Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Mar 4;65(8):1504–1516. doi: 10.1007/s11427-021-2071-x

Surveillance of emerging infectious diseases for biosecurity

Rongzhang Hao 1,2,#, Yuqi Liu 3,4,#, Wanzhu Shen 1,2, Rongtao Zhao 4, Bo Jiang 1,2, Hongbin Song 3,4,, Muyang Yan 5,, Hui Ma 6,
PMCID: PMC8918423  PMID: 35287183

Abstract

Emerging infectious diseases, such as COVID-19, continue to pose significant threats to human beings and their surroundings. In addition, biological warfare, bioterrorism, biological accidents, and harmful consequences arising from dual-use biotechnology also pose a challenge for global biosecurity. Improving the early surveillance capabilities is necessary for building a common biosecurity shield for the global community of health for all. Furthermore, surveillance could provide early warning and situational awareness of biosecurity risks. However, current surveillance systems face enormous challenges, including technical shortages, fragmented management, and limited international cooperation. Detecting emerging biological risks caused by unknown or novel pathogens is of particular concern. Surveillance systems must be enhanced to effectively mitigate biosecurity risks. Thus, a global strategy of meaningful cooperation based on efficient integration of surveillance at all levels, including interdisciplinary integration of techniques and interdepartmental integration for effective management, is urgently needed. In this paper, we review the biosecurity risks by analyzing potential factors at all levels globally. In addition to describing biosecurity risks and their impact on global security, we also focus on analyzing the challenges to traditional surveillance and propose suggestions on how to integrate current technologies and resources to conduct effective global surveillance.

Supporting Information

The supporting information is available online at 10.1007/s11427-021-2071-x. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Keywords: surveillance, biosecurity, early warning, emerging infectious disease

Electronic supplementary material

11427_2021_2071_MOESM1_ESM.pdf (349.2KB, pdf)

Table S1. The representative surveillance system in the world.

Compliance and ethics The author(s) declare that they have no conflict of interest.

Footnotes

Contributed equally to this work

Contributor Information

Hongbin Song, Email: hongbinsong@263.net.

Muyang Yan, Email: yanmy301@sina.com.

Hui Ma, Email: mahui-28@163.com.

References

  1. Abdullah T. A Short History of Iraq. London: Routledge; 2014. [Google Scholar]
  2. Ashford IDA, Kaiser RM, Bales ME, Shutt K, Patrawalla A, McShan A, Tappero JW, Perkins BA, Dannenberg AL. Planning against biological terrorism: lessons from outbreak investigations. Emerg Infect Dis. 2003;9:515–519. doi: 10.3201/eid0905.020388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bansal A, Padappayil RP, Garg C, Singal A, Gupta M, Klein A. Utility of artificial intelligence amidst the COVID 19 pandemic: a review. J Med Syst. 2020;44:156. doi: 10.1007/s10916-020-01617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayot ML, Limaiem F. Biosafety Guidelines. Treasure Island (FL): StatPearls Publishing StatPearls Publishing LLC; 2019. [PubMed] [Google Scholar]
  5. Berger KM. What life scientists should know about security threats. Science. 2016;354:1237–1239. doi: 10.1126/science.aaf9334. [DOI] [PubMed] [Google Scholar]
  6. Berger KM, Wood JLN, Jenkins B, Olsen J, Morse SS, Gresham L, Root JJ, Rush M, Pigott D, Winkleman T, et al. Policy and science for global health security: shaping the course of international health. Trop Med Infect Dis. 2019;4:60. doi: 10.3390/tropicalmed4020060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casale M. COVID-19: can this crisis be transformative for global health? Glob Public Health. 2020;15:1740–1752. doi: 10.1080/17441692.2020.1811366. [DOI] [PubMed] [Google Scholar]
  8. Castillo-Salgado C. Trends and directions of global public health surveillance. Epidemiol Rev. 2010;32:93–109. doi: 10.1093/epirev/mxq008. [DOI] [PubMed] [Google Scholar]
  9. Cyranoski D. CRISPR-baby scientist fails to satisfy critics. Nature. 2018;564:13–14. doi: 10.1038/d41586-018-07573-w. [DOI] [PubMed] [Google Scholar]
  10. Dando M. Find the time to discuss new bioweapons. Nature. 2016;535:9. doi: 10.1038/535009a. [DOI] [PubMed] [Google Scholar]
  11. Daszak P, Olival KJ, Li H. A strategy to prevent future epidemics similar to the 2019-nCoV outbreak. Biosaf Health. 2020;2:6–8. doi: 10.1016/j.bsheal.2020.01.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dobalian, A., Claver, M., Riopelle, D., Wyte-Lake, T., and Canelo, I. (2017). The development of a veterans health administration emergency management research agenda. PLoS Curr 9. [DOI] [PMC free article] [PubMed]
  13. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20:533–534. doi: 10.1016/S1473-3099(20)30120-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ecker DJ, Sampath R, Massire C, Blyn LB, Hall TA, Eshoo MW, Hofstadler SA. Ibis T5000: a universal biosensor approach for microbiology. Nat Rev Microbiol. 2008;6:553–558. doi: 10.1038/nrmicro1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Emanuel P, Jones F, Smith M, Huff W, Jaffe R, Roos J. The key to enabling biosurveillance is cooperative technology development. Biosecur Bioterror. 2011;9:386–393. doi: 10.1089/bsp.2011.0020. [DOI] [PubMed] [Google Scholar]
  16. Eurosurveillance Editorial, T Ebola public health emergency of international concern, Democratic Republic of the Congo, 2019. Euro Surveill. 2019;24:190718e. doi: 10.2807/1560-7917.ES.2019.24.29.190718e. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fineberg HV. Pandemic preparedness and response—lessons from the H1N1 influenza of 2009. N Engl J Med. 2014;370:1335–1342. doi: 10.1056/NEJMra1208802. [DOI] [PubMed] [Google Scholar]
  18. Foddai A, Boklund A, Stockmarr A, Krogh K, Enøe C. Quantitative assessment of the risk of introduction of bovine viral diarrhea virus in Danish dairy herds. Prev Vet Med. 2014;116:75–88. doi: 10.1016/j.prevetmed.2014.05.005. [DOI] [PubMed] [Google Scholar]
  19. Fouchier RAM, Kawaoka Y, Cardona C, Compans RW, García-Sastre A, Govorkova EA, Guan Y, Herfst S, Orenstein WA, Peiris JSM, et al. Gain-of-function experiments on H7N9. Science. 2013;341:612–613. doi: 10.1126/science.1243325. [DOI] [PubMed] [Google Scholar]
  20. Fung ICH, Jackson AM, Mullican LA, Blankenship EB, Goff M E, Guinn AJ, Saroha N, Tse ZTH. Contents, followers, and retweets of the Centers for Disease Control and Prevention’s Office of Advanced Molecular Detection (@CDC_AMD) Twitter profile: cross-sectional study. JMIR Public Health Surveill. 2018;4:e33. doi: 10.2196/publichealth.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gao GF. For a better world: Biosafety strategies to protect global health. BioSaf Health. 2019;1:1–3. doi: 10.1016/j.bsheal.2019.03.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gardner L, Ratcliff J, Dong E, Katz A. A need for open public data standards and sharing in light of COVID-19. Lancet Infect Dis. 2021;21:e80. doi: 10.1016/S1473-3099(20)30635-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R. Global disease monitoring and forecasting with Wikipedia. PLoS Comput Biol. 2014;10:e1003892. doi: 10.1371/journal.pcbi.1003892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457:1012–1014. doi: 10.1038/nature07634. [DOI] [PubMed] [Google Scholar]
  25. Gostin LO, Friedman EA. Ebola: a crisis in global health leadership. Lancet. 2014;384:1323–1325. doi: 10.1016/S0140-6736(14)61791-8. [DOI] [PubMed] [Google Scholar]
  26. Gostin LO, Koh HH, Williams M, Hamburg MA, Benjamin G, Foege WH, Davidson P, Bradley EH, Barry M, Koplan JP, et al. US withdrawal from WHO is unlawful and threatens global and US health and security. Lancet. 2020;396:293–295. doi: 10.1016/S0140-6736(20)31527-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gostin LO, Phelan A, Stoto MA, Kraemer JD, Reddy KS. Virus sharing, genetic sequencing, and global health security. Science. 2014;345:1295–1296. doi: 10.1126/science.1257622. [DOI] [PubMed] [Google Scholar]
  28. Hamelin RC, Roe AD. Genomic biosurveillance of forest invasive alien enemies: a story written in code. Evol Appl. 2020;13:95–115. doi: 10.1111/eva.12853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hii A, Chughtai AA, Housen T, Saketa S, Kunasekaran MP, Sulaiman F, Yanti NS, MacIntyre CR. Epidemic intelligence needs of stakeholders in the Asia-Pacific region. Western Pac Surveill Response J. 2018;9:28–36. doi: 10.5365/wpsar.2018.9.2.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hiller KM, Stoneking L, Min A, Rhodes SM. Syndromic surveillance for influenza in the emergency department—a systematic review. PLoS ONE. 2013;8:e73832. doi: 10.1371/journal.pone.0073832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Johns MC, Burke RL, Vest KG, Fukuda M, Pavlin JA, Shrestha S K, Schnabel DC, Tobias S, Tjaden JA, Montgomery JM, et al. A growing global network’s role in outbreak response: AFHSC-GEIS 2008–2009. BMC Public Health. 2011;11:S3. doi: 10.1186/1471-2458-11-S2-S3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kebede S, Conteh IN, Steffen CA, Vandemaele K, Wurie I, Alemu W, Kuti-George F, Dafae F, Jambai A, Yahaya AA, et al. Establishing a national influenza sentinel surveillance system in a limited resource setting, experience of Sierra Leone. Health Res Policy Sys. 2013;11:22. doi: 10.1186/1478-4505-11-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kman NE, Bachmann DJ. Biosurveillance: a review and update. Adv Prev Med. 2012;2012:1–9. doi: 10.1155/2012/301408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Koenig KL. Homeland security and public health: role of the Department of Veterans Affairs, the US Department of Homeland Security, and implications for the public health community. Prehosp Disaster med. 2003;18:327–333. doi: 10.1017/S1049023X0000128X. [DOI] [PubMed] [Google Scholar]
  35. Kolby JE, Smith KM, Ramirez SD, Rabemananjara F, Pessier AP, Brunner JL, Goldberg CS, Berger L, Skerratt LF. Rapid response to evaluate the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in wild amphibian populations in Madagascar. PLoS ONE. 2015;10:e0125330. doi: 10.1371/journal.pone.0125330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Larkins, S., Carlisle, K., Harrington, H., MacLaren, D., Lovo, E., Harrington, R., Fernandes Alves, L., Rafai, E., Delai, M., and Whittaker, M. (2020). From the frontline: strengthening surveillance and response capacities of the rural workforce in the Asia-Pacific region. How can grass-roots implementation research help? Front Public Health 8. [DOI] [PMC free article] [PubMed]
  37. Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu: traps in big data analysis. Science. 2014;343:1203–1205. doi: 10.1126/science.1248506. [DOI] [PubMed] [Google Scholar]
  38. Lesho EP, Waterman PE, Chukwuma U, McAuliffe K, Neumann C, Julius MD, Crouch H, Chandrasekera R, English JF, Clifford R J, et al. The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance. Clin Infect Dis. 2014;59:390–397. doi: 10.1093/cid/ciu319. [DOI] [PubMed] [Google Scholar]
  39. Mackenzie JS, Drury P, Arthur RR, Ryan MJ, Grein T, Slattery R, Suri S, Domingo CT, Bejtullahu A. The global outbreak alert and response network. Glob Public Health. 2014;9:1023–1039. doi: 10.1080/17441692.2014.951870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Madoff LC, Li A. Web-based surveillance systems for human, animal, and plant diseases. Microbiol Spectr. 2014;2:0015–2012. doi: 10.1128/microbiolspec.OH-0015-2012. [DOI] [PubMed] [Google Scholar]
  41. Martin LJ, Dong H, Liu Q, Talbot J, Qiu W, Yasui Y. Predicting influenza-like illness-related emergency department visits by modelling spatio-temporal syndromic surveillance data. Epidemiol Infect. 2019;147:e312. doi: 10.1017/S0950268819001948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mbondji PE, Kebede D, Soumbey-Alley EW, Zielinski C, Kouvividila W, Lusamba-Dikassa PS. Health information systems in Africa: descriptive analysis of data sources, information products and health statistics. J R Soc Med. 2014;107:34–45. doi: 10.1177/0141076814531750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Meyerson LA, Reaser JK. A unified definition of biosecurity. Science. 2002;295:44. doi: 10.1126/science.295.5552.44a. [DOI] [PubMed] [Google Scholar]
  44. Milinovich GJ, Magalhães RJS, Hu W. Role of big data in the early detection of Ebola and other emerging infectious diseases. Lancet Glob Health. 2015;3:e20–e21. doi: 10.1016/S2214-109X(14)70356-0. [DOI] [PubMed] [Google Scholar]
  45. Oxford JS, Sefton A, Jackson R, Innes W, Daniels RS, Johnson N. World War I may have allowed the emergence of “Spanish” influenza. Lancet Infect Dis. 2002;2:111–114. doi: 10.1016/S1473-3099(02)00185-8. [DOI] [PubMed] [Google Scholar]
  46. Palmer MJ, Fukuyama F, Relman DA. A more systematic approach to biological risk. Science. 2015;350:1471–1473. doi: 10.1126/science.aad8849. [DOI] [PubMed] [Google Scholar]
  47. Parker MT, Kunjapur AM. Deployment of engineered microbes: contributions to the bioeconomy and considerations for biosecurity. Health Secur. 2020;18:278–296. doi: 10.1089/hs.2020.0010. [DOI] [PubMed] [Google Scholar]
  48. Peiris JSM, Poon LLM, Guan Y. Surveillance of animal influenza for pandemic preparedness. Science. 2012;335:1173–1174. doi: 10.1126/science.1219936. [DOI] [PubMed] [Google Scholar]
  49. Pham HTT, Antoine-Moussiaux N, Grosbois V, Moula N, Truong B D, Phan TD, Vu TD, Trinh TQ, Vu CC, Rukkwamsuk T, et al. Financial impacts of priority swine diseases to pig farmers in Red River and Mekong River Delta, Vietnam. Transbound Emerg Dis. 2017;64:1168–1177. doi: 10.1111/tbed.12482. [DOI] [PubMed] [Google Scholar]
  50. Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, et al. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med. 2011;365:718–724. doi: 10.1056/NEJMoa1107643. [DOI] [PubMed] [Google Scholar]
  51. Russell KL, Rubenstein J, Burke RL, Vest KG, Johns MC, Sanchez JL, Meyer W, Fukuda MM, Blazes DL. The global Emerging Infection Surveillance and Response System (GEIS), a U.S. government tool for improved global biosurveillance: a review of 2009. BMC Public Health. 2011;11:S2. doi: 10.1186/1471-2458-11-S2-S2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Scott DA, Zhang F. Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nat Med. 2017;23:1095–1101. doi: 10.1038/nm.4377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Sintchenko V, Gallego B. Laboratory-guided detection of disease outbreaks: three generations of surveillance systems. Arch Pathol Lab Med. 2009;133:916–925. doi: 10.5858/133.6.916. [DOI] [PubMed] [Google Scholar]
  54. Tambo E, Ugwu EC, Ngogang JY. Need of surveillance response systems to combat Ebola outbreaks and other emerging infectious diseases in African countries. Infect Dis Poverty. 2014;3:29. doi: 10.1186/2049-9957-3-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Velasco E, Agheneza T, Denecke K, Kirchner G, Eckmanns T. Social media and internet-based data in global systems for public health surveillance: a systematic review. Milbank Q. 2014;92:7–33. doi: 10.1111/1468-0009.12038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wagar E. Bioterrorism and the role of the clinical microbiology laboratory. Clin Microbiol Rev. 2016;29:175–189. doi: 10.1128/CMR.00033-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wang Q, Chen H, Shi Y, Hughes AC, Liu WJ, Jiang J, Gao GF, Xue Y, Tong Y. Tracing the origins of SARS-CoV-2: lessons learned from the past. Cell Res. 2021;31:1139–1141. doi: 10.1038/s41422-021-00575-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Watsa M, Wildlife Disease Surveillance Focus Group Rigorous wildlife disease surveillance. Science. 2020;369:145–147. doi: 10.1126/science.abc0017. [DOI] [PubMed] [Google Scholar]
  59. Wendell A. National Biosurveillance Strategy and Associated Science and Technology Roadmaps: Considerations and Priorities. Novinka: Imprint; 2014. [Google Scholar]
  60. Westfall KM, Therriault TW, Abbott CL. A new approach to molecular biosurveillance of invasive species using DNA metabarcoding. Glob Change Biol. 2020;26:1012–1022. doi: 10.1111/gcb.14886. [DOI] [PubMed] [Google Scholar]
  61. Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases. Nature. 2007;447:279–283. doi: 10.1038/nature05775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wu CI, Wen H, Lu J, Su XD, Hughes AC, Zhai W, Chen C, Chen H, Li M, Song S, et al. On the origin of SARS-CoV-2−the blind watchmaker argument. Sci China Life Sci. 2021;64:1560–1563. doi: 10.1007/s11427-021-1972-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Yang W, Li Z, Lan Y, Wang J, Ma J, Jin L, Sun Q, Lv W, Lai S, Liao Y, et al. A nationwide web-based automated system for early outbreak dectection and rapid response in China. Western Pac Surveill Response J. 2011;2:10–15. doi: 10.5365/WPSAR.2010.1.1.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zhang L, Yang Z, Sefah K, Bradley KM, Hoshika S, Kim MJ, Kim HJ, Zhu G, Jiménez E, Cansiz S, et al. Evolution of functional six-nucleotide DNA. J Am Chem Soc. 2015;137:6734–6737. doi: 10.1021/jacs.5b02251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zheng H, Wang FZ, Zhang GM, Yuan QL, Miao N, Sun XJ. A typical investigation on the status of diagnosis and reporting of hepatitis B inpatients in non-surveillance hospitals in three provinces in China, 2015 (in Chinese) Chin J Prevent Med. 2018;52:1034–1038. doi: 10.4103/0366-6999.230738. [DOI] [PubMed] [Google Scholar]
  66. Zheng T. Biosecurity subject construction and capacity building of China (in Chinese) Mil Med Sci. 2011;35:801–804. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

11427_2021_2071_MOESM1_ESM.pdf (349.2KB, pdf)

Table S1. The representative surveillance system in the world.


Articles from Science China. Life Sciences are provided here courtesy of Nature Publishing Group

RESOURCES