Abstract
Innate immune system activation and inflammation are associated with and may contribute to clinical outcomes in people with Down syndrome (DS), neurodegenerative diseases such as Alzheimer’s disease (AD), and normal aging. In addition to serving as potential diagnostic biomarkers, innate immune system activation and inflammation may play a contributing or causal role in these conditions, leading to the hypothesis that effective therapies should seek to dampen their effects. However, recent intervention studies with the innate immune system activator granulocyte-macrophage colony-stimulating factor (GM-CSF) in animal models of DS, AD, and normal aging, and in an AD clinical trial suggest that activating the innate immune system and inflammation may instead be therapeutic. We consider evidence that DS, AD, and normal aging are accompanied by innate immune system activation and inflammation and discuss whether and when during the disease process it may be therapeutically beneficial to suppress or promote such activation.
Keywords: innate immune system, inflammation, GM-CSF (granulocyte-macrophage colony-stimulating factor), Down syndrome, Alzheimer’s disease, apolipoprotein E, drug repurposing and discovery, amyloid-β
Introduction
Down syndrome (DS), most often caused by triplication of human chromosome 21 (Hsa21), is the most common genetic cause of both intellectual disability (ID) and age-associated cognitive decline (Epstein, 1990; Chapman and Hesketh, 2000; Silverman, 2007), affecting 1 in 700–1,000 live births worldwide (Centers for Disease Control and Prevention (CDC), 2006; Irving et al., 2008; Loane et al., 2013). The amyloid precursor protein (APP) plays a major role in the pathophysiology of Alzheimer’s disease (AD), and because the APP gene resides on chromosome 21, its additional copy is primarily responsible for the fact that all people with DS develop AD brain pathology, including amyloid-β (Aβ) plaques and cerebral amyloid angiopathy, by age 40 (Epstein, 1990; Snyder et al., 2020). Additionally, adults with DS develop neurofibrillary tangles of hyperphosphorylated tau, oxidative stress, vascular abnormalities, and chronic neuroinflammation, which are pathologies also present in patients with AD or other neurodegenerative diseases (Wisniewski et al., 1985; Head et al., 2016; Snyder et al., 2020).
Despite substantial epidemiological, biochemical, and genetic evidence in support of the amyloid cascade hypothesis (Hardy, 2009), the AD pathogenic pathway can be modulated by other aspects of brain physiology, especially the innate immune system and neuroinflammation (Potter, 2001; El Khoury et al., 2007; Cribbs et al., 2012; Lambert et al., 2013; Bettcher et al., 2018; Barroeta-Espar et al., 2019; Taipa et al., 2019). Alois Alzheimer first suggested a potential role for inflammation in AD based on his observation of abnormal glial cells surrounding amyloid deposits (Alzheimer, 1907). The discovery that specific inflammatory proteins, such as the cytokine interleukin-1 (IL-1) and the inflammation/acute-phase protein α1-antichymotrypsin (ACT), were upregulated in the AD brain and were associated with amyloid deposits solidified these early clues (Abraham et al., 1988; Mrak and Griffin, 2001; McGeer et al., 2006).
Inflammation is a complex multifactorial process in both the central nervous system (CNS) and the periphery, the activity of which varies depending on the disease stage. Microglia are the primary cell type associated with the innate immune system and neuroinflammation in the brain, with growing evidence suggesting that other cells, including astrocytes, neurons, oligodendrocytes, and pericytes also play significant roles, and brain inflammation in age-associated AD differs from that in DS-associated AD (Perry and Gordon, 1988; Colton and Wilcock, 2010; Wilcock et al., 2015). Thus, neuroinflammation may play a pivotal role in the development of AD (Akiyama et al., 2000), but the underlying mechanisms driving this pathological manifestation and its association with DS remain poorly understood.
In this mini-review, we first discuss the evidence that innate immune system activation and inflammation characterize both the CNS and the periphery. We will then review data that challenge the view that inflammation is solely detrimental, and instead suggest that both suppression and activation of the innate immune system and neuroinflammation may be beneficial, depending on the stage of the disorder. Finally, we will consider several new therapeutic strategies for regulating neuroinflammation, including the immune-modulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), inhibitors of apolipoprotein E (apoE), and microglial depletion via drugs that target the colony-stimulating factor-1 receptor (CSF1R).
Neuroinflammatory Biomarkers in CSF and Plasma from AD and DS
Studies have found increased cerebrospinal fluid (CSF) levels of immune biomarkers in mild cognitive impairment (MCI) and AD patients (Tarkowski et al., 2003; Galimberti et al., 2006; Jesse et al., 2009; Buchhave et al., 2010; Westin et al., 2012; Kauwe et al., 2014; Counts et al., 2017; Whelan et al., 2019). Peripheral immune cells, such as neutrophils, monocytes, and lymphocytes, also produce (and respond to) inflammatory cytokines, which are significantly upregulated in the blood of AD patients and may also be derived from the CNS (Kim et al., 2008; Diniz et al., 2010; Morgan et al., 2019). Similar increases in blood levels of immune biomarkers are found in people with DS (Petersen and O’Bryant, 2019; Huggard et al., 2020a,b). One inflammation-based hypothesis is that people with DS are in a state of chronic abnormal inflammation, including features of auto-inflammation, across the lifespan that influences all phenotypes and disease risk. Specifically, proteomic analyses of plasma and brain tissue from people with DS revealed dysregulation of inflammatory protein expression, including increases in several pro-inflammatory cytokines, and decreases in numerous complement cascade components (Sullivan et al., 2016, 2017; Zhang et al., 2017). Another study revealed elevated levels of both pro-inflammatory and anti-inflammatory cytokines in plasma from children with DS (Huggard et al., 2020a,b). Activation of astrocytes and microglia, the secretion of inflammatory cytokines (e.g., IL-1, IL-6, and TNFα), and acute phase proteins are observed in both the brains and blood of people with DS, indicating an “inflammatory endophenotype” (Petersen and O’Bryant, 2019). In a cross-sectional analysis of people with DS, plasma glial fibrillary acidic protein (GFAP), a marker of astrogliosis, was found to increase starting in their mid-40s (Hendrix et al., 2021).
Timing and Effects of Innate Immune System Activation and Neuroinflammation in DS and AD
Epidemiological studies suggest that elevated immune biomarkers in the blood may be evident years prior to the manifestation of clinical symptoms of AD or AD-related dementias (ADRDs) in the typical population (Schmidt et al., 2002; Ridolfi et al., 2013; Leszek et al., 2016; Busse et al., 2017; Wendeln et al., 2018). Higher plasma levels of GFAP are correlated with lower measures of episodic memory and microstructural integrity in AD, MCI, and also in healthy aged donors (Bettcher et al., 2021). As discussed, people with DS also have increasing levels of plasma GFAP starting in their mid-40s (Hendrix et al., 2021). Thus, although initially thought to be a secondary effect of aberrant protein accumulation, changes in the innate immune system and neuroinflammation are now thought to be a core, early feature of both DS and AD that interface with, and may contribute to, clinical manifestations of cognitive disorders and decline (Lucin and Wyss-Coray, 2009; Heneka et al., 2015).
Hsa21 harbors numerous innate immune system and neuroinflammation-associated genes that are therefore triplicated in most people with DS (Table 1). Notably, four genes encoding interferon receptors reside on Hsa21, and interferon-related signaling is upregulated in people with DS (Sullivan et al., 2016; Araya et al., 2019; Powers et al., 2019). The inflammatory response microRNA miR-155 also resides on Hsa21 and is overexpressed in DS (Guo et al., 2019). Proteomic analyses have revealed a striking increase in both pro- and anti-inflammatory cytokines in plasma and brain tissue samples from people of all ages with DS (Sullivan et al., 2017; Zhang et al., 2017; Flores-Aguilar et al., 2020; Huggard et al., 2020b) and in mouse models of DS (Ahmed et al., 2012, 2013; Spellman et al., 2013; Block et al., 2015), which express homologs of Hsa21-encoded inflammation-related genes (Table 1). Together, these findings have led to the hypothesis that DS inherently results in chronic neuroinflammation, including auto-inflammation and astrogliosis (Sullivan et al., 2016; Rachubinski et al., 2019; Snyder et al., 2020). Although non-steroidal anti-inflammatory drugs (NSAIDs) were not therapeutic for AD, it is possible that more selective blockers of the innate immune system might be effective in AD and/or DS, for example, through inhibition of the TLR2-MyD88 interaction or of JAK-1 (Rangasamy et al., 2018; Rachubinski et al., 2019; Tuttle et al., 2020).
Table 1.
Gene | Protein | Function | References | Present in common DS mouse models# | AD risk identified in GWAS@ |
---|---|---|---|---|---|
ABCG1 | ATP binding cassette subfamily G member 1 | Catalyzes phospholipid and cholesterol efflux and maintains macrophages in an anti-inflammatory state. | Wojcik et al. (2008) | Dp17, Tc1 | Wollmer et al. (2007) and Beecham et al. (2014) |
ADAMTS1 | ADAM metallopeptidase with thrombospondin type 1 motif 1. | Secreted protease is known to be induced by IL-1β. | Kuno et al. (1997) | Dp16, Ts65Dn, Tc1 | Kunkle et al. (2019), Niu et al. (2019), and Tan et al. (2021) |
ADAMTS5 | ADAM metallopeptidase with thrombospondin type 1 motif 5. | Secreted protease known to be induced by IL-1β and TGFβ. | Yamanishi et al. (2002) | Dp16, Ts65Dn, Tc1 | none |
APP | Amyloid beta precursor protein | Neuronal acute phase protein precursor of Aβ fragments in Alzheimer’s plaques and inducer of IL-1β. | Glenner and Wong (1984), Tanzi et al. (1988), and Barger and Harmon (1997) | Dp16, Ts65Dn, Tc1* | Guyant-Maréchal et al. (2007), Nowotny et al. (2007), and Lv et al. (2008) |
BACE2 | Beta-secretase 2 | Cleaves APP for less Aβ and increases IL-1R2, a decoy proteinfor excess IL-1 capture. | Kuhn et al. (2007) | Dp16, Ts65Dn, Tc1 | Myllykangas et al. (2005) |
CBS | Cystathionine beta-synthase | Catalyzes production of hydrogen sulfide bimodalregulation of inflammation. | Sen et al. (2011) | Dp17, Tc1 | Beyer et al. (2004) |
CSTB | Cystatin B | Thiol protease inhibitor involved in Aβ clearance. | Yang et al. (2011) and Maher et al. (2014) | Dp10, Tc1 | Kurt et al. (2020) |
CXADR | CXADR Ig-like cell adhesion molecule | Activation of JNK and p38-MAPK pathways leading toproduction of M1 cytokines. | Yuen et al. (2011) | Dp16, Tc1 | none |
DYRK1A | Dual specificity tyrosine phosphorylation regulated kinase 1A | Serine/threonine and tyrosine kinase that regulates the NFκB pathway and phosphorylates tau. | Latour et al. (2019) | Dp16, Ts65Dn, Tc1 | Kimura et al. (2007) |
IFNAR1 | Interferon alpha and beta receptor subunit 1 | Activates JAK/STAT mediated anti-inflammatory pathway. | Kim et al. (1997) | Dp16, Ts65Dn | Patel et al. (2021) |
IFNAR2 | Interferon alpha and beta receptor subunit 2 | Activates JAK/STAT mediated anti-inflammatory pathway. | Kim et al. (1997) and Boselli et al. (2010) | Dp16, Ts65Dn | none |
IFNGR2 | Interferon gamma receptor 2 | Activates JAK/STAT mediated anti-inflammatory pathway. | Boselli et al. (2010) | Dp16, Ts65Dn | none |
PRMT2 | Protein arginine methyltransferase 2 | Blocks the actions of NFκB in the nucleus. | Ganesh et al. (2006) | Dp10, Tc1$ | none |
RCAN1 | Regulator of calcineurin 1 | Inhibits calcineurin-dependent transcription and is regulated by STAT2. | Lee et al. (2012) | Dp16, Ts65Dn | Lin et al. (2011) |
RIPK4 | Receptor interacting serine/threonine kinase 4 | Necessary for signaling through TNF receptor 1. | Rountree et al. (2010) | Dp16, Ts65Dn, Tc1 | none |
RUNX1 | RUNX family transcription factor 1 | Transcription factor regulating T-cell function. | Tang et al. (2018) | DP16, Ts65Dn, Tc1& | Kimura et al. (2007) and Patel et al. (2011) |
S100B | S100 calcium binding protein B | Upregulates IL-1β and APP expression, released in responseto TNFα. | Li et al. (1998), Liu et al. (2005), and Donato et al. (2013) | Dp10, Tc1$ | Lambert et al. (2007) |
SOD1 | Superoxide dismutase 1 | Scavenges superoxide radicals producing H2O2 and O2. | Danciger et al. (1986) | Dp16, Ts65Dn, Tc1 | none |
TIAM1 | TIAM Rac1 associated GEF 1 | Necessary for cytokine-mediated generation of oxidativespecies through NADPH oxidase. | Subasinghe et al. (2011) | Dp16, Ts65Dn, Tc1 | none |
Some parts of Table 1 are reproduced from Wilcock and Griffin (2013) with permission under the CC BY 2.0 license (http://creativecommons.org/licenses/by/2.0/), Copyright © Wilcock and Griffin (2013); licensee BioMed Central Ltd. Abbreviations: Aβ, β-amyloid; ADAM, a disintegrin and metalloprotease; APP, amyloid beta precursor protein; ATP, adenosine triphosphate; CXADR, coxsackievirus and adenovirus receptor; DS, Down syndrome; IL, interleukin; GEF, guanine nucleotide exchange factor; GWAS, genome-wide associate study; MAPK, mitogen-activated protein kinase; NADPH, Nicotinamide adenine dinucleotide phosphate; RUNX, Runt-related transcription factor; TNF, tumor necrosis factor; TGF, transforming growth factor; JAK/STAT, Janus kinase signal transducer and activator of transcription; JNK, c-Jun N-terminal kinase; TIAM, T-cell lymphoma invasion and metastasis; TNFR, tumor necrosis factor receptor; NFκB, Nuclear factor-kappa B; STAT2, signal transducer and activator of transcription 2. #Tc1 mice express one copy of the human gene and two copies of the homologous mouse gene, while Ts65Dn, Dp10, Dp16, and Dp17 mice express three copies of the homologous mouse gene, as identified in Ahmed et al. (2013). *In Tc1 mice, the APP gene is re-arranged, and therefore human APP is not functionally expressed. $In Tc1 mice, the human PRMT2 and S100B genes are duplicated, in addition to two copies of the homologous mouse genes. &In Tc1 mice, the human RUNX1 gene is partially deleted. @Some relevant GWAS studies were identified using the AlzGene database (Bertram et al., 2007).
Apolipoprotein E in Inflammation and Neurodegeneration in DS and AD
Inheritance of the APOE ε4 allele (APOE4) is the strongest risk factor for AD, besides age, with one copy of APOE4 leading to a three-fold increased risk of AD and two copies leading to a 15-fold increased risk of AD (Corder et al., 1993; Strittmatter et al., 1993; Strittmatter and Roses, 1995). Inheritance of the APOE4 allele also significantly increases the risk for cognitive decline and dementia in middle-aged people with DS (Rubinsztein et al., 1999; Deb et al., 2000), and it increases the risk of mortality by five-fold compared to non-APOE4 carriers (Zigman et al., 2005). Furthermore, brain APOE expression is significantly upregulated in people with DS compared to the typical population (Lockstone et al., 2007), which might exacerbate DS-associated AD.
Similar to the inflammation/acute-phase protein ACT, apoE is also associated with amyloid deposits (Wisniewski and Frangione, 1992; Wisniewski et al., 1993; Ma et al., 1994; Sanan et al., 1994; Wisniewski et al., 1994). Although not typically considered a neuroinflammatory molecule, APOE expression is upregulated by astrocytes and microglia early in the AD pathological process (Keren-Shaul et al., 2017; Krasemann et al., 2017; Kang et al., 2018; Rangaraju et al., 2018), and it also plays a pivotal role in modulating the neuroinflammatory cascade by both Aβ-dependent and Aβ-independent pathways (McGeer et al., 1997; Maezawa et al., 2006; Zhu et al., 2012; Cudaback et al., 2015; Shi et al., 2017; Lin et al., 2018).
Increasing evidence shows that apoE plays a role in amyloid formation by promoting the aggregation of the Aβ peptide to form insoluble filaments, thereby also inhibiting the clearance of Aβ from the brain (Potter and Wisniewski, 2012; Figure 1). For example, apoE4 catalyzes the formation of neurotoxic Aβ oligomers and fibrils (Ma et al., 1994, 1996; Sanan et al., 1994; Wisniewski et al., 1994; Castano et al., 1995; Golabek et al., 1996; Soto et al., 1996; Manelli et al., 2007; Cerf et al., 2011; Hashimoto et al., 2012; Koffie et al., 2012; Liu et al., 2017). Fortunately, this mechanistic pathway lends itself to therapeutic approaches targeting apoE using antibodies, antisense oligonucleotides, or structural correctors (Brodbeck et al., 2011; Chen et al., 2012; Liao et al., 2014; Huynh et al., 2017; Wang et al., 2018; Xiong et al., 2021), or by targeting the interaction between apoE and Aβ using peptide blockers or small molecule drugs (Ma et al., 1996; Sadowski et al., 2004; Pankiewicz et al., 2014; Johnson et al., 2021a). Recently, high-throughput screens from our lab have identified several Food and Drug Administration (FDA)-approved drugs, including the anti-depressant drug imipramine and the anti-psychotic drug olanzapine, that inhibit the apoE-Aβ interaction and appear to improve cognition in AD patients, and especially in APOE4 carriers, in our retrospective analyses of human clinical data (Johnson et al., 2021a).
GM-CSF as a Neuroinflammatory Modulator in AD
Patients with rheumatoid arthritis (RA) have a three- to eight-fold reduced risk of developing AD, suggesting a potential role for inflammation and the innate immune system in AD (McGeer et al., 1996). Although the reduced AD risk in patients with RA was initially attributed to their frequent use of NSAIDs (McGeer et al., 1996), NSAID treatment showed no benefit in clinical trials of either AD or MCI patients (McGeer et al., 2006; ADAPT_FS_Research_Group, 2015).
