Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Feb 3;78(Pt 3):291–296. doi: 10.1107/S2056989022001232

Crystal structure and Hirshfeld surface analysis of 5-acetyl-2-amino-4-(4-bromo­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile

Ibrahim G Mamedov a, Victor N Khrustalev b,c, Mehmet Akkurt d, Anton P Novikov b, Ayten R Asgarova a, Khatira N Aliyeva a, Anzurat A Akobirshoeva e,*
PMCID: PMC8900508  PMID: 35371550

In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into dimers with an Inline graphic (16) ring motif. Further N—H⋯O and N—H⋯N hydrogen bonds connect the dimers into chains along the c-axis direction. C—Br⋯π and C=O⋯π inter­actions stabilize the mol­ecular packing, resulting in a three-dimensional network.

Keywords: crystal structure, tetra­hydro­pyridine, hydrogen bonds, dimers, C—Br⋯π contacts, Hirshfeld surface analysis

Abstract

The crystal structure of the title compound, C20H16BrN3O2, was determined using an inversion twin. Its asymmetric unit comprises two crystallographically independent mol­ecules (A and B) being the stereoisomers. Both mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming a dimer with an R 2 2(16) ring motif. The dimers are connected by further N—H⋯O and N—H⋯N hydrogen bonds, forming chains along the c-axis direction·C—Br⋯π inter­actions between these chains contribute to the stabilization of the mol­ecular packing. Hirshfeld surface analysis showed that the most important contributions to the crystal packing are from H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and N⋯H/H⋯N inter­actions.

Chemical context

Nitro­gen-based heterocycles are an important class of organic mol­ecules that are used extensively in different branches of chemistry (Yadigarov et al., 2009; Abdelhamid et al., 2011; Magerramov et al., 2018; Yin et al., 2020; Khalilov et al., 2021). In particular, the synthesis of heterocyclic systems comprising a bioactive pyridine core with a broad spectrum of biological activities is noteworthy (Mamedov et al., 2020; Wojcicka & Redzicka, 2021). On the other hand, the pyridine ring is an essential part of diverse natural products, such as nicotinic acid, nicotinamide, vitamin B3 and diverse alkaloids (Aida et al., 2009). In the framework of our ongoing structural studies (Safarova et al., 2019; Naghiyev et al., 2020, 2021 a ,b ; Maharramov et al., 2021), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 5-acetyl-2-amino-4-(4-bromo­phen­yl)-6-oxo-1-phenyl-1,4,5,6-tetra­hydro­pyridine-3-carbo­nitrile. graphic file with name e-78-00291-scheme1.jpg

Structural commentary

The title compound crystallizes in the monoclinic space group Pc with Z = 4, and with two mol­ecules, A and B, in the asymmetric unit (Fig. 1). These mol­ecules are stereoisimers with an R,R absolute configurations at C3 and C4 in mol­ecule A, whereas the corresponding atoms in B, C23 and C24, have an S configuration. In both mol­ecules, the conformation of the central di­hydro­pyridine ring is close to screw-boat [the puckering parameters (Cremer & Pople, 1975) are θ = 63.9 (11)°, φ = 148.9 (12)° in A and θ = 115.1 (11)°, φ = 339.4 (12)° in B]. In mol­ecule A, the phenyl (C7–C12) and bromo­phenyl (C14–C19) rings form dihedral angles of 64.0 (4) and 86.3 (4)°, respectively, with the mean plane of the central di­hydro­pyridine ring. In mol­ecule B, the corresponding dihedral angles are 77.2 (4) and 83.9 (4)°. The acetyl groups in both mol­ecules are almost planar [largest deviations of 0.005 (8) and 0.035 (8) Å for atoms C1 (A) and C23 (B), respectively] and they make the dihedral angles of 89.5 (5) and 87.7 (5)° with the mean planes of the di­hydro­pyridine rings in these mol­ecules.

Figure 1.

Figure 1

Asymmetric unit of the title compounds showing two crystallographically independent mol­ecules, A and B. Displacement ellipsoids are drawn at the 30% probability level. The inter­molecular N—H⋯O hydrogen bonds are drawn with dashed lines.

Supra­molecular features

Strong N6—H6B⋯O21 and N26—H26A⋯O1 hydrogen bonds (Fig. 1, Table 1) link mol­ecules A and B into dimers with an Inline graphic (16) ring motif (Bernstein et al., 1995). These dimers are additionally stabilized by C=O⋯π inter­actions [O21⋯Cg2 = 3.620 (8) Å, C21=O21⋯Cg2 = 110.8 (6)°, O1⋯Cg5 = 3.748 (8) Å, C1=O1⋯Cg5 = 125.1 (6)°, where Cg2 and Cg5 are the centroids of the C7–C12 phenyl ring in mol­ecule A and the C27–C32 phenyl ring in mol­ecule B, respectively]. The dimers are connected by N—H⋯O and N—H⋯N hydrogen bonds with an Inline graphic (14) ring motif into chains along the c-axis direction (Table 1; Figs. 2, 3, 4 and 5). C—Br⋯π inter­actions are also observed [Br1⋯Cg6 v = 3.407 (4) Å, C17—Br1⋯Cg6 v = 145.2 (3)°; symmetry code (v) −1 + x, 1 − y, − Inline graphic  + z; Cg6 is the centroid of the C34–C39 ring]. Together with the other inter­molecular contacts given in Table 2, these inter­actions contribute to the stabilization of the mol­ecular packing, forming a three-dimensional network (Figs. 6 and 7).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O2i 0.90 1.87 2.766 (9) 175
N6—H6B⋯O21 0.90 2.31 3.115 (9) 149
C18—H18⋯N40ii 0.95 2.46 3.256 (12) 141
C23—H23⋯N40iii 1.00 2.47 3.426 (11) 161
N26—H26A⋯O1 0.90 1.99 2.784 (9) 146
N26—H26B⋯N20iv 0.90 2.43 3.139 (10) 136

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 2.

Figure 2

A general view of the N—H⋯O and N—H⋯N hydrogen bonds in the structure of the title compound.

Figure 3.

Figure 3

The crystal packing of the title compound viewed down the a axis, showing chains running along the c-axis direction formed through N—H⋯O and N—H⋯N hydrogen bonds.

Figure 4.

Figure 4

The crystal packing of the title compound viewed down the b axis, showing chains running along the c axis formed through N—H⋯O and N—H⋯N hydrogen bonds.

Figure 5.

Figure 5

The crystal packing of the title compound viewed down the c axis, with inter­molecular N—H⋯O, C—H⋯N and N—H⋯N hydrogen bonds.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
O2⋯H30 2.63 x − 1, −y + 1, z −  Inline graphic
O1⋯H26A 1.99 x, y, z
H13C⋯H16 2.46 x + 1, y, z
O2⋯H6A 1.87 x, −y + 1, z −  Inline graphic
H18⋯N40 2.46 x, y − 1, z
N20⋯H26B 2.43 x, −y + 1, z +  Inline graphic
C9⋯Br2 3.377 (10) x − 1, −y + 2, z −  Inline graphic
H13C⋯O22 2.79 x, −y + 1, z −  Inline graphic
C16⋯H36 2.86 x − 1, y − 1, z
H11⋯H26A 2.47 x − 1, y, z
O21⋯H31 2.84 x − 1, y, z
H23⋯N40 2.47 x, −y + 2, z +  Inline graphic
H31⋯O21 2.84 x + 1, y, z

Figure 6.

Figure 6

The C—Br⋯π and C=O⋯π inter­actions in the structure of the title compound viewed down the a axis.

Figure 7.

Figure 7

A view of the C—Br⋯π and C=O⋯π inter­actions in the structure of the title compound viewed down the b axis.

Hirshfeld surface analysis

To visualize the inter­molecular inter­actions for both independent mol­ecules A and B, CrystalExplorer17 (Turner et al., 2017) was used to generate Hirshfeld surfaces and corresponding two-dimensional fingerprint plots. The d norm mappings were performed in the range of −0.6596 to 1.4042 arbitrary units for mol­ecule A and −0.5436 to 1.4926 arbitrary units for mol­ecule B. Bright red circles on the d norm surfaces (Fig. 8 a,b,c,d) indicate regions of N—H⋯O inter­actions. The N—H⋯N and C—H⋯N inter­actions (Tables 1 and 2) also cause red spots on the Hirshfeld surfaces.

Figure 8.

Figure 8

Front and back views of the Hirshfeld surfaces mapped over d norm for mol­ecule A (a, b) and mol­ecule B (c, d).

The fingerprint plots (Fig. 9) reveal that while the H⋯H inter­actions make the greatest contributions (Table 3), as would be expected for a mol­ecule with such a predominance of H atoms, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br and N⋯H/H⋯N contacts are also substantial. Table 3 gives the contributions of the other, less significant contacts. The fact that the same type of inter­actions provide different contributions to the Hirshfeld surface for mol­ecules A and B can be attributed to the different environments of these mol­ecules in the crystalline state.

Figure 9.

Figure 9

The two-dimensional fingerprint plots [(a) for mol­ecule A and (b) for mol­ecule B], showing all inter­actions and those delineated into H⋯H, C⋯H/H⋯C, O⋯H/H⋯O, Br⋯H/H⋯Br, N⋯H/H⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surfaces.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces of mol­ecules A and B of the title compound.

Contact Contribution for A Contribution for B
H⋯H 32.8 33.8
C⋯H/H⋯C 19.6 18.9
O⋯H/H⋯O 17.2 13.5
Br⋯H/H⋯Br 10.6 11.3
N⋯H/H⋯N 9.4 14.0
Br⋯C/C⋯Br 4.8 4.6
N⋯O/O⋯N 2.1
C⋯O/O⋯C 1.4 1.3
Br⋯O/O⋯Br 0.8 0.9
C⋯C 0.7 0.7
N⋯N 0.5 0.4
Br⋯N/N⋯Br 0.1 0.6

Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the tetra­hydro­pyridine unit gave 1340 hits, and some of which, namely OZAKOS (Naghiyev et al., 2021c ), JEBREQ (Mohana et al., 2017), JEBRAM (Mohana et al., 2017), SETWUK (Suresh et al., 2007) and SETWOE (Suresh et al., 2007) closely resemble the title compound.

In OZAKOS (space group: Pc), the mol­ecular conformation of the title compound is stabilized by an intra­molecular O—H⋯O hydrogen bond, forming an S(6) ring motif. In the crystal, mol­ecules are linked by inter­molecular N—H⋯N and C—H⋯N hydrogen bonds, and N—H⋯π and C—H⋯π inter­actions, forming a three-dimensional network.

In both the related salts, JEBREQ (space group: P Inline graphic ) and JEBRAM (space group: P Inline graphic ), the N atom in the 1-position of the pyrimidine ring is protonated. In the hydrated salt JEBREQ, the presence of the water mol­ecule prevents the formation of the familiar Inline graphic (8) ring motif. Instead, an expanded ring [i.e. R 3 2(8)] is formed involving the sulfonate group, the pyrimidinium cation and the water mol­ecule. Both salts form a supra­molecular homosynthon [ Inline graphic (8) ring motif] through N—H⋯N hydrogen bonds. The mol­ecular structures are further stabilized by π–π stacking, and C=O⋯π, C—H⋯O and C—H⋯Cl inter­actions. It appears that the protonation state of the pyrimidine ring influences the inter­molecular inter­actions within the crystal lattice to a substantial extent. In JEBRAM, the protonated N atom and the amino group of the pyrimidinium cation inter­act with the carboxyl­ate group of the anion through N—H⋯O hydrogen bonds, forming a heterosynthon with an Inline graphic (8) ring motif.

The polysubstituted pyridines, SETWUK (space group: P21/n) and SETWOE (space group: P21/c), adopt nearly planar structures. The crystal structure of SETWUK is stabilized by inter­molecular C—H⋯F and C—H⋯π inter­actions. The C—H⋯F bond generates a linear chain with a C(14) motif. The crystal structure of SETWOE is stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions. The C—H⋯O hydrogen bonds generate rings with R2 2 (14) and R2 2 (20) motifs. In addition, in SETWOE and SETWUK, intra­molecular O—H⋯O inter­actions are found, which generate an S(6) graph-set motif. No significant ar­yl–aryl or π–π inter­actions exist in these structures. All this bears some resemblance to the title compound.

Synthesis and crystallization

To a solution of 2-(4-bromo­benzyl­idene)malono­nitrile (1.19 g; 5.1 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (25 mL), piperidine (2–3 drops) was added and the mixture was stirred at room temperature for 48 h. Then 15 mL of methanol were removed by rotary evaporation from the reaction mixture, which was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol/water (1:1) solution (yield 66%; m.p. 536–537 K).

1H NMR (300 MHz, DMSO-d 6, m.h.): 2.29 (s, 3H, CH3—C=O); 4.15 (d, 1H, CH-Ar); 4.34 (d, 1H, CH—C=O); 5.98 (s, 2H, NH2); 7.12–7.35 (m, 5H, 5CHar); 7.40 (d, 2H, 2CHar); 7.61 (d, 2H, 2CHar).

13C NMR (75 MHz, DMSO-d 6, m.h.): 27.86 (CH3—C=O), 37.94 (CH—Ar), 57.24 (=Cquat), 62.41 (CH—C=O), 117.21 (CN), 121.25 (Br-Car), 127.67 (CHar), 128.19 (2CHar), 129.58 (2CHar), 130.15 (2CHar), 130.74 (2CHar), 136.98 (Car), 140.37 (Car), 154.14 (=Cquat), 166.20 (N—C=O), 202.55 (C=O).

Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically (N—H = 0.90 Å, C—H = 0.95–1.00 Å) and refined as riding with U iso(H) = 1.2U eq(C, N) or 1.5U eq(C-meth­yl).

Table 4. Experimental details.

Crystal data
Chemical formula C20H16BrN3O2
M r 410.26
Crystal system, space group Monoclinic, P c
Temperature (K) 100
a, b, c (Å) 9.5889 (7), 13.2144 (10), 14.4529 (10)
β (°) 103.9395 (18)
V3) 1777.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.33
Crystal size (mm) 0.05 × 0.04 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.818, 0.926
No. of measured, independent and observed [I > 2σ(I)] reflections 34410, 10756, 5403
R int 0.099
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.065, 0.132, 0.98
No. of reflections 10756
No. of parameters 471
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.66
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.473 (14)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001232/yk2165sup1.cif

e-78-00291-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001232/yk2165Isup2.hkl

e-78-00291-Isup2.hkl (853.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022001232/yk2165Isup3.cml

CCDC reference: 2149629

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization and methodology, IGM; investigation, MA and APN; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and ARA; visualization, MA and IGM; funding acquisition, VNK and IGM; resources, AAA, VNK and KNA; supervision, IGM and MA.

supplementary crystallographic information

Crystal data

C20H16BrN3O2 F(000) = 832
Mr = 410.26 Dx = 1.533 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
a = 9.5889 (7) Å Cell parameters from 3126 reflections
b = 13.2144 (10) Å θ = 2.7–24.0°
c = 14.4529 (10) Å µ = 2.33 mm1
β = 103.9395 (18)° T = 100 K
V = 1777.4 (2) Å3 Prism, colourless
Z = 4 0.05 × 0.04 × 0.03 mm

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer 5403 reflections with I > 2σ(I)
φ and ω scans Rint = 0.099
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 30.5°, θmin = 2.1°
Tmin = 0.818, Tmax = 0.926 h = −13→13
34410 measured reflections k = −18→18
10756 independent reflections l = −20→20

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0401P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132 (Δ/σ)max < 0.001
S = 0.98 Δρmax = 0.50 e Å3
10756 reflections Δρmin = −0.66 e Å3
471 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.0039 (3)
Primary atom site location: difference Fourier map Absolute structure: Refined as an inversion twin
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.473 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a two-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.05184 (9) 0.02892 (6) 0.27044 (7) 0.0328 (2)
N1 0.3304 (7) 0.5094 (5) 0.4197 (5) 0.0194 (15)
C1 0.6385 (9) 0.4260 (6) 0.3992 (6) 0.0216 (19)
O1 0.6581 (7) 0.5145 (5) 0.4155 (5) 0.0456 (19)
C2 0.3768 (9) 0.4655 (6) 0.3455 (6) 0.0219 (18)
O2 0.3284 (7) 0.4954 (4) 0.2642 (4) 0.0273 (14)
C3 0.4864 (9) 0.3816 (6) 0.3708 (6) 0.0211 (18)
H3 0.4792 0.3389 0.3127 0.025*
C4 0.4547 (9) 0.3140 (6) 0.4498 (6) 0.0221 (19)
H4 0.5405 0.2699 0.4736 0.026*
C5 0.4402 (9) 0.3820 (6) 0.5310 (6) 0.0229 (19)
C6 0.3781 (9) 0.4741 (6) 0.5141 (6) 0.0213 (18)
N6 0.3596 (7) 0.5398 (5) 0.5816 (5) 0.0219 (15)
H6A 0.3529 0.5257 0.6413 0.026*
H6B 0.3534 0.6055 0.5646 0.026*
C7 0.2213 (9) 0.5898 (6) 0.3983 (6) 0.0212 (18)
C8 0.2595 (10) 0.6844 (7) 0.3737 (7) 0.031 (2)
H8 0.3538 0.6970 0.3663 0.037*
C9 0.1581 (10) 0.7610 (7) 0.3600 (7) 0.036 (2)
H9 0.1814 0.8267 0.3416 0.044*
C10 0.0223 (11) 0.7409 (8) 0.3732 (7) 0.036 (2)
H10 −0.0463 0.7940 0.3661 0.044*
C11 −0.0144 (11) 0.6464 (7) 0.3963 (6) 0.035 (2)
H11 −0.1089 0.6334 0.4031 0.042*
C12 0.0861 (10) 0.5691 (7) 0.4099 (6) 0.030 (2)
H12 0.0620 0.5030 0.4269 0.036*
C13 0.7611 (10) 0.3551 (6) 0.4072 (7) 0.034 (2)
H13A 0.7314 0.2868 0.4207 0.050*
H13B 0.8413 0.3770 0.4591 0.050*
H13C 0.7915 0.3546 0.3472 0.050*
C14 0.3267 (9) 0.2446 (6) 0.4069 (6) 0.0213 (17)
C15 0.1891 (10) 0.2670 (6) 0.4115 (7) 0.029 (2)
H15 0.1720 0.3262 0.4445 0.034*
C16 0.0740 (10) 0.2057 (6) 0.3695 (6) 0.029 (2)
H16 −0.0213 0.2229 0.3717 0.034*
C17 0.1025 (10) 0.1185 (6) 0.3240 (6) 0.026 (2)
C18 0.2390 (10) 0.0940 (6) 0.3159 (7) 0.029 (2)
H18 0.2561 0.0350 0.2828 0.035*
C19 0.3494 (10) 0.1581 (6) 0.3576 (6) 0.026 (2)
H19 0.4441 0.1428 0.3525 0.031*
C20 0.4925 (10) 0.3499 (6) 0.6274 (7) 0.024 (2)
N20 0.5390 (9) 0.3255 (6) 0.7052 (5) 0.0335 (19)
Br2 1.05193 (11) 1.25495 (8) 0.62011 (8) 0.0409 (3)
N2 0.6616 (7) 0.7734 (5) 0.5811 (5) 0.0220 (16)
C21 0.3521 (10) 0.8636 (7) 0.5959 (6) 0.028 (2)
O21 0.3329 (8) 0.7728 (5) 0.6051 (5) 0.0403 (18)
C22 0.6085 (10) 0.8245 (6) 0.6505 (6) 0.027 (2)
O22 0.6450 (7) 0.8015 (4) 0.7343 (4) 0.0305 (15)
C23 0.5025 (9) 0.9077 (6) 0.6148 (6) 0.0238 (19)
H23 0.5119 0.9588 0.6670 0.029*
C24 0.5288 (9) 0.9623 (6) 0.5266 (6) 0.0226 (19)
H24 0.4424 1.0048 0.4993 0.027*
C25 0.5389 (9) 0.8820 (6) 0.4542 (6) 0.0230 (19)
C26 0.6117 (9) 0.7941 (6) 0.4838 (6) 0.0210 (18)
N26 0.6426 (8) 0.7245 (5) 0.4234 (5) 0.0279 (17)
H26A 0.6602 0.6614 0.4466 0.034*
H26B 0.6454 0.7409 0.3634 0.034*
C27 0.7687 (10) 0.6958 (6) 0.6136 (6) 0.0234 (19)
C28 0.7276 (10) 0.6009 (6) 0.6383 (7) 0.030 (2)
H28 0.6293 0.5858 0.6336 0.036*
C29 0.8324 (11) 0.5287 (7) 0.6698 (7) 0.040 (3)
H29 0.8056 0.4632 0.6865 0.048*
C30 0.9761 (11) 0.5507 (6) 0.6776 (7) 0.033 (2)
H30 1.0476 0.5007 0.6998 0.040*
C31 1.0139 (11) 0.6444 (7) 0.6530 (7) 0.035 (2)
H31 1.1123 0.6590 0.6575 0.042*
C32 0.9120 (10) 0.7187 (6) 0.6216 (6) 0.028 (2)
H32 0.9398 0.7842 0.6059 0.034*
C33 0.2270 (11) 0.9361 (7) 0.5651 (8) 0.041 (3)
H33A 0.2541 1.0027 0.5936 0.061*
H33B 0.1440 0.9103 0.5862 0.061*
H33C 0.2021 0.9422 0.4955 0.061*
C34 0.6606 (8) 1.0327 (6) 0.5511 (6) 0.0188 (17)
C35 0.7743 (10) 1.0222 (7) 0.5076 (6) 0.028 (2)
H35 0.7720 0.9690 0.4630 0.034*
C36 0.8913 (10) 1.0875 (7) 0.5276 (7) 0.029 (2)
H36 0.9687 1.0787 0.4980 0.035*
C37 0.8931 (10) 1.1659 (6) 0.5917 (6) 0.026 (2)
C38 0.7802 (10) 1.1788 (6) 0.6350 (6) 0.027 (2)
H38 0.7820 1.2325 0.6789 0.033*
C39 0.6654 (10) 1.1133 (6) 0.6139 (6) 0.025 (2)
H39 0.5874 1.1232 0.6429 0.030*
C40 0.4888 (10) 0.8997 (6) 0.3553 (7) 0.025 (2)
N40 0.4482 (10) 0.9142 (5) 0.2749 (6) 0.0307 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0341 (5) 0.0228 (4) 0.0388 (5) −0.0033 (5) 0.0036 (4) −0.0037 (5)
N1 0.027 (4) 0.020 (3) 0.012 (3) 0.005 (3) 0.007 (3) 0.002 (3)
C1 0.027 (5) 0.016 (4) 0.025 (5) 0.002 (4) 0.013 (4) −0.003 (3)
O1 0.030 (4) 0.026 (4) 0.081 (5) −0.002 (3) 0.013 (4) −0.012 (4)
C2 0.025 (5) 0.017 (4) 0.026 (5) −0.001 (4) 0.013 (4) −0.005 (4)
O2 0.035 (4) 0.025 (3) 0.021 (3) −0.001 (3) 0.006 (3) 0.004 (3)
C3 0.028 (5) 0.018 (4) 0.018 (4) 0.001 (4) 0.006 (4) −0.005 (3)
C4 0.031 (5) 0.019 (4) 0.015 (4) −0.002 (4) 0.004 (4) 0.001 (3)
C5 0.031 (5) 0.021 (4) 0.018 (4) −0.001 (4) 0.008 (4) 0.001 (3)
C6 0.026 (5) 0.020 (4) 0.020 (4) −0.004 (4) 0.010 (4) −0.006 (4)
N6 0.031 (4) 0.021 (4) 0.015 (4) −0.003 (3) 0.008 (3) −0.001 (3)
C7 0.024 (5) 0.020 (4) 0.019 (4) 0.004 (3) 0.003 (4) 0.000 (3)
C8 0.027 (5) 0.023 (4) 0.043 (6) −0.001 (4) 0.010 (5) 0.002 (4)
C9 0.039 (6) 0.031 (5) 0.035 (6) 0.012 (5) 0.000 (5) 0.003 (4)
C10 0.036 (6) 0.042 (6) 0.030 (6) 0.014 (5) 0.006 (5) −0.005 (5)
C11 0.039 (6) 0.033 (5) 0.037 (6) 0.010 (5) 0.017 (5) 0.000 (4)
C12 0.026 (5) 0.030 (5) 0.033 (5) 0.002 (4) 0.008 (4) 0.005 (4)
C13 0.029 (5) 0.028 (5) 0.044 (6) −0.001 (4) 0.010 (5) −0.002 (4)
C14 0.024 (5) 0.019 (4) 0.021 (4) 0.000 (4) 0.006 (4) 0.002 (4)
C15 0.041 (6) 0.015 (4) 0.032 (5) −0.002 (4) 0.012 (5) 0.000 (4)
C16 0.031 (5) 0.018 (4) 0.040 (6) −0.003 (4) 0.014 (5) −0.006 (4)
C17 0.027 (5) 0.025 (5) 0.023 (5) −0.008 (4) 0.001 (4) 0.002 (4)
C18 0.031 (5) 0.020 (4) 0.037 (6) 0.002 (4) 0.008 (5) −0.003 (4)
C19 0.022 (5) 0.030 (5) 0.029 (5) −0.001 (4) 0.010 (4) −0.007 (4)
C20 0.032 (5) 0.015 (4) 0.024 (5) 0.002 (4) 0.006 (4) −0.001 (4)
N20 0.045 (5) 0.031 (4) 0.025 (5) 0.011 (4) 0.009 (4) 0.001 (3)
Br2 0.0417 (6) 0.0460 (6) 0.0350 (5) −0.0143 (5) 0.0092 (4) −0.0033 (5)
N2 0.020 (4) 0.017 (4) 0.026 (4) 0.006 (3) 0.000 (3) 0.002 (3)
C21 0.035 (6) 0.027 (5) 0.023 (5) 0.004 (4) 0.008 (4) 0.000 (4)
O21 0.051 (5) 0.026 (4) 0.048 (5) −0.004 (3) 0.021 (4) 0.000 (3)
C22 0.038 (6) 0.016 (4) 0.025 (5) −0.003 (4) 0.005 (4) 0.001 (4)
O22 0.044 (4) 0.025 (3) 0.023 (3) 0.003 (3) 0.008 (3) 0.003 (3)
C23 0.027 (5) 0.018 (4) 0.029 (5) 0.002 (4) 0.012 (4) −0.003 (4)
C24 0.029 (5) 0.013 (4) 0.025 (5) 0.003 (4) 0.007 (4) −0.001 (3)
C25 0.031 (5) 0.021 (4) 0.019 (4) 0.004 (4) 0.010 (4) 0.001 (4)
C26 0.028 (5) 0.013 (4) 0.023 (5) 0.001 (3) 0.007 (4) −0.004 (3)
N26 0.034 (4) 0.022 (4) 0.030 (4) 0.006 (3) 0.011 (4) 0.000 (3)
C27 0.031 (5) 0.018 (4) 0.022 (5) 0.008 (4) 0.007 (4) −0.001 (3)
C28 0.026 (5) 0.019 (4) 0.040 (6) −0.002 (4) 0.003 (4) 0.006 (4)
C29 0.041 (6) 0.023 (5) 0.050 (6) 0.004 (5) −0.001 (5) 0.012 (5)
C30 0.039 (6) 0.023 (5) 0.038 (6) 0.011 (4) 0.009 (5) −0.001 (4)
C31 0.033 (6) 0.038 (6) 0.034 (6) 0.005 (4) 0.005 (5) −0.003 (4)
C32 0.035 (5) 0.022 (4) 0.028 (5) 0.006 (4) 0.009 (4) 0.002 (4)
C33 0.039 (6) 0.035 (5) 0.050 (7) 0.006 (5) 0.015 (5) 0.004 (5)
C34 0.017 (4) 0.018 (4) 0.020 (4) 0.003 (3) 0.003 (3) 0.005 (3)
C35 0.037 (6) 0.022 (5) 0.025 (5) 0.003 (4) 0.009 (4) 0.001 (4)
C36 0.028 (5) 0.031 (5) 0.030 (5) 0.003 (4) 0.010 (4) 0.001 (4)
C37 0.031 (5) 0.020 (4) 0.026 (5) −0.004 (4) 0.003 (4) 0.003 (4)
C38 0.039 (6) 0.024 (4) 0.018 (5) 0.000 (4) 0.005 (4) 0.000 (4)
C39 0.031 (5) 0.017 (4) 0.025 (5) 0.004 (4) 0.004 (4) 0.002 (4)
C40 0.036 (5) 0.013 (4) 0.028 (5) 0.008 (4) 0.012 (4) 0.000 (4)
N40 0.039 (4) 0.027 (4) 0.030 (4) 0.010 (4) 0.014 (3) 0.008 (4)

Geometric parameters (Å, º)

Br1—C17 1.908 (9) Br2—C37 1.890 (9)
N1—C2 1.383 (10) N2—C26 1.400 (10)
N1—C6 1.410 (10) N2—C22 1.403 (11)
N1—C7 1.470 (10) N2—C27 1.447 (10)
C1—O1 1.199 (9) C21—O21 1.226 (10)
C1—C13 1.486 (12) C21—C33 1.516 (12)
C1—C3 1.533 (12) C21—C23 1.517 (12)
C2—O2 1.220 (10) C22—O22 1.215 (10)
C2—C3 1.511 (11) C22—C23 1.501 (11)
C3—C4 1.537 (11) C23—C24 1.538 (11)
C3—H3 1.0000 C23—H23 1.0000
C4—C5 1.510 (11) C24—C25 1.509 (11)
C4—C14 1.538 (11) C24—C34 1.541 (11)
C4—H4 1.0000 C24—H24 1.0000
C5—C6 1.351 (11) C25—C26 1.369 (11)
C5—C20 1.428 (12) C25—C40 1.414 (12)
C6—N6 1.349 (10) C26—N26 1.350 (10)
N6—H6A 0.8999 N26—H26A 0.8993
N6—H6B 0.9000 N26—H26B 0.9000
C7—C8 1.374 (11) C27—C32 1.384 (12)
C7—C12 1.374 (12) C27—C28 1.387 (11)
C8—C9 1.385 (12) C28—C29 1.380 (12)
C8—H8 0.9500 C28—H28 0.9500
C9—C10 1.387 (13) C29—C30 1.386 (14)
C9—H9 0.9500 C29—H29 0.9500
C10—C11 1.361 (13) C30—C31 1.362 (12)
C10—H10 0.9500 C30—H30 0.9500
C11—C12 1.386 (12) C31—C32 1.382 (12)
C11—H11 0.9500 C31—H31 0.9500
C12—H12 0.9500 C32—H32 0.9500
C13—H13A 0.9800 C33—H33A 0.9800
C13—H13B 0.9800 C33—H33B 0.9800
C13—H13C 0.9800 C33—H33C 0.9800
C14—C15 1.370 (12) C34—C35 1.391 (11)
C14—C19 1.391 (11) C34—C39 1.392 (11)
C15—C16 1.386 (12) C35—C36 1.389 (13)
C15—H15 0.9500 C35—H35 0.9500
C16—C17 1.386 (12) C36—C37 1.386 (12)
C16—H16 0.9500 C36—H36 0.9500
C17—C18 1.380 (12) C37—C38 1.385 (12)
C18—C19 1.376 (12) C38—C39 1.375 (12)
C18—H18 0.9500 C38—H38 0.9500
C19—H19 0.9500 C39—H39 0.9500
C20—N20 1.151 (11) C40—N40 1.149 (11)
C2—N1—C6 121.4 (7) C26—N2—C22 121.9 (7)
C2—N1—C7 119.0 (7) C26—N2—C27 120.6 (7)
C6—N1—C7 119.4 (7) C22—N2—C27 117.5 (7)
O1—C1—C13 121.1 (8) O21—C21—C33 121.4 (9)
O1—C1—C3 121.3 (8) O21—C21—C23 121.1 (8)
C13—C1—C3 117.6 (7) C33—C21—C23 117.4 (8)
O2—C2—N1 119.5 (7) O22—C22—N2 121.6 (8)
O2—C2—C3 123.4 (7) O22—C22—C23 122.3 (8)
N1—C2—C3 117.1 (7) N2—C22—C23 116.1 (7)
C2—C3—C1 110.2 (6) C22—C23—C21 108.4 (7)
C2—C3—C4 110.8 (7) C22—C23—C24 113.3 (7)
C1—C3—C4 111.6 (7) C21—C23—C24 111.6 (7)
C2—C3—H3 108.0 C22—C23—H23 107.8
C1—C3—H3 108.0 C21—C23—H23 107.8
C4—C3—H3 108.0 C24—C23—H23 107.8
C5—C4—C3 107.7 (6) C25—C24—C23 107.2 (6)
C5—C4—C14 117.0 (7) C25—C24—C34 113.4 (7)
C3—C4—C14 109.2 (7) C23—C24—C34 112.5 (7)
C5—C4—H4 107.5 C25—C24—H24 107.8
C3—C4—H4 107.5 C23—C24—H24 107.8
C14—C4—H4 107.5 C34—C24—H24 107.8
C6—C5—C20 118.7 (8) C26—C25—C40 118.6 (8)
C6—C5—C4 120.9 (8) C26—C25—C24 119.5 (7)
C20—C5—C4 120.4 (7) C40—C25—C24 121.5 (7)
N6—C6—C5 125.3 (8) N26—C26—C25 123.4 (8)
N6—C6—N1 114.7 (7) N26—C26—N2 116.2 (7)
C5—C6—N1 119.9 (7) C25—C26—N2 120.3 (7)
C6—N6—H6A 127.7 C26—N26—H26A 116.2
C6—N6—H6B 115.8 C26—N26—H26B 121.5
H6A—N6—H6B 116.5 H26A—N26—H26B 122.3
C8—C7—C12 122.1 (8) C32—C27—C28 120.9 (8)
C8—C7—N1 119.4 (8) C32—C27—N2 119.0 (8)
C12—C7—N1 118.4 (7) C28—C27—N2 120.0 (8)
C7—C8—C9 118.7 (9) C29—C28—C27 118.7 (9)
C7—C8—H8 120.6 C29—C28—H28 120.6
C9—C8—H8 120.6 C27—C28—H28 120.6
C8—C9—C10 119.4 (9) C28—C29—C30 120.8 (9)
C8—C9—H9 120.3 C28—C29—H29 119.6
C10—C9—H9 120.3 C30—C29—H29 119.6
C11—C10—C9 121.1 (9) C31—C30—C29 119.4 (9)
C11—C10—H10 119.5 C31—C30—H30 120.3
C9—C10—H10 119.5 C29—C30—H30 120.3
C10—C11—C12 120.0 (10) C30—C31—C32 121.3 (9)
C10—C11—H11 120.0 C30—C31—H31 119.3
C12—C11—H11 120.0 C32—C31—H31 119.3
C7—C12—C11 118.7 (9) C31—C32—C27 118.8 (8)
C7—C12—H12 120.7 C31—C32—H32 120.6
C11—C12—H12 120.7 C27—C32—H32 120.6
C1—C13—H13A 109.5 C21—C33—H33A 109.5
C1—C13—H13B 109.5 C21—C33—H33B 109.5
H13A—C13—H13B 109.5 H33A—C33—H33B 109.5
C1—C13—H13C 109.5 C21—C33—H33C 109.5
H13A—C13—H13C 109.5 H33A—C33—H33C 109.5
H13B—C13—H13C 109.5 H33B—C33—H33C 109.5
C15—C14—C19 118.3 (8) C35—C34—C39 117.7 (8)
C15—C14—C4 122.4 (7) C35—C34—C24 121.7 (7)
C19—C14—C4 119.3 (7) C39—C34—C24 120.5 (7)
C14—C15—C16 121.8 (8) C36—C35—C34 121.7 (8)
C14—C15—H15 119.1 C36—C35—H35 119.2
C16—C15—H15 119.1 C34—C35—H35 119.2
C15—C16—C17 117.8 (9) C37—C36—C35 118.8 (9)
C15—C16—H16 121.1 C37—C36—H36 120.6
C17—C16—H16 121.1 C35—C36—H36 120.6
C18—C17—C16 122.3 (8) C38—C37—C36 120.6 (9)
C18—C17—Br1 118.6 (7) C38—C37—Br2 120.1 (7)
C16—C17—Br1 119.1 (7) C36—C37—Br2 119.3 (7)
C19—C18—C17 117.6 (8) C39—C38—C37 119.5 (8)
C19—C18—H18 121.2 C39—C38—H38 120.2
C17—C18—H18 121.2 C37—C38—H38 120.2
C18—C19—C14 122.1 (8) C38—C39—C34 121.7 (8)
C18—C19—H19 119.0 C38—C39—H39 119.2
C14—C19—H19 119.0 C34—C39—H39 119.2
N20—C20—C5 177.7 (10) N40—C40—C25 180.0 (14)
C6—N1—C2—O2 176.9 (8) C26—N2—C22—O22 175.0 (8)
C7—N1—C2—O2 1.3 (11) C27—N2—C22—O22 −3.7 (12)
C6—N1—C2—C3 −3.0 (11) C26—N2—C22—C23 −4.0 (11)
C7—N1—C2—C3 −178.6 (7) C27—N2—C22—C23 177.3 (7)
O2—C2—C3—C1 94.4 (10) O22—C22—C23—C21 −86.3 (10)
N1—C2—C3—C1 −85.7 (9) N2—C22—C23—C21 92.7 (9)
O2—C2—C3—C4 −141.5 (8) O22—C22—C23—C24 149.1 (8)
N1—C2—C3—C4 38.4 (10) N2—C22—C23—C24 −31.9 (10)
O1—C1—C3—C2 13.1 (12) O21—C21—C23—C22 −3.8 (12)
C13—C1—C3—C2 −167.8 (7) C33—C21—C23—C22 176.2 (8)
O1—C1—C3—C4 −110.6 (10) O21—C21—C23—C24 121.7 (9)
C13—C1—C3—C4 68.5 (10) C33—C21—C23—C24 −58.3 (10)
C2—C3—C4—C5 −52.2 (9) C22—C23—C24—C25 51.6 (9)
C1—C3—C4—C5 71.1 (9) C21—C23—C24—C25 −71.1 (8)
C2—C3—C4—C14 75.8 (8) C22—C23—C24—C34 −73.7 (9)
C1—C3—C4—C14 −160.9 (7) C21—C23—C24—C34 163.5 (7)
C3—C4—C5—C6 36.6 (11) C23—C24—C25—C26 −40.8 (10)
C14—C4—C5—C6 −86.8 (10) C34—C24—C25—C26 83.9 (9)
C3—C4—C5—C20 −143.3 (8) C23—C24—C25—C40 146.4 (8)
C14—C4—C5—C20 93.4 (10) C34—C24—C25—C40 −88.9 (10)
C20—C5—C6—N6 −0.5 (14) C40—C25—C26—N26 2.2 (13)
C4—C5—C6—N6 179.6 (8) C24—C25—C26—N26 −170.8 (8)
C20—C5—C6—N1 177.6 (8) C40—C25—C26—N2 −179.3 (8)
C4—C5—C6—N1 −2.3 (13) C24—C25—C26—N2 7.7 (12)
C2—N1—C6—N6 161.5 (7) C22—N2—C26—N26 −163.9 (7)
C7—N1—C6—N6 −22.9 (10) C27—N2—C26—N26 14.7 (11)
C2—N1—C6—C5 −16.8 (12) C22—N2—C26—C25 17.5 (12)
C7—N1—C6—C5 158.8 (8) C27—N2—C26—C25 −163.9 (8)
C2—N1—C7—C8 −73.8 (10) C26—N2—C27—C32 81.3 (10)
C6—N1—C7—C8 110.5 (9) C22—N2—C27—C32 −100.0 (9)
C2—N1—C7—C12 110.5 (9) C26—N2—C27—C28 −100.2 (10)
C6—N1—C7—C12 −65.2 (10) C22—N2—C27—C28 78.4 (10)
C12—C7—C8—C9 −0.2 (14) C32—C27—C28—C29 −1.0 (14)
N1—C7—C8—C9 −175.7 (8) N2—C27—C28—C29 −179.4 (8)
C7—C8—C9—C10 1.3 (14) C27—C28—C29—C30 0.6 (15)
C8—C9—C10—C11 −2.2 (15) C28—C29—C30—C31 −0.5 (16)
C9—C10—C11—C12 2.0 (15) C29—C30—C31—C32 0.8 (15)
C8—C7—C12—C11 0.0 (14) C30—C31—C32—C27 −1.2 (14)
N1—C7—C12—C11 175.6 (8) C28—C27—C32—C31 1.3 (13)
C10—C11—C12—C7 −0.9 (14) N2—C27—C32—C31 179.7 (8)
C5—C4—C14—C15 25.4 (12) C25—C24—C34—C35 1.3 (11)
C3—C4—C14—C15 −97.2 (9) C23—C24—C34—C35 123.2 (8)
C5—C4—C14—C19 −157.7 (8) C25—C24—C34—C39 177.4 (7)
C3—C4—C14—C19 79.7 (9) C23—C24—C34—C39 −60.7 (10)
C19—C14—C15—C16 0.6 (13) C39—C34—C35—C36 1.9 (13)
C4—C14—C15—C16 177.5 (8) C24—C34—C35—C36 178.1 (8)
C14—C15—C16—C17 1.6 (13) C34—C35—C36—C37 −0.9 (14)
C15—C16—C17—C18 −2.9 (14) C35—C36—C37—C38 0.0 (13)
C15—C16—C17—Br1 177.1 (7) C35—C36—C37—Br2 179.7 (7)
C16—C17—C18—C19 1.9 (14) C36—C37—C38—C39 −0.1 (13)
Br1—C17—C18—C19 −178.0 (7) Br2—C37—C38—C39 −179.8 (6)
C17—C18—C19—C14 0.4 (14) C37—C38—C39—C34 1.2 (13)
C15—C14—C19—C18 −1.6 (13) C35—C34—C39—C38 −2.0 (12)
C4—C14—C19—C18 −178.7 (8) C24—C34—C39—C38 −178.3 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6A···O2i 0.90 1.87 2.766 (9) 175
N6—H6B···O21 0.90 2.31 3.115 (9) 149
C18—H18···N40ii 0.95 2.46 3.256 (12) 141
C23—H23···N40iii 1.00 2.47 3.426 (11) 161
N26—H26A···O1 0.90 1.99 2.784 (9) 146
N26—H26B···N20iv 0.90 2.43 3.139 (10) 136

Symmetry codes: (i) x, −y+1, z+1/2; (ii) x, y−1, z; (iii) x, −y+2, z+1/2; (iv) x, −y+1, z−1/2.

Funding Statement

This work was funded by Baku State University; RUDN University Strategic Academic Leadership Program.

References

  1. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
  2. Aida, W., Ohtsuki, T., Li, X. & Ishibashi, M. (2009). Tetrahedron, 65, 369–373.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Magerramov, A. M., Naghiyev, F. N., Mamedova, G. Z., Asadov, Kh. A. & Mamedov, I. G. (2018). Russ. J. Org. Chem. 54, 1731–1734.
  10. Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Engineer. Appl. Sci. 1, 5-11.
  11. Mamedov, I., Naghiyev, F., Maharramov, A., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.
  12. Mohana, M., Thomas Muthiah, P. & Butcher, R. J. (2017). Acta Cryst. C73, 536–540. [DOI] [PubMed]
  13. Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. [DOI] [PMC free article] [PubMed]
  14. Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
  15. Naghiyev, F. N., Pavlova, A. V., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021c). Acta Cryst. E77, 930–934. [DOI] [PMC free article] [PubMed]
  16. Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515. [DOI] [PMC free article] [PubMed]
  17. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  18. Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  22. Suresh, J., Suresh Kumar, R., Perumal, S., Mostad, A. & Natarajan, S. (2007). Acta Cryst. C63, o141–o144. [DOI] [PubMed]
  23. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  24. Wojcicka, A. & Redzicka, A. (2021). Pharmaceuticals, 14, 354. [DOI] [PMC free article] [PubMed]
  25. Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.
  26. Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022001232/yk2165sup1.cif

e-78-00291-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022001232/yk2165Isup2.hkl

e-78-00291-Isup2.hkl (853.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989022001232/yk2165Isup3.cml

CCDC reference: 2149629

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES