-0. [DOI] [PubMed] [Google Scholar]
  • 15.Nevalainen H, Peterson R. Making recombinant proteins in filamentous fungi- are we expecting too much? Front. Microbiol. 2014;5:75. doi: 10.3389/fmicb.2014.00075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Sijmons P C, Dekker B M, Schrammeijer B, Verwoerd T C, van den Elzen P J, Hoekema A. Production of correctly processed human serum albumin in transgenic plants. Biotechnol. 1990;8:217–221. doi: 10.1038/nbt0390-217. [DOI] [PubMed] [Google Scholar]
  • 17.Dyck M K, Lacroix D, Pothier F, Sirard M A. Making recombinant proteins in animals- different systems, different applications. Trends Biotechnol. 2003;21:394–399. doi: 10.1016/S0167-7799(03)00190-2. [DOI] [PubMed] [Google Scholar]
  • 18.Wurm F M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004;22:1393–1398. doi: 10.1038/nbt1026. [DOI] [PubMed] [Google Scholar]
  • 19.Pillai O, Panchagnula R. Insulin therapies-past, present and future. Drug Discov. Today. 2001;6:1056–1061. doi: 10.1016/S1359-6446(01)01962-6. [DOI] [PubMed] [Google Scholar]
  • 20.Hogue R S, Lee J M, An G. Production of a foreign protein product with genetically modified plant cells. Enzyme Microb. Technol. 1990;12:533–538. doi: 10.1016/0141-0229(90)90071-W. [DOI] [PubMed] [Google Scholar]
  • 21.Nomura T, Ogita S, Kato Y. Rational metabolic-flow switching for the production of exogenous secondary metabolites in bamboo suspension cells. Sci. Rep. 2018;8:13203. doi: 10.1038/s41598-018-31566-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Khatodia S, Khurana S M P. Genetic engineering for plant transgenesis: Focus to pharmaceuticals. In: Barh D, Azevedo V, editors. Omics Technologies and Bio-Engineering: Towards Improving Quality of Life. London, UK: Academic Press; 2018. pp. 71–86. [Google Scholar]
  • 23.Goulet M C, Gaudreau L, Gagné M, Maltais A M, Laliberté A C, Éthier G, Bechtold N, Martel M, D’Aoust M A, Gosselin A, Pepin S, Michaud D. Production of biopharmaceuticals in Nicotiana benthamiana-axillary stem growth as a key determinant of total protein yield. Front Plant Sci. 2019;10:735. doi: 10.3389/fpls.2019.00735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Séveno M, Bardor M, Paccalet T, Gomord V, Lerouge P, Faye L. Glycoprotein sialylation in plants? Nat. Biotechnol. 2004;22:1351–1352. doi: 10.1038/nbt1104-1351. [DOI] [PubMed] [Google Scholar]
  • 25.Strasser R, Altmann F, Mach L, Glössl J, Steinkellner H. Generation of Arabidopsis thaliana plants with complex N-glycans lacking β1,2-linked xylose and core α1,3-linked fucose. FEBS Lett. 2004;561:132–136. doi: 10.1016/S0014-5793(04)00150-4. [DOI] [PubMed] [Google Scholar]
  • 26.Daskalova S M, Radder J E, Cichacz Z A, Olsen S H, Tsaprailis G, Mason H, Lopez L C. Engineering of N. benthamiana L. plants for production of N-acetylgalactosamine-glycosylated proteins-towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation. BMC Biotechnol. 2010;10:62. doi: 10.1186/1472-6750-10-62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Nagels B, Van Damme E J M, Pabst M, Callewaert N, Weterings K. Production of complex multiantennary N-glycans in Nicotiana benthamiana plants. Plant Physiol. 2011;155:1103–1112. doi: 10.1104/pp.110.168773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Castilho A, Neumann L, Daskalova S, Mason H S, Steinkellner H, Altmann F, Strasser R. Engineering of sialylated mucin-type O-glycosylation in plants. J. Biol. Chem. 2012;287:36518–36526. doi: 10.1074/jbc.M112.402685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Strasser R, Altmann F, Steinkellner H. Controlled glycosylation of plant-produced recombinant proteins. Curr. Opin. Biotechnol. 2014;30:95–100. doi: 10.1016/j.copbio.2014.06.008. [DOI] [PubMed] [Google Scholar]
  • 30.Cox K M, Sterling J D, Regan J T, Gasdaska J R, Frantz K K, Peele C G, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli P M, Dickey L F. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat. Biotechnol. 2006;24:1591–1597. doi: 10.1038/nbt1260. [DOI] [PubMed] [Google Scholar]
  • 31.Ling H Y, Pelosi A, Walmsley A M. Current status of plant-made vaccines for veterinary purposes. Expert Rev. Vaccines. 2010;9:971–982. doi: 10.1586/erv.10.87. [DOI] [PubMed] [Google Scholar]
  • 32.Yap Y K, Smith D R. Strategies for the plant-based expression of dengue subunit vaccines. Biotechnol Appl Biochem. 2010;57:47–53. doi: 10.1042/BA20100248. [DOI] [PubMed] [Google Scholar]
  • 33.Sekellick M J, Ferrandino A F, Hopkins D A, Marcus P I. Chicken interferon gene: cloning, expression, and analysis. J. Interferon Res. 1994;14:71–79. doi: 10.1089/jir.1994.14.71. [DOI] [PubMed] [Google Scholar]
  • 34.Digby M R, Lowenthal J W. Cloning and expression of the chicken interferon-gamma gene. J. Interferon Res. 1995;15:939–945. doi: 10.1089/jir.1995.15.939. [DOI] [PubMed] [Google Scholar]
  • 35.Schultz U, Rinderle C, Sekellick M J, Marcus P I, Staeheli P. Recombinant chicken interferon from Escherichia coli and transfected COS cells is biologically active. Eur. J. Biochem. 1995;229:73–76. doi: 10.1111/j.1432-1033.1995.0073l.x. [DOI] [PubMed] [Google Scholar]
  • 36.Arora D, Khanna N. Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies. J. Biotechnol. 1996;52:127–133. doi: 10.1016/S0168-1656(96)01636-7. [DOI] [PubMed] [Google Scholar]
  • 37.Song K D, Lillehoj H S, Choi K D, Zarlenga D, Han J Y. Expression and functional characterization of recombinant chicken interferon-gamma. Vet. Immunol. Immunopathol. 1997;58:321–333. doi: 10.1016/S0165-2427(97)00034-2. [DOI] [PubMed] [Google Scholar]
  • 38.Argyle D J, Harris M, Lawrence C, McBride K, Barron R, McGillivray C, Onions D E. Expression of feline recombinant interferon-γ in baculovirus and demonstration of biological activity. Vet. Immunol. Immunopathol. 1998;64:97–105. doi: 10.1016/S0165-2427(98)00127-5. [DOI] [PubMed] [Google Scholar]
  • 39.Yashiro K, Lowenthal J W, O’Neil T E, Ebisu S, Takagi H, Moore R J. High-level production of recombinant chicken interferon-γ by Brevibacillus choshinensis. Protein Expr. Purif. 2001;23:113–120. doi: 10.1006/prep.2001.1481. [DOI] [PubMed] [Google Scholar]
  • 40.Takehara K, Kamikawa M, Ohnuki N, Nagata T, Nakano A, Yamaguchi D, Yokomizo Y, Nakamura M. High level expression of C-terminal truncated recombinant chicken interferon-γ in baculovirus vector system. J. Vet. Med. Sci. 2002;2:95–100. doi: 10.1292/jvms.64.95. [DOI] [PubMed] [Google Scholar]
  • 41.Wu D, Murakami K, Liu N, Inoshima Y, Yokoyama T, Kokuho T, Inumaru S, Matsumura T, Kondo T, Nakano K, Sentsui H. Expression of biologically active recombinant equine interferon-γ by two different baculovirus gene expression systems using insect cells and silkworm larvae. Cytokine. 2002;2:63–69. doi: 10.1006/cyto.2002.1983. [DOI] [PubMed] [Google Scholar]
  • 42.Wu Y J, Zhao D G, Song L, Xu W Z. Construction of plant expression vector consisting of ChIFN-γ gene and its transient expression. J. Yunnan Univ. (Nat. Sci. Ed). 2008;2008:630–635. [Google Scholar]
  • 43.Leelavathi S, Reddy V S. Chloroplast expression of His-tagged GUS-fusions: a general strategy to overproduce and purify foreign proteins using transplastomic plants as bioreactors. Mol. Breed. 2003;11:49–58. doi: 10.1023/A:1022114427971. [DOI] [Google Scholar]
  • 44.Chen T L, Lin Y L, Lee Y L, Yang N S, Chan M T. Expression of bioactive human interferon-gamma in transgenic rice cell suspension cultures. Transgenic Res. 2004;13:499–510. doi: 10.1007/s11248-004-2376-8. [DOI] [PubMed] [Google Scholar]
  • 45.Sun Y K, Wang Y F, Zhi H D, Liu S W, Wang M, Tong G Z. Construction and characterization of a recombinant Fowlpox virus expressing chicken type II interferon. Chin. J. Agric. Biotechnol. 2005;2:143–148. doi: 10.1079/CJB200558. [DOI] [Google Scholar]
  • 46.Balderas Hernández V E, Paz Maldonado L M T, Medina Rivero E, Barba de la Rosa A P, Jiménez-Bremont J F, Ordoñez Acevedo L G, De León Rodríguez A. Periplasmic expression and recovery of human interferon gamma in Escherichia coli. Protein Expr. Purif. 2008;59:169–174. doi: 10.1016/j.pep.2008.01.019. [DOI] [PubMed] [Google Scholar]
  • 47.Rupa P, Monedero V, Wilkie B N. Expression of bioactive porcine interferon-gamma by recombinant Lactococcus lactis. Vet. Microbiol. 2008;129:197–202. doi: 10.1016/j.vetmic.2007.11.010. [DOI] [PubMed] [Google Scholar]
  • 48.Sareneva T, Cantell K, Pyhälä L, Pirhonen J, Julkunen I. Effect of carbohydrates on the pharmacokinetics of human interferon-γ. J. Interferon Res. 1993;13:267–269. doi: 10.1089/jir.1993.13.267. [DOI] [PubMed] [Google Scholar]
  • 49.Wu Y, Zhao D, Song L, Xu W. Heterologous expression of synthetic chicken IFN-γ in transgenic tobacco plants. Biologia. 2009;64:1115–1122. doi: 10.2478/s11756-009-0203-7. [DOI] [Google Scholar]
  • 50.Soh H S, Chung H Y, Lee H H, Ajjappala H, Jang K, Park J H, Sim J S, Lee G Y, Lee H J, Han Y H, Lim J W, Choi I, Chung I S, Hahn B S. Expression and functional validation of heat-labile enterotoxin B (LTB) and cholera toxin B (CTB) subunits in transgenic rice (Oryza sativa) SpringerPlus. 2015;4:148. doi: 10.1186/s40064-015-0847-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Gao M, Li Y, Xue X, Wang X, Long J. Stable plastid transformation for high-level recombinant protein expression: promises and challenges. J. Biomed. Biotechnol. 2012;2012:158232. doi: 10.1155/2012/158232. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 52.Staub J M, Garcia B, Graves J, Hajdukiewicz P T, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll J A, Spatola L, Ward D, Ye G, Russell D A. High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 2000;18:333–338. doi: 10.1038/73796. [DOI] [PubMed] [Google Scholar]
  • 53.Daniell H, Lee S B, Panchal T, Wiebe P O. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol. 2001;311:1001–1009. doi: 10.1006/jmbi.2001.4921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H. A chloroplast transgenic approach to hyperexpress and purify human serum albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol. J. 2003;1:71–79. doi: 10.1046/j.1467-7652.2003.00008.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Lee S B, Kwon H B, Kwon S J, Park S C, Jeong M J, Han S E, Byun M O, Daniell H. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol. Breed. 2003;11:1–13. doi: 10.1023/A:1022100404542. [DOI] [Google Scholar]
  • 56.Koya V, Moayeri M, Leppla S H, Daniell H. Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infect. Immun. 2005;73:8266–8274. doi: 10.1128/IAI.73.12.8266-8274.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Oey M, Lohse M, Kreikemeyer B, Bock R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 2009;57:436–445. doi: 10.1111/j.1365-313X.2008.03702.x. [DOI] [PubMed] [Google Scholar]
  • 58.De Cosa B, Moar W, Lee S B, Miller M, Daniell H. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 2001;19:71–74. doi: 10.1038/83559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Jeong S W, Jeong W J, Woo J W, Choi D W, Park Y I, Liu J R. Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco. Plant Cell Rep. 2004;22:747–751. doi: 10.1007/s00299-003-0740-4. [DOI] [PubMed] [Google Scholar]
  • 60.Maliga P. Towards plastid transformation in flowering plants. Trends Biotechnol. 1993;11:101–107. doi: 10.1016/0167-7799(93)90059-I. [DOI] [Google Scholar]
  • 61.Daniell H, Khan M S, Allison L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant. Sci. 2002;7:84–91. doi: 10.1016/S1360-1385(01)02193-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Ruhlman T, Verma D, Samson N, Daniell H. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 2010;152:2088–2104. doi: 10.1104/pp.109.152017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Bock R, Khan M S. Taming plastids for a green future. Trends Biotechnol. 2004;22:311–318. doi: 10.1016/j.tibtech.2004.03.005. [DOI] [PubMed] [Google Scholar]
  • 64.Daniell H, Chebolu S, Kumar S, Singleton M, Falconer R. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine. 2005;2:1779–1783. doi: 10.1016/j.vaccine.2004.11.004. [DOI] [PubMed] [Google Scholar]
  • 65.Singh A K, Verma S S, Bansal K C. Plastid transformation in eggplant (Solanum melongena L.) Transgenic Res. 2010;19:113–119. doi: 10.1007/s11248-009-9290-z. [DOI] [PubMed] [Google Scholar]
  • 66.Verma D, Daniell H. Chloroplast vector systems for biotechnology applications. Plant Physiol. 2007;145:1129–1143. doi: 10.1104/pp.107.106690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Fernández-San Millán A, Ortigosa S M, Hervás-Stubbs S, Corral-Martínez P, Seguí-Simarro J M, Gaétan J, Coursaget P, Veramendi J. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic. Plant Biotechnol. J. 2008;6:427–441. doi: 10.1111/j.1467-7652.2008.00338.x. [DOI] [PubMed] [Google Scholar]
  • 68.Lenzi P, Scotti N, Alagna F, Tornesello M L, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro F M, Maliga P, Cardi T. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res. 2008;17:1091–1102. doi: 10.1007/s11248-008-9186-3. [DOI] [PubMed] [Google Scholar]
  • 69.Madesis P, Osathanunkul M, Georgopoulou U, Gisby M F, Mudd E A, Nianiou I, Tsitoura P, Mavromara P, Tsaftaris A, Day A. A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera. J. Biotechnol. 2010;145:377–386. doi: 10.1016/j.jbiotec.2009.12.001. [DOI] [PubMed] [Google Scholar]
  • 70.Youm J W, Jeon J H, Kim H, Min S R, Kim M S, Joung H, Jeong W J, Kim H S. High-level expression of a human β-site APP cleaving enzyme in transgenic tobacco chloroplasts and its immunogenicity in mice. Transgenic Res. 2010;19:1099–1108. doi: 10.1007/s11248-010-9383-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv. Tech. Biol. Med. 2013;1:103. doi: 10.4172/2379-1764.1000103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J. Vis. Exp. 2013;77:e50521. doi: 10.3791/50521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Wagner B, Fuchs H, Adhami F, Ma Y, Scheiner O, Breiteneder H. Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana. Methods. 2004;32:227–234. doi: 10.1016/j.ymeth.2003.08.005. [DOI] [PubMed] [Google Scholar]
  • 74.Lico C, Chen Q, Santi L. Viral vectors for production of recombinant proteins in plants. J. Cell. Physiol. 2008;216:366–377. doi: 10.1002/jcp.21423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Gleba Y, Klimyuk V, Marillonnet S. Magnifectiona new platform for expressing recombinant vaccines in plants. Vaccine. 2005;23:2042–2048. doi: 10.1016/j.vaccine.2005.01.006. [DOI] [PubMed] [Google Scholar]
  • 76.Carlsson M L R, Kanagarajan S, Bülow L, Zhu H L. Plant based production of myoglobin — a novel source of the muscle heme-protein. Sci. Rep. 2020;10:920. doi: 10.1038/s41598-020-57565-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Pogue G P, Lindbo J A, Garger S J, Fitzmaurice W P. Making an ally from an enemy: plant virology and the new agriculture. Annu. Rev. Phytopathol. 2002;40:45–74. doi: 10.1146/annurev.phyto.40.021102.150133. [DOI] [PubMed] [Google Scholar]
  • 78.Yusibov V, Streatfield S J, Kushnir N. Clinical development of plant-produced recombinant pharmaceuticals: vaccines, antibodies and beyond. Hum. Vaccin. 2011;7:313–321. doi: 10.4161/hv.7.3.14207. [DOI] [PubMed] [Google Scholar]