As an alternative, we hypothesized that intrinsic factors associated with RA pathogenesis itself may underlie its AD protective effect(s). We identified GM-CSF as one such factor that is upregulated in the blood of RA patients and found that subcutaneous injection of GM-CSF for 20 days increased microglial activation, reduced amyloid pathology by more than 50%, and completely reversed the cognitive impairment of transgenic AD mice (Boyd et al., 2010), which has been replicated by other groups (Castellano et al., 2017; Kiyota et al., 2018). Treatment with recombinant human GM-CSF (sargramostim/Leukine®) was also associated with improved cognition in cancer patients undergoing hematopoietic stem cell transplantation (Jim et al., 2012). These findings led us to design and carry out a placebo-controlled, randomized, double-blind Phase II clinical trial in mild-to-moderate AD participants, which showed that subcutaneous injection of sargramostim (5 days/week for 3 weeks) was safe, associated with reduced plasma biomarkers of neuronal damage/neurodegeneration (i.e., total tau and UCH-L1), and improved cognition based on Mini-Mental State Examination (MMSE) scores (Potter et al., 2021). These findings suggest that during the early stages of AD, activation of the innate immune system may be beneficial, which has now led to a longer–term trial.
GM-CSF as an Amyloid-Independent Cognition Enhancer in DS and Normal Aging
People with DS have significant ID throughout their 60-year life expectancy (Bittles et al., 2007), with no treatments available. Several drugs have been tested in mouse models of DS, primarily in Ts65Dn mice, with some promising results showing the rescue of DS-related cognitive deficits. Unfortunately, no such drugs have shown significant benefits in clinical trials of people with DS (reviewed in Gardiner, 2015; Vacca et al., 2019).
Because GM-CSF treatment improved cognition and reduced amyloid in mouse models of AD, we investigated its effects in the Dp16 mouse model of DS. Our findings show that in both Dp16 mice and their wild-type (WT) littermates, GM-CSF treatment improves learning/memory in the radial arm water maze, a hippocampal-based task. In Dp16 mice, GM-CSF treatment also ameliorates the abnormal astrocyte morphology and aggregation and partially normalizes the levels of interneurons (Ahmed et al., 2021). Although GM-CSF treatment evidently improves learning/memory in mouse models of AD by removing amyloid plaques in the brain, it is noteworthy that WT mice and mouse models of DS, including Dp16 mice, do not develop AD amyloid pathology at any age. Therefore, GM-CSF treatment must lead to improved learning/memory in WT and Dp16 mice via an amyloid-independent mechanism(s), likely related to its pro-inflammatory or inflammation-modulating activity.
Despite its known pro-inflammatory properties, GM-CSF also affects multiple CNS processes that are consistent with, and provide some insights into, its unexpected beneficial effects on learning/memory in a mouse model of DS. Specifically, GM-CSF promotes recovery from neuronal damage or dysfunction in animal models of stroke (Schneider et al., 2007; Schäbitz et al., 2008; Kong et al., 2009; Theoret et al., 2016), traumatic brain injury (Shultz et al., 2014; Kelso et al., 2015), and acute retinal ganglion cell injury (Schallenberg et al., 2012; Legacy et al., 2013). GM-CSF can cross the blood-brain barrier (McLay et al., 1997) and is also produced within the brain, where numerous cell types express the GM-CSF receptor, including neurons, oligodendrocytes, microglia, astroglia, and endothelial cells, which would allow for both paracrine and autocrine signaling (Baldwin et al., 1993; Sawada et al., 1993).
Many studies have shown that both people with DS and typical aging adults exhibit an auto-inflammatory or “inflammaging” syndrome (Trollor et al., 2012; Frasca and Blomberg, 2016; Ashraf-Ganjouei et al., 2020; Serre-Miranda et al., 2020) that might predict that GM-CSF treatment would be detrimental. However, GM-CSF is not merely a pro-inflammatory molecule. A more accurate description is that GM-CSF modulates the innate immune system, especially in the setting of immune system dysregulation in the periphery and in the brain (Boyd et al., 2010; Bhattacharya et al., 2015a,b; Borriello et al., 2019). Indeed, GM-CSF treatment not only increases the levels of many cellular and cytokine biomarkers of inflammation in the blood of AD patients (e.g., neutrophils, monocytes, lymphocytes, IL-2, IL-6, and TNFα), but also reduces the levels of the inflammatory cytokine IL-8 and increases the levels of the typically anti-inflammatory cytokine IL-10 (Potter et al., 2021). Thus, GM-CSF has a much more complex physiological effect than simply being pro-inflammatory. Furthermore, suppressing the inflammation associated with DS in the periphery may be beneficial in the setting of certain acute disorders (Rachubinski et al., 2019). Thus, growing evidence highlights the complexity of the innate immune system in the context of inflammation in people with DS.
Notably, the fact that we observed improved memory in WT aging mice treated with GM-CSF (Boyd et al., 2010; Ahmed et al., 2021) suggests that GM-CSF has a cognition/memory enhancing activity that is independent of disease and suggests that modulation of the innate immune system may help prevent normal age-related memory decline. In contrast to previous expectations that inhibiting inflammation and the innate immune system would be the most effective therapy for co-morbidities of DS, the beneficial effects of GM-CSF on learning and memory may reflect its stimulating pro-inflammatory activity, its other physiological/cellular effects, or both (Figure 1).
Therapeutic Modulation of Microglial Numbers and Activation
It is becoming increasingly clear that microglia play multiple, and often disparate, roles at different stages of the innate immune and neuroinflammatory responses in DS and in AD. Accordingly, microglial reduction/depletion has also been investigated as a therapeutic approach to DS, AD, and other neurodegenerative diseases. For example, small molecule drugs targeting CSF1R, which is crucial for microglial proliferation and survival, have been repurposed from cancer indications (Cannarile et al., 2017) and used to modulate microglial levels in the CNS (Figure 1). Indeed, microglial reduction via CSF1R inhibition was found to rescue several cognitive deficits in Dp16 mice (Pinto et al., 2020). In AD mouse models, microglial depletion prior to amyloid deposition was shown to be critical for therapeutic efficacy (Sosna et al., 2018; Spangenberg et al., 2019; Son et al., 2020). Likewise, in mouse models of primary tauopathy, characterized by inclusions of the protein tau in neural cells (Kovacs, 2015), CSF1R inhibitors reduced pathological tau aggregation and subsequent neurodegeneration (Mancuso et al., 2019; Shi et al., 2019). However, recent evidence suggests that complete microglial depletion is neither necessary nor desirable for extending lifespan in tauopathy mice and that microglia resilient to CSF1R inhibition exist in a quiescent, non-activated state and may serve important roles in prevention and recovery from tau-induced neurodegeneration (Johnson et al., 2021b). Together, these studies underscore the importance of carefully considering microglial state and function over the disease course in order to appropriately balance microglial stimulation and repression therapeutically.
Conclusion
Collectively, the recent data indicate that targeted enhancement or inhibition of the innate immune system and inflammatory cytokines can effectively treat DS, AD, and normal aging. These findings provide compelling evidence that the long-held belief that inflammation and innate immune system activation primarily play negative roles in DS, AD, and normal aging must be reassessed. Although GM-CSF is the first modulatory cytokine to exhibit therapeutic potential in inflammation-associated disorders, it serves as a proof-of-principle, and other therapeutic molecules could use a similar approach. Furthermore, combination therapies that pair GM-CSF with small molecule inhibitors of apoE or CSF1R at appropriate neuroinflammatory stages may be particularly effective for treating people with DS and/or AD.
Author Contributions
All authors contributed to the design and writing of the manuscript. All authors contributed to the article and approved the submitted version.
Conflict of Interest
HP and TB are two of the inventors on several U.S. patents owned by the University of South Florida, but not licensed. TB is an employee of Partner Therapeutics. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s Note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Funding
Research support was provided by NIH grant R01 AG037942-01A1, the State of Colorado, the University of Colorado School of Medicine, the Linda Crnic Institute for Down Syndrome, Don and Sue Fisher, the Hewitt Family Foundation, Marcy and Bruce Benson, the Global Down Syndrome Foundation, and other generous philanthropists.
