Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2022 Dec 1.
Published in final edited form as: Mol Aspects Med. 2021 Apr 28;82:100966. doi: 10.1016/j.mam.2021.100966

Moments in autophagy and disease: past and present

Xin Wen 1,#, Ying Yang 1,#, Daniel J Klionsky 1,
PMCID: PMC8548407  NIHMSID: NIHMS1697374  PMID: 33931245

Abstract

Over the past several decades, research on autophagy, a highly conserved lysosomal degradation pathway, has been advanced by studies in different model organisms, especially in the field of its molecular mechanism and regulation. The malfunction of autophagy is linked to various diseases, among which cancer and neurodegenerative diseases are the major focus. In this review, we cover some other important diseases, including cardiovascular diseases, infectious and inflammatory diseases, and metabolic disorders, as well as rare diseases, with a hope of providing a more complete understanding of the spectrum of autophagy’s role in human health.

Keywords: Autophagy, cardiovascular diseases, COVID-19, metabolic disorders, rare diseases

Overview of Autophagy

For the past several decades, our understanding about the basic mechanism of autophagy, a pathway targeting cytoplasmic materials for lysosomal degradation and recycling, has expanded tremendously (Klionsky et al., 2021; Noda and Inagaki, 2015; Yang and Klionsky, 2010). Under normal nutrient conditions, autophagy occurs continuously at a low, basal level to inhibit the accumulation of damaged cytoplasmic components, but this process can be massively upregulated when cells face stress conditions such as nutrient deprivation (Mizushima, 2007; Wen and Klionsky, 2016). Three types of autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy (CMA), have been characterized based on different types of cargo and various modes of cargo delivery to lysosomes (Parzych and Klionsky, 2014). Microautophagy involves invagination or protrusion of endosomes or lysosomes, in which portions of cytoplasm in close proximity to the endosome and lysosome are sequestered and degraded, and the detailed mechanism is still under investigation (Schuck, 2020). CMA relies on chaperones to recognize individual KFERQ motif-containing cargo proteins, and then translocates the unfolded proteins across the lysosomal membrane (Kaushik and Cuervo, 2012).

Macroautophagy (hereafter autophagy) is the major regulated form of autophagy in response to intracellular or extracellular stimulus or stress. The basic mechanism of autophagy has been well-characterized, including sequestration of cytoplasmic cargo into double-membrane phagophores that mature into autophagosomes, followed by delivery to lysosomes, subsequent degradation of the cargo and final efflux of the breakdown products back into the cytosol (Feng et al., 2014; Galluzzi et al., 2017). As stated in many previous publications, one of the key features in autophagy is the formation of the double-membrane autophagosome, which can fuse with an endosome or directly with a lysosome for subsequent degradation of the cargo (Mizushima and Komatsu, 2011; Yang and Klionsky, 2009). Autophagy can be either non-selective to degrade random parts of the cytoplasm, or selective to degrade specific cargos such as mitochondria (mitophagy), peroxisomes (pexophagy), endoplasmic reticulum (reticulophagy), lipid droplets (lipophagy), glycogen (glyophagy), and intracellular microbes (xenophagy) (Gatica et al., 2018). More than 40 evolutionarily conserved autophagy-related (ATG) genes have been identified in fungi, and approximately 20 of these are regarded as core genes—that is, those required for autophagosome formation—in this lysosomal degradation pathway (Dikic and Elazar, 2018; Levine and Kroemer, 2019). However, the core ATG proteins are not sufficient for degradative autophagy, and some key factors have been identified in recent years, such as the HOPS complex, the RAB GTPase RAB7, and SNARE proteins (Wen and Klionsky, 2020).

Autophagy plays a fundamental role in many aspects of cell physiology, including protein quality control, prevention of genomic damage, and adaptions to intracellular or extracellular stimuli, as well as maintaining homeostasis (Wirawan et al., 2012; Yin et al., 2016). Given the importance of autophagy in these different aspects of cellular function, the magnitude of autophagy must be tightly regulated to ensure appropriate levels. During the past decades, our understanding of autophagy has also expanded from characterizing the basic mechanism to a knowledge of the complicated regulation of this process. Regulation covers various aspects, including the physiological or pathological stresses that influence autophagy, and the way that core autophagy proteins are regulated, as well as the interconnection between autophagy and other cellular stress response pathways (He and Klionsky, 2009; Ravikumar et al., 2010). Posttranslational modifications of ATG proteins, such as phosphorylation, ubiquitination, glycosylation and acetylation, as well as transcriptional and epigenetic control mechanisms also contribute to autophagic regulation (Xie et al., 2015). For example, MTOR (mechanistic target of rapamycin kinase) is a primary inhibitor of autophagy, whereas AMP-activated protein kinase (AMPK) is a major energy sensor and a positive regulator of autophagy (Corona Velazquez and Jackson, 2018).

Using mice as the model system, researchers have found that failure of autophagy can promote cellular degeneration, age-related changes, tumor formation and pernicious infection (Kuma et al., 2017). During the past several years, further human genetic studies have shown the involvement of autophagy, or autophagic dysfunction, in many diseases (Jiang and Mizushima, 2014; Levine and Kroemer, 2019). In this review, we briefly discuss the relation between cancer and neurodegenerative diseases, which have been the major focus of many published reviews (Frake et al., 2015; Levine and Kroemer, 2008; Mizushima et al., 2008; White, 2015; Yang and Klionsky, 2020). More importantly, our review summarizes some cutting-edge research on the relation between autophagy (including non-selective and selective autophagy as well as CMA) and many other diseases, with a hope of providing an appreciation of a wider landscape of autophagy-related diseases as well as an addition to the understanding of autophagy in human health.

Autophagy and Cardiovascular Diseases

As a pivotal housekeeping mechanism to maintain energy balance and cell metabolism, autophagy has been hypothesized and subsequently confirmed to play a critical role in the pathogenesis of cardiovascular diseases, including heart failure, hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac aging, and diabetic cardiomyopathy (Wu et al., 2021). In this section, we briefly review the genetic association of human ATG genes and cardiovascular diseases. We then summarize animal studies seeking to define the distinct roles of autophagy in disease models and highlight the involvement of mitophagy and CMA in cardiovascular diseases.

1. Mutations of ATG genes in Cardiovascular Diseases

Early in 2000, a study published in Nature showed for the first time that human cardiomyopathy is primarily caused by mutations of the lysosome membrane protein LAMP2 that is closely correlated with autophagy (Nishino et al., 2000). In addition, the accumulation of autophagosomes has been observed in LAMP2-deficient mice (Tanaka et al., 2000). In recent years, the mutated protein products of a subset of core ATG genes have been identified to have a close link with cardiovascular diseases. For example, in 2018, it was reported that many variants in the ATG7 gene promoter in acute myocardial infarction alter the transcriptional level of ATG7 and consequently lead to dysfunctional autophagy (Zhang et al., 2018a). In 2019, another study investigating the roles of 21 ATG genes in cardiovascular diseases elegantly elucidated that single-nucleotide polymorphisms in ATG4C, ATG4D, ATG7, MAP1LC3A and ATG3 are associated with the pathologies and related traits of cardiovascular diseases (Portilla-Fernandez et al., 2019). In addition, differential DNA methylation analysis showed that CpGs located in ULK1, ATG4B and ATG4D are correlated with several cardiometabolic traits (Portilla-Fernandez et al., 2019). Altogether, globally identified genetic alterations in the genes closely correlated with autophagy implicate this process as a promising target for the therapeutic intervention in cardiovascular diseases.

2. Distinct Roles of Autophagy in Animal Cardiovascular Disease Models

Given the fact that autophagy promotes adaptation to stress and supports cellular viability, it is plausible to regard autophagy as a process that confers cardio-protection. In this regard, the first set of papers linking autophagy to cardiac diseases was published in the 1970s (Sybers et al., 1976; Wildenthal and Mueller, 1974). However, with the recent intense interest in examining the exact roles of autophagy in cardiovascular diseases, the process has been revealed as having distinct roles (i.e., protective versus detrimental) in the heart under different cardiac conditions.

On the one hand, there is a series of important studies using animal models revealing that inactivation of autophagy in the heart is associated with cardiac pathologies, including genetic cardiomyopathy, chronic cardiac remodeling and heart failure (Valentim et al., 2006). For example, in a mouse model, temporal deficiency of cardiac-specific ATG5 results in the development of cardiac dysfunction and left ventricular dilatation after pressure overload (Nakai et al., 2007). Crossing BECN1 (beclin 1, autophagy related)-deficient mice with mice having DES (desmin)-related cardiomyopathy results in dramatically hastened heart failure progression, accelerated ventricular dysfunction, and early mortality (Tannous et al., 2008). Consistent with these findings, a BECN1 overexpression mouse model conversely showed that increased autophagy improves cardiac function (Sun et al., 2018; Zhu et al., 2007). In addition, autophagy is activated to promote myocardial survival during ischemia through an AMPK-dependent mechanism (Matsui et al., 2007). All these observations suggest a protective role of elevated autophagy in cardiac diseases.

On the other hand, there are also some contrary studies showing that reduced autophagy may protect the heart from injuries. It is noteworthy that a study generating heterozygous disruption of Becn1 in mice showed that compared with wild-type mice, BECN1-deficient mice that display diminished cardiomyocyte autophagy have blunted pathological remodeling and reduced cardiac damage upon reperfusion (Matsui et al., 2007). In these studies, mice that overexpress BECN1 display accentuated pathological remodeling (Sun et al., 2018; Zhu et al., 2007). Diabetes is often accompanied by cardiac dysfunction, and frequently causes diabetic cardiomyopathy and heart failure. Another study focusing on the pathogenesis of diabetic cardiomyopathy showed that autophagy activity is diminished in the type 1 diabetic heart, but further depletion of BECN1 and ATG16L1 in mice substantially attenuates diabetes-induced cardiac damage (Xu et al., 2013a).

To date, the mechanism of how the beneficial or detrimental nature of autophagy in the context of cardiovascular diseases is determined remains an enigma. It has been suggested that distinguishing the roles of autophagy during ischemia and reperfusion is important. Initially, autophagy may serve to maintain energy production during acute ischemia, but subsequently switches to removing dysfunctional organelles during chronic ischemia or reperfusion. To provide a thorough understanding of the roles of autophagy under various cardiac conditions, we summarize animal studies seeking to define the distinct roles of autophagy in disease models (Table 1).

Table 1.

Mouse models implicating autophagy involvement in cardiovascular diseases

Disease model Genetic Intervention in mice Results Ref
Aging Atg5 transgene (Tg) overexpression Reduced age-related cardiac fibrosis, increased lifespan extension (Pyo et al., 2013)
BECN1F121A knockin Reduced age-associated cardiac alterations, increased lifespan (Fernández et al., 2018)
Prkn Tg overexpression Reduced age-associated cardiac abnormalities (Hoshino et al., 2013)
Atherosclerosis atg5 −/− Accelerated atherosclerosis (Liao et al., 2012b)
Cardiomyopathy Atg5 +/− Exacerbated cardiac hypertrophy (Zhao et al., 2014)
Atg7 Tg overexpression Reduced cardiac hypertrophy, limited intracellular protein aggregation, and increased mouse survival (Bhuiyan et al., 2013)
Becn1 +/− Accelerated heart failure (Tannous et al., 2008)
Becnl Tg overexpression Exacerbated pathogenic remodeling (Zhu et al., 2007)
Myocardial infarction Becn1 +/− Reduced cardiac damage at reperfusion (Matsui et al., 2007)
prkn −/−
prkn −/−
Exacerbated cardiac injury and reduced survival
Increased infarct size, hypertrophy
(Kubli et al., 2013)
atg5 −/− Increased sensitivity, exacerbated hypertrophy (Nakai et al., 2007)
I/R injury Becn1 +/− Cardioprotective during reperfusion (Matsui et al., 2007)
Pressure overload atg5 −/− Increased sensitivity, exacerbated hypertrophy (Nakai et al., 2007)
Becn1+/−
Becn1 Tg overexpression
Reduced pathological cardiac remodeling
Exacerbated pathological cardiac remodeling
(Zhu et al., 2007)
Sepsis Becn1 +/− Cardioprotective during reperfusion (Sun et al., 2018)

3. Mitophagy and CMA in Cardiovascular Diseases

In a recent publication we discussed the fundamental concepts of CMA and mitophagy, and their roles in neurodegenerative diseases (Yang and Klionsky, 2020). Interestingly, it has been largely accepted that the pathogenesis of cardiovascular diseases is also closely linked to CMA and mitophagy.

As discussed in the last section, mutations in LAMP2, encoding the protein family to which the CMA receptor LAMP2A belongs, have been identified as being associated with human cardiomyopathy (e.g., Danon disease) (Nishino et al., 2000). A study in 2017 showed that the levels of CMA markers, including LAMP2A and HSPA8/HSC70 decline in cardiac muscle during aging (Zhou et al., 2017). These studies suggest the importance of unraveling the contribution of CMA in cardiac pathogenesis, and the role of CMA in cardiomyocytes is becoming a research hotspot (Kaludercic et al., 2020).

The role of mitophagy in cardiovascular diseases has been demonstrated in several mouse models. It is well known that loss-of-function mutations in Prkn/Parkin result in neurodegenerative diseases such as Parkinson disease. prkn−/− mice also have more severe cardiac injury and reduced survival following myocardial infarction compared with wild-type mice (Kubli et al., 2013). Furthermore, overexpression of PRKN in cardiac myocytes attenuates hypoxia-mediated cell death (Kubli et al., 2013). Haploinsufficiency of DNM1L/Drp1 abolishes mitophagy and exacerbates heart failure induced by transverse aortic constriction in mice (Shirakabe et al., 2016). In a diabetic mouse model, inhibition of ATG16L1 restores mitophagy in an ATG16L1-independent manner through PINK1 and PRKN upregulation, suggesting that mitophagy may function as an adaptive mechanism to attenuate diabetic cardiac injury (Xu et al., 2013b).

4. Autophagy as a Target for Therapeutic Intervention in Cardiovascular Diseases

In the previous sections, we have discussed the fact that autophagy can play distinct roles at different stages and in different conditions concerning cardiovascular diseases. From this perspective, many drugs that are related to or have an impact on autophagy are used in the treatment of cardiovascular diseases. For example, trehalose, which exhibits an ability to protect cells from multiple stresses via autophagy activation, efficiently improves cardiac remodeling following myocardial infarction (Sciarretta et al., 2018). In addition, mitophagy modulation is another promising therapy, which is confirmed in several mouse models. Aspirin heightens cardioprotective mitophagy through inhibition of EP300 acetyltransferase in mice and worms (Pietrocola et al., 2018). Injection of Tat-Beclin1 also partially rescues mitophagy dysfunction and heart failure induced by overload in cardiac hypertrophy transverse aortic constriction mice (Shirakabe et al., 2016). Collectively, these studies rationally suggest that autophagy/mitophagy activation is a promising strategy for treating cardiovascular diseases under certain circumstances.

Autophagy in Infectious and Inflammatory Disorders

In recent years, accumulating evidence has suggested that both the pathogen degradation and housekeeping function of autophagy are essential for the outcome of infection and immunological balance. Autophagy, with its ability to clear inflammasomes and cytokines, plays an important role in regulating inflammation. Through genetic association studies, it has been found that defective autophagy confers susceptibility to a number of autoimmune and inflammatory disorders, particularly inflammatory bowel disease (IBD) and infectious diseases. In this section, we address the progress in understanding the dual roles of autophagy in infectious diseases, and particularly we focus on coronavirus disease 2019 (COVID-19), to provide novel insights in the defense against pathogen infection. We also highlight the prominent roles of autophagy-related proteins in inflammatory bowel diseases. By emphasizing these two diseases, we try to demonstrate how two dual decisive functions of autophagy (i.e., maintaining cellular homeostasis and activating defense mechanisms), work in concert in inflammatory disorders. Due to space constraints, we mention other inflammatory disorders (except IBD and infectious diseases) and the associated core ATG genes with genetic mutations in Table 2.

Table 2.

Inflammatory diseases associated with abnormal core ATG machinery (except IBD) and correlated genes

Inflammatory diseases Genes Ref
Behçet disease ATG5 (Zheng et al., 2015)
Celiac disease ATG7, BECN1 (Comincini et al., 2017)
Chronic obstructive pulmonary disease PRKN, PINK1 (Ito et al., 2015)
Cystic fibrosis BECN1 (Luciani et al., 2010)
Pulmonary hypertension LC3B (Lee et al., 2011)
Rheumatoid arthritis ATG5, ATG7, BECN1 (Lin et al., 2013; LU et al., 2011)
Systemic lupus erythematosus ATG5, ATG7, MAP1LC3B, PRDM1 (Qi et al., 2018; Zhou et al., 2011)
Systemic sclerosis ATG5 (Mayes et al., 2014)
Vogt-Koyanagi-Harada syndrome ATG10 (Zheng et al., 2015)

1. Autophagy and Infectious Diseases

Autophagy has a crucial role in the defense against microorganisms that are responsible for many infectious diseases that pose severe threats to human lives. Similar to its role in cancers, autophagy also acts as a double-edged sword in pathogen infection. In the following section, we briefly introduce the mechanism of how autophagy both controls and promotes pathogen infections. We overview studies investigating the roles of autophagy in various infectious diseases (Table 3), using COVID-19 as an example to describe in detail the contribution of ATG genes in the pathogenesis and treatment of life-threatening infectious diseases.

Table 3.

Pathogens and ATG machinery targets in infectious diseases

Infectious diseases Target Models Ref
Bacterial infection
Gastroenteritis (Salmonella enterica serovar Typhimurium infection) ULK1, ATG16L1 Mouse model and cell culture (Liu et al., 2019; Tan et al., 2018; Xu et al., 2019)
Tuberculosis (Mycobacterium tuberculosis infection) ATG5, SQSTM1, CALCOCO2 Mouse model and cell culture (Castillo et al., 2012)
Group A Streptococcus ATG5 Cell culture (Nakagawa et al., 2004)
Legionella pneumophila LC3 Cell culture (Choy et al., 2012)
Listeria monocytogenes SQSTM1, LC3 Mouse model and cell culture (Yoshikawa et al., 2009)
Shigella flexneri ATG5 Mouse model and cell culture (Ogawa et al., 2005)
Fungal infection
Cryptococcus neoformans and Candida albicans ATG5 Mouse model (Nicola et al., 2012)
Viral infection
Coxsackievirus B3 ATG5, SQSTM1 Mouse model and cell culture (Alirezaei et al., 2012) (Shi et al., 2013)
Hepatitis C virus (HCV) BECN1, ATG7 Cell culture (Shrivastava et al., 2011)
Herpes simplex virus type 1 (HSV-1) BECN1 Mouse model and cell culture (Leib et al., 2009)
Human immunodeficiency virus (HIV) BECN1 Cell culture (Kyei et al., 2009)
Influenza ATG5 Mouse model and cell culture (Schlie et al., 2015)
Murine γ-herpesvirus 68 (MHV-68) BECN1 Mouse model and cell culture (Xiaofei et al., 2009)
Poliovirus LC3 Cell culture (Taylor and Kirkegaard, 2007)

1.1. Dual Roles of Autophagy in Microbial Infections

After pathogenic infection, autophagy is activated by the innate immune system to clear out the invading pathogens. Specifically, xenophagy, a type of selective autophagy that recognizes and delivers intracellular microorganism to lysosomes for degradation, is frequently involved in the process. There are many ways for microbes to induce xenophagy, including cell-to-cell signaling, immune surveillance, cellular stress induction, microbiol protein stimuli, etc. (Steele et al., 2015). For example, pattern recognition receptors such as Toll-like receptors recognize pathogen-associated molecular patterns and then induce xenophagy by the modulation of BECN1/Beclin1 activity through alteration of the BECN1-BCL2 interaction (Delgado et al., 2008; Shi and Kehrl, 2008). Similar to other types of selective autophagy (e.g., mitophagy), xenophagy targets its intracellular cargos (i.e., pathogens) towards lysosomes for autophagic degradation via ubiquitination (Yin et al., 2020).

Importantly, instead of being eliminated by autophagy, some pathogens have evolved the ability to exploit autophagy-generated structures, metabolites, and energy as their own resources for replication. For example, the optimal intracellular bacterial growth of Francisella tularensis takes advantage of ATG5-independent autophagy in order to harvest nutrients for bacterial replication (Nishida et al., 2009; Steele et al., 2013). In addition, Brucella abortus and Mycobacterium marinum exploit ATG5-independent autophagy to facilitate cell-to-cell spread (Collins et al., 2009; Starr et al., 2012). It is not fully understood how pathogens preferentially induce ATG5-independent autophagy and avoid xenophagy during infections. Taking advantage of host autophagy is also common in viral infection. Lipophagy, another selective type of autophagy that targets intracellular lipid droplets (i.e., triglycerides, cholesterol), is subverted during viral infection for two primary reasons: lipid droplets can provide a platform for virion assembly, and upregulated lipophagy is able to provide the high level of ATP needed for viral replication (Choi et al., 2018). ATG machinery can be hijacked by several picornaviruses, including coxsackievirus, poliovirus, and rhinovirus, to support efficient viral replication (Klein and Jackson, 2011). A limited number of animal studies have investigated the dominant mechanism for how the ATG machinery is exploited by highly pathogenic viruses and bacteria to support their invasion. Currently, the most convincing evidence that autophagy is critical to support viral replication is a study published in 2012, which showed that in pancreatic acinar cells of ATG5-deficient mice, coxsackievirus B3 (CVB3) fails to optimally infect pancreatic cells and therefore cannot induce pancreatic pathology (Alirezaei et al., 2012).

1.2. Autophagy and SARS-CoV-2 in COVID-19

The COVID-19 pandemic has had a dramatic impact on healthcare and socioeconomic systems all over the world. Autophagy, due to its roles in the defense against viruses and bacteria, has attracted the attention of scientists interested in developing treatments for this disease and became an emerging target for COVID-19 therapeutics.

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a type of positive-sense single-stranded RNA virus and belongs to the coronavirus (CoV) family (Mijaljica and Klionsky, 2020). Though substantial effort has been made recently to unravel the complex relationship between autophagy and COVID-19 pathogenesis, a complete understanding of autophagy and SARS-CoV-2 remains elusive because of a lack of practical animal studies in the limited time since the disease outbreak. Therefore, we summarize studies on autophagy and SARS-CoV-2-related pathogens, such as coronavirus mouse hepatitis virus (MHV) from the CoV family. We highlight how investigations at the cellular level are delineating the pathogenesis of CoV, hopefully to provide insights and perspectives on implications of autophagy in COVID-19 pathogenesis and treatments.

The controversy of whether the CoVs preferentially trigger autophagy for self-usage has been a topic of debate for nearly two decades. Early in 2004, viral replication of MHV was found to be affected in atg5−/− embryonic stem cell lines (Prentice et al., 2004). Intriguingly, a subsequent study in 2007 described an opposite finding in either atg5−/− bone marrow-derived macrophages (BMDMs) or primary low-passage atg5−/− mouse embryonic fibroblasts, suggesting that ATG5 is not required for CoV replication (Zhao et al., 2007). Moreover, a nonlipidated form of LC3/Atg8 (a key autophagy marker) is extensively detected on the CoV-induced double-membrane vesicles, which are the targeted sites for CoV replication and transcription (Reggiori et al., 2010). It is noteworthy that LC3 lipidation is not observed, and ATG7 is not required to form these LC3-positive double-membrane vesicles, suggesting an unknown role of LC3, probably independent of autophagy. To date, our understanding of whether autophagy is at least partially involved in CoV replication is far from complete. The exact mechanism behind the interplay between autophagic machinery and CoV replication could be highly informative from the perspective of COVID-19 treatment.

In addition to the utilization of autophagy for replication, researchers are also interested in determining if CoVs block autophagy in the late stage of viral infection to eliminate the cellular surveillance function of autophagy to fight against invading pathogens. A very recent study showed that SARS-CoV-2 blocks autophagy by inhibiting autophagosome/amphisome-lysosome fusion via the STX17-SNAP29-VAMP8 SNARE complex (Miao et al., 2021), suggesting a potential therapeutic target for COVID-19 treatment.

Since the outbreak of COVID-19, several studies have been conducted to elucidate the possibility of targeting autophagy in terms of therapeutic aspects. In vitro studies show that SARS-CoV-2 inactivates MTOR complex 1 (MTORC1) but also AMPK, resulting in diminished autophagy activity. Exogenous administration of drugs including spermidine, MK-2206, and niclosamide to pharmacologically modulate autophagy results in the inhibition of SARS-CoV-2 propagation by >85% (Gassen et al., 2020). In addition, PIK3C3/VPS34 inhibitors, which block autophagy, potently inhibit SARS-CoV-2 replication (Silvas et al., 2020).

As well-known lysosomal inhibitors, chloroquine (CQ) and its derivatives such as hyxdroxychloroquine had gained high expectations from a pharmacological perspective to block autophagy safely and effectively in the treatment of COVID-19. A study in early 2020 showed that CQ has a strong ability to block the viral infection of SARS-COV-2 in Vero E6 cells in vivo (Wang et al., 2020). Later in June 2020, a meta-analysis based on unpublished and published reports available on the internet at that time illustrated that CQ derivatives are effective to improve clinical and virological outcomes as well as to reduce mortality in patients with COVID-19 (Million et al., 2020). However, there are also some clinical studies showing that post-exposure prophylaxis treatment with hyxdroxychloroquine does not present obvious differences compared with the placebo (Boulware et al., 2020; Delorme-Axford and Klionsky, 2020; Group, 2020). The controversy in the potential of CQ and its derivatives to treat COVID-19 is largely dependent on realistic limitations such as the heterogeneous sample population, different dosing, early stoppage of trials and lack of considering confounders (Elavarasi et al., 2020). Therefore, systematic clinical trial analysis is required to further illustrate the efficacy of CQ and its derivatives in COVID-19 treatment.

2. Autophagy and IBD

IBD, including ulcerative colitis and Crohn disease, describes the disorders of chronic and relapsing inflammation of the digestive system, due to an imbalance in the co-existence of host and gut microbiota. The pathophysiology of both diseases is associated with changes of the intestinal microbiota, which may orchestrate chronic inflammation in genetically susceptible hosts. In fact, the two diseases share some common genetic mutations in autophagy pathways.

A non-biased genome-wide study in 2007 identified a strong susceptibility variant for Crohn disease in ATG16L1 (T300A) (Hampe et al., 2007). Since then, a substantial number of subsequent studies focusing on the role of autophagy in mediating host-microbe interactions in the gut has emerged, mostly focusing on the contribution of the aforementioned ATG16L1 loss-of-function mutant. For example, numerous studies showed that mice and human cells expressing the ATG16L1T300A variant are defective in xenophagy, antigen presentation, and inflammatory cytokine production; and furthermore the impaired autophagy is due to CASP3 (caspase 3)-mediated cleavage and degradation of the ATG16L1 variant (Cadwell et al., 2010; Gao et al., 2017; Lassen et al., 2014; Saitoh et al., 2008). It has also been demonstrated that multiple roles of ATG16L1 are involved in the pathogenesis of Crohn disease. For example, ATG16L1 is essential for SQSTM1/p62 ubiquitination via neddylation of CUL3, as well as suppressing IL1B/IL-1β signaling (J. Lee et al., 2012). The recruitment of ATG16L1 to the plasma membrane via NOD1 and NOD2 is required to sequester invading pathogens within autophagosomes (Lee et al., 2012; Travassos et al., 2010). Collectively, these observations reveal the critical roles of autophagy in cellular stress regulation and microbial pathogen sensing in intestinal inflammation-associated diseases. Macrophages expressing the murine ATG16L1T316A mutant, which is equivalent to the human ATG16L1T300A mutant, display few defects in LC3-associated phagocytosis (LAP) (Martinez et al., 2015), suggesting that the genetic association between the ATG16L1T300A variant and Crohn disease affect xenophagy rather than LAP.

After the discovery of the ATG16L1T300A mutant, many other ATG machinery components were subsequently linked to Crohn disease. A tagging single-nucleotide polymorphism in ULK1 was reported to demonstrate a genetic association with Crohn disease (Henckaerts et al., 2011); however, the exact role of ULK1 in Crohn disease is not clear at present. Another study focused on granulomas, an aggregation of macrophages that is suggested to correlate with impaired processing of bacterial components in Crohn disease patients, found that variants in ATG4A, ATG2A, ATG4D and FNBP1L are associated with granuloma formation (Brinar et al., 2012). A genome-wide association study to identify IBD susceptibility genes revealed that some risk variants associated with IBD are in the DNA regulatory elements of ATG9A (Meddens et al., 2016; van Beek et al., 2018). It is widely appreciated that OPTN (optineurin) is a receptor for some types of selective autophagy, such as mitophagy. In addition to being a selective receptor, OPTN is required for facilitating the recruitment of the ATG12–ATG5-ATG16L1 complex to the forming phagophore for membrane expansion (Bansal et al., 2018). In one study, a subgroup of Crohn disease patients, which comprised 10% of the study cohort, expressed reduced OPTN in macrophages (Smith et al., 2015). Another example showing the essential role of selective autophagy in intestinal homeostasis is the discovery of associations between CALCOCO2/NDP52 mutations and Crohn disease (Till et al., 2013).

Clearly, many ATG proteins appear to play a nonnegligible role in the development of Crohn disease. However, given the fact that some ATG proteins appear to have autophagy-independent functions, it requires further in-depth study as to whether the ATG variants leads to defective xenophagy, or other pathways, such as LAP (Galluzzi and Green, 2019).

Autophagy and Metabolic Disorders

The most important and evolutionarily conserved role of autophagy is to maintain metabolic homeostasis, primarily by regenerating and releasing amino acids, lipids, and other metabolic precursors (Galluzzi et al., 2014). Conversely, the metabolic status can control the nature and extent of autophagic induction. Potentially, autophagy could be a critical part in the MTORC1- or AMPK-hub against various metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). The complex interplay between genetic and environmental factors is responsible for these metabolic disorders, among which excess caloric intake and unbalanced energy expenditure are the major contributors that have been well-documented to inhibit autophagy activities (Zhang et al., 2018b). However, both increased and decreased levels of autophagy have been observed in these disorders, while most mouse genetic studies have shown that the block of autophagy could facilitate the transition from obesity to diabetes, as well as enhancing the risk of atherosclerosis and NAFLD (Levine and Kroemer, 2019; Ueno and Komatsu, 2017). Therefore, the precise mechanism of autophagy in these metabolic disorders is complicated, and we need further investigation on the controversial research results to fill in the knowledge gap. In this section, we highlight some findings of autophagy related to metabolic disorders, with both genetic variance studies from human patients and mouse studies.

The prevalence of obesity has been increasing during the past decade worldwide, which poses a severe threat to human health, and the altered expression of autophagy has been reported in obesity (Pi-Sunyer, 2009). One hallmark of obesity is the accumulation of dysfunctional adipose tissues, and early reports have observed upregulated autophagy activity in adipose tissues from obese patients (Jansen et al., 2012; Kovsan et al., 2011). Over 30 genes related to autophagic response were found to be upregulated in adipocytes when challenged with TNF/TNFα (tumor necrosis factor) (Ju et al., 2019). Additionally, mouse models offer us more insights into the role of autophagy in obesity. Dating back to 2008, two different groups of researchers knocked out Atg7 in beta cells in mice, which results in degeneration of islets, impaired glucose tolerance, and decreased serum insulin level (Ebato et al., 2008; Jung et al., 2008). Some evidence from 2009 showed that mice feeding on a high-fat diet (HFD) have suppressed hepatic autophagy activities (Liu et al., 2009). Using the HFD model of obesity, researchers have further shown that autophagy can be induced by acute exercise or by replenishing ADIPOQ/adiponectin, a type of adipocytokine in skeletal muscles (He et al., 2012; Liu et al., 2015). With both genetic and dietary mouse models, a 2010 study reported a downregulation of autophagy resulting from the low ATG7 expression level in the liver. The further suppression of ATG7 can result in defective insulin signaling and elevated ER stress (Yang et al., 2010). In contrast, adipose-specific deletion of Atg7 might lead to differentiation of adipose tissue and increased insulin sensitivity (Zhang et al., 2009). Interestingly, mice with a knockout of Atg4 experience an excessive increase in body weight in response to different obesity-associated metabolic challenges (Fernandez et al., 2017). Upon HFD, mice with a knockout of Atg12 in POMC (proopiomelanocortin)-alpha-expressing neurons also exhibit accelerated weight gain, adiposity, and glucose intolerance (Malhotra et al., 2015).

As stated above, obesity could increase the risk of developing diabetes, one of the most common chronic metabolic diseases. An emerging body of evidence supports a role of autophagy in the pathophysiology of type I and type II diabetes mellitus (T2D). The suppression of autophagy in β-cells could promote hyperglycemia and lead to progression from obesity to diabetes (Quan et al., 2012). Heterozygous Atg7+/ mice can develop diabetes when crossed with ob/ob mice, showing aggravated insulin resistance and increased lipid content that is a result of autophagy insufficiency (Lim et al., 2014). The researchers have also observed impaired autophagic flux in islets of mice with obesity-induced diabetes, and intermittent fasting can help restore autophagy and improve glucose tolerance (Liu et al., 2017). A groundbreaking study from 2014 has shown that CLEC16A can control β-cell function and prevent type 1 diabetes mellitus by controlling autophagy, and further studies have shown more diabetes susceptibility factors including PDX1, RNF41/NRDP1 and USP8 are involved in the process (Pearson et al., 2018; Soleimanpour et al., 2015; Soleimanpour et al., 2014). Autophagy can defend pancreatic β-cells against toxicity induced by accumulated IAPP (islet amyloid polypeptide), which is responsible for T2D (Rivera et al., 2014). This result was further demonstrated by recent research, showing that autophagy can facilitate the clearance of amyloidogenic oligomer (Kim et al., 2021). In T2D patients’ adipose tissue samples, the abnormal autophagy activity is observed in accordance with accumulation of autophagosomes and increased levels of LC3 and ATG5 gene expression (Kosacka et al., 2015). The relation between mitophagy and T2D has also revealed that the increased level of reactive oxygen species in T2DM patients’ adipocytes can lead to excessive mitophagy (He et al., 2021).

Studies have also provided insights into the role of autophagy in NAFLD, which is a liver disease that is gradually becoming a global health problem. The human gene IRGM is required for assembly and activation of the autophagy machinery, whose genetic variants are associated with the increased risk of NAFLD (Lin et al., 2016). Moreover, patients with NAFLD exhibit elevated hepatic levels of RUBCN/rubicon which is an inhibitor of class III phosphatidylinositol 3-kinase activity. The hepatocyte-specific knockout of Rubcn protects mice against HFD-induced impaired autophagy and steatosis (Tanaka et al., 2016). The correlation between autophagy and atherosclerosis has also been observed. With the specific deletion of Atg5 in macrophages, mice are more prone to developing atherosclerotic plaques (Liao et al., 2012a; Razani et al., 2012). Similarly, macrophage-specific Atg7 knockout could lead mice to be more prone to the onset and development of atherosclerotic plaques with the infiltration of lipid-engorged spumous cells (Soussi et al., 2016).

Autophagy and Rare Diseases

The importance of autophagy in human health has been further underscored by its emerging role in rare diseases. A rare disease is defined differently depending on geographical region; for example, this is a condition that affects fewer than 200,000 or 2,000 people in the United States and the European Union, respectively (Rubinstein et al., 2020). While individual diseases are rare, the total population that is suffering from rare diseases is large. There is an estimation of over 7,000 rare diseases existing, and exact causes of many of them are still unknown. Fortunately, accumulating studies have revealed the relation between autophagy and rare disease, and some are listed in Table 2. Here we discuss exciting achievements in this area, which can help open new directions for future treatment.

1. Autophagy and Neuro-Related Rare Diseases

The role of autophagy in neurodegenerative diseases, including Alzheimer, Huntington, and Parkinson diseases, has been studied extensively for the past several years, and the progress has been well-documented in many reviews (Fujikake et al., 2018; Menzies et al., 2015; Nixon, 2013). Not surprisingly, autophagy plays a role in many rare diseases that are related to neurodevelopment and neurodegeneration.

Vici syndrome is a severe neurodevelopmental disorder that is inherited in an autosomal recessive manner (Byrne et al., 2016). Groundbreaking research in 2013 has revealed that recessive mutations in EPG5 can cause Vici syndrome and defects in autophagy (Cullup et al., 2013). It was further shown that defective autophagy is a result of autophagosome-lysosome failure because EPG5 encodes a RAB7 effector (Hori et al., 2017). Interestingly, the importance of RAB7 has further been underscored by another rare inherited peripheral neuropathy, Charcot-Marie-Tooth type 2B disease (Colecchia et al., 2018). This autosomal dominant disease is caused by five different mutations in the RAB7 gene, and autophagy is blocked in patient skin fibroblasts carrying the RAB7 mutation (Colecchia et al., 2018).

As a severe form of progressive myoclonus epilepsy inherited in an autosomal-recessive manner, Lafora disease is largely caused by mutations in two genes: EPM2A (EPM2A glucan phosphatase, Laforin), and NHLRC1/EPM2B/Malin (NHL repeat containing E3 ubiquitin protein ligase) (Duran et al., 2014). The impairment of autophagy was found in both EPM2A- and NHLRC1/EPM2B-deficient mice, and in fibroblasts derived from Lafora disease patients (Aguado et al., 2010; Puri et al., 2012).

Hereditary spastic paraplegia is a heterogeneous group of genetic neurodegenerative disorders, and three forms (SPG11, SGP15 and SPG49) have been reported to have severely reduced autophagy activity (Oz-Levi et al., 2012; Salinas et al., 2008; Vantaggiato et al., 2013; Varga et al., 2015). Spinocerebellar ataxia is a rare and specific type of ataxia that is inherited in an autosomal dominant manner: SNX14 mutation-related spinocerebellar ataxia shows impaired lysosome-autophagosome function, whereas the pharmacological induction of autophagy can help degrade mutant ATXN3 (ataxin 3) levels and reduce toxicity in mice with spinocerebellar ataxia type 3 (Akizu et al., 2015; Menzies et al., 2010). Besides, the dysregulation of autophagy was reported in cell culture and a mouse model of spinal muscular atrophy, an early-onset, autosomal recessive neuromuscular disease (Custer and Androphy, 2014; Lefebvre et al., 1995). The loss of functional survival of motor neuron protein due to the SMN1 gene mutation is the major cause of the disease (Burghes and Beattie, 2009). A further study shows that SMN1 can interact with SQSTM1; reducing SQSTM1 levels or inhibition of autophagy can markedly increase the SMN1 level, thus expanding lifespan in the SMN mouse model (Rodriguez-Muela et al., 2018).

Autophagy also plays a role in some X-linked rare neuro-specific diseases. Defective autophagy is associated with the MECP2 (methyl-CpG binding protein 2) gene, in which sporadic mutation can lead to Rett syndrome, an X-linked dominant neuro-developmental disorder (Sbardella et al., 2017). This progressive condition primarily affects girls. The altered splicing of ATP6AP2 results in the deficiency of the corresponding protein, causing X-linked parkinsonism with spasticity/XPDS and impaired autophagy and lysosome clearance (Korvatska et al., 2013). Neurodegeneration with iron accumulation-5/NBIA5, also referred to as static encephalopathy of childhood with neurodegeneration in adulthood/SENDA, is another X-linked dominant neurodegenerative disorder (Jiang and Mizushima, 2014). Mutation in the autophagy gene WDR45/WIPI4 is the cause of static encephalopathy of childhood with neurodegeneration in adulthood and can lead to lower autophagic activity and aberrant early autophagic structures (Haack et al., 2012; Saitsu et al., 2013).

Although amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron disease, it is still regarded as a rare progressive neurodegenerative disorder that may lead to irreversible muscular paralysis (Brown and Al-Chalabi, 2017). Autophagy can play a distinct role during the development of ALS: autophagic function is involved in maintaining neuromuscular innervation at the early stage of the disease, whereas it will promote disease progression in a non-cell-autonomous manner once the disease has initiated in motor neurons (Rudnick et al., 2017). Approximately 90 to 95 percent of ALS cases are sporadic, whereas the remaining familial ALS cases are inherited in an autosomal-dominant pattern. The most common genetic cause of ALS has been identified as a hexanucleotide repeat expansion in C9orf72, which leads to reduced gene expression. The C9orf72 protein can regulate autophagy by interacting with SMCR8, WDR41, RAB1A and the ULK1 complex (Renton et al., 2011; Sullivan et al., 2016; Webster et al., 2016). In addition, many other factors involved mostly in selective autophagy, including SQSTM1, OPTN, TBK1 (TANK binding kinase 1) and UBQLN2 (ubiquilin 2), are associated with ALS (Cirulli et al., 2015; Nguyen et al., 2019). It is important to point out that these studies on ALS also show a similar result to frontotemporal dementia (FTD), which is exemplified by shrinking of the frontal and temporal anterior lobes of the brain (Pang and Hu, 2020). For example, C9orf72-FTD is inherited in an autosomal dominant manner, and SQSTM1 and TBK1 are also implicated in this disease. Furthermore, a loss-of-function mutation in GRN (granulin) leads to FTD, and deficits in xenophagy have been found in mice lacking GRN (Chang et al., 2017).

2. Autophagy and Cancer-Related Rare Diseases

As noted above, autophagy may act as a double-edged sword in the context of cancer. As a previous review summarized, the role of autophagy in tumorigenesis is complex, depending on the context (Wen and Klionsky, 2020). During the tumor-forming stage, autophagy may function to prevent tumorigenesis, acting to maintain cellular and genomic integrity. However, once the tumor is formed, autophagy may lead to the opposite outcome, facilitating tumor progression and proliferation (Rybstein et al., 2018; White, 2012). With extensive ongoing research, autophagy is also becoming a hot therapeutic target for tumor treatment development. The topic of autophagy and its role in the most common types of cancer has been covered extensively (Amaravadi et al., 2019; Folkerts et al., 2019; Levy et al., 2017; Xia et al., 2021). Accordingly, here we focus on some examples of less prevalent forms of this disease.

Comparatively, some types of cancers occur at a much lower rate among the population, and the role of autophagy in these cases is also controversial. Mesothelioma is a rare cancer developing in the thin layer of tissue that surrounds the lungs, chest wall, or abdomen (Ohnishi et al., 2020). A study has shown that inhibiting the early step of autophagy with a ULK1/2 inhibitor can enhance chemosensitivity in mesothelioma (Follo et al., 2018). However, the same group later reported that autophagy can help release immunogenic signals to facilitate immunogenic cell death following chemotherapy in this tumor (Follo et al., 2019). In addition, a recent study showed that asbestos might induce the release of HMGB1 (high mobility group box 1) to initiate autophagy, and the inhibition of autophagy can increase cell death in mesothelioma (Xue et al., 2020). Another rare cancer example is seen with gallbladder cancer, which has an extremely poor prognosis. Recent trials have shown that inhibiting autophagy can help with treatment for gallbladder cancer, whereas activation of autophagy will induce chemoresistance (Cai et al., 2019; Cai et al., 2020).

The role of autophagy is crucial in some rare diseases that are highly related to tumorigenesis. For example, tuberous sclerosis, a rare, multi-system genetic disease, can cause benign tumors to grow in the brain and other vital organs (De Waele et al., 2015). The disease is caused by mutations in TSC1 or TSC2 that are well-studied tumor suppressors that can negatively regulate MTORC1 (Huang and Manning, 2008). The tumorigenesis in tuberous sclerosis has also been demonstrated to rely on autophagy (Huang and Manning, 2008; Parkhitko et al., 2011). Primarily affecting males, Wiskott-Aldrich syndrome (WAS) is a disease in which the patient displays immunological deficiency and reduced ability to form blood clots. Children with WAS have a high probability to develop cancers such as lymphoma (Lee et al., 2017b). Deficiency of the WAS protein causes insufficient autophagosome formation and further results in deficient xenophagy (Lee et al., 2017b).

3. Autophagy and Other Rare Diseases

Another important group of rare diseases is the lysosomal storage diseases (LSDs), which are a group of inherited metabolic disorders characterized by enzyme deficiencies; the role of autophagy has also been recognized in many of them (Lieberman et al., 2012). One of the most extensively studied LSDs is Niemann-Pick type C disease, which is characterized by accumulation of lipids in various tissues (Meske et al., 2014). The disease is caused by mutations in the NPC1 or NPC2 gene, which are inherited in an autosomal recessive manner. The NPC1 protein is a late-endosomal protein, whereas NPC2 is a ubiquitous soluble glycoprotein (Li et al., 2016; Vanier and Millat, 2004). The accumulation of autophagosomes and lysosomes have been observed in this disease, and the resulting defects of autophagy are regarded as a major cause of the disease phenotype (Liao et al., 2007; Maetzel et al., 2014; Meske et al., 2014). A failure in the STX17 (syntaxin 17)-VAMP8 SNARE machinery, and reduced levels of VEGF (vascular endothelial growth factor) are responsible for the impaired autophagy activity (Lee et al., 2014; Sarkar et al., 2013).

The loss of GBA/glucocerebrosidase activity in Gaucher disease leads to accumulation of glucocerebroside and widespread pathology (Hruska et al., 2008; Mistry et al., 2017). A mutation in GBA1 may be the cause of the block in autophagy; concomitant downregulation of TFEB and the associated impairment in autophagosome maturation is seen in neurons differentiated from patient-specific induced pluripotent stem cells (Awad et al., 2015). The disease mouse model shows accumulation of secondary autophagy substrates including SQSTM1, dysfunctional mitochondria and ubiquitinated protein aggregates, accompanied by impaired autophagic influx (Farfel-Becker et al., 2014; Osellame et al., 2013; Sun et al., 2010; Xu et al., 2014).

Danon disease is a rare X-linked dominant disorder characterized by weakening of the heart muscle (cardiomyopathy) and of the muscles used for movement (skeletal muscle myopathy), and we have discussed its relationship with LAMP2 in a previous section. The accumulation of SQSTM1 and LC3-II-positive autophagic vesicles are found from patients’ muscle biopsies (Nascimbeni et al., 2017). Moreover, impaired mitophagy was identified by using both patient cells and Lamp2-deficient mice (Hashem et al., 2017). The name of the disease X-linked myopathy with excessive autophagy/XMEA already reveals its relationship with autophagy. This recessive inherited disease is caused by a mutation in the VMA21 gene, which encodes a protein modulating the assembly of the vacuolar-type proton-translocating ATPase that is required for lysosomal acidification (Dowling et al., 2015). The mutation leads to decreased activity of lysosomal hydrolases, suggesting a block of autophagic flux (Ramachandran et al., 2013). Along these lines, the lysosomal dysfunction in cystinosis, marked by an inability to transport cystine out of lysosomes that requires proper lysosomal acidification, can lead to defective mitophagy (Festa et al., 2018).

Other rare diseases that influence different parts of human bodies are also associated with autophagy. Snyder-Robinson syndrome, inherited in an X-linked recessive manner, is characterized by many abnormalities during development (Schwartz et al., 1993). The loss-of-function mutation in SMS (spermine synthase) is the major cause of the disease, and the deficiency of SMS can impair autophagy activity (Li et al., 2017). Primary microcephaly is a disorder of brain development in which the head circumference and brain volume are reduced (Jayaraman et al., 2018). Linkage analysis and whole-exome sequencing have revealed that a dominant mutation in WDFY3/ALFY, which encodes a scaffold protein in autophagy, causes this disease (Kadir et al., 2016).

Zellweger syndrome spectrum (ZSS), inherited in an autosomal recessive pattern, is highly related to peroxisome biogenesis disorders. More than ten human PEX proteins have been identified as acting in different stages of peroxisome biogenesis (Fujiki et al., 2014). Mutation of PEX13 was found in ZSS, and a specific mutation might lead to defective regulation of mitophagy, therefore causing ZSS (Lee et al., 2017a; Liu et al., 1999).

Finally, Fanconi anemia is a serious blood disorder marked by inherited bone marrow failure syndromes, and affected individuals display an increased risk of developing cancers (Sumpter et al., 2016). This disease is usually inherited in an autosomal recessive manner, but X-linked inheritance has also been reported (Meetei et al., 2004). Interestingly, many Fanconi anemia pathway genes are required for virophagy and mitophagy and can also modulate inflammatory pathways (Sumpter et al., 2016).

Conclusion and Future Directions

The relation between autophagy and human health has been a major focus during the past several years, and we are excited to witness many groundbreaking studies linking dysfunctional autophagy with different human diseases. In this review, we have summarized the exciting research findings concerning various pathophysiologies including cardiovascular diseases, infectious and inflammatory diseases, metabolic diseases, and rare diseases. With the appearance of COVID-19, the importance and potential of autophagy is further underscored. More studies about the role of autophagy in rare diseases can also promote the development of orphan drugs, which is a good addition to the health improvement of underserved patients. Besides, the emerging role of selective autophagy and CMA in human diseases is worth noting, because the specificity of these diseases can help better shape drug design and treatment development.

Although many preclinical and clinical trials for diseases such as cancer show that autophagy can be a promising therapeutic target, we should be aware that the complexity of autophagy might create substantial problems with regard to disease treatment. For example, the role of autophagy is tissue-specific in metabolic disorders, suggesting that the global pharmacological modulation of autophagy may lead to worsened conditions. Considering the double-edged sword role of autophagy in many diseases, whether it is ultimately better to induce or to inhibit autophagy is still a prominent question. In addition, the measurement of autophagy activity is not consistent in many studies, leaving some results controversial and unreliable. It is critical to have more solid answers to these questions to move forward. We still have a long way to go in treating diseases by specifically targeting autophagy, but we are optimistic that an increasing numbers of studies are establishing the bridge between autophagy and human health.

Acknowledgements:

This work was supported by NIH grant GM131919 to DJK and by a Meister Child Health Evaluation and Research (CHEAR) Center-LSI fellowship to XW.

Abbreviations:

ALS

amyotrophic lateral sclerosis

AMPK

AMP-activated protein kinase

ATG

autophagy-related

CMA

chaperone-mediated autophagy

CoV

coronavirus

COVID-19

coronavirus disease 2019

CQ

chloroquine

FTD

frontotemporal dementia

HFD

high-fat diet

IBD

inflammatory bowel disease

LAP

LC3-associated phagocytosis

LSD

lysosomal storage disease

MHV

mouse hepatitis virus

MTOR

mechanistic target of rapamycin kinase

NAFLD

non-alcoholic fatty liver disease

SARS-CoV-2

severe acute respiratory syndrome coronavirus 2

T2D

type II diabetes mellitus

WAS

Wiskott-Aldrich syndrome

ZSS

Zellweger syndrome spectrum

Footnotes

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

References

  • 1.Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P, Sanz P, de Cordoba SR, Knecht E and Rubinsztein DC, 2010. Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum Mol Genet 19 (14), 2867–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Akizu N, Cantagrel V, Zaki MS, Al-Gazali L, Wang X, Rosti RO, Dikoglu E, Gelot AB, Rosti B, Vaux KK, Scott EM, Silhavy JL, Schroth J, Copeland B, Schaffer AE, Gordts PL, Esko JD, Buschman MD, Field SJ, Napolitano G, Abdel-Salam GM, Ozgul RK, Sagiroglu MS, Azam M, Ismail S, Aglan M, Selim L, Mahmoud IG, Abdel-Hadi S, Badawy AE, Sadek AA, Mojahedi F, Kayserili H, Masri A, Bastaki L, Temtamy S, Muller U, Desguerre I, Casanova JL, Dursun A, Gunel M, Gabriel SB, de Lonlay P, and Gleeson JG, 2015. Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet 47 (5), 528–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Alirezaei M, Flynn Claudia T., Wood Malcolm R. and Whitton JL, 2012. Pancreatic Acinar Cell-Specific Autophagy Disruption Reduces Coxsackievirus Replication and Pathogenesis In Vivo. Cell Host & Microbe 11 (3), 298–305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Amaravadi RK, Kimmelman AC and Debnath J, 2019. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov 9 (9), 1167–1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Awad O, Sarkar C, Panicker LM, Miller D, Zeng X, Sgambato JA, Lipinski MM and Feldman RA, 2015. Altered TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum Mol Genet 24 (20), 5775–88. [DOI] [PubMed] [Google Scholar]
  • 6.Bansal M, Moharir SC, Sailasree SP, Sirohi K, Sudhakar C, Sarathi DP, Lakshmi BJ, Buono M, Kumar S and Swarup G, 2018. Optineurin promotes autophagosome formation by recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein. Journal of Biological Chemistry 293 (1), 132–147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Bhuiyan MS, Pattison JS, Osinska H, James J, Gulick J, McLendon PM, Hill JA, Sadoshima J and Robbins J, 2013. Enhanced autophagy ameliorates cardiac proteinopathy. The Journal of clinical investigation 123 (12), 5284–5297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Boulware DR, Pullen MF, Bangdiwala AS, Pastick KA, Lofgren SM, Okafor EC, Skipper CP, Nascene AA, Nicol MR, Abassi M, Engen NW, Cheng MP, LaBar D, Lother SA, MacKenzie LJ, Drobot G, Marten N, Zarychanski R, Kelly LE, Schwartz IS, McDonald EG, Rajasingham R, Lee TC, and Hullsiek KH, 2020. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N Engl J Med 383 (6), 517–525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Brinar M, Vermeire S, Cleynen I, Lemmens B, Sagaert X, Henckaerts L, Van Assche G, Geboes K, Rutgeerts P and De Hertogh G, 2012. Genetic variants in autophagy-related genes and granuloma formation in a cohort of surgically treated Crohn’s disease patients. Journal of Crohn’s and Colitis 6 (1), 43–50. [DOI] [PubMed] [Google Scholar]
  • 10.Brown RH and Al-Chalabi A, 2017. Amyotrophic Lateral Sclerosis. N Engl J Med 377 (2), 162–172. [DOI] [PubMed] [Google Scholar]
  • 11.Burghes AH and Beattie CE, 2009. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 10 (8), 597–609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Byrne S, Dionisi-Vici C, Smith L, Gautel M and Jungbluth H, 2016. Vici syndrome: a review. Orphanet J Rare Dis 11 21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cadwell K, Patel KK, Maloney NS, Liu T-C, Ng AC, Storer CE, Head RD, Xavier R, Stappenbeck TS and Virgin HW, 2010. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141 (7), 1135–1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Cai Q, Wang S, Jin L, Weng M, Zhou D, Wang J, Tang Z and Quan Z, 2019. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer 18 (1), 82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Cai Q, Wang X, Wang S, Jin L, Ding J, Zhou D and Ma F, 2020. Gallbladder Cancer Progression Is Reversed by Nanomaterial-Induced Photothermal Therapy in Combination with Chemotherapy and Autophagy Inhibition. Int J Nanomedicine 15 253–262. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 16.Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, Delgado-Vargas M, Timmins GS, Bhattacharya D, Yang H, Hutt J, Lyons CR, Dobos KM and Deretic V, 2012. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proceedings of the National Academy of Sciences 109 (46), E3168–E3176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Chang MC, Srinivasan K, Friedman BA, Suto E, Modrusan Z, Lee WP, Kaminker JS, Hansen DV and Sheng M, 2017. Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med 214 (9), 2611–2628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Choi Y, Bowman JW and Jung JU, 2018. Autophagy during viral infection — a double-edged sword. Nature Reviews Microbiology 16 (6), 341–354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Choy A, Dancourt J, Mugo B, O’Connor TJ, Isberg RR, Melia TJ and Roy CR, 2012. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338 (6110), 1072–1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion PA, Leblond CS, Couthouis J, Lu YF, Wang Q, Krueger BJ, Ren Z, Keebler J, Han Y, Levy SE, Boone BE, Wimbish JR, Waite LL, Jones AL, Carulli JP, Day-Williams AG, Staropoli JF, Xin WW, Chesi A, Raphael AR, McKenna-Yasek D, Cady J, Vianney de Jong JM, Kenna KP, Smith BN, Topp S, Miller J, Gkazi A, Consortium FS, Al-Chalabi A, van den Berg LH, Veldink J, Silani V, Ticozzi N, Shaw CE, Baloh RH, Appel S, Simpson E, Lagier-Tourenne C, Pulst SM, Gibson S, Trojanowski JQ, Elman L, McCluskey L, Grossman M, Shneider NA, Chung WK, Ravits JM, Glass JD, Sims KB, Van Deerlin VM, Maniatis T, Hayes SD, Ordureau A, Swarup S, Landers J, Baas F, Allen AS, Bedlack RS, Harper JW, Gitler AD, Rouleau GA, Brown R, Harms MB, Cooper GM, Harris T, Myers RM, and Goldstein DB, 2015. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347 (6229), 1436–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Colecchia D, Stasi M, Leonardi M, Manganelli F, Nolano M, Veneziani BM, Santoro L, Eskelinen EL, Chiariello M and Bucci C, 2018. Alterations of autophagy in the peripheral neuropathy Charcot-Marie-Tooth type 2B. Autophagy 14 (6), 930–941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Collins CA, De Mazière A, van Dijk S, Carlsson F, Klumperman J and Brown EJ, 2009. Atg5-Independent Sequestration of Ubiquitinated Mycobacteria. PLOS Pathogens 5 (5), e1000430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Comincini S, Manai F, Meazza C, Pagani S, Martinelli C, Pasqua N, Pelizzo G, Biggiogera M and Bozzola M, 2017. Identification of autophagy-related genes and their regulatory miRNAs associated with celiac disease in children. International journal of molecular sciences 18 (2), 391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Corona Velazquez AF and Jackson WT, 2018. So Many Roads: the Multifaceted Regulation of Autophagy Induction. Mol Cell Biol 38 (21), [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, Al-Owain M, Koelker S, Koerner C, Hoffmann GF, Wijburg FA, ten Hoedt AE, Rogers RC, Manchester D, Miyata R, Hayashi M, Said E, Soler D, Kroisel PM, Windpassinger C, Filloux FM, Al-Kaabi S, Hertecant J, Del Campo M, Buk S, Bodi I, Goebel HH, Sewry CA, Abbs S, Mohammed S, Josifova D, Gautel M, and Jungbluth H, 2013. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 45 (1), 83–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Custer SK and Androphy EJ, 2014. Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy. Mol Cell Neurosci 61 133–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.De Waele L, Lagae L and Mekahli D, 2015. Tuberous sclerosis complex: the past and the future. Pediatr Nephrol 30 (10), 1771–80. [DOI] [PubMed] [Google Scholar]
  • 28.Delgado MA, Elmaoued RA, Davis AS, Kyei G and Deretic V, 2008. Toll-like receptors control autophagy. The EMBO journal 27 (7), 1110–1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Delorme-Axford E and Klionsky DJ, 2020. Highlights in the fight against COVID-19: does autophagy play a role in SARS-CoV-2 infection? Autophagy 16 (12), 2123–2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Dikic I and Elazar Z, 2018. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19 (6), 349–364. [DOI] [PubMed] [Google Scholar]
  • 31.Dowling JJ, Moore SA, Kalimo H and Minassian BA, 2015. X-linked myopathy with excessive autophagy: a failure of self-eating. Acta Neuropathol 129 (3), 383–90. [DOI] [PubMed] [Google Scholar]
  • 32.Duran J, Gruart A, Garcia-Rocha M, Delgado-Garcia JM and Guinovart JJ, 2014. Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet 23 (12), 3147–56. [DOI] [PubMed] [Google Scholar]
  • 33.Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y and Watada H, 2008. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8 (4), 325–32. [DOI] [PubMed] [Google Scholar]
  • 34.Elavarasi A, Prasad M, Seth T, Sahoo RK, Madan K, Nischal N, Soneja M, Sharma A, Maulik SK, Shalimar and Garg P, 2020. Chloroquine and Hydroxychloroquine for the Treatment of COVID-19: a Systematic Review and Meta-analysis. Journal of General Internal Medicine 35 (11), 3308–3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Farfel-Becker T, Vitner EB, Kelly SL, Bame JR, Duan J, Shinder V, Merrill AH Jr., Dobrenis K and Futerman AH, 2014. Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum Mol Genet 23 (4), 843–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Feng Y, He D, Yao Z and Klionsky DJ, 2014. The machinery of macroautophagy. Cell Res 24 (1), 24–41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Fernandez AF, Barcena C, Martinez-Garcia GG, Tamargo-Gomez I, Suarez MF, Pietrocola F, Castoldi F, Esteban L, Sierra-Filardi E, Boya P, Lopez-Otin C, Kroemer G and Marino G, 2017. Autophagy couteracts weight gain, lipotoxicity and pancreatic beta-cell death upon hypercaloric pro-diabetic regimens. Cell Death Dis 8 (8), e2970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Fernández ÁF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, He C, Ting T, Liu Y and Chiang W-C, 2018. Disruption of the beclin 1–BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558 (7708), 136–140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Festa BP, Chen Z, Berquez M, Debaix H, Tokonami N, Prange JA, Hoek GV, Alessio C, Raimondi A, Nevo N, Giles RH, Devuyst O and Luciani A, 2018. Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat Commun 9 (1), 161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Folkerts H, Hilgendorf S, Vellenga E, Bremer E and Wiersma VR, 2019. The multifaceted role of autophagy in cancer and the microenvironment. Med Res Rev 39 (2), 517–560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Follo C, Cheng Y, Richards WG, Bueno R and Broaddus VC, 2018. Inhibition of autophagy initiation potentiates chemosensitivity in mesothelioma. Mol Carcinog 57 (3), 319–332. [DOI] [PubMed] [Google Scholar]
  • 42.Follo C, Cheng Y, Richards WG, Bueno R and Broaddus VC, 2019. Autophagy facilitates the release of immunogenic signals following chemotherapy in 3D models of mesothelioma. Mol Carcinog 58 (10), 1754–1769. [DOI] [PubMed] [Google Scholar]
  • 43.Frake RA, Ricketts T, Menzies FM and Rubinsztein DC, 2015. Autophagy and neurodegeneration. J Clin Invest 125 (1), 65–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Fujikake N, Shin M and Shimizu S, 2018. Association Between Autophagy and Neurodegenerative Diseases. Front Neurosci 12 255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Fujiki Y, Okumoto K, Mukai S, Honsho M and Tamura S, 2014. Peroxisome biogenesis in mammalian cells. Front Physiol 5 307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jaattela M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Munz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, and Kroemer G, 2017. Molecular definitions of autophagy and related processes. EMBO J 36 (13), 1811–1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Galluzzi L and Green DR, 2019. Autophagy-Independent Functions of the Autophagy Machinery. Cell 177 (7), 1682–1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Galluzzi L, Pietrocola F, Levine B and Kroemer G, 2014. Metabolic control of autophagy. Cell 159 (6), 1263–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Gao P, Liu H, Huang H, Zhang Q, Strober W and Zhang F, 2017. The Inflammatory Bowel Disease–Associated Autophagy Gene Atg16L1T300A Acts as a Dominant Negative Variant in Mice. The Journal of Immunology 198 (6), 2457–2467. [DOI] [PubMed] [Google Scholar]
  • 50.Gassen NC, Papies J, Bajaj T, Dethloff F, Emanuel J, Weckmann K, Heinz DE, Heinemann N, Lennarz M, Richter A, Niemeyer D, Corman VM, Giavalisco P, Drosten C and Müller MA, 2020. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. bioRxiv 2020.04.15.997254. [Google Scholar]
  • 51.Gatica D, Lahiri V and Klionsky DJ, 2018. Cargo recognition and degradation by selective autophagy. Nat Cell Biol 20 (3), 233–242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Group RC, 2020. Effect of hydroxychloroquine in hospitalized patients with Covid-19. New England Journal of Medicine 383 (21), 2030–2040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarzmayr T, Graf E, Sanford L, Meyer E, Kara E, Cuno SM, Harik SI, Dandu VH, Nardocci N, Zorzi G, Dunaway T, Tarnopolsky M, Skinner S, Frucht S, Hanspal E, Schrander-Stumpel C, Heron D, Mignot C, Garavaglia B, Bhatia K, Hardy J, Strom TM, Boddaert N, Houlden HH, Kurian MA, Meitinger T, Prokisch H, and Hayflick SJ, 2012. Exome sequencing reveals de novo WDR45 mutations causing a phenotypically distinct, X-linked dominant form of NBIA. Am J Hum Genet 91 (6), 1144–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J, Günther S, Prescott NJ, Onnie CM, Häsler R, Sipos B, Fölsch UR, Lengauer T, Platzer M, Mathew CG, Krawczak M, and Schreiber S, 2007. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39 (2), 207–11. [DOI] [PubMed] [Google Scholar]
  • 55.Hashem SI, Murphy AN, Divakaruni AS, Klos ML, Nelson BC, Gault EC, Rowland TJ, Perry CN, Gu Y, Dalton ND, Bradford WH, Devaney EJ, Peterson KL, Jones KL, Taylor MRG, Chen J, Chi NC and Adler ED, 2017. Impaired mitophagy facilitates mitochondrial damage in Danon disease. J Mol Cell Cardiol 108 86–94. [DOI] [PubMed] [Google Scholar]
  • 56.He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE and Levine B, 2012. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481 (7382), 511–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.He C and Klionsky DJ, 2009. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43 67–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.He F, Huang Y, Song Z, Zhou HJ, Zhang H, Perry RJ, Shulman GI and Min W, 2021. Mitophagy-mediated adipose inflammation contributes to type 2 diabetes with hepatic insulin resistance. J Exp Med 218 (3), [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Henckaerts L, Cleynen I, Brinar M, John JM, Van Steen K, Rutgeerts P and Vermeire S, 2011. Genetic variation in the autophagy gene ULK1 and risk of Crohn’s disease. Inflamm Bowel Dis 17 (6), 1392–7. [DOI] [PubMed] [Google Scholar]
  • 60.Hori I, Otomo T, Nakashima M, Miya F, Negishi Y, Shiraishi H, Nonoda Y, Magara S, Tohyama J, Okamoto N, Kumagai T, Shimoda K, Yukitake Y, Kajikawa D, Morio T, Hattori A, Nakagawa M, Ando N, Nishino I, Kato M, Tsunoda T, Saitsu H, Kanemura Y, Yamasaki M, Kosaki K, Matsumoto N, Yoshimori T, and Saitoh S, 2017. Defects in autophagosome-lysosome fusion underlie Vici syndrome, a neurodevelopmental disorder with multisystem involvement. Sci Rep 7 (1), 3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Hoshino A, Mita Y, Okawa Y, Ariyoshi M, Iwai-Kanai E, Ueyama T, Ikeda K, Ogata T and Matoba S, 2013. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nature communications 4 (1), 1–12. [DOI] [PubMed] [Google Scholar]
  • 62.Hruska KS, LaMarca ME, Scott CR and Sidransky E, 2008. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 29 (5), 567–83. [DOI] [PubMed] [Google Scholar]
  • 63.Huang J and Manning BD, 2008. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412 (2), 179–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Ito S, Araya J, Kurita Y, Kobayashi K, Takasaka N, Yoshida M, Hara H, Minagawa S, Wakui H and Fujii S, 2015. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy 11 (3), 547–559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Jansen HJ, van Essen P, Koenen T, Joosten LA, Netea MG, Tack CJ and Stienstra R, 2012. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 153 (12), 5866–74. [DOI] [PubMed] [Google Scholar]
  • 66.Jayaraman D, Bae BI and Walsh CA, 2018. The Genetics of Primary Microcephaly. Annu Rev Genomics Hum Genet 19 177–200. [DOI] [PubMed] [Google Scholar]
  • 67.Jiang P and Mizushima N, 2014. Autophagy and human diseases. Cell Res 24 (1), 69–79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Ju L, Han J, Zhang X, Deng Y, Yan H, Wang C, Li X, Chen S, Alimujiang M, Li X, Fang Q, Yang Y and Jia W, 2019. Obesity-associated inflammation triggers an autophagy-lysosomal response in adipocytes and causes degradation of perilipin 1. Cell Death Dis 10 (2), 121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW, Jeong YT, Han MS, Lee MK, Kim KW, Shin J and Lee MS, 2008. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8 (4), 318–24. [DOI] [PubMed] [Google Scholar]
  • 70.Kadir R, Harel T, Markus B, Perez Y, Bakhrat A, Cohen I, Volodarsky M, Feintsein-Linial M, Chervinski E, Zlotogora J, Sivan S, Birnbaum RY, Abdu U, Shalev S and Birk OS, 2016. ALFY-Controlled DVL3 Autophagy Regulates Wnt Signaling, Determining Human Brain Size. PLoS Genet 12 (3), e1005919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Kaludercic N, Maiuri MC, Kaushik S, Fernández ÁF, de Bruijn J, Castoldi F, Chen Y, Ito J, Mukai R and Murakawa T, 2020. Comprehensive autophagy evaluation in cardiac disease models. Cardiovascular Research 116 (3), 483–504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Kaushik S and Cuervo AM, 2012. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22 (8), 407–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Kim J, Park K, Kim MJ, Lim H, Kim KH, Kim SW, Lee ES, Kim HH, Kim SJ, Hur KY, Kim JH, Ahn JH, Yoon KH, Kim JW and Lee MS, 2021. An autophagy enhancer ameliorates diabetes of human IAPP-transgenic mice through clearance of amyloidogenic oligomer. Nat Commun 12 (1), 183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Klein KA and Jackson WT, 2011. Human rhinovirus 2 induces the autophagic pathway and replicates more efficiently in autophagic cells. Journal of virology 85 (18), 9651–9654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E, Agam G, Agarwal A, Aggarwal BB, Agnello M, Agostinis P, Agrewala JN, Agrotis A, Aguilar PV, Ahmad ST, Ahmed ZM, Ahumada-Castro U, Aits S, Aizawa S, Akkoc Y, Akoumianaki T, Akpinar HA, Al-Abd AM, Al-Akra L, Al-Gharaibeh A, Alaoui-Jamali MA, Alberti S, Alcocer-Gomez E, Alessandri C, Ali M, Alim Al-Bari MA, Aliwaini S, Alizadeh J, Almacellas E, Almasan A, Alonso A, Alonso GD, Altan-Bonnet N, Altieri DC, Alvarez EMC, Alves S, Alves da Costa C, Alzaharna MM, Amadio M, Amantini C, Amaral C, Ambrosio S, Amer AO, Ammanathan V, An Z, Andersen SU, Andrabi SA, Andrade-Silva M, Andres AM, Angelini S, Ann D, Anozie UC, Ansari MY, Antas P, Antebi A, Anton Z, Anwar T, Apetoh L, Apostolova N, Araki T, Araki Y, Arasaki K, Araujo WL, Araya J, Arden C, Arevalo MA, Arguelles S, Arias E, Arikkath J, Arimoto H, Ariosa AR, Armstrong-James D, Arnaune-Pelloquin L, Aroca A, Arroyo DS, Arsov I, Artero R, Asaro DML, Aschner M, Ashrafizadeh M, Ashur-Fabian O, Atanasov AG, Au AK, Auberger P, Auner HW, Aurelian L, Autelli R, Avagliano L, Avalos Y, Aveic S, Aveleira CA, Avin-Wittenberg T, Aydin Y, Ayton S, Ayyadevara S, Azzopardi M, Baba M, Backer JM, Backues SK, Bae DH, Bae ON, Bae SH, Baehrecke EH, Baek A, Baek SH, Baek SH, Bagetta G, Bagniewska-Zadworna A, Bai H, Bai J, Bai X, Bai Y, Bairagi N, Baksi S, Balbi T, Baldari CT, Balduini W, Ballabio A, Ballester M, Balazadeh S, Balzan R, Bandopadhyay R, Banerjee S, Banerjee S, Banreti A, Bao Y, Baptista MS, Baracca A, Barbati C, Bargiela A, Barila D, Barlow PG, Barmada SJ, Barreiro E, Barreto GE, Bartek J, Bartel B, Bartolome A, Barve GR, Basagoudanavar SH, Bassham DC, Bast RC Jr., Basu A, Batoko H, Batten I, Baulieu EE, Baumgarner BL, Bayry J, Beale R, Beau I, Beaumatin F, Bechara LRG, Beck GR Jr., Beers MF, Begun J, Behrends C, Behrens GMN, Bei R, Bejarano E, Bel S, Behl C, Belaid A, Belgareh-Touze N, Bellarosa C, Belleudi F, Bello Perez M, Bello-Morales R, Beltran JSO, Beltran S, Benbrook DM, Bendorius M, Benitez BA, Benito-Cuesta I, Bensalem J, Berchtold MW, Berezowska S, Bergamaschi D, Bergami M, Bergmann A, Berliocchi L, Berlioz- Torrent C, Bernard A, Berthoux L, Besirli CG, Besteiro S, Betin VM, Beyaert R, Bezbradica JS, Bhaskar K, Bhatia-Kissova I, Bhattacharya R, Bhattacharya S, Bhattacharyya S, Bhuiyan MS, Bhutia SK, Bi L, Bi X, Biden TJ, Bijian K, Billes VA, Binart N, Bincoletto C, Birgisdottir AB, Bjorkoy G, Blanco G, Blas-Garcia A, Blasiak J, Blomgran R, Blomgren K, Blum JS, Boada-Romero E, Boban M, Boesze-Battaglia K, Boeuf P, Boland B, Bomont P, Bonaldo P, Bonam SR, Bonfili L, Bonifacino JS, Boone BA, Bootman MD, Bordi M, Borner C, Bornhauser BC, Borthakur G, Bosch J, Bose S, Botana LM, Botas J, Boulanger CM, Boulton ME, Bourdenx M, Bourgeois B, Bourke NM, Bousquet G, Boya P, Bozhkov PV, Bozi LHM, Bozkurt TO, Brackney DE, Brandts CH, Braun RJ, Braus GH, Bravo-Sagua R, Bravo-San Pedro JM, Brest P, Bringer MA, Briones-Herrera A, Broaddus VC, Brodersen P, Brodsky JL, Brody SL, Bronson PG, Bronstein JM, Brown CN, Brown RE, Brum PC, Brumell JH, Brunetti-Pierri N, Bruno D, Bryson-Richardson RJ, Bucci C, Buchrieser C, Bueno M, Buitrago-Molina LE, Buraschi S, Buch S, Buchan JR, Buckingham EM, Budak H, Budini M, Bultynck G, Burada F, Burgoyne JR, Buron MI, Bustos V, Buttner S, Butturini E, Byrd A, Cabas I, Cabrera-Benitez S, Cadwell K, Cai J, Cai L, Cai Q, Cairo M, Calbet JA, Caldwell GA, Caldwell KA, Call JA, Calvani R, Calvo AC, Calvo-Rubio Barrera M, Camara NO, Camonis JH, Camougrand N, Campanella M, Campbell EM, Campbell-Valois FX, Campello S, Campesi I, Campos JC, Camuzard O, Cancino J, Candido de Almeida D, Canesi L, Caniggia I, Canonico B, Canti C, Cao B, Caraglia M, Carames B, Carchman EH, Cardenal-Munoz E, Cardenas C, Cardenas L, Cardoso SM, Carew JS, Carle GF, Carleton G, Carloni S, Carmona-Gutierrez D, Carneiro LA, Carnevali O, Carosi JM, Carra S, Carrier A, Carrier L, Carroll B, Carter AB, Carvalho AN, Casanova M, Casas C, Casas J, Cassioli C, Castillo EF, Castillo K, Castillo-Lluva S, Castoldi F, Castori M, Castro AF, Castro-Caldas M, Castro-Hernandez J, Castro-Obregon S, Catz SD, Cavadas C, Cavaliere F, Cavallini G, Cavinato M, Cayuela ML, Cebollada Rica P, Cecarini V, Cecconi F, Cechowska-Pasko M, Cenci S, Ceperuelo-Mallafre V, Cerqueira JJ, Cerutti JM, Cervia D, Cetintas VB, Cetrullo S, Chae HJ, Chagin AS, Chai CY, Chakrabarti G, Chakrabarti O, Chakraborty T, Chakraborty T, Chami M, Chamilos G, Chan DW, Chan EYW, Chan ED, Chan HYE, Chan HH, Chan H, Chan MTV, Chan YS, Chandra PK, Chang CP, Chang C, Chang HC, Chang K, Chao J, Chapman T, Charlet-Berguerand N, Chatterjee S, Chaube SK, Chaudhary A, Chauhan S, Chaum E, Checler F, Cheetham ME, Chen CS, Chen GC, Chen JF, Chen LL, Chen L, Chen L, Chen M, Chen MK, Chen N, Chen Q, Chen RH, Chen S, Chen W, Chen W, Chen XM, Chen XW, Chen X, Chen Y, Chen YG, Chen Y, Chen Y, Chen YJ, Chen YQ, Chen ZS, Chen Z, Chen ZH, Chen ZJ, Chen Z, Cheng H, Cheng J, Cheng SY, Cheng W, Cheng X, Cheng XT, Cheng Y, Cheng Z, Chen Z, Cheong H, Cheong JK, Chernyak BV, Cherry S, Cheung CFR, Cheung CHA, Cheung KH, Chevet E, Chi RJ, Chiang AKS, Chiaradonna F, Chiarelli R, Chiariello M, Chica N, Chiocca S, Chiong M, Chiou SH, Chiramel AI, Chiurchiu V, Cho DH, Choe SK, Choi AMK, Choi ME, Choudhury KR, Chow NS, Chu CT, Chua JP, Chua JJE, Chung H, Chung KP, Chung S, Chung SH, Chung YL, Cianfanelli V, Ciechomska IA, Cifuentes M, Cinque L, Cirak S, Cirone M, Clague MJ, Clarke R, Clementi E, Coccia EM, Codogno P, Cohen E, Cohen MM, Colasanti T, Colasuonno F, Colbert RA, Colell A, Colic M, Coll NS, Collins MO, Colombo MI, Colon-Ramos DA, Combaret L, Comincini S, Cominetti MR, Consiglio A, Conte A, Conti F, Contu VR, Cookson MR, Coombs KM, Coppens I, Corasaniti MT, Corkery DP, Cordes N, Cortese K, Costa MDC, Costantino S, Costelli P, Coto-Montes A, Crack PJ, Crespo JL, Criollo A, Crippa V, Cristofani R, Csizmadia T, Cuadrado A, Cui B, Cui J, Cui Y, Cui Y, Culetto E, Cumino AC, Cybulsky AV, Czaja MJ, Czuczwar SJ, D’Adamo S, D’Amelio M, D’Arcangelo D, D’Lugos AC, D’Orazi G, da Silva JA, Dafsari HS, Dagda RK, Dagdas Y, Daglia M, Dai X, Dai Y, Dai Y, Dal Col J, Dalhaimer P, Dalla Valle L, Dallenga T, Dalmasso G, Damme M, Dando I, Dantuma NP, Darling AL, Das H, Dasarathy S, Dasari SK, Dash S, Daumke O, Dauphinee AN, Davies JS, Davila VA, Davis RJ, Davis T, Dayalan Naidu S, De Amicis F, De Bosscher K, De Felice F, De Franceschi L, De Leonibus C, de Mattos Barbosa MG, De Meyer GRY, De Milito A, De Nunzio C, De Palma C, De Santi M, De Virgilio C, De Zio D, Debnath J, DeBosch BJ, Decuypere JP, Deehan MA, Deflorian G, DeGregori J, Dehay B, Del Rio G, Delaney JR, Delbridge LMD, Delorme-Axford E, Delpino MV, Demarchi F, Dembitz V, Demers ND, Deng H, Deng Z, Dengjel J, Dent P, Denton D, DePamphilis ML, Der CJ, Deretic V, Descoteaux A, Devis L, Devkota S, Devuyst O, Dewson G, Dharmasivam M, Dhiman R, di Bernardo D, Di Cristina M, Di Domenico F, Di Fazio P, Di Fonzo A, Di Guardo G, Di Guglielmo GM, Di Leo L, Di Malta C, Di Nardo A, Di Rienzo M, Di Sano F, Diallinas G, Diao J, Diaz-Araya G, Diaz-Laviada I, Dickinson JM, Diederich M, Dieude M, Dikic I, Ding S, Ding WX, Dini L, Dinic J, Dinic M, Dinkova-Kostova AT, Dionne MS, Distler JHW, Diwan A, Dixon IMC, Djavaheri-Mergny M, Dobrinski I, Dobrovinskaya O, Dobrowolski R, Dobson RCJ, Dokic J, Dokmeci Emre S, Donadelli M, Dong B, Dong X, Dong Z, Dorn Ii GW, Dotsch V, Dou H, Dou J, Dowaidar M, Dridi S, Drucker L, Du A, Du C, Du G, Du HN, Du LL, du Toit A, Duan SB, Duan X, Duarte SP, Dubrovska A, Dunlop EA, Dupont N, Duran RV, Dwarakanath BS, Dyshlovoy SA, Ebrahimi-Fakhari D, Eckhart L, Edelstein CL, Efferth T, Eftekharpour E, Eichinger L, Eid N, Eisenberg T, Eissa NT, Eissa S, Ejarque M, El Andaloussi A, El-Hage N, El-Naggar S, Eleuteri AM, El-Shafey ES, Elgendy M, Eliopoulos AG, Elizalde MM, Elks PM, Elsasser HP, Elsherbiny ES, Emerling BM, Emre NCT, Eng CH, Engedal N, Engelbrecht AM, Engelsen AST, Enserink JM, Escalante R, Esclatine A, Escobar-Henriques M, Eskelinen EL, Espert L, Eusebio MO, Fabrias G, Fabrizi C, Facchiano A, Facchiano F, Fadeel B, Fader C, Faesen AC, Fairlie WD, Falco A, Falkenburger BH, Fan D, Fan J, Fan Y, Fang EF, Fang Y, Fang Y, Fanto M, Farfel-Becker T, Faure M, Fazeli G, Fedele AO, Feldman AM, Feng D, Feng J, Feng L, Feng Y, Feng Y, Feng W, Fenz Araujo T, Ferguson TA, Fernandez AF, Fernandez-Checa JC, Fernandez-Veledo S, Fernie AR, Ferrante AW Jr., Ferraresi A, Ferrari MF, Ferreira JCB, Ferro-Novick S, Figueras A, Filadi R, Filigheddu N, Filippi-Chiela E, Filomeni G, Fimia GM, Fineschi V, Finetti F, Finkbeiner S, Fisher EA, Fisher PB, Flamigni F, Fliesler SJ, Flo TH, Florance I, Florey O, Florio T, Fodor E, Follo C, Fon EA, Forlino A, Fornai F, Fortini P, Fracassi A, Fraldi A, Franco B, Franco R, Franconi F, Frankel LB, Friedman SL, Frohlich LF, Fruhbeck G, Fuentes JM, Fujiki Y, Fujita N, Fujiwara Y, Fukuda M, Fulda S, Furic L, Furuya N, Fusco C, Gack MU, Gaffke L, Galadari S, Galasso A, Galindo MF, Gallolu Kankanamalage S, Galluzzi L, Galy V, Gammoh N, Gan B, Ganley IG, Gao F, Gao H, Gao M, Gao P, Gao SJ, Gao W, Gao X, Garcera A, Garcia MN, Garcia VE, Garcia-Del Portillo F, Garcia-Escudero V, Garcia-Garcia A, Garcia-Macia M, Garcia-Moreno D, Garcia-Ruiz C, Garcia-Sanz P, Garg AD, Gargini R, Garofalo T, Garry RF, Gassen NC, Gatica D, Ge L, Ge W, Geiss-Friedlander R, Gelfi C, Genschik P, Gentle IE, Gerbino V, Gerhardt C, Germain K, Germain M, Gewirtz DA, Ghasemipour Afshar E, Ghavami S, Ghigo A, Ghosh M, Giamas G, Giampietri C, Giatromanolaki A, Gibson GE, Gibson SB, Ginet V, Giniger E, Giorgi C, Girao H, Girardin SE, Giridharan M, Giuliano S, Giulivi C, Giuriato S, Giustiniani J, Gluschko A, Goder V, Goginashvili A, Golab J, Goldstone DC, Golebiewska A, Gomes LR, Gomez R, Gomez-Sanchez R, Gomez-Puerto MC, Gomez-Sintes R, Gong Q, Goni FM, Gonzalez-Gallego J, Gonzalez-Hernandez T, Gonzalez-Polo RA, Gonzalez-Reyes JA, Gonzalez-Rodriguez P, Goping IS, Gorbatyuk MS, Gorbunov NV, Gorgulu K, Gorojod RM, Gorski SM, Goruppi S, Gotor C, Gottlieb RA, Gozes I, Gozuacik D, Graef M, Graler MH, Granatiero V, Grasso D, Gray JP, Green DR, Greenhough A, Gregory SL, Griffin EF, Grinstaff MW, Gros F, Grose C, Gross AS, Gruber F, Grumati P, Grune T, Gu X, Guan JL, Guardia CM, Guda K, Guerra F, Guerri C, Guha P, Guillen C, Gujar S, Gukovskaya A, Gukovsky I, Gunst J, Gunther A, Guntur AR, Guo C, Guo C, Guo H, Guo LW, Guo M, Gupta P, Gupta SK, Gupta S, Gupta VB, Gupta V, Gustafsson AB, Gutterman DD, H BR, Haapasalo A, Haber JE, Hac A, Hadano S, Hafren AJ, Haidar M, Hall BS, Hallden G, Hamacher-Brady A, Hamann A, Hamasaki M, Han W, Hansen M, Hanson PI, Hao Z, Harada M, Harhaji-Trajkovic L, Hariharan N, Haroon N, Harris J, Hasegawa T, Hasima Nagoo N, Haspel JA, Haucke V, Hawkins WD, Hay BA, Haynes CM, Hayrabedyan SB, Hays TS, He C, He Q, He RR, He YW, He YY, Heakal Y, Heberle AM, Hejtmancik JF, Helgason GV, Henkel V, Herb M, Hergovich A, Herman-Antosiewicz A, Hernandez A, Hernandez C, Hernandez-Diaz S, Hernandez-Gea V, Herpin A, Herreros J, Hervas JH, Hesselson D, Hetz C, Heussler VT, Higuchi Y, Hilfiker S, Hill JA, Hlavacek WS, Ho EA, Ho IHT, Ho PW, Ho SL, Ho WY, Hobbs GA, Hochstrasser M, Hoet PHM, Hofius D, Hofman P, Hohn A, Holmberg CI, Hombrebueno JR, Yi-Ren Hong CH, Hooper LV, Hoppe T, Horos R, Hoshida Y, Hsin IL, Hsu HY, Hu B, Hu D, Hu LF, Hu MC, Hu R, Hu W, Hu YC, Hu ZW, Hua F, Hua J, Hua Y, Huan C, Huang C, Huang C, Huang C, Huang C, Huang H, Huang K, Huang MLH, Huang R, Huang S, Huang T, Huang X, Huang YJ, Huber TB, Hubert V, Hubner CA, Hughes SM, Hughes WE, Humbert M, Hummer G, Hurley JH, Hussain S, Hussain S, Hussey PJ, Hutabarat M, Hwang HY, Hwang S, Ieni A, Ikeda F, Imagawa Y, Imai Y, Imbriano C, Imoto M, Inman DM, Inoki K, Iovanna J, Iozzo RV, Ippolito G, Irazoqui JE, Iribarren P, Ishaq M, Ishikawa M, Ishimwe N, Isidoro C, Ismail N, Issazadeh-Navikas S, Itakura E, Ito D, Ivankovic D, Ivanova S, Iyer AKV, Izquierdo JM, Izumi M, Jaattela M, Jabir MS, Jackson WT, Jacobo-Herrera N, Jacomin AC, Jacquin E, Jadiya P, Jaeschke H, Jagannath C, Jakobi AJ, Jakobsson J, Janji B, Jansen-Durr P, Jansson PJ, Jantsch J, Januszewski S, Jassey A, Jean S, Jeltsch-David H, Jendelova P, Jenny A, Jensen TE, Jessen N, Jewell JL, Ji J, Jia L, Jia R, Jiang L, Jiang Q, Jiang R, Jiang T, Jiang X, Jiang Y, Jimenez-Sanchez M, Jin EJ, Jin F, Jin H, Jin L, Jin L, Jin M, Jin S, Jo EK, Joffre C, Johansen T, Johnson GVW, Johnston SA, Jokitalo E, Jolly MK, Joosten LAB, Jordan J, Joseph B, Ju D, Ju JS, Ju J, Juarez E, Judith D, Juhasz G, Jun Y, Jung CH, Jung SC, Jung YK, Jungbluth H, Jungverdorben J, Just S, Kaarniranta K, Kaasik A, Kabuta T, Kaganovich D, Kahana A, Kain R, Kajimura S, Kalamvoki M, Kalia M, Kalinowski DS, Kaludercic N, Kalvari I, Kaminska J, Kaminskyy VO, Kanamori H, Kanasaki K, Kang C, Kang R, Kang SS, Kaniyappan S, Kanki T, Kanneganti TD, Kanthasamy AG, Kanthasamy A, Kantorow M, Kapuy O, Karamouzis MV, Karim MR, Karmakar P, Katare RG, Kato M, Kaufmann SHE, Kauppinen A, Kaushal GP, Kaushik S, Kawasaki K, Kazan K, Ke PY, Keating DJ, Keber U, Kehrl JH, Keller KE, Keller CW, Kemper JK, Kenific CM, Kepp O, Kermorgant S, Kern A, Ketteler R, Keulers TG, Khalfin B, Khalil H, Khambu B, Khan SY, Khandelwal VKM, Khandia R, Kho W, Khobrekar NV, Khuansuwan S, Khundadze M, Killackey SA, Kim D, Kim DR, Kim DH, Kim DE, Kim EY, Kim EK, Kim HR, Kim HS, Hyung-Ryong K, Kim JH, Kim JK, Kim JH, Kim J, Kim JH, Kim KI, Kim PK, Kim SJ, Kimball SR, Kimchi A, Kimmelman AC, Kimura T, King MA, Kinghorn KJ, Kinsey CG, Kirkin V, Kirshenbaum LA, Kiselev SL, Kishi S, Kitamoto K, Kitaoka Y, Kitazato K, Kitsis RN, Kittler JT, Kjaerulff O, Klein PS, Klopstock T, Klucken J, Knaevelsrud H, Knorr RL, Ko BCB, Ko F, Ko JL, Kobayashi H, Kobayashi S, Koch I, Koch JC, Koenig U, Kogel D, Koh YH, Koike M, Kohlwein SD, Kocaturk NM, Komatsu M, Konig J, Kono T, Kopp BT, Korcsmaros T, Korkmaz G, Korolchuk VI, Korsnes MS, Koskela A, Kota J, Kotake Y, Kotler ML, Kou Y, Koukourakis MI, Koustas E, Kovacs AL, Kovacs T, Koya D, Kozako T, Kraft C, Krainc D, Kramer H, Krasnodembskaya AD, Kretz-Remy C, Kroemer G, Ktistakis NT, Kuchitsu K, Kuenen S, Kuerschner L, Kukar T, Kumar A, Kumar A, Kumar D, Kumar D, Kumar S, Kume S, Kumsta C, Kundu CN, Kundu M, Kunnumakkara AB, Kurgan L, Kutateladze TG, Kutlu O, Kwak S, Kwon HJ, Kwon TK, Kwon YT, Kyrmizi I, La Spada A, Labonte P, Ladoire S, Laface I, Lafont F, Lagace DC, Lahiri V, Lai Z, Laird AS, Lakkaraju A, Lamark T, Lan SH, Landajuela A, Lane DJR, Lane JD, Lang CH, Lange C, Langel U, Langer R, Lapaquette P, Laporte J, LaRusso NF, Lastres-Becker I, Lau WCY, Laurie GW, Lavandero S, Law BYK, Law HK, Layfield R, Le W, Le Stunff H, Leary AY, Lebrun JJ, Leck LYW, Leduc-Gaudet JP, Lee C, Lee CP, Lee DH, Lee EB, Lee EF, Lee GM, Lee HJ, Lee HK, Lee JM, Lee JS, Lee JA, Lee JY, Lee JH, Lee M, Lee MG, Lee MJ, Lee MS, Lee SY, Lee SJ, Lee SY, Lee SB, Lee WH, Lee YR, Lee YH, Lee Y, Lefebvre C, Legouis R, Lei YL, Lei Y, Leikin S, Leitinger G, Lemus L, Leng S, Lenoir O, Lenz G, Lenz HJ, Lenzi P, Leon Y, Leopoldino AM, Leschczyk C, Leskela S, Letellier E, Leung CT, Leung PS, Leventhal JS, Levine B, Lewis PA, Ley K, Li B, Li DQ, Li J, Li J, Li J, Li K, Li L, Li M, Li M, Li M, Li M, Li M, Li PL, Li MQ, Li Q, Li S, Li T, Li W, Li W, Li X, Li YP, Li Y, Li Z, Li Z, Li Z, Lian J, Liang C, Liang Q, Liang W, Liang Y, Liang Y, Liao G, Liao L, Liao M, Liao YF, Librizzi M, Lie PPY, Lilly MA, Lim HJ, Lima TRR, Limana F, Lin C, Lin CW, Lin DS, Lin FC, Lin JD, Lin KM, Lin KH, Lin LT, Lin PH, Lin Q, Lin S, Lin SJ, Lin W, Lin X, Lin YX, Lin YS, Linden R, Lindner P, Ling SC, Lingor P, Linnemann AK, Liou YC, Lipinski MM, Lipovsek S, Lira VA, Lisiak N, Liton PB, Liu C, Liu CH, Liu CF, Liu CH, Liu F, Liu H, Liu HS, Liu HF, Liu H, Liu J, Liu J, Liu J, Liu L, Liu L, Liu M, Liu Q, Liu W, Liu W, Liu XH, Liu X, Liu X, Liu X, Liu X, Liu Y, Liu Y, Liu Y, Liu Y, Liu Y, Livingston JA, Lizard G, Lizcano JM, Ljubojevic-Holzer S, ME LL, Llobet-Navas D, Llorente A, Lo CH, Lobato-Marquez D, Long Q, Long YC, Loos B, Loos JA, Lopez MG, Lopez-Domenech G, Lopez-Guerrero JA, Lopez-Jimenez AT, Lopez-Perez O, Lopez-Valero I, Lorenowicz MJ, Lorente M, Lorincz P, Lossi L, Lotersztajn S, Lovat PE, Lovell JF, Lovy A, Low P, Lu G, Lu H, Lu JH, Lu JJ, Lu M, Lu S, Luciani A, Lucocq JM, Ludovico P, Luftig MA, Luhr M, Luis-Ravelo D, Lum JJ, Luna-Dulcey L, Lund AH, Lund VK, Lunemann JD, Luningschror P, Luo H, Luo R, Luo S, Luo Z, Luparello C, Luscher B, Luu L, Lyakhovich A, Lyamzaev KG, Lystad AH, Lytvynchuk L, Ma AC, Ma C, Ma M, Ma NF, Ma QH, Ma X, Ma Y, Ma Z, MacDougald OA, Macian F, MacIntosh GC, MacKeigan JP, Macleod KF, Maday S, Madeo F, Madesh M, Madl T, Madrigal-Matute J, Maeda A, Maejima Y, Magarinos M, Mahavadi P, Maiani E, Maiese K, Maiti P, Maiuri MC, Majello B, Major MB, Makareeva E, Malik F, Mallilankaraman K, Malorni W, Maloyan A, Mammadova N, Man GCW, Manai F, Mancias JD, Mandelkow EM, Mandell MA, Manfredi AA, Manjili MH, Manjithaya R, Manque P, Manshian BB, Manzano R, Manzoni C, Mao K, Marchese C, Marchetti S, Marconi AM, Marcucci F, Mardente S, Mareninova OA, Margeta M, Mari M, Marinelli S, Marinelli O, Marino G, Mariotto S, Marshall RS, Marten MR, Martens S, Martin APJ, Martin KR, Martin S, Martin S, Martin-Segura A, Martin-Acebes MA, Martin-Burriel I, Martin-Rincon M, Martin-Sanz P, Martina JA, Martinet W, Martinez A, Martinez A, Martinez J, Martinez Velazquez M, Martinez-Lopez N, Martinez-Vicente M, Martins DO, Martins JO, Martins WK, Martins-Marques T, Marzetti E, Masaldan S, Masclaux-Daubresse C, Mashek DG, Massa V, Massieu L, Masson GR, Masuelli L, Masyuk AI, Masyuk TV, Matarrese P, Matheu A, Matoba S, Matsuzaki S, Mattar P, Matte A, Mattoscio D, Mauriz JL, Mauthe M, Mauvezin C, Maverakis E, Maycotte P, Mayer J, Mazzoccoli G, Mazzoni C, Mazzulli JR, McCarty N, McDonald C, McGill MR, McKenna SL, McLaughlin B, McLoughlin F, McNiven MA, McWilliams TG, Mechta-Grigoriou F, Medeiros TC, Medina DL, Megeney LA, Megyeri K, Mehrpour M, Mehta JL, Meijer AJ, Meijer AH, Mejlvang J, Melendez A, Melk A, Memisoglu G, Mendes AF, Meng D, Meng F, Meng T, Menna-Barreto R, Menon MB, Mercer C, Mercier AE, Mergny JL, Merighi A, Merkley SD, Merla G, Meske V, Mestre AC, Metur SP, Meyer C, Meyer H, Mi W, Mialet-Perez J, Miao J, Micale L, Miki Y, Milan E, Milczarek M, Miller DL, Miller SI, Miller S, Millward SW, Milosevic I, Minina EA, Mirzaei H, Mirzaei HR, Mirzaei M, Mishra A, Mishra N, Mishra PK, Misirkic Marjanovic M, Misasi R, Misra A, Misso G, Mitchell C, Mitou G, Miura T, Miyamoto S, Miyazaki M, Miyazaki M, Miyazaki T, Miyazawa K, Mizushima N, Mogensen TH, Mograbi B, Mohammadinejad R, Mohamud Y, Mohanty A, Mohapatra S, Mohlmann T, Mohmmed A, Moles A, Moley KH, Molinari M, Mollace V, Moller AB, Mollereau B, Mollinedo F, Montagna C, Monteiro MJ, Montella A, Montes LR, Montico B, Mony VK, Monzio Compagnoni G, Moore MN, Moosavi MA, Mora AL, Mora M, Morales-Alamo D, Moratalla R, Moreira PI, Morelli E, Moreno S, Moreno-Blas D, Moresi V, Morga B, Morgan AH, Morin F, Morishita H, Moritz OL, Moriyama M, Moriyasu Y, Morleo M, Morselli E, Moruno-Manchon JF, Moscat J, Mostowy S, Motori E, Moura AF, Moustaid-Moussa N, Mrakovcic M, Mucino-Hernandez G, Mukherjee A, Mukhopadhyay S, Mulcahy Levy JM, Mulero V, Muller S, Munch C, Munjal A, Munoz-Canoves P, Munoz-Galdeano T, Munz C, Murakawa T, Muratori C, Murphy BM, Murphy JP, Murthy A, Myohanen TT, Mysorekar IU, Mytych J, Nabavi SM, Nabissi M, Nagy P, Nah J, Nahimana A, Nakagawa I, Nakamura K, Nakatogawa H, Nandi SS, Nanjundan M, Nanni M, Napolitano G, Nardacci R, Narita M, Nassif M, Nathan I, Natsumeda M, Naude RJ, Naumann C, Naveiras O, Navid F, Nawrocki ST, Nazarko TY, Nazio F, Negoita F, Neill T, Neisch AL, Neri LM, Netea MG, Neubert P, Neufeld TP, Neumann D, Neutzner A, Newton PT, Ney PA, Nezis IP, Ng CCW, Ng TB, Nguyen HTT, Nguyen LT, Ni HM, Ni Cheallaigh C, Ni Z, Nicolao MC, Nicoli F, Nieto-Diaz M, Nilsson P, Ning S, Niranjan R, Nishimune H, Niso-Santano M, Nixon RA, Nobili A, Nobrega C, Noda T, Nogueira-Recalde U, Nolan TM, Nombela I, Novak I, Novoa B, Nozawa T, Nukina N, Nussbaum-Krammer C, Nylandsted J, O’Donovan TR, O’Leary SM, O’Rourke EJ, O’Sullivan MP, O’Sullivan TE, Oddo S, Oehme I, Ogawa M, Ogier-Denis E, Ogmundsdottir MH, Ogretmen B, Oh GT, Oh SH, Oh YJ, Ohama T, Ohashi Y, Ohmuraya M, Oikonomou V, Ojha R, Okamoto K, Okazawa H, Oku M, Olivan S, Oliveira JMA, Ollmann M, Olzmann JA, Omari S, Omary MB, Onal G, Ondrej M, Ong SB, Ong SG, Onnis A, Orellana JA, Orellana-Munoz S, Ortega-Villaizan MDM, Ortiz-Gonzalez XR, Ortona E, Osiewacz HD, Osman AK, Osta R, Otegui MS, Otsu K, Ott C, Ottobrini L, Ou JJ, Outeiro TF, Oynebraten I, Ozturk M, Pages G, Pahari S, Pajares M, Pajvani UB, Pal R, Paladino S, Pallet N, Palmieri M, Palmisano G, Palumbo C, Pampaloni F, Pan L, Pan Q, Pan W, Pan X, Panasyuk G, Pandey R, Pandey UB, Pandya V, Paneni F, Pang SY, Panzarini E, Papademetrio DL, Papaleo E, Papinski D, Papp D, Park EC, Park HT, Park JM, Park JI, Park JT, Park J, Park SC, Park SY, Parola AH, Parys JB, Pasquier A, Pasquier B, Passos JF, Pastore N, Patel HH, Patschan D, Pattingre S, Pedraza-Alva G, Pedraza-Chaverri J, Pedrozo Z, Pei G, Pei J, Peled-Zehavi H, Pellegrini JM, Pelletier J, Penalva MA, Peng D, Peng Y, Penna F, Pennuto M, Pentimalli F, Pereira CM, Pereira GJS, Pereira LC, Pereira de Almeida L, Perera ND, Perez-Lara A, Perez-Oliva AB, Perez-Perez ME, Periyasamy P, Perl A, Perrotta C, Perrotta I, Pestell RG, Petersen M, Petrache I, Petrovski G, Pfirrmann T, Pfister AS, Philips JA, Pi H, Picca A, Pickrell AM, Picot S, Pierantoni GM, Pierdominici M, Pierre P, Pierrefite-Carle V, Pierzynowska K, Pietrocola F, Pietruczuk M, Pignata C, Pimentel-Muinos FX, Pinar M, Pinheiro RO, Pinkas-Kramarski R, Pinton P, Pircs K, Piya S, Pizzo P, Plantinga TS, Platta HW, Plaza-Zabala A, Plomann M, Plotnikov EY, Plun-Favreau H, Pluta R, Pocock R, Poggeler S, Pohl C, Poirot M, Poletti A, Ponpuak M, Popelka H, Popova B, Porta H, Porte Alcon S, Portilla-Fernandez E, Post M, Potts MB, Poulton J, Powers T, Prahlad V, Prajsnar TK, Pratico D, Prencipe R, Priault M, Proikas-Cezanne T, Promponas VJ, Proud CG, Puertollano R, Puglielli L, Pulinilkunnil T, Puri D, Puri R, Puyal J, Qi X, Qi Y, Qian W, Qiang L, Qiu Y, Quadrilatero J, Quarleri J, Raben N, Rabinowich H, Ragona D, Ragusa MJ, Rahimi N, Rahmati M, Raia V, Raimundo N, Rajasekaran NS, Ramachandra Rao S, Rami A, Ramirez-Pardo I, Ramsden DB, Randow F, Rangarajan PN, Ranieri D, Rao H, Rao L, Rao R, Rathore S, Ratnayaka JA, Ratovitski EA, Ravanan P, Ravegnini G, Ray SK, Razani B, Rebecca V, Reggiori F, Regnier-Vigouroux A, Reichert AS, Reigada D, Reiling JH, Rein T, Reipert S, Rekha RS, Ren H, Ren J, Ren W, Renault T, Renga G, Reue K, Rewitz K, Ribeiro de Andrade Ramos B, Riazuddin SA, Ribeiro-Rodrigues TM, Ricci JE, Ricci R, Riccio V, Richardson DR, Rikihisa Y, Risbud MV, Risueno RM, Ritis K, Rizza S, Rizzuto R, Roberts HC, Roberts LD, Robinson KJ, Roccheri MC, Rocchi S, Rodney GG, Rodrigues T, Rodrigues Silva VR, Rodriguez A, Rodriguez-Barrueco R, Rodriguez-Henche N, Rodriguez-Rocha H, Roelofs J, Rogers RS, Rogov VV, Rojo AI, Rolka K, Romanello V, Romani L, Romano A, Romano PS, Romeo-Guitart D, Romero LC, Romero M, Roney JC, Rongo C, Roperto S, Rosenfeldt MT, Rosenstiel P, Rosenwald AG, Roth KA, Roth L, Roth S, Rouschop KMA, Roussel BD, Roux S, Rovere-Querini P, Roy A, Rozieres A, Ruano D, Rubinsztein DC, Rubtsova MP, Ruckdeschel K, Ruckenstuhl C, Rudolf E, Rudolf R, Ruggieri A, Ruparelia AA, Rusmini P, Russell RR, Russo GL, Russo M, Russo R, Ryabaya OO, Ryan KM, Ryu KY, Sabater-Arcis M, Sachdev U, Sacher M, Sachse C, Sadhu A, Sadoshima J, Safren N, Saftig P, Sagona AP, Sahay G, Sahebkar A, Sahin M, Sahin O, Sahni S, Saito N, Saito S, Saito T, Sakai R, Sakai Y, Sakamaki JI, Saksela K, Salazar G, Salazar-Degracia A, Salekdeh GH, Saluja AK, Sampaio-Marques B, Sanchez MC, Sanchez-Alcazar JA, Sanchez-Vera V, Sancho-Shimizu V, Sanderson JT, Sandri M, Santaguida S, Santambrogio L, Santana MM, Santoni G, Sanz A, Sanz P, Saran S, Sardiello M, Sargeant TJ, Sarin A, Sarkar C, Sarkar S, Sarrias MR, Sarkar S, Sarmah DT, Sarparanta J, Sathyanarayan A, Sathyanarayanan R, Scaglione KM, Scatozza F, Schaefer L, Schafer ZT, Schaible UE, Schapira AHV, Scharl M, Schatzl HM, Schein CH, Scheper W, Scheuring D, Schiaffino MV, Schiappacassi M, Schindl R, Schlattner U, Schmidt O, Schmitt R, Schmidt SD, Schmitz I, Schmukler E, Schneider A, Schneider BE, Schober R, Schoijet AC, Schott MB, Schramm M, Schroder B, Schuh K, Schuller C, Schulze RJ, Schurmanns L, Schwamborn JC, Schwarten M, Scialo F, Sciarretta S, Scott MJ, Scotto KW, Scovassi AI, Scrima A, Scrivo A, Sebastian D, Sebti S, Sedej S, Segatori L, Segev N, Seglen PO, Seiliez I, Seki E, Selleck SB, Sellke FW, Selsby JT, Sendtner M, Senturk S, Seranova E, Sergi C, Serra-Moreno R, Sesaki H, Settembre C, Setty SRG, Sgarbi G, Sha O, Shacka JJ, Shah JA, Shang D, Shao C, Shao F, Sharbati S, Sharkey LM, Sharma D, Sharma G, Sharma K, Sharma P, Sharma S, Shen HM, Shen H, Shen J, Shen M, Shen W, Shen Z, Sheng R, Sheng Z, Sheng ZH, Shi J, Shi X, Shi YH, Shiba-Fukushima K, Shieh JJ, Shimada Y, Shimizu S, Shimozawa M, Shintani T, Shoemaker CJ, Shojaei S, Shoji I, Shravage BV, Shridhar V, Shu CW, Shu HB, Shui K, Shukla AK, Shutt TE, Sica V, Siddiqui A, Sierra A, Sierra-Torre V, Signorelli S, Sil P, Silva BJA, Silva JD, Silva-Pavez E, Silvente-Poirot S, Simmonds RE, Simon AK, Simon HU, Simons M, Singh A, Singh LP, Singh R, Singh SV, Singh SK, Singh SB, Singh S, Singh SP, Sinha D, Sinha RA, Sinha S, Sirko A, Sirohi K, Sivridis EL, Skendros P, Skirycz A, Slaninova I, Smaili SS, Smertenko A, Smith MD, Soenen SJ, Sohn EJ, Sok SPM, Solaini G, Soldati T, Soleimanpour SA, Soler RM, Solovchenko A, Somarelli JA, Sonawane A, Song F, Song HK, Song JX, Song K, Song Z, Soria LR, Sorice M, Soukas AA, Soukup SF, Sousa D, Sousa N, Spagnuolo PA, Spector SA, Srinivas Bharath MM, St Clair D, Stagni V, Staiano L, Stalnecker CA, Stankov MV, Stathopulos PB, Stefan K, Stefan SM, Stefanis L, Steffan JS, Steinkasserer A, Stenmark H, Sterneckert J, Stevens C, Stoka V, Storch S, Stork B, Strappazzon F, Strohecker AM, Stupack DG, Su H, Su LY, Su L, Suarez-Fontes AM, Subauste CS, Subbian S, Subirada PV, Sudhandiran G, Sue CM, Sui X, Summers C, Sun G, Sun J, Sun K, Sun MX, Sun Q, Sun Y, Sun Z, Sunahara KKS, Sundberg E, Susztak K, Sutovsky P, Suzuki H, Sweeney G, Symons JD, Sze SCW, Szewczyk NJ, Tabecka-Lonczynska A, Tabolacci C, Tacke F, Taegtmeyer H, Tafani M, Tagaya M, Tai H, Tait SWG, Takahashi Y, Takats S, Talwar P, Tam C, Tam SY, Tampellini D, Tamura A, Tan CT, Tan EK, Tan YQ, Tanaka M, Tanaka M, Tang D, Tang J, Tang TS, Tanida I, Tao Z, Taouis M, Tatenhorst L, Tavernarakis N, Taylor A, Taylor GA, Taylor JM, Tchetina E, Tee AR, Tegeder I, Teis D, Teixeira N, Teixeira-Clerc F, Tekirdag KA, Tencomnao T, Tenreiro S, Tepikin AV, Testillano PS, Tettamanti G, Tharaux PL, Thedieck K, Thekkinghat AA, Thellung S, Thinwa JW, Thirumalaikumar VP, Thomas SM, Thomes PG, Thorburn A, Thukral L, Thum T, Thumm M, Tian L, Tichy A, Till A, Timmerman V, Titorenko VI, Todi SV, Todorova K, Toivonen JM, Tomaipitinca L, Tomar D, Tomas-Zapico C, Tomic S, Tong BC, Tong C, Tong X, Tooze SA, Torgersen ML, Torii S, Torres-Lopez L, Torriglia A, Towers CG, Towns R, Toyokuni S, Trajkovic V, Tramontano D, Tran QG, Travassos LH, Trelford CB, Tremel S, Trougakos IP, Tsao BP, Tschan MP, Tse HF, Tse TF, Tsugawa H, Tsvetkov AS, Tumbarello DA, Tumtas Y, Tunon MJ, Turcotte S, Turk B, Turk V, Turner BJ, Tuxworth RI, Tyler JK, Tyutereva EV, Uchiyama Y, Ugun-Klusek A, Uhlig HH, Ulamek-Koziol M, Ulasov IV, Umekawa M, Ungermann C, Unno R, Urbe S, Uribe-Carretero E, Ustun S, Uversky VN, Vaccari T, Vaccaro MI, Vahsen BF, Vakifahmetoglu-Norberg H, Valdor R, Valente MJ, Valko A, Vallee RB, Valverde AM, Van den Berghe G, van der Veen S, Van Kaer L, van Loosdregt J, van Wijk SJL, Vandenberghe W, Vanhorebeek I, Vannier-Santos MA, Vannini N, Vanrell MC, Vantaggiato C, Varano G, Varela-Nieto I, Varga M, Vasconcelos MH, Vats S, Vavvas DG, Vega-Naredo I, Vega-Rubin-de-Celis S, Velasco G, Velazquez AP, Vellai T, Vellenga E, Velotti F, Verdier M, Verginis P, Vergne I, Verkade P, Verma M, Verstreken P, Vervliet T, Vervoorts J, Vessoni AT, Victor VM, Vidal M, Vidoni C, Vieira OV, Vierstra RD, Vigano S, Vihinen H, Vijayan V, Vila M, Vilar M, Villalba JM, Villalobo A, Villarejo-Zori B, Villarroya F, Villarroya J, Vincent O, Vindis C, Viret C, Viscomi MT, Visnjic D, Vitale I, Vocadlo DJ, Voitsekhovskaja OV, Volonte C, Volta M, Vomero M, Von Haefen C, Vooijs MA, Voos W, Vucicevic L, Wade-Martins R, Waguri S, Waite KA, Wakatsuki S, Walker DW, Walker MJ, Walker SA, Walter J, Wandosell FG, Wang B, Wang CY, Wang C, Wang C, Wang C, Wang CY, Wang D, Wang F, Wang F, Wang F, Wang G, Wang H, Wang H, Wang H, Wang HG, Wang J, Wang J, Wang J, Wang J, Wang K, Wang L, Wang L, Wang MH, Wang M, Wang N, Wang P, Wang P, Wang P, Wang P, Wang QJ, Wang Q, Wang QK, Wang QA, Wang WT, Wang W, Wang X, Wang X, Wang Y, Wang Y, Wang Y, Wang YY, Wang Y, Wang Y, Wang Y, Wang Y, Wang Z, Wang Z, Wang Z, Warnes G, Warnsmann V, Watada H, Watanabe E, Watchon M, Wawrzynska A, Weaver TE, Wegrzyn G, Wehman AM, Wei H, Wei L, Wei T, Wei Y, Weiergraber OH, Weihl CC, Weindl G, Weiskirchen R, Wells A, Wen RH, Wen X, Werner A, Weykopf B, Wheatley SP, Whitton JL, Whitworth AJ, Wiktorska K, Wildenberg ME, Wileman T, Wilkinson S, Willbold D, Williams B, Williams RSB, Williams RL, Williamson PR, Wilson RA, Winner B, Winsor NJ, Witkin SS, Wodrich H, Woehlbier U, Wollert T, Wong E, Wong JH, Wong RW, Wong VKW, Wong WW, Wu AG, Wu C, Wu J, Wu J, Wu KK, Wu M, Wu SY, Wu S, Wu SY, Wu S, Wu WKK, Wu X, Wu X, Wu YW, Wu Y, Xavier RJ, Xia H, Xia L, Xia Z, Xiang G, Xiang J, Xiang M, Xiang W, Xiao B, Xiao G, Xiao H, Xiao HT, Xiao J, Xiao L, Xiao S, Xiao Y, Xie B, Xie CM, Xie M, Xie Y, Xie Z, Xie Z, Xilouri M, Xu C, Xu E, Xu H, Xu J, Xu J, Xu L, Xu WW, Xu X, Xue Y, Yakhine-Diop SMS, Yamaguchi M, Yamaguchi O, Yamamoto A, Yamashina S, Yan S, Yan SJ, Yan Z, Yanagi Y, Yang C, Yang DS, Yang H, Yang HT, Yang H, Yang JM, Yang J, Yang J, Yang L, Yang L, Yang M, Yang PM, Yang Q, Yang S, Yang S, Yang SF, Yang W, Yang WY, Yang X, Yang X, Yang Y, Yang Y, Yao H, Yao S, Yao X, Yao YG, Yao YM, Yasui T, Yazdankhah M, Yen PM, Yi C, Yin XM, Yin Y, Yin Z, Yin Z, Ying M, Ying Z, Yip CK, Yiu SPT, Yoo YH, Yoshida K, Yoshii SR, Yoshimori T, Yousefi B, Yu B, Yu H, Yu J, Yu J, Yu L, Yu ML, Yu SW, Yu VC, Yu WH, Yu Z, Yu Z, Yuan J, Yuan LQ, Yuan S, Yuan SF, Yuan Y, Yuan Z, Yue J, Yue Z, Yun J, Yung RL, Zacks DN, Zaffagnini G, Zambelli VO, Zanella I, Zang QS, Zanivan S, Zappavigna S, Zaragoza P, Zarbalis KS, Zarebkohan A, Zarrouk A, Zeitlin SO, Zeng J, Zeng JD, Zerovnik E, Zhan L, Zhang B, Zhang DD, Zhang H, Zhang H, Zhang H, Zhang H, Zhang H, Zhang H, Zhang H, Zhang HL, Zhang J, Zhang J, Zhang JP, Zhang KYB, Zhang LW, Zhang L, Zhang L, Zhang L, Zhang L, Zhang M, Zhang P, Zhang S, Zhang W, Zhang X, Zhang XW, Zhang X, Zhang X, Zhang X, Zhang X, Zhang XD, Zhang Y, Zhang Y, Zhang Y, Zhang YD, Zhang Y, Zhang YY, Zhang Y, Zhang Z, Zhang Z, Zhang Z, Zhang Z, Zhang Z, Zhang Z, Zhao H, Zhao L, Zhao S, Zhao T, Zhao XF, Zhao Y, Zhao Y, Zhao Y, Zhao Y, Zheng G, Zheng K, Zheng L, Zheng S, Zheng XL, Zheng Y, Zheng ZG, Zhivotovsky B, Zhong Q, Zhou A, Zhou B, Zhou C, Zhou G, Zhou H, Zhou H, Zhou H, Zhou J, Zhou J, Zhou J, Zhou J, Zhou K, Zhou R, Zhou XJ, Zhou Y, Zhou Y, Zhou Y, Zhou ZY, Zhou Z, Zhu B, Zhu C, Zhu GQ, Zhu H, Zhu H, Zhu H, Zhu WG, Zhu Y, Zhu Y, Zhuang H, Zhuang X, Zientara-Rytter K, Zimmermann CM, Ziviani E, Zoladek T, Zong WX, Zorov DB, Zorzano A, Zou W, Zou Z, Zou Z, Zuryn S, Zwerschke W, Brand-Saberi B, Dong XC, Kenchappa CS, Li Z, Lin Y, Oshima S, Rong Y, Sluimer JC, Stallings CL and Tong CK, 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17 (1), 1–382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Korvatska O, Strand NS, Berndt JD, Strovas T, Chen DH, Leverenz JB, Kiianitsa K, Mata IF, Karakoc E, Greenup JL, Bonkowski E, Chuang J, Moon RT, Eichler EE, Nickerson DA, Zabetian CP, Kraemer BC, Bird TD and Raskind WH, 2013. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS). Hum Mol Genet 22 (16), 3259–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Kosacka J, Kern M, Kloting N, Paeschke S, Rudich A, Haim Y, Gericke M, Serke H, Stumvoll M, Bechmann I, Nowicki M and Bluher M, 2015. Autophagy in adipose tissue of patients with obesity and type 2 diabetes. Mol Cell Endocrinol 409 21–32. [DOI] [PubMed] [Google Scholar]
  • 78.Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L, Shai I, Golan R, Harman-Boehm I, Schon MR, Greenberg AS, Elazar Z, Bashan N and Rudich A, 2011. Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 96 (2), E268–77. [DOI] [PubMed] [Google Scholar]