  • 79.Gleba Y, Marillonnet S, Klimyuk V. Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr. Opin. Plant Biol. 2004;7:182–188. doi: 10.1016/j.pbi.2004.01.003. [DOI] [PubMed] [Google Scholar]
  • 80.Fujiki M, Kaczmarczyk J F, Yusibov V, Rabindran S. Development of a new cucumber mosaic virus-based plant expression vector with truncated 3a movement protein. Virology. 2008;381:136–142. doi: 10.1016/j.virol.2008.08.022. [DOI] [PubMed] [Google Scholar]
  • 81.Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H. A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol. Bioeng. 2009;103:706–714. doi: 10.1002/bit.22299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Plesha M A, Huang T K, Dandekar A M, Falk B W, McDonald K A. High-level transient production of a heterologous protein in plants by optimizing induction of a chemically inducible viral amplicon expression system. Biotechnol. Prog. 2007;23:1277–1285. doi: 10.1021/bp070238s. [DOI] [PubMed] [Google Scholar]
  • 83.Musiychuk K, Stephenson N, Bi H, Farrance C E, Orozovic G, Brodelius M, Brodelius P, Horsey A, Ugulava N, Shamloul A M, Mett V, Rabindran S, Streatfield S J, Yusibov V. A launch vector for the production of vaccine antigens in plants. Influenza Other Respir. Viruses. 2007;1:19–25. doi: 10.1111/j.1750-2659.2006.00005.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Shoji Y, Bi H, Musiychuk K, Rhee A, Horsey A, Roy G, Green B, Shamloul M, Farrance C E, Taggart B, Mytle N, Ugulava N, Rabindran S, Mett V, Chichester J A, Yusibov V. Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza. Vaccine. 2009;27:1087–1092. doi: 10.1016/j.vaccine.2008.11.108. [DOI] [PubMed] [Google Scholar]
  • 85.Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y. In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA. 2004;101:6852–6857. doi: 10.1073/pnas.0400149101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Santi L, Giritch A, Roy C J, Marillonnet S, Klimyuk V, Gleba Y, Webb R, Arntzen C J, Mason H S. Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc. Natl. Acad. Sci. USA. 2006;103:861–866. doi: 10.1073/pnas.0510014103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Huang Z, Santi L, LePore K, Kilbourne J, Arntzen C J, Mason H S. Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine. 2006;24:2506–2513. doi: 10.1016/j.vaccine.2005.12.024. [DOI] [PubMed] [Google Scholar]
  • 88.Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, Arntzen C J, Chen Q, Mason H S. An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine. 2008;26:1846–1854. doi: 10.1016/j.vaccine.2008.01.053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti J B, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly M H, Velasco J, Pettitt J, Olinger G G, Whaley K, Xu B, Strong J E, Zeitlin L, Kobinger G P. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature. 2014;514:47–53. doi: 10.1038/nature13777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Gils M, Kandzia R, Marillonnet S, Klimyuk V, Gleba Y. High-yield production of authentic human growth hormone using a plant virus-based expression system. Plant Biotechnol. J. 2005;3:613–620. doi: 10.1111/j.1467-7652.2005.00154.x. [DOI] [PubMed] [Google Scholar]
  • 91.Tregoning J S, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg J, van Wijk K J, Dougan G, Maliga P. Expression of tetanus toxin fragment C in tobacco chloroplasts. Nucleic Acids Res. 2003;31:1174–1179. doi: 10.1093/nar/gkg221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Ruhlman T, Ahangari R, Devine A, Samsam M, Daniell H. Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts-oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol. J. 2007;5:495–510. doi: 10.1111/j.1467-7652.2007.00259.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Nityanandam R. Expression and Functional Evaluation of Exendin 4 Fused to Cholera Toxin B Subunit in Tobacco Chloroplast to Treat Type 2 Diabetes. Orlando, FL, USA: University of Central Florida; 2011. [Google Scholar]
  • 94.Rosales-Mendoza S, Soria-Guerra R E, López-Revilla R, Moreno-Fierros L, Alpuche-Solís A G. Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep. 2008;27:79–84. doi: 10.1007/s00299-007-0439-z. [DOI] [PubMed] [Google Scholar]
  • 95.Arlen P A, Singleton M, Adamovicz J J, Ding Y, Davoodi-Semiromi A, Daniell H. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts. Infect. Immun. 2008;76:3640–3650. doi: 10.1128/IAI.00050-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Zhou Y X, Lee M Y T, Ng J M H, Chye M L, Yip W K, Zee S Y, Lam E. A truncated hepatitis E virus ORF2 protein expressed in tobacco plastids is immunogenic in mice. World J. Gastroenterol. 2006;12:306–312. doi: 10.3748/wjg.v12.i2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Shao H B, He D M, Qian K X, Shen G F, Su Z L. The expression of classical swine fever virus structural protein E2 gene in tobacco chloroplasts for applying chloroplasts as bioreactors. C. R. Biol. 2008;331:179–184. doi: 10.1016/j.crvi.2007.12.007. [DOI] [PubMed] [Google Scholar]
  • 98.Chebolu S, Daniell H. Stable expression of Gal/GalNAc lectin of Entamoeba histolytica in transgenic chloroplasts and immunogenicity in mice towards vaccine development for amoebiasis. Plant Biotechnol. J. 2007;5:230–239. doi: 10.1111/j.1467-7652.2006.00234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh N D, Banks R K, Chakrabarti D, Daniell H. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol. J. 2010;8:223–242. doi: 10.1111/j.1467-7652.2009.00479.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Lakshmi P S, Verma D, Yang X, Lloyd B, Daniell H. Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS One. 2013;8:e54708. doi: 10.1371/journal.pone.0054708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Lee C, Kim H H, Choi K M, Chung K W, Choi Y K, Jang M J, Kim T S, Chung N J, Rhie H G, Lee H S, Sohn Y, Kim H, Lee S J, Lee H W. Murine immune responses to a Plasmodium vivax-derived chimeric recombinant protein expressed in Brassica napus. Malar. J. 2011;10:106. doi: 10.1186/1475-2875-10-106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki A B. A plant-derived edible vaccine against hepatitis B virus. FASEB J. 1999;13:1796–1799. doi: 10.1096/fasebj.13.13.1796. [DOI] [PubMed] [Google Scholar]
  • 103.Lai H, He J, Engle M, Diamond M S, Chen Q. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol. J. 2012;10:95–104. doi: 10.1111/j.1467-7652.2011.00649.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Dong J L, Liang B G, Jin Y S, Zhang W J, Wang T. Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology. 2005;339:153–163. doi: 10.1016/j.virol.2005.06.004. [DOI] [PubMed] [Google Scholar]
  • 105.Wigdorovitz A, Carrillo C, Dus Santos M J, Trono K, Peralta A, Gómez M C, Ríos R D, Franzone P M, Sadir A M, Escribano J M, Borca M V. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology. 1999;255:347–353. doi: 10.1006/viro.1998.9590. [DOI] [PubMed] [Google Scholar]
  • 106.Aguirreburualde M S P, Gómez M C, Ostachuk A, Wolman F, Albanesi G, Pecora A, Odeon A, Ardila F, Escribano J M, Dus Santos M J, Wigdorovitz A. Efficacy of a BVDV subunit vaccine produced in alfalfa transgenic plants. Vet. Immunol. Immunopathol. 2013;151:315–324. doi: 10.1016/j.vetimm.2012.12.004. [DOI] [PubMed] [Google Scholar]
  • 107.Vianna, G., E. Rech, and N. da Cunha (2011) Expression and accumulation of heterologous molecules in the protein storage vacuoles of soybean seeds. Protoc. Exch. doi:10.1038/protex.2011.206.
  • 108.Hudson L C, Bost K L, Piller K J. Optimizing recombinant protein expression in soybean. In: Sudaric A, editor. Soybean — Molecular Aspects of Breeding. Rijeka, Croatia: InTech Open; 2011. pp. 19–42. [Google Scholar]
  • 109.Oakes J L, Bost K L, Piller K J. Stability of a soybean seed-derived vaccine antigen following long-term storage, processing and transport in the absence of a cold chain. J. Sci. Food Agric. 2009;89:2191–2199. doi: 10.1002/jsfa.3705. [DOI] [Google Scholar]
  • 110.Cunha N B, Araújo A C G, Leite A, Murad A M, Vianna G R, Rech E L. Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds. Genet. Mol. Res. 2010;9:1163–1170. doi: 10.4238/vol9-2gmr849. [DOI] [PubMed] [Google Scholar]
  • 111.Moravec T, Schmidt M A, Herman E M, Woodford-Thomas T. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine. 2007;25:1647–1657. doi: 10.1016/j.vaccine.2006.11.010. [DOI] [PubMed] [Google Scholar]
  • 112.De Jaeger G, Angenon G, Depicker A. Exceptionally high heterologous protein levels in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Commun. Agric. Appl. Biol. Sci. 2003;68:359–366. [PubMed] [Google Scholar]
  • 113.De Jaeger G, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A, Depicker A, Angenon G. Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat. Biotechnol. 2002;20:1265–1268. doi: 10.1038/nbt755. [DOI] [PubMed] [Google Scholar]
  • 114.Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F, Colanesi S, Hillmer S, Robinson D G, Van Lerberge E, Terryn N, Van Montagu M, Liang M, Depicker A, De Jaeger G. Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc. Natl. Acad. Sci. USA. 2007;104:1430–1435. doi: 10.1073/pnas.0609997104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Piron R, De Koker S, De Paepe A, Goossens J, Grooten J, Nauwynck H, Depicker A. Boosting in planta production of antigens derived from the porcine reproductive and respiratory syndrome virus (PRRSV) and subsequent evaluation of their immunogenicity. PLoS One. 2014;9:e91386. doi: 10.1371/journal.pone.0091386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.He X, Galpin J D, Tropak M B, Mahuran D, Haselhorst T, von Itzstein M, Kolarich D, Packer N H, Miao Y, Jiang L, Grabowski G A, Clarke L A, Kermode A R. Production of active human glucocerebrosidase in seeds of Arabidopsis thaliana complex-glycan-deficient (cgl) plants. Glycobiology. 2012;22:492–503. doi: 10.1093/glycob/cwr157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Moeller L, Taylor-Vokes R, Fox S, Gan Q, Johnson L, Wang K. Wet-milling transgenic maize seed for fraction enrichment of recombinant subunit vaccine. Biotechnol. Prog. 2010;26:458–465. doi: 10.1002/btpr.326. [DOI] [PubMed] [Google Scholar]
  • 118.Naqvi S, Ramessar K, Farré G, Sabalza M, Miralpeix B, Twyman R M, Capell T, Zhu C, Christou P. Highvalue products from transgenic maize. Biotechnol. Adv. 2011;29:40–53. doi: 10.1016/j.biotechadv.2010.08.009. [DOI] [PubMed] [Google Scholar]
  • 119.Streatfield S J, Mayor J M, Barker D K, Brooks C, Lamphear B J, Woodard S L, Beifuss K K, Vicuna D V, Massey L A, Horn M E, Delaney D E, Nikolov Z L, Hood E E, Jilka J M, Howard J A. Development of an edible subunit vaccine in corn against enterotoxigenic strains of Escherichia coli. In Vitro Cell Dev. Biol. Plant. 2002;38:11–17. doi: 10.1079/IVP2001247. [DOI] [Google Scholar]
  • 120.Chikwamba R, Cunnick J, Hathaway D, McMurray J, Mason H, Wang K. A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT) Transgenic Res. 2002;11:479–493. doi: 10.1023/A:1020393426750. [DOI] [PubMed] [Google Scholar]
  • 121.Lamphear B J, Jilka J M, Kesl L, Welter M, Howard J A, Streatfield S J. A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine. 2004;22:2420–2424. doi: 10.1016/j.vaccine.2003.11.066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Streatfield S J. Oral hepatitis B vaccine candidates produced and delivered in plant material. Immunol. Cell Biol. 2005;83:257–262. doi: 10.1111/j.1440-1711.2005.01335.x. [DOI] [PubMed] [Google Scholar]
  • 123.Farinas C S, Leite A, Miranda E A. Recombinant human proinsulin from transgenic corn endosperm: solvent screening and extraction studies. Braz. J. Chem. Eng. 2007;24:315–323. doi: 10.1590/S0104-66322007000300002. [DOI] [Google Scholar]
  • 124.Karaman S, Unnick J, Wang K. Expression of the cholera toxin B subunit (CT-B) in maize seeds and a combined mucosal treatment against cholera and traveler’s diarrhea. Plant Cell Rep. 2012;31:527–537. doi: 10.1007/s00299-011-1146-3. [DOI] [PubMed] [Google Scholar]
  • 125.He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, Shen L, Wang H, Li J, Lin Q, Sun Y, Li H, Zhu Y, Yang D. Large-scale production of functional human serum albumin from transgenic rice seeds. Proc. Nat. Acad. Sci. USA. 2011;108:19078–19083. doi: 10.1073/pnas.1109736108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R. Cereal crops as viable production and storage systems for pharmaceutical ScFv antibodies. Plant. Mol. Biol. 2000;42:583–590. doi: 10.1023/A:1006301519427. [DOI] [PubMed] [Google Scholar]
  • 127.Fujiwara Y, Aiki Y, Yang L, Takaiwa F, Kosaka A, Tsuji N M, Shiraki K, Sekikawa K. Extraction and purification of human interleukin-10 from transgenic rice seeds. Protein Expr. Purif. 2010;72:125–130. doi: 10.1016/j.pep.2010.02.008. [DOI] [PubMed] [Google Scholar]
  • 128.Takaiwa F, Yang L, Takagi H, Maruyama N, Wakasa Y, Ozawa K, Hiroi T. Development of rice-seed-based oral allergy vaccines containing hypoallergenic Japanese cedar pollen allergen derivatives for immunotherapy. J. Agric. Food Chem. 2019;67:13127–13138. doi: 10.1021/acs.jafc.9b05421. [DOI] [PubMed] [Google Scholar]
  • 129.Wakasa Y, Takagi H, Watanabe N, Kitamura N, Fujiwara Y, Ogo Y, Hayashi S, Yang L, Ohta M, Thet Tin W W, Sekikawa K, Takano M, Ozawa K, Hiroi T, Takaiwa F. Concentrated protein body product derived from rice endosperm as an oral tolerogen for allergen-specific immunotherapy-A new mucosal vaccine formulation against Japanese cedar pollen allergy. PLoS One. 2015;10:e0120209. doi: 10.1371/journal.pone.0120209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Wakasa Y, Takagi H, Hirose S, Yang L, Saeki M, Nishimura T, Kaminuma O, Hiroi T, Takaiwa F. Oral immunotherapy with transgenic rice seed containing destructed Japanese cedar pollen allergens, Cry j 1 and Cry j 2, against Japanese cedar pollinosis. Plant Biotechnol. J. 2013;11:66–76. doi: 10.1111/pbi.12007. [DOI] [PubMed] [Google Scholar]
  • 131.Hernández A, López A, Ceballo Y, Rosabal L, Rosabal Y, Tiel K, Pérez M, González E M, Ramos O, Enríquez G. High-level production and aggregation of hepatitis B surface antigen in transgenic tobacco seeds. Biotecnol. Apl. 2013;30:97–100. [Google Scholar]
  • 132.Mohammadzadeh S, Roohvand F, Ajdary S, Ehsani P, Hatef Salmanian A. Heterologous expression of hepatitis C virus core protein in oil seeds of Brassica napus L. Jundishapur J. Microbiol. 2015;8:e25462. doi: 10.5812/jjm.25462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Yang L, Tada Y, Yamamoto M P, Zhao H, Yoshikawa M, Takaiwa F. A transgenic rice seed accumulating an anti-hypertensive peptide reduces the blood pressure of spontaneously hypertensive rats. FEBS Lett. 2006;580:3315–3320. doi: 10.1016/j.febslet.2006.04.092. [DOI] [PubMed] [Google Scholar]
  • 134.Alvarez M L, Pinyerd H L, Crisantes J D, Rigano M M, Pinkhasov J, Walmsley A M, Mason H S, Cardineau G A. Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine. 2006;24:2477–2490. doi: 10.1016/j.vaccine.2005.12.057. [DOI] [PubMed] [Google Scholar]
  • 135.Soria-Guerra R E, Rosales-Mendoza S, Márquez-Mercado C, López-Revilla R, Castillo-Collazo R, Alpuche-Solís A G. Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep. 2007;26:961–968. doi: 10.1007/s00299-007-0306-y. [DOI] [PubMed] [Google Scholar]
  • 136.Loc N H, Long D T, Kim T G, Yang M S. Expression of Escherichia coli heat-labile enterotoxin B subunit in transgenic tomato (Solanum lycopersicum L.) fruit. Czech J. Genet. Plant Breed. 2014;50:26–31. doi: 10.17221/77/2013-CJGPB. [DOI] [Google Scholar]
  • 137.McGarvey P B, Hammond J, Dienelt M M, Hooper D C, Fu Z F, Dietzschold B, Koprowski H, Michaels F H. Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (N Y). 1995;13:1484–1487. doi: 10.1038/nbt1295-1484. [DOI] [PubMed] [Google Scholar]
  • 138.Sandhu J S, Krasnyanski S F, Domier L L, Korban S S, Osadjan M D, Buetow D E. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 2000;9:127–135. doi: 10.1023/A:1008979525909. [DOI] [PubMed] [Google Scholar]
  • 139.Ma Y, Lin S Q, Gao Y, Li M, Luo W X, Zhang J, Xia N S. Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products. World J. Gastroenterol. 2003;9:2211–2215. doi: 10.3748/wjg.v9.i10.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Saldaña S, Esquivel Guadarrama F, Olivera-Flores Tde J, Arias N, López S, Arias C, Ruiz-Medrano R, Mason H, Mor T, Richter L, Arntzen C J, Gómez Lim M A. Production of rotavirus-like particles in tomato (Lycopersicon esculentum L.) fruit by expression of capsid proteins VP2 and VP6 and immunological studies. Viral Immunol. 2006;19:42–53. doi: 10.1089/vim.2006.19.42. [DOI] [PubMed] [Google Scholar]
  • 141.Shchelkunov S N, Salyaev R K, Pozdnyakov S G, Rekoslavskaya N I, Nesterov A E, Ryzhova T S, Sumtsova V M, Pakova N V, Mishutina U O, Kopytina T V, Hammond R W. Immunogenicity of a novel, bivalent, plant-based oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol. Lett. 2006;28:959–967. doi: 10.1007/s10529-006-9028-4. [DOI] [PubMed] [Google Scholar]
  • 142.Zhang X, Buehner N A, Hutson A M, Estes M K, Mason H S. Tomato is a highly effective vehicle for expression and oral immunization with Norwalk virus capsid protein. Plant Biotechnol. J. 2006;4:419–432. doi: 10.1111/j.1467-7652.2006.00191.x. [DOI] [PubMed] [Google Scholar]
  • 143.Lou X M, Yao Q H, Zhang Z, Peng R H, Xiong A S, Wang H K. Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clin. Vaccine Immunol. 2007;14:464–469. doi: 10.1128/CVI.00321-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Paz de la Rosa G, Monroy-García A, de L. Mora-García M, Peña C G R, Hernández-Montes J, Weiss-Steider B, Gómez-Lim M A. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol. J. 2009;6:2. doi: 10.1186/1743-422X-6-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Hirai T, Kim Y W, Kato K, Hiwasa-Tanase K, Ezura H. Uniform accumulation of recombinant miraculin protein in transgenic tomato fruit using a fruit-ripening-specific E8 promoter. Transgenic Res. 2011;20:1285–1292. doi: 10.1007/s11248-011-9495-9. [DOI] [PubMed] [Google Scholar]
  • 146.Kumar G B, Ganapathi T R, Revathi C J, Srinivas L, Bapat V A. Expression of hepatitis B surface antigen in transgenic banana plants. Planta. 2005;222:484–493. doi: 10.1007/s00425-005-1556-y. [DOI] [PubMed] [Google Scholar]
  • 147.Renuga G, Saravanan R, Babu Thandapani A, Arumugam K R. Expression of Cholera toxin B subunit in Banana callus culture. J. Pharm. Sci. Res. 2010;2:26–33. [Google Scholar]
  • 148.Rybicki E P. Third international conference on plant-based vaccines and antibodies. Expert. Rev. Vaccines. 2009;8:1151–1155. doi: 10.1586/erv.09.85. [DOI] [PubMed] [Google Scholar]
  • 149.Tabayashi N, Matsumura T. Forefront study of plant biotechnology for practical use: development of oral drug for animal derived from transgenic strawberry. Soc. Biotechnol. J. Japan. 2014;92:537–539. [Google Scholar]
  • 150.Hiwasa-Tanase K, Ezura H. Molecular breeding to create optimized crops: from genetic manipulation to potential applications in plant factories. Front. Plant Sci. 2016;7:539. doi: 10.3389/fpls.2016.00539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Thanavala Y, Mahoney M, Pal S, Scott A, Richter L, Natarajan N, Goodwin P, Arntzen C J, Mason H S. Immunogenicity in humans of an edible vaccine for hepatitis B. Proc. Natl. Acad. Sci. USA. 2005;102:3378–3382. doi: 10.1073/pnas.0409899102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Kim T W, Goo Y M, Lee C H, Lee B H, Bae J M, Lee S W. The sweet potato ADP-glucose pyrophosphorylase gene (ibAGP1) promoter confers high-level expression of the GUS reporter gene in the potato tuber. C. R. Biol. 2009;332:876–885. doi: 10.1016/j.crvi.2009.07.002. [DOI] [PubMed] [Google Scholar]
  • 153.Mason H S, Haq T A, Clements J D, Arntzen C J. Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LTB gene. Vaccine. 1998;16:1336–1343. doi: 10.1016/S0264-410X(98)80020-0. [DOI] [PubMed] [Google Scholar]
  • 154.Arakawa T, Chong D K, Langridge W H. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat. Biotechnol. 1998;16:292–297. doi: 10.1038/nbt0398-292. [DOI] [PubMed] [Google Scholar]
  • 155.Arakawa T, Yu J, Chong D K, Hough J, Engen P C, Langridge W H. A plant-based cholera toxin B subunit-insulin fusion protein protects against the development of autoimmune diabetes. Nat. Biotechnol. 1998;16:934–938. doi: 10.1038/nbt1098-934. [DOI] [PubMed] [Google Scholar]
  • 156.Kong Q, Richter L, Yang Y F, Arntzen C J, Mason H S, Thanavala Y. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc. Natl. Acad. Sci. USA. 2001;98:11539–11544. doi: 10.1073/pnas.191617598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Ohya K, Matsumura T, Ohashi K, Onuma M, Sugimoto C. Expression of two subtypes of human IFN-alpha in transgenic potato plants. J. Interferon Cytokine Res. 2001;21:595–602. doi: 10.1089/10799900152547858. [DOI] [PubMed] [Google Scholar]
  • 158.Fukuzawa N, Tabayashi N, Okinaka Y, Furusawa R, Furuta K, Kagaya U, Matsumura T. Production of biologically active Atlantic salmon interferon in transgenic potato and rice plants. J. Biosci. Bioeng. 2010;110:201–207. doi: 10.1016/j.jbiosc.2010.02.005. [DOI] [PubMed] [Google Scholar]
  • 159.Tacket C O, Mason H S, Losonsky G, Estes M K, Levine M M, Arntzen C J. Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 2000;182:302–305. doi: 10.1086/315653. [DOI] [PubMed] [Google Scholar]
  • 160.Kim Y S, Kang T J, Jang Y S, Yang M S. Expression of neutralizing epitope of porcine epidemic diarrhea virus in potato plants. Plant Cell Tiss. Organ. Cult. 2005;82:125–130. doi: 10.1007/s11240-004-7203-7. [DOI] [Google Scholar]
  • 161.Chen X, Liu J. Generation and immunogenicity of transgenic potato expressing the GP5 protein of porcine reproductive and respiratory syndrome virus. J. Virol. Methods. 2011;173:153–158. doi: 10.1016/j.jviromet.2011.02.001. [DOI] [PubMed] [Google Scholar]
  • 162.Wu Y Z, Li J T, Mou Z R, Fei L, Ni B, Geng M, Jia Z C, Zhou W, Zou L Y, Tang Y. Oral immunization with rotavirus VP7 expressed in transgenic potatoes induced high titers of mucosal neutralizing IgA. Virology. 2003;313:337–342. doi: 10.1016/S0042-6822(03)00280-0. [DOI] [PubMed] [Google Scholar]
  • 163.Zhou J Y, Wu J X, Cheng L Q, Zheng X J, Gong H, Shang S B, Zhou E M. Expression of immunogenic S1 glycoprotein of infectious bronchitis virus in transgenic potatoes. J. Virol. 2003;77:9090–9093. doi: 10.1128/JVI.77.16.9090-9093.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Warzecha H, Mason H S, Lane C, Tryggvesson A, Rybicki E, Williamson A L, Clements J D, Rose R C. Oral immunogenicity of human papillomavirus-like particles expressed in potato. J. Virol. 2003;77:8702–8711. doi: 10.1128/JVI.77.16.8702-8711.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Müller M. Production of human papillomavirus type 16 virus-like particles in transgenic plants. J. Virol. 2003;77:9211–9220. doi: 10.1128/JVI.77.17.9211-9220.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Bříza J, Pavingerova D, Vlasak J, Ludikova V, Niedermeierova H. Production of human papillomavirus type 16 E7 oncoprotein fused with β-glucuronidase in transgenic tomato and potato plants. Biol. Plant. 2007;51:268. doi: 10.1007/s10535-007-0053-5. [DOI] [Google Scholar]
  • 167.Yu J, Langridge W H. A plant-based multicomponent vaccine protects mice from enteric diseases. Nat. Biotechnol. 2001;19:548–552. doi: 10.1038/89297. [DOI] [PubMed] [Google Scholar]
  • 168.Tremblay R, Feng M, Menassa R, Huner N P A, Jevnikar A M, Ma S. High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems. Transgenic Res. 2011;20:345–356. doi: 10.1007/s11248-010-9419-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Chong D K, Roberts W, Arakawa T, Illes K, Bagi G, Slattery C W, Langridge W H. Expression of the human milk protein beta-casein in transgenic potato plants. Trangenic Res. 1997;6:289–296. doi: 10.1023/A:1018410712288. [DOI] [PubMed] [Google Scholar]
  • 170.Chong D K, Langridge W H. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res. 2000;9:71–78. doi: 10.1023/A:1008977630179. [DOI] [PubMed] [Google Scholar]
  • 171.Carter J E, Odumosu O, Langridge W H R. Expression of a ricin toxin B subunit: insulin fusion protein in edible plant tissues. Mol. Biotechnol. 2010;44:90–100. doi: 10.1007/s12033-009-9217-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Chakraborty S, Chakraborty N, Datta A. Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc. Natl. Acad. Sci. USA. 2000;97:3724–3729. doi: 10.1073/pnas.97.7.3724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Permyakova N V, Zagorskaya A A, Belavin P A, Uvarova E A, Nosareva O V, Nesterov A E, Novikovskaya A A, Zav’yalov E L, Moshkin M P, Deineko E V. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice. Biomed. Res. Int. 2015;2015:417565. doi: 10.1155/2015/417565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Rosales-Mendoza S, Soria-Guerra R E, Moreno-Fierros L, Han Y, Alpuche-Solís Á G G, Korban S S. Transgenic carrot tap roots expressing an immunogenic F1-V fusion protein from Yersinia pestis are immunogenic in mice. J. Plant Physiol. 2011;168:174–180. doi: 10.1016/j.jplph.2010.06.012. [DOI] [PubMed] [Google Scholar]
  • 175.Woods R R, Geyer B C, Mor T S. Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol. 2008;8:95. doi: 10.1186/1472-6750-8-95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Aleinein R A, Schafer H, Wink M. Rhizosecretion of the recombinant antimicrobial peptide ranalexin from transgenic tobacco hairy roots. RRJBS. 2015;S1:45–55. [Google Scholar]
  • 177.Lonoce C, Marusic C, Morrocchi E, Salzano A M, Scaloni A, Novelli F, Pioli C, Feeney M, Frigerio L, Donini M. Enhancing the secretion of a glyco-engineered anti-CD20 scFv-Fc antibody in hairy root cultures. Biotechnol. J. 2019;14:e1800081. doi: 10.1002/biot.201800081. [DOI] [PubMed] [Google Scholar]
  • 178.Gurusamy P D, Schafer H, Ramamoorthy S, Wink W. Biologically active recombinant human erythropoietin expressed in hairy root cultures and regenerated plantlets of Nicotiana tabacum L. PLoS One. 2017;12:e0182367. doi: 10.1371/journal.pone.0182367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Liu C, Towler M J, Medrano G, Cramer C L, Weathers P J. Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol. Bioeng. 2009;102:1074–1086. doi: 10.1002/bit.22154. [DOI] [PubMed] [Google Scholar]
  • 180.López E G, Ramírez E G R, Gúzman O G, Calva G C, Ariza-Castolo A, Pérez-Vargas J, Rodríguez H G M. MALDI-TOF characterization of hGH1 produced by hairy root cultures of Brassica oleracea var. italica grown in an airlift with mesh bioreactor. Biotechnol. Prog. 2014;30:161–171. doi: 10.1002/btpr.1829. [DOI] [PubMed] [Google Scholar]
  • 181.Cardon F, Pallisse R, Bardor M, Caron A, Vanier J, Ele Ekouna J P, Lerouge P, Boitel-Conti M, Guillet M. Brassica rapa hairy root based expression system leads to the production of highly homogenous and reproducible profiles of recombinant human alpha-L-iduronidase. Plant Biotechnol. J. 2019;17:505–516. doi: 10.1111/pbi.12994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Dutt M, Dhekney S A, Soriano L, Kandel R, Grosser J W. Temporal and spatial control of gene expression in horticultural crops. Hortic. Res. 2014;1:14047. doi: 10.1038/hortres.2014.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Stefanov I, Illubaev S, Feher A, Margoczi K, Dudits D. Promoter and genotype dependent transient expression of a reporter gene in plant protoplasts. Acta Biol. Hung. 1991;42:323–330. [PubMed] [Google Scholar]
  • 184.Herman S R, Harding R M, Dale J L. The banana actin 1 promoter drives near-constitutive transgene expression in vegetative tissues of banana (Musa spp.) Plant Cell Rep. 2001;20:525–530. doi: 10.1007/s002990100352. [DOI] [Google Scholar]
  • 185.Menassa R, Zhu H, Karatzas C N, Lazaris A, Richman A, Brandle J. Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol. J. 2004;2:431–438. doi: 10.1111/j.1467-7652.2004.00087.x. [DOI] [PubMed] [Google Scholar]
  • 186.Rancé I, Norre F, Gruber V, Theisen M. Combination of viral promoter sequences to generate highly active promoters for heterologous therapeutic protein overexpression in plants. Plant Sci. 2002;162:833–842. doi: 10.1016/S0168-9452(02)00031-6. [DOI] [Google Scholar]
  • 187.Duan Z, Ito K, Tominaga M. Heterologous transformation of Camelina sativa with high-speed chimeric myosin XI-2 promotes plant growth and leads to increased seed yield. Plant Biotechnol. 2020;37:253–259. doi: 10.5511/plantbiotechnology.20.0225b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Kinkema M, Geijskes R J, Shand K, Coleman H D, De Lucca P C, Palupe A, Harrison M D, Jepson I, Dale J L, Sainz M B. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane. Plant Mol. Biol. 2014;84:443–454. doi: 10.1007/s11103-013-0140-2. [DOI] [PubMed] [Google Scholar]
  • 189.Dugdale B, Mortimer C L, Kato M, James T A, Harding R M, Dale J L. In Plant Activation: An inducible, hyperexpression platform for recombinant protein production in plants. Plant Cell. 2013;25:2429–2443. doi: 10.1105/tpc.113.113944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Hood E E, Witcher D R, Maddock S, Meyer T, Baszczynski C, Bailey M, Flynn P, Register J, Marshall L, Bond D, Kulisek E, Kusnadi A, Evangelista R, Nikolov Z, Wooge C, Mehigh R J, Hernan R, Kappel W K, Ritland D, Li C P, Howard J A. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol. Breed. 1997;3:291–306. doi: 10.1023/A:1009676322162. [DOI] [Google Scholar]
  • 191.Nagaya S, Kawamura K, Shinmyo A, Kato K. The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells. Plant Cell Physiol. 2010;51:328–332. doi: 10.1093/pcp/pcp188. [DOI] [PubMed] [Google Scholar]
  • 192.Limkul J, Misaki R, Kato K, Fujiyama K. The combination of plant translational enhancers and terminator increase the expression of human glucocerebrosidase in Nicotiana benthamiana plants. Plant Sci. 2015;240:41–49. doi: 10.1016/j.plantsci.2015.08.018. [DOI] [PubMed] [Google Scholar]
  • 193.Bourdon V, Harvey A, Lonsdale D M. Introns and their positions affect the translational activity of mRNA in plant cells. EMBO Rep. 2001;2:394–398. doi: 10.1093/embo-reports/kve090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Morello L, Breviario D. Plant spliceosomal introns: not only cut and paste. Curr. Genomics. 2008;9:227–238. doi: 10.2174/138920208784533629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Vitale A, Denecke J. The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell. 1999;11:615–628. doi: 10.1105/tpc.11.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.De Meyer T, Depicker A. Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana. Front. Plant Sci. 2014;5:473. doi: 10.3389/fpls.2014.00473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Fischer R, Schumann D, Zimmermann S, Drossard J, Sack M, Schillberg S. Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. Eur. J. Biochem. 1999;262:810–816. doi: 10.1046/j.1432-1327.1999.00435.x. [DOI] [PubMed] [Google Scholar]
  • 198.Outchkourov N S, Rogelj B, Strukelj B, Jongsma M A. Expression of sea anemone equistatin in potato. Effects of plant proteases on heterologous protein production. Plant Physiol. 2003;133:379–390. doi: 10.1104/pp.102.017293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D. Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol. J. 2008;6:633–648. doi: 10.1111/j.1467-7652.2008.00344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Kim T G, Lee H J, Jang Y S, Shin Y J, Kwon T H, Yang M S. Co-expression of proteinase inhibitor enhances recombinant human granulocyte-macrophage colony stimulating factor production in transgenic rice cell suspension culture. Protein Expr. Purif. 2008;61:117–121. doi: 10.1016/j.pep.2008.06.005. [DOI] [PubMed] [Google Scholar]
  • 201.Sainsbury F, Benchabane M, Goulet M C, Michaud D. Multimodal protein constructs for herbivore insect control. Toxins. 2012;4:455–475. doi: 10.3390/toxins4060455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Pillay P, Schlüter U, van Wyk S, Kunert K J, Vorster B J. Proteolysis of recombinant proteins in bioengineered plant cells. Bioengineered. 2014;5:15–20. doi: 10.4161/bioe.25158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Hellwig S, Drossard J, Twyman R M, Fischer R. Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 2004;22:1415–1422. doi: 10.1038/nbt1027. [DOI] [PubMed] [Google Scholar]
  • 204.Huang T K, McDonald K A. Bioreactor systems for in vitro production of foreign proteins using plant cell cultures. Biotechnol. Adv. 2012;30:398–409. doi: 10.1016/j.biotechadv.2011.07.016. [DOI] [PubMed] [Google Scholar]
  • 205.Lee S Y, Hur W, Cho G H, Kim D I. Cultivation of transgenic Nicotiana tabacum suspension cells in bioreactors for the production of mGM-CSF. Biotechnol. Bioprocess Eng. 2001;6:72–74. doi: 10.1007/BF02942254. [DOI] [Google Scholar]
  • 206.Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Nataf Y, Bartfeld D, Ariel T, Gingis-Velitski S, Hanania U, Shaaltiel Y. Large-scale production of pharmaceutical proteins in plant cell culture-the protalix experience. Plant Biotechnol. J. 2015;13:1199–1208. doi: 10.1111/pbi.12428. [DOI] [PubMed] [Google Scholar]
  • 207.Rosales-Mendoza S, Tello-Olea M A. Carrot cells: a pioneering platform for biopharmaceuticals production. Mol. Biotechnol. 2015;57:219–232. doi: 10.1007/s12033-014-9837-y. [DOI] [PubMed] [Google Scholar]
  • 208.Lee S J, Park C I, Park M Y, Jung H S, Ryu W S, Lim S M, Tan H K, Kwon T H, Yang M S, Kim D I. Production and characterization of human CTLA4Ig expressed in transgenic rice cell suspension cultures. Protein Expr. Purif. 2007;51:293–302. doi: 10.1016/j.pep.2006.08.019. [DOI] [PubMed] [Google Scholar]
  • 209.Liu Y K, Huang L F, Ho S L, Liao C Y, Liu H Y, Lai Y H, Yu S M, Lu C A. Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture. Biotechnol. Bioeng. 2012;109:1239–1247. doi: 10.1002/bit.24394. [DOI] [PubMed] [Google Scholar]
  • 210.Su C F, Kuo I C, Chen P W, Huang C H, Seow S V, Chua K Y, Yu S M. Characterization of an immunomodulatory Der p 2-FIP-fve fusion protein produced in transformed rice suspension cell culture. Transgenic Res. 2012;21:177–192. doi: 10.1007/s11248-011-9518-6. [DOI] [PubMed] [Google Scholar]
  • 211.McDonald K A, Hong L M, Trombly D M, Xie Q, Jackman A P. Production of human alpha-1-antitrypsin from transgenic rice cell culture in a membrane bioreactor. Biotechnol. Prog. 2005;21:728–734. doi: 10.1021/bp0496676. [DOI] [PubMed] [Google Scholar]
  • 212.Kim T G, Baek M Y, Lee E K, Kwon T H, Yang M S. Expression of human growth hormone in transgenic rice cell suspension culture. Plant Cell Rep. 2008;27:885–891. doi: 10.1007/s00299-008-0514-0. [DOI] [PubMed] [Google Scholar]
  • 213.Decker E L, Parsons J, Reski R. Glyco-engineering for biopharmaceutical production in moss bioreactors. Front. Plant Sci. 2014;5:346. doi: 10.3389/fpls.2014.00346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Reski R, Parsons J, Decker E L. Moss-made pharmaceuticals: from bench to bedside. Plant Biotechnol. J. 2015;13:1191–1198. doi: 10.1111/pbi.12401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Baur A, Reski R, Gorr G. Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens. Plant Biotechnol. J. 2005;3:331–340. doi: 10.1111/j.1467-7652.2005.00127.x. [DOI] [PubMed] [Google Scholar]
  • 216.Weise A, Altmann F, Rodriguez-Franco M, Sjoberg E R, Bäumer W, Launhardt H, Kietzmann M, Gorr G. High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella Δ-fuct Δ-xyl-t mutant. Plant Biotechnol. J. 2007;5:389–401. doi: 10.1111/j.1467-7652.2007.00248.x. [DOI] [PubMed] [Google Scholar]
  • 217.Büttner-Mainik A, Parsons J, Jérôme H, Hartmann A, Lamer S, Schaaf A, Schlosser A, Zipfel P F, Reski R, Decker E L. Production of biologically active recombinant human factor H in Physcomitrella. Plant Biotechnol. J. 2011;9:373–383. doi: 10.1111/j.1467-7652.2010.00552.x. [DOI] [PubMed] [Google Scholar]
  • 218.Orellana-Escobedo L, Rosales-Mendoza S, Romero-Maldonado A, Parsons J, Decker E L, Monreal-Escalante E, Moreno-Fierros L, Reski R. An Env-derived multiepitope HIV chimeric protein produced in the moss Physcomitrella patens is immunogenic in mice. Plant Cell Rep. 2015;34:425–433. doi: 10.1007/s00299-014-1720-6. [DOI] [PubMed] [Google Scholar]
  • 219.Kircheis R, Halanek N, Koller I, Jost W, Schuster M, Gorr G, Hajszan K, Nechansky A. Correlation of ADCC activity with cytokine release induced by the stably expressed, glyco-engineered humanized Lewis Y-specific monoclonal antibody MB314. MAbs. 2012;4:532–541. doi: 10.4161/mabs.20577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.Niederkrüger H, Dabrowska-Schlepp P, Schaaf A. Suspension culture of plant cells under phototrophic conditions. In: Meyer H P, Schmidhalter D R, editors. Industrial Scale Suspension Culture of Living Cells. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2014. pp. 259–292. [Google Scholar]
  • 221.Strasser R, Castilho A, Stadlmann J, Kunert R, Quendler H, Gattinger P, Jez J, Rademacher T, Altmann F, Mach L, Steinkellner H. Improved virus neutralization by plant-produced anti-HIV antibodies with a homogeneous β1,4-galactosylated N-glycan profile. J. Biol. Chem. 2009;284:20479–20485. doi: 10.1074/jbc.M109.014126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Arcalis E, Stadlmann J, Rademacher T, Marcel S, Sack M, Altmann F, Stoger E. Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Mol. Biol. 2013;83:105–117. doi: 10.1007/s11103-013-0049-9. [DOI] [PubMed] [Google Scholar]
  • 223.Diamos A G, Hunter J G L, Pardhe M D, Rosenthal S H, Sun H, Foster B C, DiPalma M P, Chen Q, Mason H S. High level production of monoclonal antibodies using an optimized plant expression system. Front Bioeng. Biotechnol. 2020;7:472. doi: 10.3389/fbioe.2019.00472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Ma J K, Hikmat B Y, Wycoff K, Vine N D, Chargelegue D, Yu L, Hein M B, Lehner T. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat. Med. 1998;4:601–606. doi: 10.1038/nm0598-601. [DOI] [PubMed] [Google Scholar]
  • 225.Rosenberg Y, Sack M, Montefiori D, Forthal D, Mao L, Hernandez-Abanto S, Urban L, Landucci G, Fischer R, Jiang X. Rapid high-level production of functional HIV broadly neutralizing monoclonal antibodies in transient plant expression systems. PLoS One. 2013;8:e58724. doi: 10.1371/journal.pone.0058724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Ma J K, Drossard J, Lewis D, Altmann F, Boyle J, Christou P, Cole T, Dale P, van Dolleweerd C J, Isitt V, Katinger D, Lobedan M, Mertens H, Paul M J, Rademacher T, Sack M, Hundleby P A C, Stiegler G, Stoger E, Twyman R M, Vcelar B, Fischer R. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol. J. 2015;13:1106–1120. doi: 10.1111/pbi.12416. [DOI] [PubMed] [Google Scholar]
  • 227.Pujol M, Ramírez N I, Ayala M, Gavilondo J V, Valdés R, Rodríguez M, Brito J, Padilla S, Gómez L, Reyes B, Peral R, Pérez M, Marcelo J L, Milá L, Sánchez R F, Páez R, Cremata J A, Enríquez G, Mendoza O, Ortega M, Borroto C. An integral approach towards a practical application for a plant-made monoclonal antibody in vaccine purification. Vaccine. 2005;23:1833–1837. doi: 10.1016/j.vaccine.2004.11.023. [DOI] [PubMed] [Google Scholar]
  • 228.Rybicki E P. Plant-made vaccines for humans and animals. Plant Biotechnol. J. 2010;8:620–637. doi: 10.1111/j.1467-7652.2010.00507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 229.Tacket C O, Mason H S, Losonsky G, Clements J D, Levine M M, Arntzen C J. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 1998;4:607–609. doi: 10.1038/nm0598-607. [DOI] [PubMed] [Google Scholar]
  • 230.Tacket C O, Pasetti M F, Edelman R, Howard J A, Streatfield S. Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn. Vaccine. 2004;22:4385–4389. doi: 10.1016/j.vaccine.2004.01.073. [DOI] [PubMed] [Google Scholar]
  • 231.Fischer R, Schillberg S, Hellwig S, Twyman R M, Drossard J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol. Adv. 2012;30:434–439. doi: 10.1016/j.biotechadv.2011.08.007. [DOI] [PubMed] [Google Scholar]
  • 232.Dietzschold B, Gore M, Marchadier D, Niu H S, Bunschoten H M, Otvos L, Jr, Wunner W H, Ertl H C, Osterhaus A D, Koprowski H. Structural and immunological characterization of a linear virus-neutralizing epitope of the rabies virus glycoprotein and its possible use in a synthetic vaccine. J. Virol. 1990;64:3804–3809. doi: 10.1128/jvi.64.8.3804-3809.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Modelska A, Dietzschold B, Sleysh N, Fu Z F, Steplewski K, Hooper D C, Koprowski H, Yusibov V. Immunization against rabies with plant-derived antigen. Proc. Natl. Acad. Sci. USA. 1998;95:2481–2485. doi: 10.1073/pnas.95.5.2481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Yusibov V, Hooper D C, Spitsin S V, Fleysh N, Kean R B, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine. 2002;20:3155–3164. doi: 10.1016/S0264-410X(02)00260-8. [DOI] [PubMed] [Google Scholar]
  • 235.D’Aoust M A, Lavoie P O, Couture M M J, Trépanier S, Guay J M, Dargis M, Mongrand S, Landry N, Ward B J, Vézina L P. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J. 2008;6:930–940. doi: 10.1111/j.1467-7652.2008.00384.x. [DOI] [PubMed] [Google Scholar]
  • 236.Landry N, Ward B J, Trépanier S, Montomoli E, Dargis M, Lapini G, Vézina L P. Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS One. 2010;5:e15559. doi: 10.1371/journal.pone.0015559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Landry N, Pillet S, Favre D, Poulin J F, Trépanier S, Yassine-Diab B, Ward B J. Influenza virus-like particle vaccines made in Nicotiana benthamiana elicit durable, poly-functional and cross-reactive T cell responses to influenza HA antigens. Clin. Immunol. 2014;154:164–177. doi: 10.1016/j.clim.2014.08.003. [DOI] [PubMed] [Google Scholar]
  • 238.Ward B J, Landry N, Trépanier S, Mercier G, Dargis M, Couture M, D’Aoust M A, Vézina L P. Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine. 2014;32:6098–6106. doi: 10.1016/j.vaccine.2014.08.079. [DOI] [PubMed] [Google Scholar]
  • 239.Shoji Y, Chichester J A, Jones M, Manceva S D, Damon E, Mett V, Musiychuk K, Bi H, Farrance C, Shamloul M, Kushnir N, Sharma S, Yusibov V. Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Human Vaccin. 2011;7:41–50. doi: 10.4161/hv.7.0.14561. [DOI] [PubMed] [Google Scholar]
  • 240.Shoji Y, Prokhnevsky A, Leffet B, Vetter N, Tottey S, Satinover S, Musiychuk K, Shamloul M, Norikane J, Jones R M, Chichester J A, Green B J, Streatfield S J, Yusibov V. Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Human Vaccin Immunother. 2015;11:118–123. doi: 10.4161/hv.34365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 241.Chichester J A, Jones R M, Green B J, Stow M, Miao F, Moonsammy G, Streatfield S J, Yusibov V. Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/Indonesia/05/2005 (H5N1) influenza virus: a phase 1 randomized, doubleblind, placebo-controlled, dose-escalation study in healthy adults. Viruses. 2012;4:3227–3244. doi: 10.3390/v4113227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Cummings J F, Guerrero M L, Moon J E, Waterman P, Nielsen R K, Jefferson S, Gross F L, Hancock K, Katz J M, Yusibov V, Fraunhofer USA Center for Molecular Biotechnology Study Group Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1) pdm09 virus: a Phase 1 dose-escalation study in healthy adults. Vaccine. 2014;32:2251–2259. doi: 10.1016/j.vaccine.2013.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Jones R M, Chichester J A, Mett V, Jaje J, Tottey S, Manceva S, Casta L J, Gibbs S K, Musiychuk K, Shamloul M, Norikane J, Mett V, Streatfield S J, van de Vegte-Bolmer M, Roeffen W, Sauerwein R W, Yusibov V. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One. 2013;8:e79538. doi: 10.1371/journal.pone.0079538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 244.Rattanapisit K, Shanmugaraj B, Manopwisedjaroen S, Purwono P B, Siriwattananon K, Khorattanakulchai N, Hanittinan O, Boonyayothin W, Thitithanyanont A, Smith D R, Phoolcharoen W. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Sci. Rep. 2020;10:17698. doi: 10.1038/s41598-020-74904-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Almon E, Galili G, Dym O, Boldin-Adamsky S A, Silman I, Sussman J L, Futerman A H, Aviezer D. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J. 2007;5:579–590. doi: 10.1111/j.1467-7652.2007.00263.x. [DOI] [PubMed] [Google Scholar]
  • 246.Molony M M, Boothe J, Keon R, Nykiforuk C, van Rooijen G. US Patent. 2009. [Google Scholar]
  • 247.Samyn-Petit B, Gruber V, Flahaut C, Wajda-Dubos J P, Farrer S, Pons A, Desmaizieres G, Slomianny M C, Theisen M, Delannoy P. N-glycosylation potential of maize: The human lactoferrin used as a model. Glycoconj J. 2001;18:519–527. doi: 10.1023/A:1019640312730. [DOI] [PubMed] [Google Scholar]
  • 248.Humphrey B D, Haung N, Klasing K. Rice expressing lactoferrin and lysozyme has antibiotic-like properties when fed to chicks. J. Nutr. 2002;132:1214–1218. doi: 10.1093/jn/132.6.1214. [DOI] [PubMed] [Google Scholar]
  • 249.Hennegan K, Yang D, Nguyen D, Wu L, Goding J, Huang J, Guo F, Huang N, Watkins S C. Improvement of human lysozyme expression in transgenic rice grain by combining wheat (Triticum aestivum) puroindoline b and rice (Oryza sativa) Gt1 promoters and signal peptides. Transgenic Res. 2005;14:583–592. doi: 10.1007/s11248-004-6702-y. [DOI] [PubMed] [Google Scholar]
  • 250.Mulvaney D R, Krupnik T, Koffler K B. Transgenic rice evaluated for risks to marketability. Calif. Agric. 2011;65:161–167. doi: 10.3733/ca.E.v065n03p161. [DOI] [Google Scholar]
  • 251.Fedosov S N, Laursen N B, Nexø E, Moestrup S K, Petersen T E, Jensen E Ø, Berglund L. Human intrinsic factor expressed in the plant Arabidopsis thaliana. Eur. J. Biochem. 2003;270:3362–3367. doi: 10.1046/j.1432-1033.2003.03716.x. [DOI] [PubMed] [Google Scholar]
  • 252.Menassa R, Du C, Yin Z Q, Ma S, Poussier P, Brandle J, Jevnikar A M. Therapeutic effectiveness of orally administered transgenic low-alkaloid tobacco expressing human interleukin-10 in a mouse model of colitis. Plant Biotechnol. J. 2007;5:50–59. doi: 10.1111/j.1467-7652.2006.00214.x. [DOI] [PubMed] [Google Scholar]
  • 253.Walker R S K, Pretorius I S. Applications of yeast synthetic biology geared towards the production of biopharmaceuticals. Genes. 2018;9:340. doi: 10.3390/genes9070340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Marchev A S, Yordanova Z P, Georgiev M I. Green (cell) factories for advanced production of plant secondary metabolites. Crit. Rev. Biotechnol. 2020;40:443–458. doi: 10.1080/07388551.2020.1731414. [DOI] [PubMed] [Google Scholar]

Articles from Biotechnology and Bioprocess Engineering are provided here courtesy of Nature Publishing Group

RESOURCES