References
- Abe N., Nishihara T., Yorozuya T., Tanaka J. (2020). Microglia and macrophages in the pathological central and peripheral nervous systems. Cells 9:2132. 10.3390/cells9092132 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abraham C. R., Selkoe D. J., Potter H. (1988). Immunochemical identification of the serine protease inhibitor α 1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52, 487–501. 10.1016/0092-8674(88)90462-x [DOI] [PubMed] [Google Scholar]
- ADAPT_FS_Research_Group . (2015). Follow-up evaluation of cognitive function in the randomized Alzheimer’s disease anti-inflammatory prevention trial and its follow-up study. Alzheimers Dement. 11, 216.e1–225.e1. 10.1016/j.jalz.2014.03.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed M. M., Dhanasekaran A. R., Tong S., Wiseman F. K., Fisher E. M., Tybulewicz V. L., et al. (2013). Protein profiles in Tc1 mice implicate novel pathway perturbations in the Down syndrome brain. Hum. Mol. Genet. 22, 1709–1724. 10.1093/hmg/ddt017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed M. M., Sturgeon X., Ellison M., Davisson M. T., Gardiner K. J. (2012). Loss of correlations among proteins in brains of the Ts65Dn mouse model of down syndrome. J. Proteome Res. 11, 1251–1263. 10.1021/pr2011582 [DOI] [PubMed] [Google Scholar]
- Ahmed M. M., Wang A. C.-J., Elos M., Chial H. J., Sillau S., Solano D. A., et al. (2021). Pro-inflammatory cytokine GM-CSF improves learning/memory and brain pathology in Dp16 down syndrome mice and improves learning/memory in wild-type mice. bioRxiv [Preprint]. 10.1101/2021.07.04.451073 [DOI] [Google Scholar]
- Akiyama H., Barger S., Barnum S., Bradt B., Bauer J., Cole G. M., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383–421. 10.1016/s0197-4580(00)00124-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alzheimer A. (1907). Uber eine eigenartige Erkrankung der Hirnride. Allg. Z. Psychiatr. Psych. Gerichtl. 64, 146–148. [Google Scholar]
- Araya P., Waugh K. A., Sullivan K. D., Núñez N. G., Roselli E., Smith K. P., et al. (2019). Trisomy 21 dysregulates T cell lineages toward an autoimmunity-prone state associated with interferon hyperactivity. Proc. Natl. Acad. Sci. U S A 116, 24231–24241. 10.1073/pnas.1908129116 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashraf-Ganjouei A., Moradi K., Bagheri S., Aarabi M. H. (2020). The association between systemic inflammation and cognitive performance in healthy adults. J. Neuroimmunol. 345:577272. 10.1016/j.jneuroim.2020.577272 [DOI] [PubMed] [Google Scholar]
- Baldwin G. C., Benveniste E. N., Chung G. Y., Gasson J. C., Golde D. W. (1993). Identification and characterization of a high-affinity granulocyte-macrophage colony-stimulating factor receptor on primary rat oligodendrocytes. Blood 82, 3279–3282. 10.1182/blood.v82.11.3279.bloodjournal82113279 [DOI] [PubMed] [Google Scholar]
- Barger S. W., Harmon A. D. (1997). Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388, 878–881. 10.1038/42257 [DOI] [PubMed] [Google Scholar]
- Barroeta-Espar I., Weinstock L. D., Perez-Nievas B. G., Meltzer A. C., Siao Tick Chong M., Amaral A. C., et al. (2019). Distinct cytokine profiles in human brains resilient to Alzheimer’s pathology. Neurobiol. Dis. 121, 327–337. 10.1016/j.nbd.2018.10.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beecham G. W., Hamilton K., Naj A. C., Martin E. R., Huentelman M., Myers A. J., et al. (2014). Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 10:e1004606. 10.1371/journal.pgen.1004606 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertram L., McQueen M. B., Mullin K., Blacker D., Tanzi R. E. (2007). Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 39, 17–23. 10.1038/ng1934 [DOI] [PubMed] [Google Scholar]
- Bettcher B. M., Johnson S. C., Fitch R., Casaletto K. B., Heffernan K. S., Asthana S., et al. (2018). Cerebrospinal fluid and plasma levels of inflammation differentially relate to CNS markers of Alzheimer’s disease pathology and neuronal damage. J. Alzheimers Dis. 62, 385–397. 10.3233/JAD-170602 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bettcher B. M., Olson K. E., Carlson N. E., McConnell B. V., Boyd T., Adame V., et al. (2021). Astrogliosis and episodic memory in late life: higher GFAP is related to worse memory and white matter microstructure in healthy aging and Alzheimer’s disease. Neurobiol. Aging 103, 68–77. 10.1016/j.neurobiolaging.2021.02.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer K., Lao J. I., Carrato C., Rodriguez-Vila A., Latorre P., Mataro M., et al. (2004). Cystathionine β synthase as a risk factor for Alzheimer disease. Curr. Alzheimer Res. 1, 127–133. 10.2174/1567205043332243 [DOI] [PubMed] [Google Scholar]
- Bhattacharya P., Budnick I., Singh M., Thiruppathi M., Alharshawi K., Elshabrawy H., et al. (2015a). Dual role of GM-CSF as a pro-inflammatory and a regulatory cytokine: implications for immune therapy. J. Interferon Cytokine Res. 35, 585–599. 10.1089/jir.2014.0149 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhattacharya P., Thiruppathi M., Elshabrawy H. A., Alharshawi K., Kumar P., Prabhakar B. S. (2015b). GM-CSF: an immune modulatory cytokine that can suppress autoimmunity. Cytokine 75, 261–271. 10.1016/j.cyto.2015.05.030 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bittles A. H., Bower C., Hussain R., Glasson E. J. (2007). The four ages of Down syndrome. Eur. J. Public Health 17, 221–225. 10.1093/eurpub/ckl103 [DOI] [PubMed] [Google Scholar]
- Block A., Ahmed M. M., Dhanasekaran A. R., Tong S., Gardiner K. J. (2015). Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol. Sex Differ. 6:24. 10.1186/s13293-015-0043-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borriello F., Galdiero M. R., Varricchi G., Loffredo S., Spadaro G., Marone G. (2019). Innate immune modulation by GM-CSF and IL-3 in health and disease. Int. J. Mol. Sci. 20:834. 10.3390/ijms20040834 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boselli D., Ragimbeau J., Orlando L., Cappello P., Capello M., Ambrogio C., et al. (2010). Expression of IFNγR2 mutated in a dileucine internalization motif reinstates IFNγ signaling and apoptosis in human T lymphocytes. Immunol. Lett. 134, 17–25. 10.1016/j.imlet.2010.08.005 [DOI] [PubMed] [Google Scholar]
- Boyd T. D., Bennett S. P., Mori T., Governatori N., Runfeldt M., Norden M., et al. (2010). GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J. Alzheimers Dis. 21, 507–518. 10.3233/JAD-2010-091471 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodbeck J., McGuire J., Liu Z., Meyer-Franke A., Balestra M. E., Jeong D. E., et al. (2011). Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. J. Biol. Chem. 286, 17217–17226. 10.1074/jbc.M110.217380 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchhave P., Zetterberg H., Blennow K., Minthon L., Janciauskiene S., Hansson O. (2010). Soluble TNF receptors are associated with Aβ metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiol. Aging 31, 1877–1884. 10.1016/j.neurobiolaging.2008.10.012 [DOI] [PubMed] [Google Scholar]
- Busse M., Michler E., von Hoff F., Dobrowolny H., Hartig R., Frodl T., et al. (2017). Alterations in the peripheral immune system in dementia. J. Alzheimers Dis. 58, 1303–1313. 10.3233/JAD-161304 [DOI] [PubMed] [Google Scholar]
- Cannarile M. A., Weisser M., Jacob W., Jegg A. M., Ries C. H., Ruttinger D. (2017). Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 5:53. 10.1186/s40425-017-0257-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castano E. M., Prelli F., Wisniewski T., Golabek A., Kumar R. A., Soto C., et al. (1995). Fibrillogenesis in Alzheimer’s disease of amyloid β peptides and apolipoprotein E. Biochem. J. 306, 599–604. 10.1042/bj3060599 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castellano J. M., Mosher K. I., Abbey R. J., McBride A. A., James M. L., Berdnik D., et al. (2017). Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544, 488–492. 10.1038/nature22067 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Centers for Disease Control and Prevention (CDC) . (2006). Improved national prevalence estimates for 18 selected major birth defects—United States, 1999–2001. MMWR Morb. Mortal. Wkly. Rep. 54, 1301–1305. [PubMed] [Google Scholar]
- Cerf E., Gustot A., Goormaghtigh E., Ruysschaert J. M., Raussens V. (2011). High ability of apolipoprotein E4 to stabilize amyloid-β peptide oligomers, the pathological entities responsible for Alzheimer’s disease. FASEB J. 25, 1585–1595. 10.1096/fj.10-175976 [DOI] [PubMed] [Google Scholar]
- Chapman R. S., Hesketh L. J. (2000). Behavioral phenotype of individuals with Down syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 6, 84–95. [DOI] [PubMed] [Google Scholar]
- Chen H.-K., Liu Z., Meyer-Franke A., Brodbeck J., Miranda R. D., McGuire J. G., et al. (2012). Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J. Biol. Chem. 287, 5253–5266. 10.1074/jbc.M111.276162 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colton C., Wilcock D. M. (2010). Assessing activation states in microglia. CNS Neurol. Disord. Drug Targets 9, 174–191. 10.2174/187152710791012053 [DOI] [PubMed] [Google Scholar]
- Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923. 10.1126/science.8346443 [DOI] [PubMed] [Google Scholar]
- Counts S. E., Ikonomovic M. D., Mercado N., Vega I. E., Mufson E. J. (2017). Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics 14, 35–53. 10.1007/s13311-016-0481-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cribbs D. H., Berchtold N. C., Perreau V., Coleman P. D., Rogers J., Tenner A. J., et al. (2012). Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflammation 9:179. 10.1186/1742-2094-9-179 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cudaback E., Yang Y., Montine T. J., Keene C. D. (2015). APOE genotype-dependent modulation of astrocyte chemokine CCL3 production. Glia 63, 51–65. 10.1002/glia.22732 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danciger E., Dafni N., Bernstein Y., Laver-Rudich Z., Neer A., Groner Y. (1986). Human Cu/Zn superoxide dismutase gene family: molecular structure and characterization of four Cu/Zn superoxide dismutase-related pseudogenes. Proc. Natl. Acad. Sci. U S A 83, 3619–3623. 10.1073/pnas.83.11.3619 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deb S., Braganza J., Norton N., Williams H., Kehoe P. G., Williams J., et al. (2000). APOE epsilon 4 influences the manifestation of Alzheimer’s disease in adults with Down’s syndrome. Br. J. Psychiatry 176, 468–472. 10.1192/bjp.176.5.468 [DOI] [PubMed] [Google Scholar]
- Diniz B. S., Teixeira A. L., Ojopi E. B., Talib L. L., Mendonca V. A., Gattaz W. F., et al. (2010). Higher serum sTNFR1 level predicts conversion from mild cognitive impairment to Alzheimer’s disease. J. Alzheimers Dis. 22, 1305–1311. 10.3233/JAD-2010-100921 [DOI] [PubMed] [Google Scholar]
- Donato R., Cannon B. R., Sorci G., Riuzzi F., Hsu K., Weber D. J., et al. (2013). Functions of S100 proteins. Curr. Mol. Med. 13, 24–57. 10.2174/156652413804486214 [DOI] [PMC free article] [PubMed] [Google Scholar]
- El Khoury J., Toft M., Hickman S. E., Means T. K., Terada K., Geula C., et al. (2007). Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat. Med. 13, 432–438. 10.1038/nm1555 [DOI] [PubMed] [Google Scholar]
- Epstein C. J. (1990). The consequences of chromosome imbalance. Am. J. Med. Genet. Suppl. 7, 31–37. [DOI] [PubMed] [Google Scholar]
- Flores-Aguilar L., Iulita M. F., Kovecses O., Torres M. D., Levi S. M., Zhang Y., et al. (2020). Evolution of neuroinflammation across the lifespan of individuals with Down syndrome. Brain 143, 3653–3671. 10.1093/brain/awaa326 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frasca D., Blomberg B. B. (2016). Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17, 7–19. 10.1007/s10522-015-9578-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galimberti D., Fenoglio C., Lovati C., Venturelli E., Guidi I., Corra B., et al. (2006). Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer’s disease. Neurobiol. Aging 27, 1763–1768. 10.1016/j.neurobiolaging.2005.10.007 [DOI] [PubMed] [Google Scholar]
- Ganesh L., Yoshimoto T., Moorthy N. C., Akahata W., Boehm M., Nabel E. G., et al. (2006). Protein methyltransferase 2 inhibits NF-kappaB function and promotes apoptosis. Mol. Cell. Biol. 26, 3864–3874. 10.1128/MCB.26.10.3864-3874.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardiner K. J. (2015). Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des. Devel. Ther. 9, 103–125. 10.2147/DDDT.S51476 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenner G. G., Wong C. W. (1984). Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122, 1131–1135. 10.1016/0006-291x(84)91209-9 [DOI] [PubMed] [Google Scholar]
- Golabek A. A., Soto C., Vogel T., Wisniewski T. (1996). The interaction between apolipoprotein E and Alzheimer’s amyloid β-peptide is dependent on β-peptide conformation. J. Biol. Chem. 271, 10602–10606. 10.1074/jbc.271.18.10602 [DOI] [PubMed] [Google Scholar]
- Guo Y., Hong W., Wang X., Zhang P., Körner H., Tu J., et al. (2019). MicroRNAs in microglia: how do MicroRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front. Mol. Neurosci. 12:125. 10.3389/fnmol.2019.00125 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guyant-Maréchal L., Rovelet-Lecrux A., Goumidi L., Cousin E., Hannequin D., Raux G., et al. (2007). Variations in the APP gene promoter region and risk of Alzheimer disease. Neurology 68, 684–687. 10.1212/01.wnl.0000255938.33739.46 [DOI] [PubMed] [Google Scholar]
- Hardy J. (2009). The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem. 110, 1129–1134. 10.1111/j.1471-4159.2009.06181.x [DOI] [PubMed] [Google Scholar]
- Hashimoto T., Serrano-Pozo A., Hori Y., Adams K. W., Takeda S., Banerji A. O., et al. (2012). Apolipoprotein E, especially apolipoprotein E4, increases the oligomerization of amyloid β peptide. J. Neurosci. 32, 15181–15192. 10.1523/JNEUROSCI.1542-12.2012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Head E., Lott I. T., Wilcock D. M., Lemere C. A. (2016). Aging in down syndrome and the development of Alzheimer’s disease neuropathology. Curr. Alzheimer Res. 13, 18–29. 10.2174/1567205012666151020114607 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendrix J. A., Airey D. C., Britton A., Burke A. D., Capone G. T., Chavez R., et al. (2021). Cross-sectional exploration of plasma biomarkers of Alzheimer’s disease in down syndrome: early data from the longitudinal investigation for enhancing down syndrome research (LIFE-DSR) study. J. Clin. Med. 10:1907. 10.3390/jcm10091907 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heneka M. T., Carson M. J., El Khoury J., Landreth G. E., Brosseron F., Feinstein D. L., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405. 10.1016/S1474-4422(15)70016-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huggard D., Doherty D. G., Molloy E. J. (2020a). Immune dysregulation in children with down syndrome. Front. Pediatr. 8:73. 10.3389/fped.2020.00073 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huggard D., Kelly L., Ryan E., McGrane F., Lagan N., Roche E., et al. (2020b). Increased systemic inflammation in children with Down syndrome. Cytokine 127:154938. 10.1016/j.cyto.2019.154938 [DOI] [PubMed] [Google Scholar]
- Huynh T.-P. V., Liao F., Francis C. M., Robinson G. O., Serrano J. R., Jiang H., et al. (2017). Age-dependent effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron 96, P1013–1023.E4. 10.1016/j.neuron.2017.11.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Irving C., Basu A., Richmond S., Burn J., Wren C. (2008). Twenty-year trends in prevalence and survival of Down syndrome. Eur. J. Hum. Genet. 16, 1336–1340. 10.1038/ejhg.2008.122 [DOI] [PubMed] [Google Scholar]
- Jesse S., Steinacker P., Cepek L., von Arnim C. A., Tumani H., Lehnert S., et al. (2009). Glial fibrillary acidic protein and protein S-100B: different concentration pattern of glial proteins in cerebrospinal fluid of patients with Alzheimer’s disease and Creutzfeldt-Jakob disease. J. Alzheimers Dis. 17, 541–551. 10.3233/JAD-2009-1075 [DOI] [PubMed] [Google Scholar]
- Jim H. S., Boyd T. D., Booth-Jones M., Pidala J., Potter H. (2012). Granulocyte macrophage colony stimulating factor treatment is associated with improved cognition in cancer patients. Brain Disord. Ther. 1:1000101. 10.4172/bdt.1000101 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson N. R., Wang A. C.-J., Coughlan C., Sillau S., Lucero E., Viltz L., et al. (2021a). Imipramine and olanzapine block apoE4-catalyzed polymerization of Aβ and show evidence of improving Alzheimer’s disease cognition. bioRxiv [Preprint]. 10.1101/2021.03.28.437389 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson N. R., Yuan P., Lopez T. P., Yue W., Bond A., Rivera B. M., et al. (2021b). Sex-specific life extension in tauopathy mice by CSF1R inhibition causing selective microglial depletion and suppressed pathogenesis. bioRxiv [Preprint]. 10.1101/2021.03.20.436288 [DOI] [Google Scholar]
- Kang S. S., Ebbert M. T. W., Baker K. E., Cook C., Wang X., Sens J. P., et al. (2018). Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J. Exp. Med. 215, 2235–2245. 10.1084/jem.20180653 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauwe J. S., Bailey M. H., Ridge P. G., Perry R., Wadsworth M. E., Hoyt K. L., et al. (2014). Genome-wide association study of CSF levels of 59 alzheimer’s disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation. PLoS Genet. 10:e1004758. 10.1371/journal.pgen.1004758 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelso M. L., Elliott B. R., Haverland N. A., Mosley R. L., Gendelman H. E. (2015). Granulocyte-macrophage colony stimulating factor exerts protective and immunomodulatory effects in cortical trauma. J. Neuroimmunol. 278, 162–173. 10.1016/j.jneuroim.2014.11.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keren-Shaul H., Spinrad A., Weiner A., Matcovitch-Natan O., Dvir-Szternfeld R., Ulland T. K., et al. (2017). A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276.e7–1290.e7. 10.1016/j.jneuroim.2014.11.002 [DOI] [PubMed] [Google Scholar]
- Kim S. H., Cohen B., Novick D., Rubinstein M. (1997). Mammalian type I interferon receptors consists of two subunits: IFNaR1 and IFNaR2. Gene 196, 279–286. 10.1016/s0378-1119(97)00240-0 [DOI] [PubMed] [Google Scholar]
- Kim T.-S., Lim H.-K., Lee J. Y., Kim D.-J., Park S., Lee C., et al. (2008). Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 436, 196–200. 10.1016/j.neulet.2008.03.019 [DOI] [PubMed] [Google Scholar]
- Kimura R., Kamino K., Yamamoto M., Nuripa A., Kida T., Kazui H., et al. (2007). The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between β-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet. 16, 15–23. 10.1093/hmg/ddl437 [DOI] [PubMed] [Google Scholar]
- Kiyota T., Machhi J., Lu Y., Dyavarshetty B., Nemati M., Yokoyama I., et al. (2018). Granulocyte-macrophage colony-stimulating factor neuroprotective activities in Alzheimer’s disease mice. J. Neuroimmunol. 319, 80–92. 10.1016/j.jneuroim.2018.03.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koffie R. M., Hashimoto T., Tai H.-C., Kay K. R., Serrano-Pozo A., Joyner D., et al. (2012). Apolipoprotein E4 effects in Alzheimer’s disease are mediated by synaptotoxic oligomeric amyloid-β. Brain 135, 2155–2168. 10.1093/brain/aws127 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kong T., Choi J. K., Park H., Choi B. H., Snyder B. J., Bukhari S., et al. (2009). Reduction in programmed cell death and improvement in functional outcome of transient focal cerebral ischemia after administration of granulocyte-macrophage colony-stimulating factor in rats. Laboratory investigation. J. Neurosurg. 111, 155–163. 10.3171/2008.12.JNS08172 [DOI] [PubMed] [Google Scholar]
- Kovacs G. G. (2015). Invited review: neuropathology of tauopathies: principles and practice. Neuropathol. Appl. Neurobiol. 41, 3–23. 10.1111/nan.12208 [DOI] [PubMed] [Google Scholar]
- Krasemann S., Madore C., Cialic R., Baufeld C., Calcagno N., El Fatimy R., et al. (2017). The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, P566–581.E9. 10.1016/j.immuni.2017.08.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhn P.-H., Marjaux E., Imhof A., De Strooper B., Haass C., Lichtenthaler S. F. (2007). Regulated intramembrane proteolysis of the interleukin-1 receptor II by α-, β-, and γ-secretase. J. Biol. Chem. 282, 11982–11995. 10.1074/jbc.M700356200 [DOI] [PubMed] [Google Scholar]
- Kunkle B. W., Grenier-Boley B., Sims R., Bis J. C., Damotte V., Naj A. C., et al. (2019). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430. 10.1038/s41588-019-0358-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuno K., Kanada N., Nakashima E., Fujiki F., Ichimura F., Matsushima K. (1997). Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. J. Biol. Chem. 272, 556–562. 10.1074/jbc.272.1.556 [DOI] [PubMed] [Google Scholar]
- Kurt S., Tomatir A. G., Tokgun P. E., Oncel C. (2020). Altered expression of long non-coding RNAs in peripheral blood mononuclear cells of patients with Alzheimer’s disease. Mol. Neurobiol. 57, 5352–5361. 10.1007/s12035-020-02106-x [DOI] [PubMed] [Google Scholar]
- Lambert J.-C., Ferreira S., Gussekloo J., Christiansen L., Brysbaert G., Slagboom E., et al. (2007). Evidence for the association of the S100β gene with low cognitive performance and dementia in the elderly. Mol. Psychiatry 12, 870–880. 10.1038/sj.mp.4001974 [DOI] [PubMed] [Google Scholar]
- Lambert J. C., Ibrahim-Verbaas C. A., Harold D., Naj A. C., Sims R., Bellenguez C., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458. 10.1038/ng.2802 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latour A., Gu Y., Kassis N., Daubigney F., Colin C., Gausseres B., et al. (2019). LPS-induced inflammation abolishes the effect of DYRK1A on IkB stability in the brain of mice. Mol. Neurobiol. 56, 963–975. 10.1007/s12035-018-1113-x [DOI] [PubMed] [Google Scholar]
- Lee J. W., Kang H. S., Lee J. Y., Lee E. J., Rhim H., Yoon J. H., et al. (2012). The transcription factor STAT2 enhances proteasomal degradation of RCAN1 through the ubiquitin E3 ligase FBW7. Biochem. Biophys. Res. Commun. 420, 404–410. 10.1016/j.bbrc.2012.03.007 [DOI] [PubMed] [Google Scholar]
- Legacy J., Hanea S., Theoret J., Smith P. D. (2013). Granulocyte macrophage colony-stimulating factor promotes regeneration of retinal ganglion cells in vitro through a mammalian target of rapamycin-dependent mechanism. J. Neurosci. Res. 91, 771–779. 10.1002/jnr.23205 [DOI] [PubMed] [Google Scholar]
- Leszek J., Barreto G. E., Gasiorowski K., Koutsouraki E., Avila-Rodrigues M., Aliev G. (2016). Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol. Disord. Drug Targets 15, 329–336. 10.2174/1871527315666160202125914 [DOI] [PubMed] [Google Scholar]
- Li Y., Wang J., Sheng J. G., Liu L., Barger S. W., Jones R. A., et al. (1998). S100 β increases levels of β-amyloid precursor protein and its encoding mRNA in rat neuronal cultures. J. Neurochem. 71, 1421–1428. 10.1046/j.1471-4159.1998.71041421.x [DOI] [PubMed] [Google Scholar]
- Liao F., Hori Y., Hudry E., Bauer A. Q., Jiang H., Mahan T. E., et al. (2014). Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J. Neurosci. 34, 7281–7292. 10.1523/JNEUROSCI.0646-14.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin K. G., Tang M., Guo Y. B., Han H. Y., Lin Y. H. (2011). Two polymorphisms of RCAN1 gene associated with Alzheimer’s disease in the Chinese Han population. East Asian Arch. Psychiatry 21, 79–84. [PubMed] [Google Scholar]
- Lin Y.-T., Seo J., Gao F., Feldman H. M., Wen H. L., Penney J., et al. (2018). APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, P1141–1154.E7. 10.1016/j.neuron.2018.05.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L., Li Y., Van Eldik L. J., Griffin W. S., Barger S. W. (2005). S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors. J. Neurochem. 92, 546–553. 10.1111/j.1471-4159.2004.02909.x [DOI] [PubMed] [Google Scholar]
- Liu C.-C., Zhao N., Fu Y., Wang N., Linares C., Tsai C.-W., et al. (2017). ApoE4 accelerates early seeding of amyloid pathology. Neuron 96, P1024–1032.E3. 10.1016/j.neuron.2017.11.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loane M., Morris J. K., Addor M. C., Arriola L., Budd J., Doray B., et al. (2013). Twenty-year trends in the prevalence of Down syndrome and other trisomies in Europe: impact of maternal age and prenatal screening. Eur. J. Hum. Genet. 21, 27–33. 10.1038/ejhg.2012.9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lockstone H. E., Harris L. W., Swatton J. E., Wayland M. T., Holland A. J., Bahn S. (2007). Gene expression profiling in the adult Down syndrome brain. Genomics 90, 647–660. 10.1016/j.ygeno.2007.08.005 [DOI] [PubMed] [Google Scholar]
- Lucin K. M., Wyss-Coray T. (2009). Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110–122. 10.1016/j.neuron.2009.08.039 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lv H., Jia L., Jia J. (2008). Promoter polymorphisms which modulate APP expression may increase susceptibility to Alzheimer’s disease. Neurobiol. Aging 29, 194–202. 10.1016/j.neurobiolaging.2006.10.001 [DOI] [PubMed] [Google Scholar]
- Ma J., Brewer H. B., Jr., Potter H. (1996). Alzheimer A β neurotoxicity: promotion by antichymotrypsin, ApoE4; inhibition by A β-related peptides. Neurobiol. Aging 17, 773–780. 10.1016/0197-4580(96)00112-1 [DOI] [PubMed] [Google Scholar]
- Ma J., Yee A., Brewer H. B., Jr., Das S., Potter H. (1994). Amyloid-associated proteins α 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments. Nature 372, 92–94. 10.1038/372092a0 [DOI] [PubMed] [Google Scholar]
- Maezawa I., Maeda N., Montine T. J., Montine K. S. (2006). Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice. J. Neuroinflammation 3:10. 10.1186/1742-2094-3-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maher K., Jeric Kokelj B., Butinar M., Mikhaylov G., Mancek-Keber M., Stoka V., et al. (2014). A role for stefin B (cystatin B) in inflammation and endotoxemia. J. Biol. Chem. 289, 31736–31750. 10.1074/jbc.M114.609396 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mancuso R., Fryatt G., Cleal M., Obst J., Pipi E., Monzon-Sandoval J., et al. (2019). CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain 142, 3243–3264. 10.1093/brain/awz241 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manelli A. M., Bulfinch L. C., Sullivan P. M., LaDu M. J. (2007). Aβ42 neurotoxicity in primary co-cultures: effect of apoE isoform and Aβ conformation. Neurobiol. Aging 28, 1139–1147. 10.1016/j.neurobiolaging.2006.05.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGeer P. L., Rogers J., McGeer E. G. (2006). Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years. J. Alzheimers Dis. 9, 271–276. 10.3233/jad-2006-9s330 [DOI] [PubMed] [Google Scholar]
- McGeer P. L., Schulzer M., McGeer E. G. (1996). Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47, 425–432. 10.1212/wnl.47.2.425 [DOI] [PubMed] [Google Scholar]
- McGeer P. L., Walker D. G., Pitas R. E., Mahley R. W., McGeer E. G. (1997). Apolipoprotein E4 (ApoE4) but not ApoE3 or ApoE2 potentiates β-amyloid protein activation of complement in vitro. Brain Res. 749, 135–138. 10.1016/s0006-8993(96)01324-8 [DOI] [PubMed] [Google Scholar]
- McLay R. N., Kimura M., Banks W. A., Kastin A. J. (1997). Granulocyte-macrophage colony-stimulating factor crosses the blood—brain and blood—spinal cord barriers. Brain 120, 2083–2091. 10.1093/brain/120.11.2083 [DOI] [PubMed] [Google Scholar]
- Morgan A. R., Touchard S., Leckey C., O’Hagan C., Nevado-Holgado A. J., Barkhof F., et al. (2019). Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimers Dement. 15, 776–787. 10.1016/j.jalz.2019.03.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mrak R. E., Griffin W. S. (2001). Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol. Aging 22, 903–908. 10.1016/s0197-4580(01)00287-1 [DOI] [PubMed] [Google Scholar]
- Myllykangas L., Wavrant-De Vrieze F., Polvikoski T., Notkola I. L., Sulkava R., Niinisto L., et al. (2005). Chromosome 21 BACE2 haplotype associates with Alzheimer’s disease: a two-stage study. J. Neurol. Sci. 236, 17–24. 10.1016/j.jns.2005.04.008 [DOI] [PubMed] [Google Scholar]
- Niu L.-D., Xu W., Li J.-Q., Tan C.-C., Cao X.-P., Yu J., et al. (2019). Genome-wide association study of cerebrospinal fluid neurofilament light levels in non-demented elders. Ann. Transl. Med. 7:657. 10.21037/atm.2019.10.66 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowotny P., Simcock X., Bertelsen S., Hinrichs A. L., Kauwe J. S., Mayo K., et al. (2007). Association studies testing for risk for late-onset Alzheimer’s disease with common variants in the β-amyloid precursor protein (APP). Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 469–474. 10.1002/ajmg.b.30485 [DOI] [PubMed] [Google Scholar]
- Pankiewicz J. E., Guridi M., Kim J., Asuni A. A., Sanchez S., Sullivan P. M., et al. (2014). Blocking the apoE/Aβ interaction ameliorates Aβ-related pathology in APOE epsilon2 and epsilon4 targeted replacement Alzheimer model mice. Acta Neuropathol. Commun. 2:75. 10.1186/s40478-014-0075-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel A., Rees S. D., Kelly M. A., Bain S. C., Barnett A. H., Thalitaya D., et al. (2011). Association of variants within APOE, SORL1, RUNX1, BACE1 and ALDH18A1 with dementia in Alzheimer’s disease in subjects with Down syndrome. Neurosci. Lett. 487, 144–148. 10.1016/j.neulet.2010.10.010 [DOI] [PubMed] [Google Scholar]
- Patel D., Zhang X., Farrell J. J., Lunetta K. L., Farrer L. A. (2021). Set-based rare variant expression quantitative trait loci in blood and brain from alzheimer disease study participants. Genes 12:419. 10.3390/genes12030419 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry V. H., Gordon S. (1988). Macrophages and microglia in the nervous system. Trends Neurosci. 11, 273–277. 10.1016/0166-2236(88)90110-5 [DOI] [PubMed] [Google Scholar]
- Petersen M. E., O’Bryant S. E. (2019). Blood-based biomarkers for Down syndrome and Alzheimer’s disease: a systematic review. Dev. Neurobiol. 79, 699–710. 10.1002/dneu.22714 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto B., Morelli G., Rastogi M., Savardi A., Fumagalli A., Petretto A., et al. (2020). Rescuing over-activated microglia restores cognitive performance in juvenile animals of the Dp(16) mouse model of down syndrome. Neuron 108, P887–904.E12. 10.1016/j.neuron.2020.09.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter H. (2001). “Beyond β protein—the essential role of inflammation in Alzheimer amyloid formation,” in Inflammatory Events in Neurodegeneration, eds Bondy S. C., Cambell A. (Shepparton, Australia: Prominent Press; ). [Google Scholar]
- Potter H., Wisniewski T. (2012). Apolipoprotein e: essential catalyst of the Alzheimer amyloid cascade. Int. J. Alzheimers Dis. 2012:489428. 10.1155/2012/489428 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter H., Woodcock J. H., Boyd T. D., Coughlan C. M., O’Shaughnessy J. R., Borges M. T., et al. (2021). Safety and efficacy of sargramostim (GM-CSF) in the treatment of Alzheimer’s disease. Alzheimers Dement. 7:e12158. 10.1002/trc2.12158 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Powers R. K., Culp-Hill R., Ludwig M. P., Smith K. P., Waugh K. A., Minter R., et al. (2019). Trisomy 21 activates the kynurenine pathway via increased dosage of interferon receptors. Nat. Commun. 10:4766. 10.1038/s41467-019-12739-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rachubinski A. L., Estrada B. E., Norris D., Dunnick C. A., Boldrick J. C., Espinosa J. M. (2019). Janus kinase inhibition in Down syndrome: 2 cases of therapeutic benefit for alopecia areata. JAAD Case Rep. 5, 365–367. 10.1016/j.jdcr.2019.02.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rangaraju S., Dammer E. B., Raza S. A., Rathakrishnan P., Xiao H., Gao T., et al. (2018). Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol. Neurodegener. 13:24. 10.1186/s13024-018-0254-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rangasamy S. B., Jana M., Roy A., Corbett G. T., Kundu M., Chandra S., et al. (2018). Selective disruption of TLR2-MyD88 interaction inhibits inflammation and attenuates Alzheimer’s pathology. J. Clin. Invest. 128, 4297–4312. 10.1172/JCI96209 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ridolfi E., Barone C., Scarpini E., Galimberti D. (2013). The role of the innate immune system in Alzheimer’s disease and frontotemporal lobar degeneration: an eye on microglia. Clin. Dev. Immunol. 2013:939786. 10.1155/2013/939786 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rountree R. B., Willis C. R., Dinh H., Blumberg H., Bailey K., Dean C., Jr., et al. (2010). RIP4 regulates epidermal differentiation and cutaneous inflammation. J. Invest. Dermatol. 130, 102–112. 10.1038/jid.2009.223 [DOI] [PubMed] [Google Scholar]
- Rubinsztein D. C., Hon J., Stevens F., Pyrah I., Tysoe C., Huppert F. A., et al. (1999). Apo E genotypes and risk of dementia in Down syndrome. Am. J. Med. Genet. 88, 344–347. [DOI] [PubMed] [Google Scholar]
- Sadowski M., Pankiewicz J., Scholtzova H., Ripellino J. A., Li Y., Schmidt S. D., et al. (2004). A synthetic peptide blocking the apolipoprotein E/β-amyloid binding mitigates β-amyloid toxicity and fibril formation in vitro and reduces β-amyloid plaques in transgenic mice. Am. J. Pathol. 165, 937–948. 10.1016/s0002-9440(10)63355-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanan D. A., Weisgraber K. H., Russell S. J., Mahley R. W., Huang D., Saunders A., et al. (1994). Apolipoprotein E associates with β amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J. Clin. Invest. 94, 860–869. 10.1172/JCI117407 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawada M., Itoh Y., Suzumura A., Marunouchi T. (1993). Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci. Lett. 160, 131–134. 10.1016/0304-3940(93)90396-3 [DOI] [PubMed] [Google Scholar]
- Schäbitz W. R., Krüger C., Pitzer C., Weber D., Laage R., Gassler N., et al. (2008). A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). J. Cereb. Blood Flow Metab. 28, 29–43. 10.1038/sj.jcbfm.9600496 [DOI] [PubMed] [Google Scholar]
- Schallenberg M., Charalambous P., Thanos S. (2012). GM-CSF protects rat photoreceptors from death by activating the SRC-dependent signalling and elevating anti-apoptotic factors and neurotrophins. Graefes Arch. Clin. Exp. Ophthalmol. 250, 699–712. 10.1007/s00417-012-1932-9 [DOI] [PubMed] [Google Scholar]
- Schmidt R., Schmidt H., Curb J. D., Masaki K., White L. R., Launer L. J. (2002). Early inflammation and dementia: a 25-year follow-up of the Honolulu-Asia Aging Study. Ann. Neurol. 52, 168–174. 10.1002/ana.10265 [DOI] [PubMed] [Google Scholar]
- Schneider U. C., Schilling L., Schroeck H., Nebe C. T., Vajkoczy P., Woitzik J. (2007). Granulocyte-macrophage colony-stimulating factor-induced vessel growth restores cerebral blood supply after bilateral carotid artery occlusion. Stroke 38, 1320–1328. 10.1161/01.STR.0000259707.43496.71 [DOI] [PubMed] [Google Scholar]
- Sen U., Givvimani S., Abe O. A., Lederer E. D., Tyagi S. C. (2011). Cystathionine β-synthase and cystathionine γ-lyase double gene transfer ameliorate homocysteine-mediated mesangial inflammation through hydrogen sulfide generation. Am. J. Physiol. Cell Physiol. 300, C155–C163. 10.1152/ajpcell.00143.2010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Serre-Miranda C., Roque S., Santos N. C., Costa P., Sousa N., Palha J. A., et al. (2020). Cognition is associated with peripheral immune molecules in healthy older adults: a cross-sectional study. Front. Immunol. 11:2045. 10.3389/fimmu.2020.02045 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Y., Manis M., Long J., Wang K., Sullivan P. M., Remolina Serrano J., et al. (2019). Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J. Exp. Med. 216, 2546–2561. 10.1084/jem.20190980 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi Y., Yamada K., Liddelow S. A., Smith S. T., Zhao L., Luo W., et al. (2017). ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549, 523–527. 10.1038/nature24016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shultz S. R., Tan X. L., Wright D. K., Liu S. J., Semple B. D., Johnston L., et al. (2014). Granulocyte-macrophage colony-stimulating factor is neuroprotective in experimental traumatic brain injury. J. Neurotrauma 31, 976–983. 10.1089/neu.2013.3106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silverman W. (2007). Down syndrome: cognitive phenotype. Ment. Retard. Dev. Disabil. Res. Rev. 13, 228–236. 10.1002/mrdd.20156 [DOI] [PubMed] [Google Scholar]
- Snyder H. M., Bain L. J., Brickman A. M., Carrillo M. C., Esbensen A. J., Espinosa J. M., et al. (2020). Further understanding the connection between Alzheimer’s disease and Down syndrome. Alzheimers Dement. 16, 1065–1077. 10.1002/alz.12112 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Son Y., Jeong Y. J., Shin N. R., Oh S. J., Nam K. R., Choi H. D., et al. (2020). Inhibition of colony-stimulating factor 1 receptor by PLX3397 prevents amyloid β pathology and rescues dopaminergic signaling in aging 5xFAD mice. Int. J. Mol. Sci. 21:5553. 10.3390/ijms21155553 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sosna J., Philipp S., Albay R., III., Reyes-Ruiz J. M., Baglietto-Vargas D., LaFerla F. M., et al. (2018). Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol. Neurodegener. 13:11. 10.1186/s13024-018-0244-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soto C., Golabek A., Wisniewski T., Castano E. M. (1996). Alzheimer’s β-amyloid peptide is conformationally modified by apolipoprotein E in vitro. Neuroreport 7, 721–725. 10.1097/00001756-199602290-00010 [DOI] [PubMed] [Google Scholar]
- Spangenberg E., Severson P. L., Hohsfield L. A., Crapser J., Zhang J., Burton E. A., et al. (2019). Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat. Commun. 10:3758. 10.1038/s41467-019-11674-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spellman C., Ahmed M. M., Dubach D., Gardiner K. J. (2013). Expression of trisomic proteins in Down syndrome model systems. Gene 512, 219–225. 10.1016/j.gene.2012.10.051 [DOI] [PubMed] [Google Scholar]
- Strittmatter W. J., Roses A. D. (1995). Apolipoprotein E and Alzheimer disease. Proc. Natl. Acad. Sci. U S A 92, 4725–4727. 10.1073/pnas.92.11.4725 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strittmatter W. J., Saunders A. M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G. S., et al. (1993). Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. U S A 90, 1977–1981. 10.1073/pnas.90.5.1977 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subasinghe W., Syed I., Kowluru A. (2011). Phagocyte-like NADPH oxidase promotes cytokine-induced mitochondrial dysfunction in pancreatic β-cells: evidence for regulation by Rac1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R12–R20. 10.1152/ajpregu.00421.2010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan K. D., Evans D., Pandey A., Hraha T. H., Smith K. P., Markham N., et al. (2017). Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci. Rep. 7:14818. 10.1038/s41598-017-13858-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan K. D., Lewis H. C., Hill A. A., Pandey A., Jackson L. P., Cabral J. M., et al. (2016). Trisomy 21 consistently activates the interferon response. eLife 5:e16220. 10.7554/eLife.16220 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taipa R., das Neves S. P., Sousa A. L., Fernandes J., Pinto C., Correia A. P., et al. (2019). Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol. Aging 76, 125–132. 10.1016/j.neurobiolaging.2018.12.019 [DOI] [PubMed] [Google Scholar]
- Tan M.-S., Yang Y.-X., Xu W., Wang H.-F., Tan L., Zuo C.-T., et al. (2021). Associations of Alzheimer’s disease risk variants with gene expression, amyloidosis, tauopathy, and neurodegeneration. Alzheimers Res. Ther. 13:15. 10.1186/s13195-020-00755-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang X., Sun L., Wang G., Chen B., Luo F. (2018). RUNX1: a regulator of NF-kB signaling in pulmonary diseases. Curr. Protein Pept. Sci. 19, 172–178. 10.2174/1389203718666171009111835 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanzi R. E., McClatchey A. I., Lamperti E. D., Villa-Komaroff L., Gusella J. F., Neve R. L. (1988). Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331, 528–530. 10.1038/331528a0 [DOI] [PubMed] [Google Scholar]
- Tarkowski E., Andreasen N., Tarkowski A., Blennow K. (2003). Intrathecal inflammation precedes development of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 74, 1200–1205. 10.1136/jnnp.74.9.1200 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theoret J. K., Jadavji N. M., Zhang M., Smith P. D. (2016). Granulocyte macrophage colony-stimulating factor treatment results in recovery of motor function after white matter damage in mice. Eur. J. Neurosci. 43, 17–24. 10.1111/ejn.13105 [DOI] [PubMed] [Google Scholar]
- Trollor J. N., Smith E., Agars E., Kuan S. A., Baune B. T., Campbell L., et al. (2012). The association between systemic inflammation and cognitive performance in the elderly: the Sydney Memory and Ageing Study. Age 34, 1295–1308. 10.1007/s11357-011-9301-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tuttle K. D., Waugh K. A., Araya P., Minter R., Orlicky D. J., Ludwig M., et al. (2020). JAK1 inhibition blocks lethal immune hypersensitivity in a mouse model of down syndrome. Cell Rep. 33:108407. 10.1016/j.celrep.2020.108407 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vacca R. A., Bawari S., Valenti D., Tewari D., Nabavi S. F., Shirooie S., et al. (2019). Down syndrome: neurobiological alterations and therapeutic targets. Neurosci. Biobehav. Rev. 98, 234–255. 10.1016/j.neubiorev.2019.01.001 [DOI] [PubMed] [Google Scholar]
- Wang C., Najm R., Xu Q., Jeong D. E., Walker D., Balestra M. E., et al. (2018). Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med. 24, 647–657. 10.1038/s41591-018-0004-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wendeln A.-C., Degenhardt K., Kaurani L., Gertig M., Ulas T., Jain G., et al. (2018). Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338. 10.1038/s41586-018-0023-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westin K., Buchhave P., Nielsen H., Minthon L., Janciauskiene S., Hansson O. (2012). CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One 7:e30525. 10.1371/journal.pone.0030525 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whelan C. D., Mattsson N., Nagle M. W., Vijayaraghavan S., Hyde C., Janelidze S., et al. (2019). Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease. Acta Neuropathol. Commun. 7:169. 10.1186/s40478-019-0795-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilcock D. M., Griffin W. S. (2013). Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J. Neuroinflammation 10:84. 10.1186/1742-2094-10-84 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilcock D. M., Hurban J., Helman A. M., Sudduth T. L., McCarty K. L., Beckett T. L., et al. (2015). Down syndrome individuals with Alzheimer’s disease have a distinct neuroinflammatory phenotype compared to sporadic Alzheimer’s disease. Neurobiol. Aging 36, 2468–2474. 10.1016/j.neurobiolaging.2015.05.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wisniewski T., Castano E. M., Golabek A., Vogel T., Frangione B. (1994). Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am. J. Pathol. 145, 1030–1035. [PMC free article] [PubMed] [Google Scholar]
- Wisniewski K. E., Dalton A. J., McLachlan C., Wen G. Y., Wisniewski H. M. (1985). Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35, 957–961. 10.1212/wnl.35.7.957 [DOI] [PubMed] [Google Scholar]
- Wisniewski T., Frangione B. (1992). Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci. Lett. 135, 235–238. 10.1016/0304-3940(92)90444-c [DOI] [PubMed] [Google Scholar]
- Wisniewski T., Golabek A., Matsubara E., Ghiso J., Frangione B. (1993). Apolipoprotein E: binding to soluble Alzheimer’s β-amyloid. Biochem. Biophys. Res. Commun. 192, 359–365. 10.1006/bbrc.1993.1423 [DOI] [PubMed] [Google Scholar]
- Wojcik A. J., Skaflen M. D., Srinivasan S., Hedrick C. C. (2008). A critical role for ABCG1 in macrophage inflammation and lung homeostasis. J. Immunol. 180, 4273–4282. 10.4049/jimmunol.180.6.4273 [DOI] [PubMed] [Google Scholar]
- Wollmer M. A., Sleegers K., Ingelsson M., Zekanowski C., Brouwers N., Maruszak A., et al. (2007). Association study of cholesterol-related genes in Alzheimer’s disease. Neurogenetics 8, 179–188. 10.1007/s10048-007-0087-z [DOI] [PubMed] [Google Scholar]
- Xiong M., Jiang H., Serrano J. R., Gonzales E. R., Wang C., Gratuze M., et al. (2021). APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci. Transl. Med. 13:eabd7522. 10.1126/scitranslmed.abd7522 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamanishi Y., Boyle D. L., Clark M., Maki R. A., Tortorella M. D., Arner E. C., et al. (2002). Expression and regulation of aggrecanase in arthritis: the role of TGF-β. J. Immunol. 168, 1405–1412. 10.4049/jimmunol.168.3.1405 [DOI] [PubMed] [Google Scholar]
- Yang D.-S., Stavrides P., Mohan P. S., Kaushik S., Kumar A., Ohno M., et al. (2011). Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy 7, 788–789. 10.4161/auto.7.7.15596 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuen S., Smith J., Caruso L., Balan M., Opavsky M. A. (2011). The coxsackie-adenovirus receptor induces an inflammatory cardiomyopathy independent of viral infection. J. Mol. Cell. Cardiol. 50, 826–840. 10.1016/j.yjmcc.2011.02.011 [DOI] [PubMed] [Google Scholar]
- Zhang Y., Che M., Yuan J., Yu Y., Cao C., Qin X. Y., et al. (2017). Aberrations in circulating inflammatory cytokine levels in patients with Down syndrome: a meta-analysis. Oncotarget 8, 84489–84496. 10.18632/oncotarget.21060 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu Y., Nwabuisi-Heath E., Dumanis S. B., Tai L. M., Yu C., Rebeck G. W., et al. (2012). APOE genotype alters glial activation and loss of synaptic markers in mice. Glia 60, 559–569. 10.1002/glia.22289 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigman W. B., Jenkins E. C., Tycko B., Schupf N., Silverman W. (2005). Mortality is associated with apolipoprotein E epsilon4 in nondemented adults with Down syndrome. Neurosci. Lett. 390, 93–97. 10.1016/j.neulet.2005.08.002 [DOI] [PubMed] [Google Scholar]