  • 79.Kubli DA, Zhang X, Lee Y, Hanna RA, Quinsay MN, Nguyen CK, Jimenez R, Petrosyan S, Murphy AN and Gustafsson AB, 2013. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J Biol Chem 288 (2), 915–26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Kuma A, Komatsu M and Mizushima N, 2017. Autophagy-monitoring and autophagy-deficient mice. Autophagy 13 (10), 1619–1628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L, Kominami E, Ueno T and Yamamoto A, 2009. Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. Journal of Cell Biology 186 (2), 255–268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, Villablanca EJ, Norman JM, Liu T-C and Heath RJ, 2014. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proceedings of the National Academy of Sciences 111 (21), 7741–7746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Lee H, Lee JK, Park MH, Hong YR, Marti HH, Kim H, Okada Y, Otsu M, Seo EJ, Park JH, Bae JH, Okino N, He X, Schuchman EH, Bae JS and Jin HK, 2014. Pathological roles of the VEGF/SphK pathway in Niemann-Pick type C neurons. Nat Commun 5 5514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Lee J, Kim HR, Quinley C, Kim J, Gonzalez-Navajas J, Xavier R and Raz E, 2012. Autophagy suppresses interleukin-1β (IL-1β) signaling by activation of p62 degradation via lysosomal and proteasomal pathways. J Biol Chem 287 (6), 4033–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Lee MY, Sumpter R Jr., Zou Z, Sirasanagandla S, Wei Y, Mishra P, Rosewich H, Crane DI and Levine B, 2017a. Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep 18 (1), 48–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Lee PP, Lobato-Marquez D, Pramanik N, Sirianni A, Daza-Cajigal V, Rivers E, Cavazza A, Bouma G, Moulding D, Hultenby K, Westerberg LS, Hollinshead M, Lau YL, Burns SO, Mostowy S, Bajaj-Elliott M and Thrasher AJ, 2017b. Wiskott-Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells. Nat Commun 8 (1), 1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Lee S-J, Smith A, Guo L, Alastalo T-P, Li M, Sawada H, Liu X, Chen Z-H, Ifedigbo E and Jin Y, 2011. Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. American journal of respiratory and critical care medicine 183 (5), 649–658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M and et al. , 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80 (1), 155–65. [DOI] [PubMed] [Google Scholar]
  • 89.Leib DA, Alexander DE, Cox D, Yin J and Ferguson TA, 2009. Interaction of ICP34.5 with Beclin 1 Modulates Herpes Simplex Virus Type 1 Pathogenesis through Control of CD4+ T-Cell Responses. Journal of Virology 83 (23), 12164–12171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Levine B and Kroemer G, 2008. Autophagy in the pathogenesis of disease. Cell 132 (1), 27–42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Levine B and Kroemer G, 2019. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 176 (1–2), 11–42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Levy JMM, Towers CG and Thorburn A, 2017. Targeting autophagy in cancer. Nat Rev Cancer 17 (9), 528–542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Li C, Brazill JM, Liu S, Bello C, Zhu Y, Morimoto M, Cascio L, Pauly R, Diaz-Perez Z, Malicdan MCV, Wang H, Boccuto L, Schwartz CE, Gahl WA, Boerkoel CF and Zhai RG, 2017. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. Nat Commun 8 (1), 1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Li X, Wang J, Coutavas E, Shi H, Hao Q and Blobel G, 2016. Structure of human Niemann-Pick C1 protein. Proc Natl Acad Sci U S A 113 (29), 8212–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Liao G, Yao Y, Liu J, Yu Z, Cheung S, Xie A, Liang X and Bi X, 2007. Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 −/− mouse brain. Am J Pathol 171 (3), 962–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J and Tabas I, 2012a. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15 (4), 545–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J and Tabas I, 2012b. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell metabolism 15 (4), 545–553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU and Ballabio A, 2012. Autophagy in lysosomal storage disorders. Autophagy 8 (5), 719–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Lim YM, Lim H, Hur KY, Quan W, Lee HY, Cheon H, Ryu D, Koo SH, Kim HL, Kim J, Komatsu M and Lee MS, 2014. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun 5 4934. [DOI] [PubMed] [Google Scholar]
  • 100.Lin N-Y, Beyer C, Gießl A, Kireva T, Scholtysek C, Uderhardt S, Munoz LE, Dees C, Distler A, Wirtz S, Krönke G, Spencer B, Distler O, Schett G and Distler JHW, 2013. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis. Annals of the Rheumatic Diseases 72 (5), 761–768. [DOI] [PubMed] [Google Scholar]
  • 101.Lin YC, Chang PF, Lin HF, Liu K, Chang MH and Ni YH, 2016. Variants in the autophagy-related gene IRGM confer susceptibility to non-alcoholic fatty liver disease by modulating lipophagy. J Hepatol 65 (6), 1209–1216. [DOI] [PubMed] [Google Scholar]
  • 102.Liu H, Javaheri A, Godar RJ, Murphy J, Ma X, Rohatgi N, Mahadevan J, Hyrc K, Saftig P, Marshall C, McDaniel ML, Remedi MS, Razani B, Urano F and Diwan A, 2017. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 13 (11), 1952–1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z and Cao W, 2009. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 284 (45), 31484–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Liu W, Zhuang J, Jiang Y, Sun J, Prinz RA, Sun J, Jiao X and Xu X, 2019. Toll-like receptor signalling cross-activates the autophagic pathway to restrict Salmonella Typhimurium growth in macrophages. Cellular Microbiology 21 (12), e13095. [DOI] [PubMed] [Google Scholar]
  • 105.Liu Y, Bjorkman J, Urquhart A, Wanders RJ, Crane DI and Gould SJ, 1999. PEX13 is mutated in complementation group 13 of the peroxisome-biogenesis disorders. Am J Hum Genet 65 (3), 621–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Liu Y, Palanivel R, Rai E, Park M, Gabor TV, Scheid MP, Xu A and Sweeney G, 2015. Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes 64 (1), 36–48. [DOI] [PubMed] [Google Scholar]
  • 107.LU X. l., Zhou X. j., Guo J. p., Jia R. l., Yi Z, Jiang Q, Liu X. y., Yi L, Sun L. y. and Zhang H, 2011. Rs548234 polymorphism atPRDM1-ATG5 region susceptible to rheumatoid arthritis in Caucasians is not associated with rheumatoid arthritis in Chinese Han population. Chinese medical journal 124 (18), 2863–2867. [PubMed] [Google Scholar]
  • 108.Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I and Pettoello-Mantovani M, 2010. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nature cell biology 12 (9), 863–875. [DOI] [PubMed] [Google Scholar]
  • 109.Maetzel D, Sarkar S, Wang H, Abi-Mosleh L, Xu P, Cheng AW, Gao Q, Mitalipova M and Jaenisch R, 2014. Genetic and chemical correction of cholesterol accumulation and impaired autophagy in hepatic and neural cells derived from Niemann-Pick Type C patient-specific iPS cells. Stem Cell Reports 2 (6), 866–80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Malhotra R, Warne JP, Salas E, Xu AW and Debnath J, 2015. Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy 11 (1), 145–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, Gingras S, Orchard R, Guan JL, Tan H, Peng J, Kanneganti TD, Virgin HW and Green DR, 2015. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17 (7), 893–906. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 112.Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J, 2007. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100 (6), 914–22. [DOI] [PubMed] [Google Scholar]
  • 113.Mayes Maureen D., Bossini-Castillo L, Gorlova O, Martin José E., Zhou X, Chen Wei V., Assassi S, Ying J, Tan Filemon K., Arnett Frank C., Reveille John D., Guerra S, Teruel M, Carmona Francisco D., Gregersen Peter K., Lee Annette T., López-Isac E, Ochoa E, Carreira P, Simeón Carmen P., Castellví I, González-Gay Miguel Á., Ortego-Centeno N, Ríos R, Callejas José L., Navarrete N, García Portales R, Camps María T., Fernández-Nebro A, González-Escribano María F., Sánchez-Román J, García-Hernández Francisco J., Castillo María J., Aguirre María Á., Gómez-Gracia I, Fernández-Gutiérrez B, Rodríguez-Rodríguez L, Vicente E, Andreu José L., Fernández de Castro M, García de la Peña P, López-Longo Francisco J., Martínez L, Fonollosa V, Espinosa G, Tolosa C, Pros A, Rodríguez Carballeira M, Narváez Francisco J., Rubio Rivas M, Ortiz Santamaría V, Díaz B, Trapiella L, del Freire María C., Sousa A, Egurbide María V., Fanlo Mateo P, Sáez-Comet L, Díaz F, Hernández V, Beltrán E, Román-Ivorra José A., Grau E, Alegre Sancho Juan J., Blanco García Francisco J., Oreiro N, Fernández Sueiro L, Zhernakova A, Padyukov L, Alarcón-Riquelme M, Wijmenga C, Brown M, Beretta L, Riemekasten G, Witte T, Hunzelmann N, Kreuter A, Distler JHW, Voskuyl AE, Schuerwegh AJ, Hesselstrand R, Nordin A, Airó P, Lunardi C, Shiels P, van Laar JM, Herrick A, Worthington J, Denton C, Wigley FM, Hummers LK, Varga J, Hinchcliff ME, Baron M, Hudson M, Pope JE, Furst DE, Khanna D, Phillips K, Schiopu E, Segal BM, Molitor JA, Silver RM, Steen VD, Simms RW, Lafyatis RA, Fessler BJ, Frech TM, AlKassab F, Docherty P, Kaminska E, Khalidi N, Jones HN, Markland J, Robinson D, Broen J, Radstake TRDJ, Fonseca C, Koeleman BP and Martin J, 2014. Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis. The American Journal of Human Genetics 94 (1), 47–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Meddens CA, Harakalova M, van den Dungen NA, Foroughi Asl H, Hijma HJ, Cuppen EP, Björkegren JL, Asselbergs FW, Nieuwenhuis EE and Mokry M, 2016. Systematic analysis of chromatin interactions at disease associated loci links novel candidate genes to inflammatory bowel disease. Genome Biol 17 (1), 247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Meetei AR, Levitus M, Xue Y, Medhurst AL, Zwaan M, Ling C, Rooimans MA, Bier P, Hoatlin M, Pals G, de Winter JP, Wang W and Joenje H, 2004. X-linked inheritance of Fanconi anemia complementation group B. Nat Genet 36 (11), 1219–24. [DOI] [PubMed] [Google Scholar]
  • 116.Menzies FM, Fleming A and Rubinsztein DC, 2015. Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16 (6), 345–57. [DOI] [PubMed] [Google Scholar]
  • 117.Menzies FM, Huebener J, Renna M, Bonin M, Riess O and Rubinsztein DC, 2010. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133 (Pt 1), 93–104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Meske V, Erz J, Priesnitz T and Ohm TG, 2014. The autophagic defect in Niemann-Pick disease type C neurons differs from somatic cells and reduces neuronal viability. Neurobiol Dis 64 88–97. [DOI] [PubMed] [Google Scholar]
  • 119.Miao G, Zhao H, Li Y, Ji M, Chen Y, Shi Y, Bi Y, Wang P and Zhang H, 2021. ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation. Dev Cell 56 (4), 427–442 e5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Mijaljica D and Klionsky DJ, 2020. Autophagy/virophagy: a “disposal strategy” to combat COVID-19. Autophagy 16 (12), 2271–2272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Million M, Gautret P, Colson P, Roussel Y, Dubourg G, Chabriere E, Honore S, Rolain JM, Fenollar F, Fournier PE, Lagier JC, Parola P, Brouqui P and Raoult D, 2020. Clinical efficacy of chloroquine derivatives in COVID-19 infection: comparative meta-analysis between the big data and the real world. New Microbes and New Infections 38 100709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ and Sidransky E, 2017. Gaucher disease: Progress and ongoing challenges. Mol Genet Metab 120 (1–2), 8–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Mizushima N, 2007. Autophagy: process and function. Genes Dev 21 (22), 2861–73. [DOI] [PubMed] [Google Scholar]
  • 124.Mizushima N and Komatsu M, 2011. Autophagy: renovation of cells and tissues. Cell 147 (4), 728–41. [DOI] [PubMed] [Google Scholar]
  • 125.Mizushima N, Levine B, Cuervo AM and Klionsky DJ, 2008. Autophagy fights disease through cellular self-digestion. Nature 451 (7182), 1069–75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S and Yoshimori T, 2004. Autophagy Defends Cells Against Invading Group A Streptococcus. Science 306 (5698), 1037–1040. [DOI] [PubMed] [Google Scholar]
  • 127.Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N and Otsu K, 2007. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13 (5), 619–24. [DOI] [PubMed] [Google Scholar]
  • 128.Nascimbeni AC, Fanin M, Angelini C and Sandri M, 2017. Autophagy dysregulation in Danon disease. Cell Death Dis 8 (1), e2565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Nguyen DKH, Thombre R and Wang J, 2019. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett 697 34–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Nicola AM, Albuquerque P, Martinez LR, Dal-Rosso RA, Saylor C, De Jesus M, Nosanchuk JD and Casadevall A, 2012. Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infection and immunity 80 (9), 3065–3076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y and Shimizu S, 2009. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461 (7264), 654–658. [DOI] [PubMed] [Google Scholar]
  • 132.Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S and Hirano M, 2000. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406 (6798), 906–910. [DOI] [PubMed] [Google Scholar]
  • 133.Nixon RA, 2013. The role of autophagy in neurodegenerative disease. Nat Med 19 (8), 983–97. [DOI] [PubMed] [Google Scholar]
  • 134.Noda NN and Inagaki F, 2015. Mechanisms of Autophagy. Annu Rev Biophys 44 101–22. [DOI] [PubMed] [Google Scholar]
  • 135.Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N and Sasakawa C, 2005. Escape of Intracellular Shigella from Autophagy. Science 307 (5710), 727–731. [DOI] [PubMed] [Google Scholar]
  • 136.Ohnishi Y, Fujii T, Sakamoto T, Watanabe M, Motohashi T, Kubo H and Nakajima M, 2020. Malignant mesothelioma metastatic to the oral region and latest topics (Review). Mol Clin Oncol 13 (5), 61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, Waddington SN, Schapira AHV and Duchen MR, 2013. Mitochondria and quality control defects in a mouse model of Gaucher disease--links to Parkinson’s disease. Cell Metab 17 (6), 941–953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Oz-Levi D, Ben-Zeev B, Ruzzo EK, Hitomi Y, Gelman A, Pelak K, Anikster Y, Reznik-Wolf H, Bar-Joseph I, Olender T, Alkelai A, Weiss M, Ben-Asher E, Ge D, Shianna KV, Elazar Z, Goldstein DB, Pras E and Lancet D, 2012. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 91 (6), 1065–72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Pang W and Hu F, 2020. Cellular and physiological functions of C9ORF72 and implications for ALS/FTD. J Neurochem [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Parkhitko A, Myachina F, Morrison TA, Hindi KM, Auricchio N, Karbowniczek M, Wu JJ, Finkel T, Kwiatkowski DJ, Yu JJ and Henske EP, 2011. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci U S A 108 (30), 12455–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Parzych KR and Klionsky DJ, 2014. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20 (3), 460–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Pearson G, Chai B, Vozheiko T, Liu X, Kandarpa M, Piper RC and Soleimanpour SA, 2018. Clec16a, Nrdp1, and USP8 Form a Ubiquitin-Dependent Tripartite Complex That Regulates beta-Cell Mitophagy. Diabetes 67 (2), 265–277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Pi-Sunyer X, 2009. The medical risks of obesity. Postgrad Med 121 (6), 21–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Pietrocola F, Castoldi F, Markaki M, Lachkar S, Chen G, Enot DP, Durand S, Bossut N, Tong M, Malik SA, Loos F, Dupont N, Mariño G, Abdelkader N, Madeo F, Maiuri MC, Kroemer R, Codogno P, Sadoshima J, Tavernarakis N, and Kroemer G, 2018. Aspirin Recapitulates Features of Caloric Restriction. Cell Reports 22 (9), 2395–2407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Portilla-Fernandez E, Ghanbari M, van Meurs JBJ, Danser AHJ, Franco OH, Muka T, Roks A and Dehghan A, 2019. Dissecting the association of autophagy-related genes with cardiovascular diseases and intermediate vascular traits: A population-based approach. PLoS One 14 (3), e0214137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Prentice E, Jerome WG, Yoshimori T, Mizushima N and Denison MR, 2004. Coronavirus replication complex formation utilizes components of cellular autophagy. Journal of Biological Chemistry 279 (11), 10136–10141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Puri R, Suzuki T, Yamakawa K and Ganesh S, 2012. Dysfunctions in endosomal-lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet 21 (1), 175–84. [DOI] [PubMed] [Google Scholar]
  • 148.Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI, Jung S and Jung YK, 2013. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4 2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Qi Y.y., Zhou X.j., Nath SK, Sun C, Wang Y.n., Hou P, Mu R, Li C, Guo J.p. and Li Z.g., 2018. A rare variant (rs933717) at FBXO 31-MAP 1 LC 3B in Chinese is associated with systemic lupus erythematosus. Arthritis & Rheumatology 70 (2), 287–297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Quan W, Hur KY, Lim Y, Oh SH, Lee JC, Kim KH, Kim GH, Kim SW, Kim HL, Lee MK, Kim KW, Kim J, Komatsu M and Lee MS, 2012. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55 (2), 392–403. [DOI] [PubMed] [Google Scholar]
  • 151.Ramachandran N, Munteanu I, Wang P, Ruggieri A, Rilstone JJ, Israelian N, Naranian T, Paroutis P, Guo R, Ren ZP, Nishino I, Chabrol B, Pellissier JF, Minetti C, Udd B, Fardeau M, Tailor CS, Mahuran DJ, Kissel JT, Kalimo H, Levy N, Manolson MF, Ackerley CA, and Minassian BA, 2013. VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy. Acta Neuropathol 125 (3), 439–57. [DOI] [PubMed] [Google Scholar]
  • 152.Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR and Rubinsztein DC, 2010. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90 (4), 1383–435. [DOI] [PubMed] [Google Scholar]
  • 153.Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, Ting JP, Virgin HW, Kastan MB and Semenkovich CF, 2012. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15 (4), 534–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Reggiori F, Monastyrska I, Verheije MH, Calì T, Ulasli M, Bianchi S, Bernasconi R, de Haan CA and Molinari M, 2010. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 7 (6), 500–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita VM, Kaivorinne AL, Holtta-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chio A, Restagno G, Borghero G, Sabatelli M, Consortium I, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, and Traynor BJ, 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72 (2), 257–68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Rivera JF, Costes S, Gurlo T, Glabe CG and Butler PC, 2014. Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 124 (8), 3489–500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Rodriguez-Muela N, Parkhitko A, Grass T, Gibbs RM, Norabuena EM, Perrimon N, Singh R and Rubin LL, 2018. Blocking p62-dependent SMN degradation ameliorates spinal muscular atrophy disease phenotypes. J Clin Invest 128 (7), 3008–3023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Rubinstein YR, Robinson PN, Gahl WA, Avillach P, Baynam G, Cederroth H, Goodwin RM, Groft SC, Hansson MG, Harris NL, Huser V, Mascalzoni D, McMurry JA, Might M, Nellaker C, Mons B, Paltoo DN, Pevsner J, Posada M, Rockett-Frase AP, Roos M, Rubinstein TB, Taruscio D, van Enckevort E, and Haendel MA, 2020. The case for open science: rare diseases. JAMIA Open 3 (3), 472–486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Rudnick ND, Griffey CJ, Guarnieri P, Gerbino V, Wang X, Piersaint JA, Tapia JC, Rich MM and Maniatis T, 2017. Distinct roles for motor neuron autophagy early and late in the SOD1(G93A) mouse model of ALS. Proc Natl Acad Sci U S A 114 (39), E8294–E8303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Rybstein MD, Bravo-San Pedro JM, Kroemer G and Galluzzi L, 2018. The autophagic network and cancer. Nat Cell Biol 20 (3), 243–251. [DOI] [PubMed] [Google Scholar]
  • 161.Saitoh T, Fujita N, Jang MH, Uematsu S, Yang B-G, Satoh T, Omori H, Noda T, Yamamoto N and Komatsu M, 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456 (7219), 264–268. [DOI] [PubMed] [Google Scholar]
  • 162.Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, Ryujin F, Yoshioka S, Nishiyama K, Kondo Y, Tsurusaki Y, Nakashima M, Miyake N, Arakawa H, Kato M, Mizushima N, and Matsumoto N, 2013. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45 (4), 445–9, 449e1. [DOI] [PubMed] [Google Scholar]
  • 163.Salinas S, Proukakis C, Crosby A and Warner TT, 2008. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol 7 (12), 1127–38. [DOI] [PubMed] [Google Scholar]
  • 164.Sarkar S, Carroll B, Buganim Y, Maetzel D, Ng AH, Cassady JP, Cohen MA, Chakraborty S, Wang H, Spooner E, Ploegh H, Gsponer J, Korolchuk VI and Jaenisch R, 2013. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep 5 (5), 1302–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Sbardella D, Tundo GR, Campagnolo L, Valacchi G, Orlandi A, Curatolo P, Borsellino G, D’Esposito M, Ciaccio C, Cesare SD, Pierro DD, Galasso C, Santarone ME, Hayek J, Coletta M and Marini S, 2017. Retention of Mitochondria in Mature Human Red Blood Cells as the Result of Autophagy Impairment in Rett Syndrome. Sci Rep 7 (1), 12297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Schlie K, Westerback A, DeVorkin L, Hughson LR, Brandon JM, MacPherson S, Gadawski I, Townsend KN, Poon VI, Elrick MA, Côté HCF, Abraham N, Wherry EJ, Mizushima N and Lum JJ, 2015. Survival of Effector CD8+ T Cells during Influenza Infection Is Dependent on Autophagy. The Journal of Immunology 194 (9), 4277–4286. [DOI] [PubMed] [Google Scholar]
  • 167.Schuck S, 2020. Microautophagy - distinct molecular mechanisms handle cargoes of many sizes. J Cell Sci 133 (17), [DOI] [PubMed] [Google Scholar]
  • 168.Schwartz CE, Peron A and Kutler MJ, Snyder-Robinson Syndrome, in GeneReviews((R)), Adam MP, et al. , Editors. 1993: Seattle (WA). [Google Scholar]
  • 169.Sciarretta S, Yee D, Nagarajan N, Bianchi F, Saito T, Valenti V, Tong M, Del Re DP, Vecchione C, Schirone L, Forte M, Rubattu S, Shirakabe A, Boppana VS, Volpe M, Frati G, Zhai P and Sadoshima J, 2018. Trehalose-Induced Activation of Autophagy Improves Cardiac Remodeling After Myocardial Infarction. J Am Coll Cardiol 71 (18), 1999–2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Shi C-S and Kehrl JH, 2008. MyD88 and Trif Target Beclin 1 to Trigger Autophagy in Macrophages. Journal of Biological Chemistry 283 (48), 33175–33182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Shi J, Wong J, Piesik P, Fung G, Zhang J, Jagdeo J, Li X, Jan E and Luo H, 2013. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling. Autophagy 9 (10), 1591–1603. [DOI] [PubMed] [Google Scholar]
  • 172.Shirakabe A, Zhai P, Ikeda Y, Saito T, Maejima Y, Hsu CP, Nomura M, Egashira K, Levine B and Sadoshima J, 2016. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure. Circulation 133 (13), 1249–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Shrivastava S, Raychoudhuri A, Steele R, Ray R and Ray RB, 2011. Knockdown of autophagy enhances the innate immune response in hepatitis C virus–infected hepatocytes. Hepatology 53 (2), 406–414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Silvas JA, Jureka AS, Nicolini AM, Chvatal SA and Basler CF, 2020. Inhibitors of VPS34 and lipid metabolism suppress SARS-CoV-2 replication. bioRxiv [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Smith AM, Sewell GW, Levine AP, Chew TS, Dunne J, O’Shea NR, Smith PJ, Harrison PJ, Macdonald CM and Bloom SL, 2015. Disruption of macrophage proinflammatory cytokine release in C rohn’s disease is associated with reduced optineurin expression in a subset of patients. Immunology 144 (1), 45–55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Soleimanpour SA, Ferrari AM, Raum JC, Groff DN, Yang J, Kaufman BA and Stoffers DA, 2015. Diabetes Susceptibility Genes Pdx1 and Clec16a Function in a Pathway Regulating Mitophagy in beta-Cells. Diabetes 64 (10), 3475–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Soleimanpour SA, Gupta A, Bakay M, Ferrari AM, Groff DN, Fadista J, Spruce LA, Kushner JA, Groop L, Seeholzer SH, Kaufman BA, Hakonarson H and Stoffers DA, 2014. The diabetes susceptibility gene Clec16a regulates mitophagy. Cell 157 (7), 1577–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Soussi H, Clement K and Dugail I, 2016. Adipose tissue autophagy status in obesity: Expression and flux--two faces of the picture. Autophagy 12 (3), 588–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Starr T, Child R, Wehrly Tara D., Hansen B, Hwang S, López-Otin C, Virgin Herbert W. and Celli J, 2012. Selective Subversion of Autophagy Complexes Facilitates Completion of the Brucella Intracellular Cycle. Cell Host & Microbe 11 (1), 33–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Steele S, Brunton J and Kawula T, 2015. The role of autophagy in intracellular pathogen nutrient acquisition. Frontiers in Cellular and Infection Microbiology 5 (51), [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Steele S, Brunton J, Ziehr B, Taft-Benz S, Moorman N and Kawula T, 2013. Francisella tularensis Harvests Nutrients Derived via ATG5-Independent Autophagy to Support Intracellular Growth. PLOS Pathogens 9 (8), e1003562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Sullivan PM, Zhou X, Robins AM, Paushter DH, Kim D, Smolka MB and Hu F, 2016. The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun 4 (1), 51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Sumpter R Jr., Sirasanagandla S, Fernandez AF, Wei Y, Dong X, Franco L, Zou Z, Marchal C, Lee MY, Clapp DW, Hanenberg H and Levine B, 2016. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 165 (4), 867–81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Sun Y, Liou B, Ran H, Skelton MR, Williams MT, Vorhees CV, Kitatani K, Hannun YA, Witte DP, Xu YH and Grabowski GA, 2010. Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits. Hum Mol Genet 19 (6), 1088–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Sun Y, Yao X, Zhang Q-J, Zhu M, Liu Z-P, Ci B, Xie Y, Carlson D, Rothermel BA and Sun Y, 2018. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 138 (20), 2247–2262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Sybers HD, Ingwall J and DeLuca M, 1976. Autophagy in cardiac myocytes. Recent Adv Stud Cardiac Struct Metab 12 453–63. [PubMed] [Google Scholar]
  • 187.Tan JMJ, Mellouk N, Osborne SE, Ammendolia DA, Dyer DN, Li R, Brunen D, van Rijn JM, Huang J, Czuczman MA, Cemma MA, Won AM, Yip CM, Xavier RJ, MacDuff DA, Reggiori F, Debnath J, Yoshimori T, Kim PK, Fairn GD, Coyaud E, Raught B, Muise AM, Higgins DE, and Brumell JH, 2018. An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread. Nature Microbiology 3 (12), 1472–1485. [DOI] [PubMed] [Google Scholar]
  • 188.Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, Shiode Y, Nakabori T, Saito Y, Hiramatsu N, Tabata K, Kawabata T, Hamasaki M, Eguchi H, Nagano H, Yoshimori T and Takehara T, 2016. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64 (6), 1994–2014. [DOI] [PubMed] [Google Scholar]
  • 189.Tanaka Y, Guhde G, Suter A, Eskelinen EL, Hartmann D, Lullmann-Rauch R, Janssen PM, Blanz J, von Figura K and Saftig P, 2000. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature 406 (6798), 902–6. [DOI] [PubMed] [Google Scholar]
  • 190.Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ, Nguyen L, Gerard RD, Levine B, Rothermel BA and Hill JA, 2008. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proceedings of the National Academy of Sciences 105 (28), 9745–9750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Taylor MP and Kirkegaard K, 2007. Modification of cellular autophagy protein LC3 by poliovirus. Journal of virology 81 (22), 12543–12553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Till A, Lipinski S, Ellinghaus D, Mayr G, Subramani S, Rosenstiel P and Franke A, 2013. Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease. Autophagy 9 (8), 1256–1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Travassos LH, Carneiro LAM, Ramjeet M, Hussey S, Kim Y-G, Magalhães JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nuñez G, Girardin SE and Philpott DJ, 2010. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature Immunology 11 (1), 55–62. [DOI] [PubMed] [Google Scholar]
  • 194.Ueno T and Komatsu M, 2017. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol 14 (3), 170–184. [DOI] [PubMed] [Google Scholar]
  • 195.Valentim L, Laurence KM, Townsend PA, Carroll CJ, Soond S, Scarabelli TM, Knight RA, Latchman DS and Stephanou A, 2006. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. Journal of molecular and cellular cardiology 40 (6), 846–852. [DOI] [PubMed] [Google Scholar]
  • 196.van Beek N, Klionsky DJ and Reggiori F, 2018. Genetic aberrations in macroautophagy genes leading to diseases. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1865 (5), 803–816. [DOI] [PubMed] [Google Scholar]
  • 197.Vanier MT and Millat G, 2004. Structure and function of the NPC2 protein. Biochim Biophys Acta 1685 (1–3), 14–21. [DOI] [PubMed] [Google Scholar]
  • 198.Vantaggiato C, Crimella C, Airoldi G, Polishchuk R, Bonato S, Brighina E, Scarlato M, Musumeci O, Toscano A, Martinuzzi A, Santorelli FM, Ballabio A, Bresolin N, Clementi E and Bassi MT, 2013. Defective autophagy in spastizin mutated patients with hereditary spastic paraparesis type 15. Brain 136 (Pt 10), 3119–39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Varga RE, Khundadze M, Damme M, Nietzsche S, Hoffmann B, Stauber T, Koch N, Hennings JC, Franzka P, Huebner AK, Kessels MM, Biskup C, Jentsch TJ, Qualmann B, Braulke T, Kurth I, Beetz C and Hubner CA, 2015. In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11. PLoS Genet 11 (8), e1005454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W and Xiao G, 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 30 (3), 269–271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L, Myszczynska MA, Higginbottom A, Walsh MJ, Whitworth AJ, Kaspar BK, Meyer K, Shaw PJ, Grierson AJ and De Vos KJ, 2016. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 35 (15), 1656–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Wen X and Klionsky DJ, 2016. An overview of macroautophagy in yeast. J Mol Biol 428 (9 Pt A), 1681–99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Wen X and Klionsky DJ, 2020. At a glance: A history of autophagy and cancer. Semin Cancer Biol 66 3–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.White E, 2012. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12 (6), 401–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 205.White E, 2015. The role for autophagy in cancer. J Clin Invest 125 (1), 42–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 206.Wildenthal K and Mueller EA, 1974. Increased myocardial cathepsin D activity during regression of thyrotoxic cardiac hypertrophy. Nature 249 (456), 478–9. [DOI] [PubMed] [Google Scholar]
  • 207.Wirawan E, Vanden Berghe T, Lippens S, Agostinis P and Vandenabeele P, 2012. Autophagy: for better or for worse. Cell Res 22 (1), 43–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Wu X, Liu Z, Yu X-Y, Xu S and Luo J, 2021. Autophagy and cardiac diseases: Therapeutic potential of natural products. Medicinal Research Reviews 41 (1), 314–341. [DOI] [PubMed] [Google Scholar]
  • 209.Xia H, Green DR and Zou W, 2021. Autophagy in tumour immunity and therapy. Nat Rev Cancer [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Xiaofei E, Hwang S, Oh S, Lee J-S, Jeong JH, Gwack Y, Kowalik TF, Sun R, Jung JU and Liang C, 2009. Viral Bcl-2-mediated evasion of autophagy aids chronic infection of γherpesvirus 68. PLoS Pathog 5 (10), e1000609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ and Tang D, 2015. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11 (1), 28–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Xu X, Hua Y, Nair S, Zhang Y and Ren J, 2013a. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J Mol Cell Biol 5 (1), 61–3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, Gulick J, Yue Z, Robbins J, Epstein PN and Liang Q, 2013b. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288 (25), 18077–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 214.Xu Y, Zhou P, Cheng S, Lu Q, Nowak K, Hopp A-K, Li L, Shi X, Zhou Z, Gao W, Li D, He H, Liu X, Ding J, Hottiger MO and Shao F, 2019. A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy. Cell 178 (3), 552–566. e20. [DOI] [PubMed] [Google Scholar]
  • 215.Xu YH, Xu K, Sun Y, Liou B, Quinn B, Li RH, Xue L, Zhang W, Setchell KD, Witte D and Grabowski GA, 2014. Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice. Hum Mol Genet 23 (15), 3943–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Xue J, Patergnani S, Giorgi C, Suarez J, Goto K, Bononi A, Tanji M, Novelli F, Pastorino S, Xu R, Caroccia N, Dogan AU, Pass HI, Tognon M, Pinton P, Gaudino G, Mak TW, Carbone M and Yang H, 2020. Asbestos induces mesothelial cell transformation via HMGB1-driven autophagy. Proc Natl Acad Sci U S A 117 (41), 25543–25552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Yang L, Li P, Fu S, Calay ES and Hotamisligil GS, 2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11 (6), 467–78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Yang Y and Klionsky DJ, 2020. Autophagy and disease: unanswered questions. Cell Death Differ 27 (3), 858–871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 219.Yang Z and Klionsky DJ, 2009. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335 1–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 220.Yang Z and Klionsky DJ, 2010. Eaten alive: a history of macroautophagy. Nat Cell Biol 12 (9), 814–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Yin Z, Pascual C and Klionsky DJ, 2016. Autophagy: machinery and regulation. Microb Cell 3 (12), 588–596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Yin Z, Popelka H, Lei Y, Yang Y and Klionsky DJ, 2020. The Roles of Ubiquitin in Mediating Autophagy. Cells 9 (9), [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, Kakizuka A, Sztul E, Chakraborty T and Sasakawa C, 2009. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nature Cell Biology 11 (10), 1233–1240. [DOI] [PubMed] [Google Scholar]
  • 224.Zhang P, Zhang J, Zhang Y, Wang S, Pang S and Yan B, 2018a. Functional variants of the ATG7 gene promoter in acute myocardial infarction. Mol Genet Genomic Med 6 (6), 1209–1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M and Jin S, 2009. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A 106 (47), 19860–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Zhang Y, Sowers JR and Ren J, 2018b. Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14 (6), 356–376. [DOI] [PubMed] [Google Scholar]
  • 227.Zhao W, Li Y, Jia L, Pan L, Li H and Du J, 2014. Atg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin II. Free Radic Biol Med 69 108–15. [DOI] [PubMed] [Google Scholar]
  • 228.Zhao Z, Thackray LB, Miller BC, Lynn TM, Becker MM, Ward E, Mizushima N, Denison MR and Virgin I, Herbert W, 2007. Coronavirus replication does not require the autophagy gene ATG5. Autophagy 3 (6), 581–585. [DOI] [PubMed] [Google Scholar]
  • 229.Zheng M, Yu H, Zhang L, Li H, Liu Y, Kijlstra A and Yang P, 2015. Association of ATG5 Gene Polymorphisms With Behçet’s Disease and ATG10 Gene Polymorphisms With VKH Syndrome in a Chinese Han Population. Investigative Ophthalmology & Visual Science 56 (13), 8280–8287. [DOI] [PubMed] [Google Scholar]
  • 230.Zhou J, Chong SY, Lim A, Singh BK, Sinha RA, Salmon AB and Yen PM, 2017. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging. Aging (Albany NY) 9 (2), 583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Zhou X. j., Lu X. l., Lv J. c., Yang H. z., Qin L. x., Zhao M. h., Su Y, Li Z. g. and Zhang H, 2011. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Annals of the Rheumatic Diseases 70 (7), 1330–1337. [DOI] [PubMed] [Google Scholar]
  • 232.Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA and Hill JA, 2007. Cardiac autophagy is a maladaptive response to hemodynamic stress. The Journal of clinical investigation 117 (7), 1782–1793. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES