Skip to main content
Journal of Fungi logoLink to Journal of Fungi
. 2022 Feb 24;8(3):226. doi: 10.3390/jof8030226

Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates

Ajay Kumar Gautam 1,*, Rajnish Kumar Verma 2,*, Shubhi Avasthi 3, Sushma 4, Yogita Bohra 2, Bandarupalli Devadatha 5, Mekala Niranjan 6, Nakarin Suwannarach 7,*
Editors: Saowaluck Tibpromma, Samantha C Karunarathna
PMCID: PMC8955040  PMID: 35330228

Abstract

Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.

Keywords: classical and molecular methods, fungal diversity, fungal phylogeny, identification, taxonomy

1. Introduction

Biodiversity is one of the most interesting aspects of biology, which has attracted the attention of scientists and researchers for some time. Biological diversity generally represents the variety of living beings from all sources, including terrestrial, marine and other aquatic ecosystems, covering the diversity of plants, animals, insects, pests and microbes. The information on biodiversity yet to be fully discovered may be useful from many beneficial and harmful aspects of life. Based on available information, biodiversity can be of species which are genetic and ecological, and found to be distributed in a variety of environments. The various life forms are adapted to live in specific environments, referred to as terrestrial and aquatic. In addition, these diverse life forms show great variability based on the type of habitats [1]. Fungi is an important component of biodiversity, which play an important role in various ecological cycles [2,3].

Fungi present enormous species diversity with respect to morphological, ecological and nutritional modes. Fungi are considered the largest organismic group after insects [4], andareknown to exist in a wide variety of morphologies, lifestyles, developmental patterns anda wide range of habitats such as soil, water, air, animals, plants and in environments with extreme conditions such as low or high temperature, high concentration of metals and salts [5,6,7]. It has been estimated that 1.5 and 5.1 million species of fungi are believed to exist in various ecosystems of Earth, of which nearly 150,000 species of fungi have been described [8,9,10].

Fungi are an important and diverse component of biodiversity in various ecosystems. These organisms consist of a diverse range of all major fungal groups and play the role of both foe and friend. While some fungi may cause numerous diseases in humans, animals, plants and other biological substrates, others may play an important role in the nutrient cycle. In addition, fungi have beneficial applications in the agriculture, industrial and pharmaceutical sectors. The occurrence of fungi, however, varies greatly with respect to various ecosystems and environments. The study of fungi is not easy due to the extremely high level of diversity and difficulty in the prediction ofexact estimates. However, different researchers predicted fungal diversity on the planet and provided different estimates of fungal species [3,11,12].

Identification based on morphological, phylogenetic or ecological characteristics is one of the most important aspectsof mycological studies. The classical methods of fungal identification which rely on direct observation of fungi either in a natural condition or after culturing on growth media are still most popularly in use. Despitethe use of molecular methods as more advanced modern techniques of fungal identification, the classical methods still have many advantages for studying fungal diversity. Some fungi produce visible structures useful in their identification. The culturing of some of the fungi is still not very successful; therefore, molecular techniques have proved to be very helpful in exploring their taxonomic identity [13,14]. The use of molecular methods along with conventional methods (morphological studies) helped mycologists to investigate the new fungal samples or reinvestigate the preserved ones. This has been led the fungal taxonomists to propose or establish many new taxa.

In the present paper, a general outline with current estimates of fungal diversity in all environments is presented. A complete section on general methods (classical and modern methods) used for fungal identification, along with their advantages and disadvantages, was also presentedin order to provide an updated account on fungal identification. Moreover, adetailed account of culture dependent and culture independent methods was providedin order to highlight their importancein fungal identification and their usefulness in finding updated fungal diversity estimates. Overall, this review will be a document containing present day information on various aspects of fungi.

2. Fungal Diversity: General Outline with Updated Estimates

Fungi constitute one of the largest groups of eukaryotes which play a significant role as decomposers, mutualists and pathogens. They are among the key components of global biodiversity, playing a powerful role in global biogeochemistry, recycling carbon and mobilizing nitrogen, phosphorus and other bio-elements. Besides performing this key role, fungi provide essential support to plant life in the form of endophytes and mycorrhizae, in addition to causing numerous plant and animal diseases. The industrial applications of various fungi nowadays are worth appreciating. Fungi as an important food source, and researchis still in progress to use fungal biomass to fulfil the basic needs of food, clothe and shelter [15,16]. Despite multiple uses, updated information of these organisms about the number of species are described, as well as global estimates of their diversitywhich are essential to accurately describe their taxonomic characteristics. Through the use of advanced methods of isolating and identifying fungi, a number of novel taxa have been established over the past decade, including new divisions, classes, orders and new families. Therefore, this section provides complete information on how to estimate fungal diversity based on the available literature.

Classification of fungi or their various groups is a continuous process because of the regular inclusion of data based on morpho-taxonomy and molecular studies. The frequent inclusion of data from DNA sequences in recent studies is updating fungal outlines and their estimates constantly. The outline of fungi classification provided by Wijayawardene et al. [17] is used here as a starting point for this section of the paper. An outline of fungi and fungus-like taxa provides a summary of the classification of the kingdom Fungi (including fossil fungi, i.e., dispersed spores, mycelia, sporophores and mycorrhizas). A total of 19 phyla were presented with the placement of all fungal genera with the described number of species per genus at the class-, order-and family-level [17]. Several earlier studies have also focused on fungal diversity. Some glimpses of different types of fungi found in various habitats are presented in Figure 1 and Figure 2.

Figure 1.

Figure 1

Diversity of different types of fungi. (A) Phragmidium sp. [rose rust], (B) Calocera sp., (C) Trametes sp., (D) Tilletia sp. [smut], (E) Colletotrichum sp. [Leaf spot], (F) Erysiphe sp. [Powdery mildew cleistothecia], (G) Inonotus sp., (H) Termitomyces sp., (I) Kweilingia sp. [rust], (J) Podosphaera sp. on Sonchus sp. [Powdery mildew], (K) Tremella sp., (L) Xylaria sp., (M) Uromyces sp. [aecia and telia], (N) Pileolaria sp. [rust], (O) Gaestrum sp., (P) Didymium sp., (Q) Penicillium sp. on Emblica sp., (R) Schiffnerula sp. [black mildew], (S) Aspergillus sp., (T) Coleosporium sp. [rust], (U) Schizophyllum sp., (V) Aspergillus sp. [on cow pea], (W) Mitteriella sp. [black mildew] and (X) Periconia sp. Scale bars A–X = 20 mm.

Figure 2.

Figure 2

Diversity of different types of fungi. (A,B) Curvularia sp., (C) Pileolaria sp. [rust], (D) Phyllactinia sp. [powdery mildew], (E) Dictyosporium sp., (F,G) Sytalidium sp., (H) Alternaria alternata, (I) Hypoxylon sp., (J,K) Aspergillus niger, (L) Coleosporium sp. [rust], (M) Podosphaera sp. [powdery mildew], (N,O) Penicillium sp. on Emblica sp., (P) Colletotrichum sp., (Q) Pithomyces sp., (R,S) Aspergillus falvus, (T) Torula sp., (U) Beltrania sp., (V) Ceratosporium sp. Scale bars A,F,J,N,R = 1 mm; B–E,G–I,K–M,O–Q,S–V = 10 µm.

Based on phylogenies and the divergence time of particular taxa, Tedersoo et al. [18] proposed classification of kingdom Fungi into 18 phyla Ascomycota, Aphelidiomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Because this study was based on only 111 taxa, its universal acceptance remained a matter of thinking. In this agreement, Wijayawardene et al. [19] provided a revised classification system for basal clades of fungi from phyla to genera in the same year. A total of 16 phyla were accepted among the above-mentioned except viz. Ascomycota and Basidiomycota. The detailed information to fully resolved tree of life was reviewed by James et al. [20], where they provide detailed information on advancements in genomic technologies during the last 15 years to understand the revolution in fungal systematics in the phylogenomic era. However, the recently updated outline of fungi given by Wijayawardene et al. [17] revised the number of phyla upto 19 in addition to Caulochytriomycota. This group of researchers also included fungal-like taxa in this study and incorporated them in this outline. Similar studies on outlined fungal phyla were carried outoccasionally. These studies proved very useful for researchers engaged in updating fungal classification. A list of selected literature based on various taxonomical studies carried out by several researchers is presented in Table 1.

Table 1.

Selected literature on various taxonomical studies of fungi.

Title Reference
Orders of Ascomycetes [41]
Laboulbeniales as a separate class of Ascomycota, Laboulbeniomycetes [42]
One hundred and seventeen clades of euagarics [43]
Toward resolving family-level relationships in rust fungi (Uredinales) [44]
Higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit rDNA sequences [45]
A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales) [46]
A higher-level phylogenetic classification of the Fungi [47]
Dictionary of the Fungi. (10th edn) [48]
Outline of Ascomycota [49]
Glomeromycota: two new classes and a new order [50]
Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi [51]
Incorporating anamorphic fungi in a natural classification checklist and notes for 2011 [52]
Taxonomic revision of Ustilago, Sporisorium and Macalpinomyces [53]
Phylogenetic systematics of the Gigasporales [54]
List of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants [55]
A phylogeny of the highly diverse cup fungus family Pyronemataceae (Pezizomycetes, Ascomycota) [56]
Families of Dothideomycetes [57]
Taxonomic revision of the Lyophyllaceae (Basidiomycota, Agaricales) based on a multigene phylogeny [58]
Recommended names for pleomorphic genera in Dothideomycetes [27]
Towards a natural classification and backbone tree for Sordariomycetes [34]
Phylogenetic classification of yeasts and related taxa within Pucciniomycotina [59]
Entomophthoromycota: a new overview of some of the oldest terrestrial fungi [60]
Systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina [61]
A phylum-level phylogenetic classification of Zygomycete fungi based on genome–scale data [62]
Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota [63]
Sequence–based classification and identification of fungi [64]
Morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria [65]
Families of Sordariomycetes [35]
Proposal to conserve the name Diaporthe eres, with a conserved type, against all other competing names (Ascomycota, Diaporthales, Diaporthaceae) [66]
Taxonomy and phylogeny of dematiaceous Coelomycetes [67]
Multigene phylogeny of Endogonales [68]
Classification of lichenized fungi in the Ascomycota and Basidiomycota-Approaching one thousand genera [69]
Taxonomy and phylogeny of the Auriculariales (Agaricomycetes, Basidiomycota) with stereoid basidiocarps [70]
An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence [71]
Families, genera, and species of Botryosphaeriales [72]
Ranking higher taxa using divergence times: a case study in Dothideomycetes [73]
A revised family-level classification of the Polyporales (Basidiomycota) [74]
Notes for genera: Ascomycota [22]
Towards incorporating asexual fungi in a natural classification: checklist and
notes 2012–2016
[23]
Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota) [19]
Outline of Ascomycota: 2017 [75]
Classification of orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on a temporal approach [76]
A taxonomic summary and revision of Rozella (Cryptomycota) [77]
Sexual and asexual generic names in Pucciniomycotina and Ustilaginomycotina (Basidiomycota) [78]
Evolutionary complexity between rust fungi (Pucciniales) and their plant hosts [79]
High-level classification of the Fungi and a tool for evolutionary ecological analyses [18]
Taxonomy and phylogeny of operculate Discomycetes: Pezizomycetes [33]
Molecular phylogeny of the Laboulbeniomycetes (Ascomycota) [80]
Families in Botryosphaeriales [81]
Natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae [82]
Classification of the Dictyostelids [83]
Revisiting Salisapiliaceae [84]
Phylogenetic revision of Savoryellaceae [85]
Notes, outline and divergence times of Basidiomycota [86]
A new phylogenetic classification for the Leotiomycetes [87]
Taxonomy and phylogeny of hyaline-spored Coelomycetes [88]
Refined families of Sordariomycetes [36]
Outline of Fungi and fungus-like taxa [17]
The genera of Coelomycetes [89]
A higher-rank classification for rust fungi, with notes on genera [90]
Indian Pucciniales: taxonomic outline with important descriptive notes [91]
Incorporating asexually reproducing fungi in the natural classification and notes for pleomorphic genera [92]
How to publish a new fungal species, or name, version 3.0 [93]

These are studies on defining boundaries and providing the classification of different levels of fungal classification: Ascomycota [21,22,23], Diaporthales [24,25,26,27,28,29], Leotiomycetes [30], Magnaporthales [31], Orbiliaceae (Orbiliomycetes) [32], Discomycetes [33], Sordariomycetes [34,35,36], Sclerococcomycetidae [35,37], Xylariales [38], Xylariomycetidae [39] and Pezizomycetes [40]. Based on this, a brief outline of the classification of the kingdom Fungi (including fossil fungi, i.e., dispersed spores, mycelia, sporophores, mycorrhizas) given by Wijayawardene et al. [17] is provided herein tabulated form (Table 2).

Table 2.

A brief presentation on outline of fungi.

Phylum Class Order Family Genera
Aphelidiomycota 1 1 1 4
Ascomycota 21 148 624 4511
Basidiobolomycota 1 1 1 2
Basidiomycota 19 69 240 1521
Blastocladiomycota 2 4 8 12
Calcarisporiellomycota 1 1 1 2
Caulochytriomycota 1 1 1 1
Chytridiomycota 9 13 52 97
Entomophthoromycota 2 2 5 20
Entorrhizomycota 1 2 2 2
Glomeromycota 3 5 16 49
Kickxellomycota 6 6 7 61
Monoblepharomycota 3 3 7 9
Mortierellomycota 1 1 1 6
Mucoromycota 3 3 17 62
Neocallimastigomycota 1 1 1 11
Olpidiomycota 1 1 1 4
Rozellomycota 2 7 41 162
Zoopagomycota 1 1 5 25
Total 79 270 1031 6561

As one of the ancient and most diverse branches of the tree of life, kingdom Fungi contains an estimated 4–5 million species distributed all across the globe and plays vital roles in terrestrial and aquatic ecosystems [94,95,96,97]. Of the total estimated number, so far, less than 2% of fungiis described [98]. Because of the vast diversity of these organisms and the addition of new fungi year by year, mycologists are facing major difficulties to define their boundaries accurately. The regular advancement in mycological techniques enables mycologists to describe new fungi all around the world every year based on decade evaluations. The description and addition of new species are estimated at 2626 from 2000 to 2012, while it was around 2326 between 1980 and 1999 [99,100,101]. This ongoing process of describing new fungi changes the overall estimate of fungi regularly. However, the suspense of undescribed fungi is still the same, which also added more uncertainty over defining their estimate exactly. In addition to natural habitats still waiting to explored, requirements of reassessment of dried herbarium samples based on molecular methods, along with morpho-taxonomy and lack of molecular facilities, still hinder mycologists in describing new fungi and attaining full estimate boundaries. Because of the importance of a total number of fungi estimates in their diversity and taxonomy (systematics, resources and classification) [12,102], many estimates have been put forward to elucidate the fungal species diversity in the world. Previous estimates of fungal diversity were based mainly on the plant-associated fungi [3]. Summarizing a comprehensive account of previous estimates of fungal diversity, we start with the estimate of about 100,000 presented by Bisby and Ainsworth [102]. Then, the number of fungi was estimated to be between 0.25–2.7 during the second half of the twentieth century. It was estimated (in millions) as follows: 0.25 [103], 2.7 [104], 1.5 [12,105,106], 1.0 [107,108,109], 1.3 [110], 0.27 [111] and 0.5 [112]. Similarly, the estimates on total described numbers of fungi during the twenty-first century were found to be between 2.3–5.1 million. The fungal estimate (1.5 million) provided by Hawksworth [12] has been most widely accepted for two decades. However, updated estimates of fungal species were provided in the current century as 3.5–5.1 [113], 5.1 [10], 2.2–3.8 [11]. The updated estimates were provided based on DNA based molecular techniques and next-generation sequencing. However, Hyde et al. [114] pointed out that more than 90% of the collected samples of fungi were neglected by mycological taxonomists around the globe. The total number of described fungi may be increased many times after processing these samples. The fungal estimates provided by various mycologists are presented in detail in Figure 3.

Figure 3.

Figure 3

Estimations on the global number of fungal species.

In addition to estimating the total number of fungi, the global biodiversity of fungi has been extensively investigated for predicting their accurate estimate on earth. The number of advanced techniques, along with the number of numerical analytical methods, enabled researchers not only to identify and describe those fungi which are either not described, incorrectlyidentified or described incompletely, but also in understanding plant: fungus ratios [12,99], quantitative macroecological grid-based approaches [115,116,117], ecological scaling laws and methods based on environmental sequence data including plant: fungus ratios [10,113]. These studies on estimates proved fungi to be one of the largest groups of living organisms on this planet. An updated estimate of global fungal diversity is 2.2 to 3.8 million provided by Hawksworth and Lücking [11], however, also pointed out that this estimate would be a thousand times higher than the current highest estimate of 10 million species. A regression relationship between time and described fungal species by using Sigma State 3.5.SPSS (USA) was constructed and presented by Wu et al. [3]. With the help of this equation model, Wu et al. [3] presented the description rate of fungi. They indicated that 1.5 million fungal species, estimated by Hawksworth [12], could be described only by the year 2184, while the estimates of 2.2 and 3.8 million could be described by the years 2210 and 2245, respectively.

3. General Methods of Fungal Identification

The correct identification of fungi is one of the essential tools required for documenting fungi at the genus and species levels. There are several methods of fungal identification that differ in scope and content. However, the actual identification procedure is almost the same in each of the methods. Colonial morphological features, along with growth rate and microscopic observations, are some important criteria used to study different fungi. However, technological advancements have added more improved and sophisticated methods in this series. Generally, the fungal identification techniques are, broadly, three types, i.e., truly classical, culture and modern methods. While truly classical methods were based on the study of morphological features, the culture methods involved culture media technique. In modern methods, DNA-based techniques are utilized.

3.1. Classical Methods

Classical methods are most widely used in the documentation of fungi in relation to their identification and distribution on any substrate over a specific area. In general, these methods have been developed for studying any substratum or group of fungi [118]. Classical methods of fungal identification generally include incubation of substrata in moist chambers, direct sampling of fungal fruiting bodies, culturing of endophytes and particle plating. The following are basic types of classical methods.

3.1.1. Opportunistic Approach

In general, the opportunistic approach is one of the different types of classical methods used by mycologists to collect fruiting bodies of macromycetes. The availability of good condition fruiting bodies of macrofungi is generally a prerequisite for this efficient method of detecting new species or new records in a study area. The requirement of highly skilled mycologists for collection, processing and identification is a major limitation of this method, along with the risk of toxicity from these fungi [118].

3.1.2. Substrate Based Approach

The substrate-based protocols are another important approach used for the identification of fungi. The importance of these methods can be imagined because while some fungi fruit rather dependably, others fruit only sporadically. The substrate-based methods are mostly used for fungi that occur only on discrete, discontinuous or patchy resources, or are restricted to a particular host. The fungi forming sporocarps on soil, trees, large woody stumps, leaf litter, twigs and small branches are generally included in such methods. The fungi that form fruiting bodies on soil and ectomycorrhizal association with the trees provides a better understanding of their identification and diversity. The selection of a study plot is an important step that should be considered while using these methods [119,120]. In the case of fungi that form fruiting bodies on large woody debris, use of the log-based sampling method is generally preferred, keeping in view the substrate characteristics such as diameter, decay classes, upright, suspended, or grounded and host information [118,121]. Similarly, the use of a plot-based or band transect method is generally suggested in fungi, giving rise to fruiting bodies on fine debris (leaf litter, twigsand small branches). Here, size of the sample plot is generally kept in mind during the collection of fungal samples [119,120,122,123,124].

3.1.3. Moist Chambers Techniques

Moist Chambers Techniquesis one of the earliest and more effective methodsbeing utilized by mycologists in fungal taxonomy. This technique is used for fungi growing on leaves or small woody debris, such as ascomycetes, hyphomycetes and coelomycetes [124,125] and slime molds [126], and fungi growing on dung [127,128,129,130]. Here, the fungal samples collected from various substrates were processed for the production of fruiting bodies in a moist chamber for some duration and evaluated periodically for approximately 2 to 6 weeks.

3.1.4. Culture Media Technique

The use of culture media to inoculate fungi from the natural environment and incubate it to grow in controlled conditions for their isolation and identification is also one of the popular and widely used techniques. Numbers of artificial culture media are used here to provide growth substrate and required nutrition to inoculated fungi. Along with morphological characteristics, this technique proves quite useful in identifyinga fungal taxon. The easy and economic implication of this method has made it popular among mycologists. The numberof fungal groups such as endophytes, saprophytes and parasites—except obligate—can be isolated on various culture media from symptomless but fully expanded leaves, petioles, twigs, branches and roots, etc. [131]. Similarly, culturing of leaf washes is another culture media-based technique to assess the composition of spores on leaf surfaces. Commonly known as phylloplane fungi, these are considered to have good biocontrol potential [132,133]. Another culture based method known as the particle filtration method [134,135,136] is mainly meant for reducing the number of isolates derived from dormant spores in cultures taken from decomposing plant debris. Vegetatively active mycelia are generally cultured with the use of this method.

3.1.5. Advantages and Disadvantages of Truly Classical and Culture Based Methods

When we compare classical and culture based-methods with other advanced techniques, they still hold a key position in all the methods being utilized for assessing identification, diversity and distribution of fungi. Although these techniques are still in use globally, they also have certain disadvantages. In order tomake mycologistsaware of all aspects of basic methods (truly classical and culture based), a brief discussion on some of their important advantages/disadvantages is given below:

Advantages of Truly Classical and Culture Based Methods
  • These methods are still considered as the sources which can provide complete information on fungal communities of different areas with variable habitats. Because of the non-availability of DNA-based sequence data of all the fungi, it is the only criteria to determine basic information about individual species, such as geographic range, host relationships and ecological distribution.

  • The effects of abiotic variables (pH, soil nutrient content, weather-related variables) and biotic variables on fungi of the variable substrate and environmental conditions can be more easily studied by these methods.

  • As compared to an advanced one, these methods are more economical and can be executed with less specialized equipment.

  • Overall, the developing nations where adequate research funding is still a big challenge; these methods are important considerations for many investigators.

Disadvantages of Classical and Culture Based Methods
  • For the fungi which are unable to grow or produce reproductive structures on culture or hardly reproduce naturally, these methods are not suitable and become a major limitation in identifying, classifying and outlining fungi of a specific area.

  • The detailed procedure of sampling, culturing, isolation and identification methods are considerably more time consuming in comparison to more advanced techniques. The confirmation of new genera or species can be predicted more efficiently and accurately from the repeatedly sampled areas [120].

  • Due to the above-mentioned disadvantages, classical taxonomists are now considered to be endangered, as the interests of young researchers in classical methods is considerably reducing. If one willing to peruse a career in classical mycology, it takes a long duration of training. Similarly, to identify all of the collections based on the classical approach increases the time duration to find out final results. In molecular methods, technical expertise is quite enough to carry out research which also poses a major limitation to classical methods.

3.1.6. Advantages and Disadvantages of DNA Based Modern Methods

Besides having many advantages, the DNA-based methods also have some limitations, while modern methods are proven to be more efficient in the confirmation of new genera or species inlesser in time consumption. When classical methods are not able to study the fungi more specifically due to overlapping characters, i.e., a high degree of phenotypic plasticity, cryptic species and occurrence of different morphs for the same taxa [67,137,138], there are molecular methods which prove helpful to resolve such issues more accurately.

Like other methods, these methods also have certain disadvantages. The information we obtained with the help of this method is not so detailed as to be compared to classical methods; e.g., when we study basidiomata classically, we obtain a lot of information that we will never learn from DNA. Based on DNA-based techniques, numbers of new species are proposed, solely on the basis of unavailability of their sequences in the databases. Additionally, the submission of improper DNA sequences of many described fungi without proper editing is another drawback caused by molecular methods. Besides, poor taxon coverage in public depositories remains the principal impediment for successful species identification through molecular methods. The interpretation of BLAST results is regarded as the most important aspect in DNA-based methods of fungal identification. The availability of appropriate taxonomic and molecular experts in limited numbers is one of the major drawbacks of these methods. In addition, the contamination of DNA samples is another problem associated with molecular methods. Lastly, these methods are not cost effective in comparison to classical ones.

Keeping in view both advantages and disadvantages, it was found that mycological studies based on classical methods can perform better when combined with molecular analyses.

4. Assessment of Fungal Taxonomy and Diversity

Fungal taxonomy is the fundamental aspect of immense value utilized during mycological studies. The taxonomy of fungi based on morphological characters has been used for centuries and is still in use. Fungal taxonomy is generally required to identify and define existing and new fungi, andis ultimately useful in the assessment of their diversity and distribution. With the passage of time, the use of new and varied methods of fungal assessment came into existence which revolutionize the traditional methods based on morpho-taxonomy. However, both the methods based on morphology and molecular data care are still used equally and have their own levels of importance. It is primarily significant to use morphological-based methods and follow other approaches such as chemical, ecological, molecular or physiological analyses [139]. However, some technologies are expensive or inconvenient in terms ofuse in laboratories where the infrastructure is basic. Morphological analyses are, however, low-cost and results are acquired rapidly. These novel technologies have a relatively high cost. In cases wherethere is a limited quantity of a specimen or lack of sequence data, morphological data then play an important role in identification. In GenBank, there are many sequences which are wrongly named with errors. In such cases, detailed and extensive morphological characters help to resolve the taxonomy of them [140]. Therefore, morphology is still the most common technique to study fungi.

However, in recent times progress has driven taxonomic inferences towards DNA-based methods, and these procedures have parallel pros and cons. Modern mycotaxonomy has moved onward using morphological characters with a combination of chemotaxonomy, ecology, genetics, molecular biology and phylogeny [139,141,142,143,144,145]. The exploitation of sequence data for phylogenetic, biological, genetic and evolutionary analyses has offered a lot of understanding into the diversity and relationships of various fungal groups [71,139,146,147,148].

In DNA-based molecular characters, culture dependent and culture-independent methods are in practice nowadays to estimate fungal diversity. Culture-based approaches have been traditional, used to analyse microorganisms in indoor environments, including settled floor dust samples. However, this approach can be biased, for example, by microbial viability and/or culturability on a given nutrient medium. The advent of growth-independent molecular biology-based techniques, such as polymerase chain reaction (PCR) and DNA sequencing, has circumvented these difficulties. However, few studies have directly compared culture-based morphological identification methods with culture-independent DNA sequencing-based approaches. For example, a previous study compared the presence or absence of fungal species detected by a culture-based morphological identification method and a culture independent DNA sequencing method [149]. However, only a qualitative comparison was conducted between these two different approaches and a quantitative comparison was not conducted (Table 3 and Table 4). A detailed account of general tools and repositories generally used in DNA-based identification of fungi are presented in Table 5.

Table 3.

An overview on DNA-based methods of fungal samples analyses.

Global Fungi Study ID Substrate Samples Method Sequencing Platform ITS2 Sequences Reference
Hartmann_2012_B1A3 6 Culture independent 454-pyrosequencing 2155088 [150]
Ihrmark_2012_3AE5 Soil, wood, wheat roots and hay 36 Culture independent 454-pyrosequencing 414896 [151]
Davey_2012_6F6A Shoots of Hylocomium splendens, Pleurozium schreberi, and Polytrichum commune 301 Culture independent 454-pyrosequencing 296964 [152]
Peay_2013_74BB Soil 36 Culture independent 454-pyrosequencing 86677 [153]
Davey_2013_7683 Shoots of Dicranum scoparium, Hylocomium splendens, Pleurozium schreberi and Polytrichum commune 454-pyrosequencing Culture independent 454-pyrosequencing 313084 [154]
Talbot_2014_A187 Soil 555 Culture independent 454-pyrosequencing 16977 [155]
Tedersoo_2014_B9DD Soil 360 Culture independent 454-pyrosequencing 1979803 [156]
Kadowaki_2014_B85B Soil 46 Culture independent 454-pyrosequencing 66067 [157]
Geml_2014_2936 Soil 10 Culture independent 454-pyrosequencing 285031 [158]
Davey_2014_2252 Shoots of Hylocomium splendens 251 Culture independent 454-pyrosequencing 639746 [159]
McHugh_2015_CAE1 Soil 20 Culture independent 454-pyrosequencing 594424 [160]
DeBeeck_2014_14DC Soil 20 Culture independent 454-pyrosequencing 32778 [161]
Yamamoto_2014_C3F7 Seedlings of Quercus sp. 431 Culture independent 454-pyrosequencing 59021 [162]
Walker_2014_22C1 Soil 24 Culture independent 454-pyrosequencing 34267 [163]
Veach_2015_7FDE Soil 91 Culture independent Illumina MiSeq 579967 [164]
Zhang_2015_A52F Seven lichens speciesViz. Cetrariella delisei, Cladonia borealis, C. arbuscula, C. pocillum, Flavocetraria nivalis, Ochrolechia frigida and Peltigera canina 22 Culture independent 454-pyrosequencing 11087 [165]
Elliott_2015_7CC2 Soil 16 Culture independent 454-pyrosequencing 3896 [166]
Geml_2015_1A45 Soil 10 Culture independent Ion Torrent 1098472 [167]
Hoppe_2015_BE27 Wood 48 Culture independent 454-pyrosequencing 121459 [168]
Jarvis_2015_B613 Roots of Pinus sylvestris 32 Culture independent 454-pyrosequencing 112333 [169]
Chaput_2015_41F7 Soil 4 Culture independent Tag-encoded FLX amplicon pyrosequencing 1197 [170]
van_der_Wal_2015_1114 Sawdust from sapwood and heartwood of Quercus robur, Rubus fruticosus, Sorbus aucuparia, Betula pendula,
Pteridium aquilinum and Amelanchier lamarckii
42 Culture independent 454-pyrosequencing 543801 [171]
Clemmensen_2015_B0AE Soil 466 Culture independent 454-pyrosequencing GL FLX Titanium system 592836 [172]
Gao_2015_1CEF Soil 24 Culture independent 454-pyrosequencing GL FLX Titanium system 93683 [173]
Liu_2015_6174 Soil 26 Culture independent Roche FLX 454- pyrosequencing 53978 [174]
Oja_2015_88D4 Cypripedium calceolus (subfamily Cypripedioideae), Neottia ovata
(Epidendroideae) and Orchis militaris (Orchidoideae) and Soil
158 Culture independent 454-pyrosequencing 63045 [175]
Goldmann_2015_EA26 Soil 48 Culture independent 454-pyrosequencer 140966 [176]
Tedersoo_2015_ED81 Soil 11 Culture independent Illumina MiSeq 261751 [177]
Rime_2015_89DE Soil 36 Culture independent 454-pyrosequencing GL FLX Titanium system 227118 [178]
Sterkenburg_2015_5E14 Soil 56 Culture independent 454-pyrosequencing 350560 [179]
Stursova_2016_D385 Soil 96 Culture independent Illumina MiSeq 452546 [180]
Semenova_2016_576B Soil 10 Culture independent Ion Torrent sequencing 1007509 [181]
Santalahti_2016_74FC Soil 117 Culture independent 454-pyrosequencing 739877 [182]
Rime_2016_E0E4 Soils and sediments 2 Culture independent 454-pyrosequencing 35937 [183]
RoyBolduc_2016_E50C Root and soil 63 Culture independent 454-pyrosequencing 248325 [184]
RoyBolduc_2016_F11B Soil 77 Culture independent 454-pyrosequencing 280272 [185]
Tedersoo_2016_TDEF Soil 136 Culture independent 454-pyrosequencing 788372 [186]
UOBC_2016_5CA6 Soil 655 Culture independent Illumina HiSeq 7138323 [187]
Urbina_2016_CE8E Soil 21 Culture independent Ion Torrent sequencing 564332 [188]
Valverde_2016_5E5C Soil from the rhizosphere of Welwitschia mirabilis 8 Culture independent 454-pyrosequencing 2677 [189]
Nacke_2016_8F49 Soil from the rhizosphere Fagus sylvatica and Picea abies 160 Culture independent 454-pyrosequencing 386432 [190]
Newsham_2016_191B Soil 29 Culture independent 454-pyrosequencing 509483 [191]
Nguyen_2016_D8E8 Shoots of Picea abies, Abies alba, Fagus sylvatica, Acer pseudoplatanus, Fraxinus excelsior, Quercus robur, Pinus sylvestris, Betula pendula, Carpinus betulus and Quercus robur 221 Culture independent 454-pyrosequencing 63853 [192]
Goldmann_2016_0757 Root and soil samples from beech-dominated plots 29 Culture independent 454-pyrosequencing 85867 [193]
Bahram_2016_7246 Soil 123 Culture independent 454-pyrosequencing 213249 [194]
Gehring_2016_E395 Roots and root-associated (rhizosphere) soil of sagebrush, cheatgrass, and rice grass plants 60 - - 1161117 [195]
Gourmelon_2016_9281 Soil 32 Culture independent Illumina MiSeq 91814 [196]
Bissett_AAAA_2016 Soil 2061 Culture independent Illumina MiSeq 50810033 [197]
Cox_2016_EDC5 Soil 135 Culture independent 454-pyrosequencing 886200 [198]
Oh_2016_DEBA Soil 12 Culture independent 454-pyrosequencing 98376 [199]
Frey_2016_5D5C Soil 12 Culture independent Illumina MiSeq v3 500999 [200]
Gannes_2016_5E98 Soil 23 Culture independent Illumina MiSeq system 218946 [201]
Li_2016_1EBC Soil 21 Culture independent Illumina MiSeq system 129184 [202]
Kielak_2016_1110 Wood of Pinus sylvestris 75 Culture independent 454-pyrosequencing 1281356 [203]
Ji_2016_C06E Soil 13 Culture independent 454-pyrosequencing 277 [204]
Baldrian_2016_DE02 Sawdust 118 Culture independent llumina MiSeq 1205580 [205]
Barnes_2016_0042 Roots of Cinchona calisaya 21 Culture independent llumina MiSeq 239387 [206]
Porter_2016_CD8D Soil 2 Culture independent 454-pyrosequencing 20123 [207]
Zhou_2016_A8F1 Soil 126 Culture independent Illumina MiSeq 3542416 [208]
Zhang_2016_1DA0 Soil 13 Culture independent 454-pyrosequencing 2362 [209]
Wang_2016_6223 Roots, stems, and sprouts of rice plant 1 Culture independent Illumina MiSeq 1850 [210]
Zifcakova_2016_4C03 Soil 24 Culture independent ILLUMINA
HISEQ2000
123869 [211]
VanDerWal_2016_4C9C Sawdust from sapwood and heartwood 130 Culture independent 454-pyrosequencing 1215932 [212]
Varenius_2017_BCFB Soil 517 Culture independent PacBio RSII platform by SciLifeLab 186474 [213]
van_der_Wal_2017_2D0D Sawdust samples of Larix stumps, and Quercus stumps 88 Culture independent Illumina MiSeq 877425 [214]
Wang_2017_7E18 Soil 6 Culture independent 454-pyrosequencing 53737 [215]
van_der_Wal_2017_3070 Soil 135 Culture independent Illumina MiSeq 1572834 [216]
Vasutova_2017_3070 Soil 28 Culture independent GS Junior
sequencer
9370 [217]
Vaz_2017_C16E Woody debris 2 Culture independent Personal Genome Machine 11817 [218]
Yang_2017_2AFC Soil 180 Culture independent llumina MiSeq platform PE250 12688168 [219]
Wicaksono_2017_3B9E Root samples of Alnus acuminata 24 Culture independent Ion Torrent 3596531 [220]
Yang_2017_EB1D Soil 26 Culture independent Illumina MiSeq
platform PE250
1450233 [221]
Zhang_2017_02C2 Plant litter and soil 54 Culture independent Illumina MiSeq 2904476 [222]
Zhang_2017_F933 Peat soil 9 Culture independent Illumina HiSeq2000 320199 [223]
Purahong_2017_8EFD Wood sample 116 Culture independent Genome Sequencer 454-FLX System 299831 [224]
Poosakkannu_2017_B342 Bulk soil, rhizosphere soil, and D. flexuosa Leaf 43 Culture independent IonTorrent 259743 [225]
Bergottini_2017_02C2 Roots of Ilex paraguariensis 11 Culture independent 454-pyrosequencing 189048 [226]
Dean_2017_F5A5 Roots of Glycine max (soybean) and Thlaspi arvense 12 Culture independent 454-FLX titanium 12596 [227]
Fernandez_Martinez_2017_14C3 Soil 11 Culture independent 454-pyrosequencing 138524 [228]
Ge_2017_4DC8 Roots of Quercus nigra, Q. virginiana, Q. laevis, Carya cf. glabra, Carya cf. tomentosa as well as several Carya and Quercus spp. 9 Culture independent 454-pyrosequencing 44 [229]
Gomes_2017_2AFC Roots of Thismia sp. 61 Culture independent Ion Torrent 4067438 [230]
Almario_2017_2082 Root and rhizosphere of Arabis alpina 26 Culture independent Illumina Miseq 805679 [231]
Anthony_2017_647F Soil 142 Culture independent Illumina Miseq 12453259 [232]
Grau_2017_E29A Soil 27 Culture independent Ion Torrent 960177 [233]
Hiiesalu_2017_E29A Soil 1 Culture independent 454-pyrosequencing 4616 [234]
Nguyen_2017_6F2C Leaf samples of Betula pendula 20 Culture independent 454-pyrosequencing 1318 [235]
Kolarikova_2017_EB1D Roots of Salix caprea and Betula pendula 24 Culture independent 454-pyrosequencing 47543 [236]
Kyaschenko_2017_89D4 Soil 30 Culture independent PacBio sequencing 64010 [237]
Oja_2017_AD29 Roots and rhizosphere soil of 333 Culture independent 454-pyrosequencing 446296 [238]
Miura_2017_2BE5 Leaves and berries of grapes 36 Culture independent Illumina MiSeq 2250530 [239]
Oono_2017_B342 Needles of Pinus taeda 143 Culture independent Illumina MiSeq 9755183 [240]
Kamutando_2017_6F2C Soil 3 Culture independent Illumina MiSeq 4 [241]
Shen_2017_C7F4 Soil 1 Culture independent Illumina MiSeq 1 [242]
Smith_2017_2AFC Root of Dicymbe corymbosa 8 Culture independent 454-pyrosequencing 94 [243]
Tian_2017_F933 Soil 3 Culture independent 454-GS FLX+pyrosequencing machine 25001 [244]
Tu_2017_BCFB Soil 60 Culture independent Illumina MiSeq 696557 [245]
Sharma_Poudyal_2017_F933 Soil 53 Culture independent 454-FLX titanium 7680 [246]
Cross_2017_2AFC Leaflet, petiole upper and petiole base tissues of ash leaves of Fraxinus excelsior (common ash) 27 Culture independent 454-pyrosequencing 171094 [247]
Kazartsev_2018_1115 Bark of Picea abies 20 Culture independent 454-pyrosequencing 22918 [248]
Bickford_2018_2EE0 Roots of Phragmites spp. 3 Culture independent PacBio-RS II 66439 [249]
Cline_2018_0BCC Wood of Betula papyrifera 15 Culture independent 454-FLX titanium 660 [250]
Cregger_2018_added Roots, stems, and leaves of Populus deltoides and the Populus trichocarpa × deltoides hybrid 290 Culture independent Illumina MiSeq 14767409 [251]
Marasco_2018_DBE1 Rhizosheath-root system of Stipagrostis sabulicola, S. seelyae and Cladoraphis spinosa 49 Culture independent Illumina MiSeq 4694085 [252]
Glynou_2018_445A Roots of nonmycorrhizal Microthlaspi spp. 5 Culture independent Illumina Miseq 7 [253]
Montagna_2018_E316 Soil 24 Culture independent Illumina Miseq 2475767 [254]
Schlegel_2018_A231 Leaves of Fraxinus spp. and Acer pseudoplatanus 353 Culture independent Illumina MiSeq 24198214 [255]
SchneiderMaunoury_2018_51AB Different plant species 78 Culture independent Ion Torrent 352332 [256]
Schon_2018_01F4 Soil 18 Culture independent Illumina MiSeq 235709 [257]
Rasmussen_2018_C8E6 Root samples 228 Culture independent Illumina MiSeq 428044 [258]
Rogers_2018_147F Hemlock stems 6 Culture independent Illumina MiSeq 675067 [259]
Purahong_2018_14C0 Deadwood logs 297 Culture independent 454-pyrosequencing 2034928 [260]
Qian_2018_2B1E Leaves of Mussaenda shikokiana 20 Culture independent Illumina MiSeq 449179 [261]
Park_2018_569C Calanthe species: C. aristulifera, C. bicolor, C. discolor, C. insularis and C. striata 12 Culture independent 454-GS FLX +System 65867 [262]
Mirmajlessi_2018_765D Soil 40 Culture independent Illumina MiSeq 1077125 [263]
Purahong_2018_9F2E Wood samples 96 Culture independent 454-pyrosequencing 656682 [264]
Si_2018_53B6 Soil 27 Culture independent Illumina MiSeq 692169 [265]
Saitta_2018_51C8 Soil 16 Culture independent Illumina MiSeq 4923667 [266]
Santalahti_2018_3794 Soil 38 Culture independent 454-pyrosequencing 218387 [267]
Sukdeo_2018_1DF4 Soil 126 Culture independent Illumina MiSeq 32336646 [268]
Zhu_2018_1E38 Soil 12 Culture independent Illumina MiSeq 1031479 [269]
Zhang_2018_F81F Soil 106 Culture independent Illumina HiSeq 1673070 [270]
Zhang_2018_491A Bare sand, algal crusts, lichen crusts, and moss crusts 17 Culture independent Illumina Miseq 442056 [271]
Sun_2018_1B01 Soil 36 Culture independent Illumina Miseq 1188520 [272]
Weissbecker_2019_6A75 Soil 394 Culture independent GS-FLX + 454 pyrosequencer 1109208 [273]
Purahong_AD_2019 Wood chips of rotted heartwood deadwood from C. carlesii 3 Culture independent PacBio RS II system 22886 [274]
Egidi_AD_2019 Soil 161 Culture independent Illumina MiSeq 14131987 [275]
Froeslev_2019_CA74 Soil 276 Culture independent Illumina MiSeq 6114124 [276]
Ogwu_2019_38FE Soil 13 Culture independent Illumina Miseq 724483 [277]
Ovaskainen_2019_air Soil particles, spores, pollen, bacteria, and small insects 75 Culture independent Illumina Miseq 935812 [278]
Qian_2019_9691 Leaves and soil 30 Culture independent Illumina HiSeq 2133292 [279]
Ramirez_2019_D0B2 Soil 810 Culture independent Illumina Miseq 6555903 [280]
Pellitier_2019_82BC Bark of black oak (Quercus velutina), white oak (Q. alba), red pine (Pinus resinosa), eastern white pine (P. strobus) and red maple (Acer rubrum) 15 Culture independent Illumina MiSeq 10649956 [281]
Semenova-Nelsen_2019_add Litter and the uppermost soil 121 Culture independent Illumina MiSeq 3205748 [282]
Sheng_2019_66AC Soil 16 Culture independent Illumina MiSeq 447840 [283]
Shigyo_2019_5B19 Soil 144 Culture independent Illumina MiSeq 4353704 [284]
Schroter_2019_1B64 Fine roots and soil 3 Culture independent Roche GS-FLX+ pyrosequencer 144 [285]
Singh_2019_EA7F Fine roots and soil 96 Culture independent Illumina MiSeq 3138303 [286]
Song_2019_ad2 Soil 46 Culture independent Illumina MiSeq 920391 [287]
U’Ren_2019_add Fresh, photosynthetic tissues of a diverse range
of plants and lichens
486 Culture-based sampling and culture-independent Illumina MiSeq 5671834 [288]
Unuk_2019_567A Fine roots and soil 30 Culture independent Ilumina MiSeq 470786 [289]
Araya_2019_add Soil 36 Culture independent Illumina MiSeq 8083471 [290]
Alvarez-Garrido_2019_add Root tips from A. pinsapo trees following the trunk to the superficial secondary roots 76 Culture independent Illumina MiSeq 1795423 [291]
Wei_2019_3796 Soil 1 Culture independent Illumina HiSeq 18 [292]
Pan_2020_addZ Soil from the rhizosphere of potato 1 Culture independent Illumina MiSeq 2 [293]
Detheridge_2020_Z Soil 70 Culture independent 1832454 [294]
Li_2020_AS Soil 19 Culture independent Illumina MiSeq 116660 [295]

Table 4.

An overview on culture dependentand culture independent analyses of fungal samples with respect to location, source, sequencing, observation method and target gene.

Location Source Sequencing Method Target Gene Reference
Woods Hole Harbor Massachusetts Wood Culture dependent Direct observation [296]
Atlantic Ocean Water Culture dependent Incubation of sample and direct observation [297]
Rumanian coast of the Black Sea Calcareous substances Culture dependent Incubation of sample and direct observation [298]
Iceland-Faroe ridge Water Culture dependent Incubation of sample and direct observation [299]
Bahamas Wood Culture dependent Incubation of sample and direct observation [300]
Bay of Bengal and Arabian Sea Sediment Culture dependent Culture media [301]
Northwest Pacific Ocean (Sagami Bay and Suruga Bay; Palau-Yap Trench and Mariana Trench) Sediments Sanger Culture dependent Culture media ITS and 5.8S [302]
Guaymas Basin hydrothermal vent Sediment Sanger Culture independent Clone library SSU [303]
Mid-Atlantic Ridge hydrothermal area Sediment Sanger Culture independent Clone library SSU [304]
Chagos Trench, Indian Ocean Sediment Culture dependent/Direct detection Culture media [305]
Peru Margin Sediment Sanger Culture dependent Culture media SSU [306]
Central Indian Basin Sediment Culture dependent Culture media [307]
Kuroshima Knoll in Okinawa Sediment Sanger Culture dependent Clone library SSU [308]
Central Indian Basin Sediment Sanger Culture dependent Culture media [309]
Different locations Water and sediment Sanger Culture dependent Clone library SSU [310]
South China Sea Sediment Sanger Culture dependent Clone library ITS [311]
Lost City Water Sanger Culture dependent Clone library SSU [312]
Central Indian Basin Sediment Direct detection [313]
Vailulu’u is an active submarine volcano at the eastern end of the Samoan volcanic chain Water Sanger Culture dependent Culture media ITS [314]
Vanuatu archipelago Deepsea water, wood and debris Sanger Culture dependent Culture media SSU and LSU [315]
East Pacific Rise, Mid-Atlantic Ridge and Lucky Strike Deepsea hydrothermal ecosystem Sanger Culture dependent/Cultureindependent Culture media Clone library SSU [316]
Southwest Pacific Deepsea hydrothermal ecosystems Sanger Culture dependent Culture media SSU [317]
Different locations Deep-sea hydrothermal ecosystems Sanger Culture dependent Culture media LSU [318]
Japanese islands, including a sample from the deepest ocean depth, the Mariana Trench Sediment Sanger Culture independent Clone library SSU, ITS and LSU [319]
Southern East Pacific Rise Water and bivalves Sanger Culture independent Clone library SSU [320]
Central Indian Basin Sediment Sanger Culture dependent Culture media Full ITS and SSU [321]
Southern Indian Ocean Sediment Sanger Culture independent Clone library SSU [322]
Peru Margin and the Peru Trench Sediment Sanger Culture independent Clone library SSU [323]
Puerto Rico Trench Water Sanger Culture independent Clone library SSU [324]
Sagami-Bay Deep-sea methane cold-seep sediments Sanger Culture independent Clone library SSU [325]
Marmara Sea Sediment Sanger and 454-pyrosequencing Culture independent Clone library SSU [326]
Central Indian Basin - Several stations Sediment Sanger Culture independent Clone library Full ITS and SSU [327]
Central Indian Basin - Several stations Sediment Sanger Culture dependent/Culture independent Culture media Clone library SSU (Fungal isolates)/ITS (DNA sediment) [328]
Central Indian Basin - Several stations Sediment Sanger Culture independent cloning Clone library Full ITS and SSU [328]
Alaminos Canyon 601 methane seep in the Gulf of Mexico Methane seeps sediment Sanger Culture independent Clone library ITS and LSU [329]
The area surrounding the DWH oil spill in the Gulf of Mexico Deep-sea samples from the area surrounding the Deepwater Horizon oil spill 454-pyrosequencing Culture independent Shotgun assA and bssA [330]
Hydrate Ridge, Peru Margin, Eastern Equatorial Pacific Sediment Sanger and 454-pyrosequencing Culture independent TRFLP/Metatranscriptomics SSU [331]
Peru Margin Sediment Illumina Culture independent Metatranscriptomics [331]
South China Sea Sediment Sanger Culture dependent Culture media Full ITS [332]
Mediterranean Sea Hypsersaline anoxic basin 454-pyrosequencing Culture independent SSU [333]
Canterbury basin, on the eastern margin of the South Island of New Zealand Sediment Ocean Drilling Program 454-pyrosequencing Culture independent Metatranscriptomics ITS and SSU [334]
The Pacific Ocean and MarianaTrench Sediment Sanger Culture independent Clone library ITS [335]
East Indian Ocean Sediment Sanger Culture dependent/Culture independent Culture media Clone library ITS [336]
Canterbury basin, on the eastern margin of the South Island of New Zealand Sediment Sanger Culture dependent Culture media SSU, ITS and LSU [337]
Urania, Discovery and L’Atalante basins Hypsersaline anoxic basin Illumina Culture independent Metatranscriptomics [338]
Several locations around the world/The ICoMM data set Pelagic and benthic samples 454-pyrosequencing Culture independent SSU [339]
The Pacific Ocean and MarianaTrench Sediment Sanger Culture independent Clone library ITS, SSU and LSU [340]
Okinawa Sediment Illumina Culture independent ITS [341]
Southwest Indian Ridge (SWIR) Sediment and
Deepsea hydrothermal ecosystems
Sanger and Illumina Culture dependent/Culture independent With and without Culture media ITS [342]
Continental margin of Peru Sediment Illumina Culture independent SSU [343]
North Atlantic and Arctic Basin Marine snow Culture independent CARD-FISH [344]
Northern Chile Water Sanger Culture dependent Full ITS [345]
The Sao Paulo Plateau Asphalt seeps Ion Torrent Culture independent ITS [346]
Peru Margin Sediment Illumina Culture independent Metatranscriptomics [347]
East Pacific Sediment Sanger Culturedependent Culture media Full ITS [348]
The Ionian Sea (Central Mediterranean Sea) Sediment Illumina Culture independent FISH ITS [349]
South-central western Pacific Ocean Water Illumina Culture independent SSU [350]
Challenger deep Water Illumina Culture independent ITS [351]
Mexican Exclusive Economic Zone-Gulf of Mexico Sediment Illumina Culture independent ITS [352]
Yap Trench Sediment Sanger and Illumina Culture dependent/Culture independent ITS [353]
Mexican Exclusive Economic Zone-Gulf of Mexico Sediment Sanger Culture dependent Culture media Full ITS and tub [354]

Table 5.

Databases and tools for sequence-based classification and identification.

General Identification Tools and Data Repositories
BOLD http://www.boldsystems.org/ (accessed on 6 November 2021)
Westerdijk Fungal BiodiversityInstitute https://wi.knaw.nl/page/Collection (accessed on 6 November 2021)
CIPRES https://www.phylo.org/ (accessed on 6 November 2021)
Dryad http://datadryad.org/ (accessed on 6 November 2021)
FUSARIUM-ID http://isolate.fusariumdb.org/ (accessed on 6 November 2021)
One Stop Shop Fungi http://onestopshopfungi.org/ (accessed on 6 November 2021)
GreenGenes http://greengenes.lbl.gov/cgi-bin/nph-index.cgi (accessed on 6 November 2021)
MaarjAM http://maarjam.botany.ut.ee/ (accessed on 6 November 2021)
Mothur http://www.mothur.org/ (accessed on 6 November 2021)
Naïve Bayesian Classifier http://aem.asm.org/content/73/16/5261.short?rss=1&ssource=mfc (accessed on 6 November 2021)
Open Tree of Life http://www.opentreeoflife.org/
QIIME http://qiime.org/ (accessed on 6 November 2021)
PHYMYCO database http://phymycodb.genouest.org/ (accessed on 6 November 2021)
RefSeq Targeted Loci http://www.ncbi.nlm.nih.gov/refseq/targetedloci/ (accessed on 6 November 2021)
Ribosomal Database Project (RDP) http://rdp.cme.msu.edu/ (accessed on 6 November 2021)
Silva http://www.arb-silva.de/ (accessed on 6 November 2021)
TreeBASE http://treebase.org/ (accessed on 6 November 2021)
TrichoBLAST http://www.isth.info/tools/blast/ (accessed on 6 November 2021)
UNITE http://unite.ut.ee/ (accessed on 6 November 2021)
United Kingdom National Culture Collection http://www.ukncc.co.uk/ (accessed on 6 November 2021)
Data standards
BIOM http://biom-format.org/ (accessed on 6 November 2021)
MIMARKS http://www.nature.com/nbt/journal/v29/n5/full/nbt/1823.html (accessed on 6 November 2021)
Darwin Core http://rs.tdwg.org/dwc/ (accessed on 6 November 2021)
Genomics databases and tools
AFTOL http://aftol.umn.edu/ (accessed on 6 November 2021)
1000 Fungal Genomes Project (1KFG) http://1000.fungalgenomes.org/home/ (accessed on 6 November 2021)
FungiDB http://fungidb.org/fungidb/ (accessed on 6 November 2021)
GEBA http://jgi.doe.gov/our-science/science-programs/microbial-genomics/phylogenetic-diversity/ (accessed on 6 November 2021)
MycoCosm http://genome.jgi.doe.gov/programs/fungi/index.jsf (accessed on 6 November 2021)
Functional database
FUNGuild http://github.com/UMNFuN/FUNGuild (accessed on 6 November 2021)
Nomenclature and nomenclatural databases and organizations
Catalogue of Life (COL) http://www.catalogueoflife.org/ (accessed on 6 November 2021)
EPPO-Q-bank http://qbank.eppo.int/ (accessed on 6 November 2021)
Faces of Fungi http://www.facesoffungi.org/ (accessed on 6 November 2021)
Index Fungorum http://www.indexfungorum.org/ (accessed on 6 November 2021)
International code of nomenclature for algae, fungi, and plants (ICNAFP) http://www.iapt-taxon.org/nomen/main.php (accessed on 6 November 2021)
International Commission on the Taxonomy of Fungi (ICTF) http://www.fungaltaxonomy.org/ (accessed on 6 November 2021)
List of prokaryotic names with standing in nomenclature (LPSN) http://www.bacterio.net/ (accessed on 6 November 2021)
MycoBank http://www.mycobank.org/ (accessed on 6 November 2021)
Outline of fungi http://www.outlineoffungi.org/ (accessed on 6 November 2021)
Biodiversity collections databases
Global Biodiversity Information Facility (GBIF) http://www.gbif.org/ (accessed on 6 November 2021)
iDigBio http://www.idigbio.org/ (accessed on 6 November 2021)
MycoPortal http://mycoportal.org/portal/index.php (accessed on 6 November 2021)
World Federation of Culture Collections (WFCC) http://www.wfcc.info/ (accessed on 6 November 2021)

Likewise, a listing of Sequence Independent methodsand High-throughput sequencing platforms are summarized in Table 6. The pictorial overview on different molecular techniques, as well as the general protocol of culture dependent and culture independent DNA-based molecular techniques used in fungal sample analyses, is also present here (Figure 4 and Figure 5).

Table 6.

Sequence Independent methods and High-throughput sequencing platforms.

Sequencing Independent Methods High-Throughput Sequencing Platforms
ARDRA (Amplified Ribosomal DNA Restriction Analysis) 454 Pyrosequencing (second-generation platform)
ARISA (Amplified Intergeneric Spacer Analysis) Illumina MiSeq sequencing (second-generation)
DGGE (Denaturing Gradient Gel Electrophoresis) Ion Torrent PGM and GeneStudio
FISH (Fluorescence in Situ Hybridization) PacBio RSII and Sequel
(This third-generation HTS platform)
LAMP (Loop-Mediated Isothermal Amplification) Oxford Nanopore MinION, GridION and PrometION (third-generation)
MT-PCR (Multiplexed tandem PCR)
RCA (Rolling Circle Amplification)
RDBH (Reverse Dot Blot Hybridization)
RFLP (Restriction Fragment Length Polymorphism)
SSCP (Single-Strand Conformation Polymorphism)
TGGE (Thermal Gradient Gel Electrophoresis)
TRFLP (Terminal Restriction Fragment Length Polymorphism)

Figure 4.

Figure 4

An overview of DNA-based molecular techniques used in fungal sample analyses.

Figure 5.

Figure 5

Different molecular techniques used in DNA-based analyses of different fungi.

5. Polyphasic Identification

The correct identification of species is a crucial goal in taxonomy. Information about each identified fungal species (e.g., biochemical properties, ecological roles, morphological description, physiological and societal risks or benefits) is a vital component in this process. Identification is a never-ending and apparently lengthy process with several amendments of the taxonomic outlines.

The polyphasic approaches comprise the use of varied procedures based on the grouping of scientific information. Various approaches such as biochemical, micro-and macro-morphology, and molecular biology studies are applied (Figure 6). Microbial spectral analysis based on mass spectrometry (particularly matrix assisted laser desorption/ionization time-of-flight mass spectrometry//MALDI-TOF MS) has been developed and used as an important step in the polyphasic identification of fungi [355].

Figure 6.

Figure 6

Modern polyphasic methodology of fungal identification.

A polyphasic method based on ecology, morphology and molecular data based techniques (multigene sequencing) is highly advocated to identify the fungal species precisely. Phylogenetic analyses have been comprehensively used to interpret species limitations in several fungal genera [356,357] shown in Table 7. There are several fungal species that have not been correctly identified. However, there are numerous boundaries associated with phylogenetic analyses for species identification [358,359]. There is an absence of molecular data for many fungal species, including reference sequences, and few species only have ITS sequences, which obstructs molecular-based techniques [360,361]. Moreover, phylogenetic analyses do not account for hybridization events and horizontal gene transfer [359]. The internal transcribed spacer (ITS) region has been accepted as a nearly universal barcode for fungi owing to the ease of amplification and its wide utility across the kingdom; however, it can often only be used for placement of taxa up to the genus level [361,362]. There is also a lack of ex-type or authenticated sequences for several pathogenic genera [355]. The identification of species boundaries is, thus, important to better understand genetic variation in nature to develop sustainable control measures [363].

Table 7.

An overview of polyphasic approach on analyses of plant pathogenic fungi.

Family Genus Genetic Marker for Genus Level Genetic Markers for Species Level References
Pleosporaceae Alternaria LSU and SSU ITS, GAPDH, rpb2 and tef1-α [365,366,367,368]
Physalacriaceae Armillaria ITS ITS, IGS1 and tef1-α [369,370]
Botryosphaeriaceae Barriopsis ITS tef1-α [371,372]
Didymellaceae Ascochyta, Boeremia, Didymella, Epicoccum, Phoma LSU and ITS rpb2, tub2 and tef1-α [373,374,375,376]
Pleosporaceae Bipolaris GPDH ITS, tef1-α and GPDH [377]
Botryosphaeriaceae Botryosphaeria LSU, SSU and ITS tub and tef1-α [378,379]
Nectriaceae Calonectria, Cylindrocladium LSU and ITS ITS, tub, tef1-α, cmdA, His3 and ACT [380,381,382,383,384]
Mycosphaerellaceae Cercospora LSU and ITS ITS, tef1-α, ACT, CAL, HIS, tub2, rpb2 and GAPDH [385,386,387,388,389]
Cryptobasidiaceae Clinoconidium ITS and LSU ITS and LSU [390,391,392]
Choanephoraceae Choanephora ITS ITS [393]
Glomerellaceae Colletotrichum GPDH, tub; ApMat-Intergenic region of apn2 and MAT1-2-1 genes can resolve within the
C. gloeosporioides complex
GS-glutamine synthetase-CHS-1, HIS3-Histone3 and ACT-Actin-Placement within the genus and also some species-level delineation [394,395,396]
Schizoparmaceae Coniella LSU and ITS ITS, LSU, tef1-α, rpb2 and His3 [397,398,399,400,401]
Pleosporaceae Curvularia LSU GDPH [402,403,404]
Nectriaceae Cylindrocladiella ITS and LSU HIS, tef1-α and tub2 [405,406]
Cyphellophoraceae Cyphellophora LSU and SSU ITS, LSU, tub2 and rpb1 [407,408]
Botryosphaeriaceae Diplodia ITS, tef1-α and tub LSU and SSU [378,409]
Botryosphaeriaceae Dothiorella tub tef1-α [378,410]
Elsinoaceae Elsinoe ITS rpb2 and tef1-α [411,412]
Xylariaceae Entoleuca LSU and ITS rpb2 and tub2 [413]
Entylomataceae Entyloma ITS ITS [80,414,415]
Corticiaceae Erythricium LSU ITS [416]
Botryosphaeriaceae Eutiarosporella LSU and SSU ITS and LSU [372,417,418]
Hymenochaetaceae Fomitiporia ITS LSU, ITS, tef1-α and rpb2 [419,420,421,422,423]
Hymenochataceae Fulvifomes LSU ITS, tef1-α and rpb2 [424,425]
Nectriaceae Fusarium ATP citrate lyase (Acl1), tef1-α and ITS Calmodulin encoding gene (CmdA), tub2, tef1-α, rpb1 and rpb2 [426,427,428]
Ganodermataceae Ganoderma ITS rpb2 and tef1-α [429,430,431,432,433,434,435]
Erysiphaceae Golovinomyces ITS and LSU ITS and LSU, IGS, rpb2 and CHS [436,437,438,439,440]
Bondarzewiaceae Heterobasidion LSU rpb1 and rpb2 [441]
Nectriaceae Ilyonectria ITS, LSU, tef1-α and tub2 tef1-α, tub2 and His3 [442,443,444,445,446]
Corticiaceae Laetisaria, Limonomyces LSU ITS [447,448]
Botryosphaeriaceae Lasiodiplodia SSU and LSU ITS, tef1-α and tub2 [378,449]
Botryosphaeriaceae Macrophomina LSU and SSU ITS, tef1-α, ACT, CmdA and tub2 [378,450]
Medeolariaceae Medeolaria ITS ITS [451]
Caloscyphaceae Caloscypha SSU and LSU SSU, LSU [452]
Meliolaceae Meliola LSU and SSU ITS [453,454]
Mucoraceae Mucor LSU and SSU ITS and rpb1 [455,456,457,458,459]
Erysiphaceae Neoerysiphe ITS and LSU ITS [460,461,462]
Dermataceae Neofabraea LSU ITS, LSU, rpb2 and tub2 [463]
Botryosphaeriaceae Neofusicoccum SSU, LSU ITS, tef1-α, tub2 and rpb2 [464]
Nectriaceae Neonectria LSU, ITS, tef1-α and tub2 ITS, tef1-α and tub2 [446]
Sporocadaceae Neopestalotiopsis LSU ITS, tub2 and tef1-α [465,466,467]
Didymellaceae Nothophoma LSU and ITS tub2 and rpb2 [468,469,470,471]
Sporocadaceae Pestalotiopsis LSU ITS, tub2 and tef1-α [472,473]
Togninicaceae Phaeoacremonium SSU and LSU ACT and tub2 [474,475,476]
Hymenochataceae Phellinotus LSU ITS, tef1-α and rpb2 [477]
Hymenochaetaceae Phellinus LSU ITS, tef1-α and rpb2 [478,479,480,481]
Phyllostictaceae Phyllosticta ITS ITS, LSU, tef1-α, GAPDH and ACT [57,482,483]
Peronosporacae Phytophthora LSU, SSU and COX2 LSU, tub2 and COX2 [484,485]
Peronosporaceae Plasmopara LSU LSU [486]
Leptosphaeriaceae Plenodomus LSU ITS, tub2 and rpb2 [487]
Sporocadaceae Pseudopestalotiopsis LSU ITS, tub2 and tef1 [488,489]
Pyriculariaceae Pseudopyricularia LSU and rpb1 ACT, rpb1, ITS and CAL [490,491]
Saccotheciaceae Pseudoseptoria LSU LSU, ITS and rpb2 [492,493]
Rhizopodaceae Rhizopus ITS and rpb1 SSU, LSU and ACT [494,495,496]
Xylariaceae Rosellinia LSU and ITS ITS [497,498,499,500]
Didymellaceae Stagonosporopsis ITS tub2 and rpb2 [373,501,502]
Pleosporaceae Stemphylium ITS CmdA and GAPDH [503,504,505,506]
Dothidotthiaceae Thyrostroma LSU ITS, tef1-α, rpb2 and tub2 [507,508]
Tilletiaceae Tilletia LSU ITS [509,510,511,512]
Ustilaginaceae Ustilago LSU ITS [53,513]
Venturiaceae Venturia LSU and SSU ITS [514,515]

It is also recommended to use diverse methods, including Bayesian inference, maximum likelihood, maximum parsimony coupled with automatic barcode gap discovery, coalescent-based methods or genealogical concordance phylogenetic species recognition to explore species boundaries in various fungal genera [358,360,364].

6. Conclusions and Future Perspectives

After compiling this manuscript, it was concluded thatabout 4–5 million species of fungi are distributed all across the globe, and less than 2% of them have been described to date. Different estimates of fungal species ranging between 0.1–9.9 million have been provided by different mycologists working continuously on the taxonomy and diversity of fungi. The addition of new fungal taxa (genera and species) is an ongoing process, as a number of natural environments and a variety of habitatsare still waiting to be explored in terms of their fungal diversity. Based on a regression relationship between time and described fungal species, the description rate of fungi was calculated, and new proposed estimates were also presented. As per the description rate observed after this regression relationship, the estimation of 1.5 million fungal species could be achieved by the year 2184, while the estimation of 2.2 million could be achieved by 2210 and 5.1 million by 2245.

Both classical and DNA-based methods to study fungi have their own utility and importance. While classical methods are still used widely due to low cost, ease of identifying species and ability to sample wide areas or many pieces of substrata, modern methods have also gained popularity due to their accuracy in characterizing the fungi which are not possible with traditional classical methods. When traditional morphology based species identification utilizes the overall morphology of an organism, DNA-based modern techniques require a very small amount of fungal sample. However, modern mycologists have accepted integrated approaches using both morphological and molecular data.

In the integral approach of traditional and modern methods of fungal analyses, fungal culture plays an important role. Production of different morphs on culture and other accessory structures are important for identification and characterization. Due to this non sporulation of many fungi neither on the natural substrate nor artificial culture media, the modern DNA-based technique proved to be more efficient to understand their taxonomy. New generation sequencing or metagenomic techniques are of much use to analyze the fungal diversity of different environments. There area large number of sequences from environmental samples (unculturable and dark taxa) available in GenBank which signifies the use of modern methods to describe many important fungi. The advancement in sequencing technologies of DNA and RNA is regularly helping researchers to study fungi in an integrative way and understand their biology, ecology and taxonomy in a better way. More than a billion HTS-derived ITS reads are available publicly in available databases and can be used by researchers during various mycological studies. It is important to use this data to assemble evidence hitherto overlooked, as well as new hypotheses, research questions and theories. If cultures of all fungi are deposited in culture collections and made easily available to researchers, it may perhaps add value to basic taxonomy research.

The future of fungal taxonomy is challenging, as fungal systematics research requires well-trained mycologists with good expertise in traditional fungal classification, molecular systematics and bioinformatics/genomics. In order to produce experienced mycologists, the number of training programmers on fungal systematics should be organized more frequently for younger researchers. Molecular systematics training is comparatively expensive in nature and requires a decent facility for sequencing and/orcomputation. Research funding is not so uniform for taxonomic studies and is one of the possible reasons for declining fungal taxonomists. If this all goes at the same pace, the lack of well-trained fungal taxonomists will be a problem not only in the field of fungal taxonomy, but other scientific fields that rely on knowledge of fungal biodiversity and evolutionary biology. Therefore, adequate funding for research on taxonomic work is necessary to come out of this deprived situation. For young minds in college or plant pathology departments, more field research and highly advanced training programs should be organized to stimulate their interest in mycology.

Acknowledgments

Authors wish to thank their respective organizations for providing the necessary laboratory facilities and valuable support during the study. The publication of this article was support by Chiang Mai University, Thailand.

Author Contributions

Conceptualization, A.K.G. and R.K.V.; methodology, A.K.G. and S.A.; software, R.K.V., A.K.G., B.D. and M.N.; validation, A.K.G., R.K.V., N.S. and S.A.; formal analysis, A.K.G., N.S., Y.B. and M.N.; investigation, A.K.G. and R.K.V.; resources, A.K.G., R.K.V., S. and N.S.; data curation, A.K.G., R.K.V. and N.S.; writing—original draft preparation, A.K.G., R.K.V. and N.S.; writing—review and editing, N.S. and A.K.G.; visualization, N.S., R.K.V. and A.K.G.; supervision, A.K.G. and N.S.; project administration, A.K.G., R.K.V. and N.S.; funding acquisition, N.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Tsioumani E., Tsioumanis A. International Institute for Sustainable Development Photo: NASA (CC0 1.0) STILL ONLY ONE EARTH: Lessons from 50 Years of UN Sustainable Development Policy Biological Diversity: Protecting the Variety of Life on Earth Key Messages. 2020. [(accessed on 15 October 2021)]. Available online: https://www.iisd.org/system/files/2020-09/still-one-earth-biodiversity.pdf.
  • 2.Schmit J.P., Mueller G.M. An estimate of the lower limit of global fungal diversity. Biodivers. Conserv. 2007;16:99–111. doi: 10.1007/s10531-006-9129-3. [DOI] [Google Scholar]
  • 3.Wu B., Hussain M., Zhang W., Stadler M., Liu X., Xiang M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology. 2019;10:127–140. doi: 10.1080/21501203.2019.1614106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Hasan S., Gupta G. Fungal Biodiversity: Evolution & Distribution—A Review. Int. J. Appl. Res. Stud. 2012;1:1–8. [Google Scholar]
  • 5.Cox R.J. Polyketides, proteins and genes in fungi: Programmed nano-machines begin to reveal their secrets. Org. Biomol. Chem. 2007;5:2010–2026. doi: 10.1039/b704420h. [DOI] [PubMed] [Google Scholar]
  • 6.Devi R., Kaur T., Kour D., Rana K.L., Yadav A., Yadav A.N. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb. Biosyst. 2020;5:21–47. doi: 10.21608/mb.2020.32802.1016. [DOI] [Google Scholar]
  • 7.Rana K.L., Kour D., Sheikh I., Yadav N., Yadav A.N., Kumar V., Singh B.P., Dhaliwal H.S., Saxena A.K. Advances in Endophytic Fungal Research. Springer International Publishing; Cham, Switzerland: 2019. Biodiversity of endophytic fungi from diverse niches and their biotechnological applications; pp. 105–144. [Google Scholar]
  • 8.Berbee M.L., James T.Y., Strullu-Derrien C. Early Diverging Fungi: Diversity and Impact at the Dawn of Terrestrial Life. Annu. Rev. Microbiol. 2017;71:41–60. doi: 10.1146/annurev-micro-030117-020324. [DOI] [PubMed] [Google Scholar]
  • 9.Lücking R., Aime M.C., Robbertse B., Miller A.N., Aoki T., Ariyawansa H.A., Cardinali G., Crous P.W., Druzhinina I.S., Geiser D.M., et al. Fungal taxonomy and sequence-based nomenclature. Nat. Microbiol. 2021;6:540–548. doi: 10.1038/s41564-021-00888-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Blackwell M. The fungi: 1, 2, 3… 5.1 million species? Am. J. Bot. 2011;98:426–438. doi: 10.3732/ajb.1000298. [DOI] [PubMed] [Google Scholar]
  • 11.Hawksworth D.L., Lücking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017;5 doi: 10.1128/microbiolspec.FUNK-0052-2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hawksworth D.L. The fungal dimension of biodiversity: Magnitude, significance, and conservation. Mycol. Res. 1991;95:641–655. doi: 10.1016/S0953-7562(09)80810-1. [DOI] [Google Scholar]
  • 13.Peršoh D. Plant-associated fungal communities in the light of meta’omics. Fungal Divers. 2015;75:1–25. doi: 10.1007/s13225-015-0334-9. [DOI] [Google Scholar]
  • 14.Bálint M., Bahram M., Eren A.M., Faust K., Fuhrman J., Lindahl B., O’Hara R.B., Öpik M., Sogin M.L., Unterseher M., et al. Millions of reads, thousands of taxa: Microbial community structure and associations analyzed via marker genes. FEMS Microbiol. Rev. 2016;40:686–700. doi: 10.1093/femsre/fuw017. [DOI] [PubMed] [Google Scholar]
  • 15.Wojciechowska I. The Leather Underground: Biofabrication Offers New Sources for Fabrics. AATCC Rev. 2017;17:18–23. doi: 10.14504/ar.17.6.1. [DOI] [Google Scholar]
  • 16.Jones M., Bhat T., Huynh T., Kandare E., Yuen K.K.R., Wang C.-H., John S. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater. 2018;42:816–825. doi: 10.1002/fam.2637. [DOI] [Google Scholar]
  • 17.Wijayawardene N.N., Hyde K., Al-Ani L., Tedersoo L., Haelewaters D., Rajeshkumar K., Zhao R., Aptroot A., Leontyev D., Saxena R.K., et al. Outline of fungi and fungus-like taxa. Mycosphere. 2020;11:1060–1456. doi: 10.5943/mycosphere/11/1/8. [DOI] [Google Scholar]
  • 18.Tedersoo L., Sánchez-Ramírez S., Kõljalg U., Bahram M., Döring M., Schigel D., May T., Ryberg M., Abarenkov K. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018;90:135–159. doi: 10.1007/s13225-018-0401-0. [DOI] [Google Scholar]
  • 19.Wijayawardene N.N., Pawłowska J., Letcher P.M., Kirk P.M., Humber R.A., Schüßler A., Wrzosek M., Muszewska A., Okrasińska A., Istel Ł., et al. Notes for genera: Basal clades of fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota) Fungal Divers. 2018;92:43–129. [Google Scholar]
  • 20.James T.Y., Stajich J.E., Hittinger C.T., Rokas A. Toward a Fully Resolved Fungal Tree of Life. Annu. Rev. Microbiol. 2020;74:291–313. doi: 10.1146/annurev-micro-022020-051835. [DOI] [PubMed] [Google Scholar]
  • 21.Rossman A.Y., Allen W.C., Braun U., Castlebury L., Chaverri P., Crous P.W., Hawksworth D.L., Hyde K.D., Johnston P., Lombard L., et al. Overlooked competing asexual and sexually typified generic names of Ascomycota with recommendations for their use or protection. IMA Fungus. 2016;7:289–308. doi: 10.5598/imafungus.2016.07.02.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wijayawardene N.N., Hyde K.D., Rajeshkumar K.C., Hawksworth D.L., Madrid H., Kirk P.M., Braun U., Singh R.V., Crous P.W., Kukwa M., et al. Notes for genera: Ascomycota. Fungal Divers. 2017;86:1–594. doi: 10.1007/s13225-017-0386-0. [DOI] [Google Scholar]
  • 23.Wijayawardene N.N., Hyde K.D., Tibpromma S., Wanasinghe D.N., Thambugala K.M., Tian Q., Wang Y. Towards incorporating asexual fungi in a natural classification: Checklist and notes 2012–2016. Mycosphere. 2017;8:1457–1555. doi: 10.5943/mycosphere/8/9/10. [DOI] [Google Scholar]
  • 24.Rossman A.Y., Seifert K.A., Samuels G.J., Minnis A.M., Schroers H.J., Lombard L., Crous P.W., Põldmaa K., Cannon P.F., Summerbell R.C., et al. Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) proposed for acceptance or rejection. IMA Fungus. 2013;4:41–51. doi: 10.5598/imafungus.2013.04.01.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Mortimer P.E., Jeewon R., Xu J.-C., Lumyong S., Wanasinghe D.N. Morpho-Phylo Taxonomy of Novel Dothideomycetous Fungi Associated with Dead Woody Twigs in Yunnan Province, China. Front. Microbiol. 2021;12:e654683. doi: 10.3389/fmicb.2021.654683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wijayawardene N.N., Crous P.W., Kirk P.M., Hawksworth D.L., Boonmee S., Braun U., Dai D.-Q., D’Souza M.J., Diederich P., Dissanayake A.J., et al. Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. Fungal Divers. 2014;69:1–55. doi: 10.1007/s13225-014-0309-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rossman A.Y., Crous P.W., Hyde K.D., Hawksworth D.L., Aptroot A., Bezerra J.L., Bhat J.D., Boehm E., Braun U., Boonmee S., et al. Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus. 2015;6:507–523. doi: 10.5598/imafungus.2015.06.02.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Hongsanan S., Hyde K.D., Phookamsak R., Wanasinghe D.N., McKenzie E.H.C., Sarma V.V., Lücking R., Boonmee S., Bhat J.D., Liu N.-G., et al. Refined families of Dothideomycetes: Orders and families incertaesedis in Dothideomycetes. Fungal Divers. 2020;105:17–318. doi: 10.1007/s13225-020-00462-6. [DOI] [Google Scholar]
  • 29.Hongsanan S., Hyde K.D., Phookamsak R., Wanasinghe D.N., McKenzie E.H.C., Sarma V.V., Boonmee S., Lücking R., Bhat D.J., Liu N.G. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere. 2020;11:1533–2107. doi: 10.5943/mycosphere/11/1/13. [DOI] [Google Scholar]
  • 30.Johnston P.R., Seifert K.A., Stone J.K., Rossman A.Y., Marvanová L. Recommendations on generic names competing for use in Leotiomycetes (Ascomycota) IMA Fungus. 2014;5:91–120. doi: 10.5598/imafungus.2014.05.01.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Zhang N., Luo J., Rossman A.Y., Aoki T., Chuma I., Crous P.W., Dean R., de Vries R., Donofrio N., Hyde K.D., et al. Generic names in Magnaporthales. IMA Fungus. 2016;7:155–159. doi: 10.5598/imafungus.2016.07.01.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Baral H.-O., Weber E., Gams W., Hagedorn G., Liu B., Liu X., Marson G., Marvanová L., Stadler M., Weiß M. Generic names in the Orbiliaceae (Orbiliomycetes) and recommendations on which names should be protected or suppressed. Mycol. Prog. 2018;17:5–31. doi: 10.1007/s11557-017-1300-6. [DOI] [Google Scholar]
  • 33.Ekanayaka A.H., Hyde K.D., Jones E.B.G., Zhao Q. Taxonomy and phylogeny of operculate Discomycetes: Pezizomycetes. Fungal Divers. 2018;90:161–243. doi: 10.1007/s13225-018-0402-z. [DOI] [Google Scholar]
  • 34.Maharachchikumbura S.S.N., Hyde K.D., Jones E.B.G., McKenzie E.H.C., Huang S.-K., Abdel-Wahab M.A., Daranagama D.A., Dayarathne M., D’Souza M.J., Goonasekara I.D., et al. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers. 2015;72:199–301. doi: 10.1007/s13225-015-0331-z. [DOI] [Google Scholar]
  • 35.Maharachchikumbura S.S.N., Hyde K.D., Jones E.B.G., McKenzie E.H.C., Bhat J.D., Dayarathne M.C., Huang S.-K., Norphanphoun C., Senanayake I.C., Perera R.H., et al. Families of Sordariomycetes. Fungal Divers. 2016;79:1–317. doi: 10.1007/s13225-016-0369-6. [DOI] [Google Scholar]
  • 36.Hyde K.D., Norphanphoun C., Maharachchikumbura S.S.N., Bhat D.J., Jones E.B.G., Bundhun D., Chen Y.J., Bao D.F., Boonmee S., Calabon M.S., et al. Refined families of Sordariomycetes. Mycosphere. 2020;11:305–1059. doi: 10.5943/mycosphere/11/1/7. [DOI] [Google Scholar]
  • 37.Réblová M., Untereiner W.A., Štěpánek V., Gams W. Disentangling Phialophora section Catenulatae: Disposition of taxa with pigmented conidiophores and recognition of a new subclass, Sclerococcomycetidae (Eurotiomycetes) Mycol. Prog. 2017;16:27–46. doi: 10.1007/s11557-016-1248-y. [DOI] [Google Scholar]
  • 38.Smith G.J., Liew E.C.Y., Hyde K.D. The Xylariales: A monophyletic order containing 7 families. Fungal Divers. 2003;13:185–218. [Google Scholar]
  • 39.Senanayake I.C., Maharachchikumbura S., Hyde K.D., Bhat J.D., Jones E.B.G., McKenzie E.H.C., Dai D.Q., Daranagama D.A., Dayarathne M.C., Goonasekara I.D., et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes) Fungal Divers. 2015;73:73–144. doi: 10.1007/s13225-015-0340-y. [DOI] [Google Scholar]
  • 40.Healy R.A., Bonito G., Trappe J.M. Calongea, a new genus of truffles in the Pezizaceae (Pezizales) Anales del JardínBotánico de Madrid. 2009;66:25–32. doi: 10.3989/ajbm.2213. [DOI] [Google Scholar]
  • 41.Hawksworth D.L., Eriksson O.E. The names of accepted orders of ascomycetes. Syst. Ascomycetum. 1986;5:175–184. [Google Scholar]
  • 42.Weir A., Blackwell M. Molecular data support the Laboulbeniales as a separate class of Ascomycota, Laboulbeniomycetes. Mycol. Res. 2001;105:1182–1190. doi: 10.1016/S0953-7562(08)61989-9. [DOI] [Google Scholar]
  • 43.Moncalvo J.-M., Vilgalys R., Redhead S.A., Johnson J.E., James T.Y., Aime M.C., Hofstetter V., Verduin S.J., Larsson E., Baroni T.J., et al. One hundred and seventeen clades of euagarics. Mol. Phylogenet. Evol. 2002;23:357–400. doi: 10.1016/S1055-7903(02)00027-1. [DOI] [PubMed] [Google Scholar]
  • 44.Aime M.C. Toward resolving family-level relationships in rust fungi (Uredinales) Mycoscience. 2006;47:112–122. doi: 10.1007/S10267-006-0281-0. [DOI] [Google Scholar]
  • 45.Aime M.C., Matheny P.B., Henk D.A., Frieders E.M., Nilsson R.H., Piepenbring M., McLaughlin D.J., Szabo L.J., Begerow D., Sampaio J.P., et al. An overview of the higher level classification of Pucciniomycotina based on combined analyses of nuclear large and small subunit RDNA sequences. Mycologia. 2006;98:896–905. doi: 10.1080/15572536.2006.11832619. [DOI] [PubMed] [Google Scholar]
  • 46.Perry B.A., Hansen K., Pfister D.H. A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales) Mycol. Res. 2007;111:549–571. doi: 10.1016/j.mycres.2007.03.014. [DOI] [PubMed] [Google Scholar]
  • 47.Hibbett D.S., Binder M., Bischoff J.F., Blackwell M., Cannon P.F., Eriksson O.E., Huhndorf S., James T., Kirk P.M., Lücking R., et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007;111:509–547. doi: 10.1016/j.mycres.2007.03.004. [DOI] [PubMed] [Google Scholar]
  • 48.Kirk P.M., Cannon P.F., Minter D.W., Stalpers J.A. Dictionary of the Fungi. 10th ed. CABI; Wallingford, UK: 2008. [Google Scholar]
  • 49.Lumbsch H.T., Huhndorf S.M. Myconet Volume 14. Part One. Outline of Ascomycota—2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana Life Earth Sci. 2010;1:1–64. doi: 10.3158/1557.1. [DOI] [Google Scholar]
  • 50.Oehl F., Alves a Silva G., Goto B.T., Costa Maia L., Sieverding E. Glomeromycota: Two new classes andaneworder. Mycotaxon. 2011;116:365–379. doi: 10.5248/116.365. [DOI] [Google Scholar]
  • 51.Humber R.A. Entomophthoromycota: A new phylum and reclassification for entomophthoroid fungi. Mycotaxon. 2012;120:477–492. doi: 10.5248/120.477. [DOI] [Google Scholar]
  • 52.Wijayawardene D.N.N., McKenzie E.H.C., Hyde K.D. Towards incorporating anamorphic fungi in a natural classification checklist and notes for 2011. Mycosphere. 2012;3:157–228. doi: 10.5943/mycosphere/3/2/5. [DOI] [Google Scholar]
  • 53.McTaggart A.R., Shivas R.G., Geering A.D.W., Vánky K., Scharaschkin T. Taxonomic revision of Ustilago, Sporisorium and Macalpinomyces. Persoonia. 2012;29:116–132. doi: 10.3767/003158512X661462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Silva G., Maia L.C., Oehl F. Phylogenetic systematics of the Gigasporales. Mycotaxon. 2013;122:207–220. doi: 10.5248/122.207. [DOI] [Google Scholar]
  • 55.Kirk P.M., Stalpers J.A., Braun U., Crous P.W., Hansen K., Hawksworth D.L., Hyde K.D., Lücking R., Lumbsch T.H., Rossman A.Y., et al. A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus. 2013;4:381–443. doi: 10.5598/imafungus.2013.04.02.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Hansen K., Perry B.A., Dranginis A.W., Pfister D.H. A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Mol. Phylogenet. Evol. 2013;67:311–335. doi: 10.1016/j.ympev.2013.01.014. [DOI] [PubMed] [Google Scholar]
  • 57.Hyde K.D., Jones E.B.G., Liu J.-K., Ariyawansa H., Boehm E.W.A., Boonmee S., Braun U., Chomnunti P., Crous P.W., Dai D.-Q., et al. Families of Dothideomycetes. Fungal Divers. 2013;63:1–313. doi: 10.1007/s13225-013-0263-4. [DOI] [Google Scholar]
  • 58.Hofstetter V., Redhead S.A., Kauff F., Moncalvo J.-M., Matheny P.B., Vilgalys R. Taxonomic Revision and Examination of Ecological Transitions of the Lyophyllaceae (Basidiomycota, Agaricales) Based on a Multigene Phylogeny. Cryptogam. Mycol. 2014;35:399–425. doi: 10.7872/crym.v35.iss4.2014.399. [DOI] [Google Scholar]
  • 59.Wang Q.-M., Yurkov A., Göker M., Lumbsch H., Leavitt S., Groenewald M., Theelen B., Liu X.-Z., Boekhout T., Bai F.-Y. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud. Mycol. 2015;81:149–189. doi: 10.1016/j.simyco.2015.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Humber R.A. Biology of Microfungi. Springer International Publishing; Cham, Switzerland: 2016. Entomophthoromycota: A new overview of some of the oldest terrestrial fungi; pp. 127–145. [Google Scholar]
  • 61.Benny G.L., Smith M.E., Kirk P.M., Tretter E.D., White M.M. Biology of Microfungi. Springer International Publishing; Cham, Switzerland: 2016. Challenges and future perspectives in the systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina; pp. 65–126. [Google Scholar]
  • 62.Spatafora J.W., Chang Y., James T.Y., O’Donnell K., Roberson R.W., Taylor T.N., Uehling J., Vilgalys R., White M.M., Stajich J.E., et al. A phylum-level phylogenetic classification of Zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028–1046. doi: 10.3852/16-042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Galindo L.J., López-García P., Torruella G., Karpov S., Moreira D. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat. Commun. 2021;12:4973. doi: 10.1038/s41467-021-25308-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Hibbett D.S., Abarenkov K., Koljalg U., Öpik M., Chai B., Cole J.R., Wang Q., Crous P., Robert V.A.R.G., Helgason T., et al. Sequence-based classification and identification of Fungi. Mycologia. 2016;108:1049–1068. doi: 10.3852/16-130. [DOI] [PubMed] [Google Scholar]
  • 65.Jaklitsch W.M., Gardiennet A., Voglmayr H. Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia. 2016;37:82–105. doi: 10.3767/003158516X690475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Rossman A.Y., Udayanga D., Castlebury L.A., Hyde K. Proposal to conserve the name Diaporthe eres against all other competing names (Ascomycota, Diaporthales, Diaporthaceae) Taxon. 2014;63:934–935. doi: 10.12705/634.23. [DOI] [Google Scholar]
  • 67.Wijayawardene N.N., Hyde K.D., Wanasinghe D.N., Papizadeh M., Goonasekara I.D., Camporesi E., Bhat D.J., McKenzie E.H.C., Phillips A.J.L., Diederich P., et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77:1–316. doi: 10.1007/s13225-016-0360-2. [DOI] [Google Scholar]
  • 68.Desirò A., Rimington W.R., Jacob A., Pol N.V., Smith M.E., Trappe J.M., Bidartondo M.I., Bonito G. Multigene phylogeny of Endogonales, an early diverging lineage of fungi associated with plants. IMA Fungus. 2017;8:245–257. doi: 10.5598/imafungus.2017.08.02.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Lücking R., Hodkinson B.P., Leavitt S.D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota—Approaching one thousand genera. Bryologist. 2017;119:361–416. doi: 10.1639/0007-2745-119.4.361. [DOI] [Google Scholar]
  • 70.Malysheva V., Spirin V. Taxonomy and phylogeny of the Auriculariales (Agaricomycetes, Basidiomycota) with stereoid basidiocarps. Fungal Biol. 2017;121:689–715. doi: 10.1016/j.funbio.2017.05.001. [DOI] [PubMed] [Google Scholar]
  • 71.Hongsanan S., Maharachchikumbura S., Hyde K.D., Samarakoon M.C., Jeewon R., Zhao Q., Al-Sadi A., Bahkali A.H. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers. 2017;84:25–41. doi: 10.1007/s13225-017-0384-2. [DOI] [Google Scholar]
  • 72.Yang T., Groenewald J.Z., Cheewangkoon R., Jami F., Abdollahzadeh J., Lombard L., Crous P.W. Families, genera, and species of Botryosphaeriales. Fungal Biol. 2017;121:322–346. doi: 10.1016/j.funbio.2016.11.001. [DOI] [PubMed] [Google Scholar]
  • 73.Liu J.-K., Hyde K.D., Jeewon R., Phillips A., Maharachchikumbura S., Ryberg M., Liu Z.-Y., Zhao Q. Ranking higher taxa using divergence times: A case study in Dothideomycetes. Fungal Divers. 2017;84:75–99. doi: 10.1007/s13225-017-0385-1. [DOI] [Google Scholar]
  • 74.Justo A., Miettinen O., Floudas D., Ortiz-Santana B., Sjökvist E., Lindner D., Nakasone K., Niemelä T., Larsson K.-H., Ryvarden L., et al. A revised family-level classification of the Polyporales (Basidiomycota) Fungal Biol. 2017;121:798–824. doi: 10.1016/j.funbio.2017.05.010. [DOI] [PubMed] [Google Scholar]
  • 75.Wijayawardene N.N., Hyde K.D., Lumbsch T., Liu J.-K., Maharachchikumbura S., Ekanayaka A.H., Tian Q., Phookamsak R. Outline of Ascomycota: 2017. Fungal Divers. 2018;88:167–263. doi: 10.1007/s13225-018-0394-8. [DOI] [Google Scholar]
  • 76.Kraichak E., Huang J.-P., Nelsen M., Leavitt S.D., Lumbsch H.T. A revised classification of orders and families in the two major subclasses of Lecanoromycetes (Ascomycota) based on a temporal approach. Bot. J. Linn. Soc. 2018;188:233–249. doi: 10.1093/botlinnean/boy060. [DOI] [Google Scholar]
  • 77.Letcher P.M., Powell M.J. A taxonomic summary and revision of Rozella (Cryptomycota) IMA Fungus. 2018;9:383–399. doi: 10.5598/imafungus.2018.09.02.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Aime M.C., Castlebury L., Abbasi M., Begerow D., Berndt R., Kirschner R., Marvanová L., Ono Y., Padamsee M., Scholler M., et al. Competing sexual and asexual generic names in Pucciniomycotina and Ustilaginomycotina (Basidiomycota) and recommendations for use. IMA Fungus. 2018;9:75–89. doi: 10.5598/imafungus.2018.09.01.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Aime M.C., Bell C.D., Wilson A.W. Deconstructing the evolutionary complexity between rust fungi (Pucciniales) and their plant hosts. Stud. Mycol. 2018;89:143–152. doi: 10.1016/j.simyco.2018.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Goldmann L., Weir A. Molecular phylogeny of the Laboulbeniomycetes (Ascomycota) Fungal Biol. 2018;122:87–100. doi: 10.1016/j.funbio.2017.11.004. [DOI] [PubMed] [Google Scholar]
  • 81.Phillips A.J.L., Hyde K.D., Alves A., Liu J.-K. Families in Botryosphaeriales: A phylogenetic, morphological and evolutionary perspective. Fungal Divers. 2019;94:1–22. doi: 10.1007/s13225-018-0416-6. [DOI] [Google Scholar]
  • 82.Daranagama D.A., Hyde K.D., Sir E.B., Thambugala K.M., Tian Q., Samarakoon M.C., McKenzie E.H.C., Jayasiri S.C., Tibpromma S., Bhat J.D., et al. Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers. 2018;88:1–165. doi: 10.1007/s13225-017-0388-y. [DOI] [Google Scholar]
  • 83.Sheikh S., Thulin M., Cavender J.C., Escalante R., Kawakami S.-I., Lado C., Landolt J.C., Nanjundiah V., Queller D.C., Strassmann J.E., et al. A New Classification of the Dictyostelids. Protist. 2018;169:1–28. doi: 10.1016/j.protis.2017.11.001. [DOI] [PubMed] [Google Scholar]
  • 84.Bennett R., Thines M. Revisiting Salisapiliaceae. Fungal Syst. Evol. 2019;3:171–185. doi: 10.3114/fuse.2019.03.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Dayarathne M.C., Maharachchikumbura S.S.N., Jones E.B.G., Dong W., Devadatha B., Yang J., Ekanayaka A.H., De Silva W., Sarma V.V., Al-Sadi A.M., et al. Phylogenetic Revision of Savoryellaceae and Evidence for Its Ranking as a Subclass. Front. Microbiol. 2019;10:840. doi: 10.3389/fmicb.2019.00840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.He M.-Q., Zhao R.-L., Hyde K.D., Begerow D., Kemler M., Yurkov A., McKenzie E.H.C., Raspé O., Kakishima M., Sánchez-Ramírez S., et al. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 2019;99:105–367. doi: 10.1007/s13225-019-00435-4. [DOI] [Google Scholar]
  • 87.Johnston P.R., Quijada L., Carl S., López-Giráldez F., Wang Z., Townsend J.P., Smith C., Baral H.-O., Hosoya T., Baschien C., et al. A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus. 2019;10:1. doi: 10.1186/s43008-019-0002-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Li W.-J., McKenzie E.H.C., Liu J.-K., Bhat D.J., Dai D.-Q., Camporesi E., Tian Q., Maharachchikumbura S.S.N., Luo Z.-L., Shang Q.-J., et al. Taxonomy and phylogeny of hyaline-spored Coelomycetes. Fungal Divers. 2020;100:279–801. doi: 10.1007/s13225-020-00440-y. [DOI] [Google Scholar]
  • 89.Wijayawardene N.N., Dai D.Q., Tang L.Z., Fiuza P.O., Barbosa F.R., Cantillo-Perez T., Rajeshkumar K.C. The genera of Coelomycetes; including genera of lichen forming, sexual morphs and synasexual morphs with coelomycetous morphs (A–C) MycoAsia. 2020;3:1–92. [Google Scholar]
  • 90.Aime M., McTaggart A. A higher-rank classification for rust fungi, with notes on genera. Fungal Syst. Evol. 2021;7:21–47. doi: 10.3114/fuse.2021.07.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Gautam A.K., Avasthi S., Verma R.K., Devadatha B., Jayawardena R.S., Sushma, Ranadive K.R., Kashyap P.L., Bhadauria R., Prasher I.B., et al. Indian Pucciniales: Taxonomic outline with important descriptive notes. Mycosphere. 2021;12:89–162. doi: 10.5943/mycosphere/12/1/2. [DOI] [Google Scholar]
  • 92.Wijayawardene N.N., Hyde K.D., Anand G., Dissanayake L.S., Tang L.Z., Dai D.Q. Towards incorporating asexually reproducing fungi in the natural classification and notes for pleomorphic genera. Mycosphere. 2021;12:238–405. doi: 10.5943/mycosphere/12/1/4. [DOI] [Google Scholar]
  • 93.Aime M.C., Miller A.N., Aoki T., Bensch K., Cai L., Crous P.W., Hawksworth D.L., Hyde K.D., Kirk P.M., Lücking R., et al. How to publish a new fungal species, or name, version 3.0? IMA Fungus. 2021;12:e11. doi: 10.1186/s43008-021-00063-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Heitman J., Howlett B.J., Crous P.W., Stukenbrock E.H., James T.Y., Gow N.A.R. The Fungal Kingdom. John Wiley & Sons; Hoboken, NJ, USA: American Society for Microbiology; Washington, DC, USA: 2017. [Google Scholar]
  • 95.Blackwell M., Haelewaters D., Pfister D.H. Laboulbeniomycetes: Evolution, natural history, and Thaxter’s final word. Mycologia. 2020;112:1048–1059. doi: 10.1080/00275514.2020.1718442. [DOI] [PubMed] [Google Scholar]
  • 96.Genevieve L., Pierre-Luc C., Roxanne G.-T., Amélie M., Danny B., Vincent M., Hugo G. Estimation of fungal diversity and identification of major abiotic drivers influencing fungal richness and communities in northern temperate and Boreal Quebec Forests. Forests. 2019;10:1096. doi: 10.3390/f10121096. [DOI] [Google Scholar]
  • 97.Wijayawardene N.N., Bahram M., Sánchez-Castro I., Dai D.-Q., Ariyawansa K.G.S.U., Jayalal U., Suwannarach N., Tedersoo L. Current Insight into Culture-Dependent and Culture-Independent Methods in Discovering Ascomycetous Taxa. J. Fungi. 2021;7:703. doi: 10.3390/jof7090703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Willis K.J. State of the World’s Fungi. Kew Publishing; Kew, UK: 2018. Report. [Google Scholar]
  • 99.Hawksworth D.L. The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycol. Res. 2001;105:1422–1432. doi: 10.1017/S0953756201004725. [DOI] [Google Scholar]
  • 100.Hibbett D.S., Ohman A., Glotzer D., Nuhn M., Kirk P., Nilsson R.H. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol. Rev. 2011;25:38–47. doi: 10.1016/j.fbr.2011.01.001. [DOI] [Google Scholar]
  • 101.Dai Y.-C., Cui B., Si J., He S.-H., Hyde K.D., Yuan H.-S., Liu X.-Y., Zhou L.-W. Dynamics of the worldwide number of fungi with emphasis on fungal diversity in China. Mycol. Prog. 2015;14:62. doi: 10.1007/s11557-015-1084-5. [DOI] [Google Scholar]
  • 102.Bisby G., Ainsworth G. The numbers of fungi. Trans. Br. Mycol. Soc. 1943;26:16–19. doi: 10.1016/S0007-1536(43)80005-X. [DOI] [Google Scholar]
  • 103.Martin G.W. The numbers of fungi. Proc. Iowa Acad. Sci. 1951;58:175–178. [Google Scholar]
  • 104.Pascoe I. History of systematic mycology in Australia. In: Short P.S., editor. History of Systematic Botany in Australia. Australian Syst. Bot. Soc.; South Yarra, Australia: 1990. pp. 259–264. [Google Scholar]
  • 105.Hywel-Jones N. A systematic survey of insect fungi from natural tropical forest in Thailand. In: Isaac S., Frankland J.C., Watling R., Whalley A.J.S., editors. Aspects of Tropical Mycology. Cambridge University Press; Cambridge, UK: 1993. pp. 300–301. [Google Scholar]
  • 106.Hammond P.M. The current magnitude of biodiversity. In: Heywood V., editor. Global Biodiversity Assessment. Cambridge University Press; Cambridge, UK: 1995. pp. 113–138. [Google Scholar]
  • 107.Hammond P.M. Species inventory. In: Groombridge B., editor. Global Biodiversity: Status of the Earth‘s Living Resources. Chapman and Hall; London, UK: 1992. pp. 17–39. [Google Scholar]
  • 108.Smith D., Waller J.M. Culture collections of microorganisms: Their importance in tropical plant pathology. Fitopatol. Bras. 1992;17:1–8. [Google Scholar]
  • 109.Rossman A.Y. Strategy for an all-taxa inventory of fungal biodiversity. In: Peng C.I., Chou C.H., editors. Biodiversity and Terrestrial Ecosystems. Institute of BotanyAcademia Sinica; Taipei, Taiwan: 1994. pp. 169–194. (Academia Sinica Monograph Series No. 14). [Google Scholar]
  • 110.Dreyfuss M.M., Chapela I.H. Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo V., editor. The Discovery of Natural Products with Therapeutic Potential. Butterworth Heinemann; London, UK: 1994. pp. 49–80. [DOI] [PubMed] [Google Scholar]
  • 111.Shivas R.G., Hyde K.D. Biodiversity of plant pathogenic fungi in the tropics. In: Hyde K.D., editor. Biodiversity of Tropical Microfungi. Hong Kong University Press; Hong Kong, China: 1997. pp. 47–56. [Google Scholar]
  • 112.May R.M. The dimensions of life on earth. In: Raven P.H., Williams T., editors. Nature and Human Society: The Quest for a Sustainable World. National Academy Press; Washington, DC, USA: 2000. pp. 30–45. [Google Scholar]
  • 113.O’Brien H.E., Parrent J.L., Jackson J.A., Moncalvo J.M., Vilgalys R. Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples. Appl. Environ. Microbiol. 2005;71:5544–5550. doi: 10.1128/AEM.71.9.5544-5550.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Hyde K.D., Norphanphoun C., Chen J., Dissanayake A.J., Doilom M., Hongsanan S., Jayawardena R., Jeewon R., Perera R.H., Thongbai B., et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Divers. 2018;93:215–239. doi: 10.1007/s13225-018-0415-7. [DOI] [Google Scholar]
  • 115.Lücking R., Forno M.D., Sikaroodi M., Gillevet P.M., Bungartz F., Moncada B., Yánez-Ayabaca A., Chaves J.L., Coca L.F., Lawrey J.D. A single macrolichen constitutes hundreds of unrecognized species. Proc. Natl. Acad. Sci. USA. 2014;111:11091–11096. doi: 10.1073/pnas.1403517111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Lücking R., Johnston M.K., Kalb K., Mangold A., Manoch L., Mercado-Diaz J.A., Moncada B., Mongkolsuk P., Papong K.B., Parnmen S., et al. One hundred and seventy-five new species of Graphidaceae: Closing the gap or a drop in the bucket? Phytotaxa. 2014;189:7–38. doi: 10.11646/phytotaxa.189.1.4. [DOI] [Google Scholar]
  • 117.Aptroot A., Cáceres M.E.S., Johnston M.K., Lücking R. How diverse is the lichenized fungal family Trypetheliaceae (Ascomycota: Dothideomycetes)? A quantitative prediction of global species richness. Lichenologist. 2016;48:983–994. doi: 10.1017/S0024282916000463. [DOI] [Google Scholar]
  • 118.Lodge D.J., Ammirati J., O’Dell T.E., Mueller G.M. Collecting and describing macrofungi. In: Mueller G.M., Bills G.F., Foster M.S., editors. Biodiversity of Fungi: Inventory and Monitoring Methods. Academic Press; New York, NY, USA: 2004. pp. 123–168. [Google Scholar]
  • 119.Straatsma G., Ayer F., Egli S. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 2001;105:515–523. doi: 10.1017/S0953756201004154. [DOI] [Google Scholar]
  • 120.Schmit J.P., Murphy J.F., Mueller G.M. Macrofungal diversity of a temperate oak forest: A test of species richness estimators. Can. J. Bot. 1999;77:1014–1027. [Google Scholar]
  • 121.Huhndorf S.M., Lodge D.J., Wang C.J.K., Stokland J. Macrofungi on woody substrata. In: Mueller G.M., Bills G.F., Foster M.S., editors. Biodiversity of Fungi: Inventory and Monitoring Methods. Academic Press; New York, NY, USA: 2004. pp. 123–168. [Google Scholar]
  • 122.Cantrell S.A. Sampling methods to assess discomycete diversity in wet tropical forests. Caribb. J. Sci. 2004;40:8–16. [Google Scholar]
  • 123.Lodge D.J., Cantrell S. Diversity of litter agarics at Cuyabeno, Ecuador: Calibrating sampling efforts in tropical rainforest. Mycologist. 1995;9:149–151. doi: 10.1016/S0269-915X(09)80003-7. [DOI] [Google Scholar]
  • 124.Polishook J.D., Bills G., Lodge D.J. Microfungi from decaying leaves of two rain forest trees in Puerto Rico. J. Ind. Microbiol. Biotechnol. 1996;17:284–294. doi: 10.1007/BF01574703. [DOI] [Google Scholar]
  • 125.Rambelli A., Mulas B., Pasqualetti M. Comparative studies on microfungi in tropical ecosystems in Ivory Coast forest litter: Behaviour on different substrata. Mycol. Res. 2004;108:325–336. doi: 10.1017/S0953756204009396. [DOI] [PubMed] [Google Scholar]
  • 126.Schnittler M., Stephenson S.L. Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia. 2000;92:626–637. doi: 10.2307/3761420. [DOI] [Google Scholar]
  • 127.Bills G.F., Polishook J.D. Selective isolation of fungi from dung of Odocoileus hemionus (mule deer) Nova Hedwigia. 1993;57:195–206. [Google Scholar]
  • 128.Krug J.C., Benny G.L., Keller H.W. Coprophilous fungi. In: Mueller G.M., Bills G.F., Foster M.S., editors. Biodiversity of Fungi: Inventory and Monitoring Methods. Academic Press; New York, NY, USA: 2004. pp. 467–500. [Google Scholar]
  • 129.Richardson M.J. Diversity and occurrence of coprophilous fungi. Mycol. Res. 2001;105:387–402. doi: 10.1017/S0953756201003884. [DOI] [Google Scholar]
  • 130.Trappe J.M., Rossman A.Y., Tulloss R.E., O’Dell T.E., Thorn R.G. Protocols for an All Taxa Biodiversity Inventory of Fungi in a Costa Rican Conservation Area. Mycologia. 1998;90:e1093. doi: 10.2307/3761287. [DOI] [Google Scholar]
  • 131.Hyde K.D., Soytong K. The fungal endophyte dialema. Fungal Divers. 2008;33:163–173. [Google Scholar]
  • 132.Bélanger R., Avis T. Ecological processes and interactions in leaf surface fungi. In: Lindow S.E., Hecht-Poinar E.I., Elliot V.J., editors. Phyllosphere Microbiology. American Phytopathological Society Press; St. Paul, MN, USA: 2002. pp. 193–207. [Google Scholar]
  • 133.Lindow S.E., Hecht-Poinar E.I., Elliot V.J. Phyllosphere Microbiology. American Phytopathological Society Press; St. Paul, MN, USA: 2002. [Google Scholar]
  • 134.Bills G.F., Polishook J.D. Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. Mycologia. 1994;86:187–198. doi: 10.2307/3760635. [DOI] [Google Scholar]
  • 135.Bills G.F., Polishook J.D. Microfungi from decaying leaves of Heliconia mariae (Heliconiaceae) Brenesia. 1994;41/42:27–43. [Google Scholar]
  • 136.Basu S., Bose C., Ojha N., Das N., Das J., Pal M., Khurana S. Evolution of bacterial and fungal growth media. Bioinformation. 2015;11:182–184. doi: 10.6026/97320630011182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Hyde K.D., Hongsanan S., Jeewon R., Bhat D.J., McKenzie E.H.C., Jones E.B.G., Phookamsak R., Ariyawansa H., Boonmee S., Zhao Q., et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;80:1–270. doi: 10.1007/s13225-016-0373-x. [DOI] [Google Scholar]
  • 138.Jeewon R., Hyde K.D. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere. 2016;7:1669–1677. doi: 10.5943/mycosphere/7/11/4. [DOI] [Google Scholar]
  • 139.Manawasinghe I.S., Dissanayake A.J., Li X., Liu M., Wanasinghe D., Xu J., Zhao W., Zhang W., Zhou Y., Hyde K.D., et al. High Genetic Diversity and Species Complexity of Diaporthe Associated with Grapevine Dieback in China. Front. Microbiol. 2019;10:e1936. doi: 10.3389/fmicb.2019.01936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Hyde K.D., Bahkali A.H., Moslem M.A. Fungi—An unusual source for cosmetics. Fungal Divers. 2010;43:1–9. doi: 10.1007/s13225-010-0043-3. [DOI] [Google Scholar]
  • 141.Senanayake I., Crous P., Groenewald J., Maharachchikumbura S., Jeewon R., Phillips A., Bhat J., Perera R., Li Q., Li W., et al. Families of Diaporthales based on morphological and phylogenetic evidence. Stud. Mycol. 2017;86:217–296. doi: 10.1016/j.simyco.2017.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Senanayake I.C., Jeewon R., Chomnunti P., Wanasinghe D.N., Norphanphoun C., Karunarathna A., Pem D., Perera R.H., Camporesi E., McKenzie E.H.C., et al. Taxonomic circumscription of Diaporthales based on multigene phylogeny and morphology. Fungal Divers. 2018;93:241–443. doi: 10.1007/s13225-018-0410-z. [DOI] [Google Scholar]
  • 143.Dissanayake A.J., Liu M., Zhang W., Chen Z., Udayanga D., Chukeatirote E., Li X.H., Yan J.Y., Hyde K.D. Morphological and molecular characterization of Diaporthe species associated with grapevine trunk disease in China. Fungal Biol. 2015;119:283–294. doi: 10.1016/j.funbio.2014.11.003. [DOI] [PubMed] [Google Scholar]
  • 144.Phukhamsakda C., McKenzie E.H.C., Phillips A.J.L., Jones E.B.G., Bhat D.J., Stadler M., Bhunjun C.S., Wanasinghe D.N., Thongbai B., Camporesi E., et al. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Divers. 2020;102:1–203. doi: 10.1007/s13225-020-00448-4. [DOI] [Google Scholar]
  • 145.Wibberg D., Stadler M., Lambert C., Bunk B., Spröer C., Rückert C., Kalinowski J., Cox R.J., Kuhnert E. High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Divers. 2021;106:7–28. doi: 10.1007/s13225-020-00447-5. [DOI] [Google Scholar]
  • 146.de Silva N.I., Maharachchikumbura S.S.N., Thambugala K.M., Bhat D.J., Karunarathna S.C., Tennakoon D.S., Phookamsak R., Jayawardena R.S., Lumyong S., Hyde K.D. Morphomolecular taxonomic studies reveal a high number of endophytic fungi from Magnolia candolli and M. garrettii in China and Thailand. Mycosphere. 2021;11:163–237. doi: 10.5943/mycosphere/12/1/3. [DOI] [Google Scholar]
  • 147.Shinohara N., Woo C., Yamamoto N., Hashimoto K., Yoshida-Ohuchi H., Kawakami Y. Comparison of DNA sequencing and morphological identification techniques to characterize environmental fungal communities. Sci. Rep. 2021;11:2633. doi: 10.1038/s41598-021-81996-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Walker A.K., Robicheau B.M. Fungal diversity and community structure from coastal and barrier island beaches in the United States Gulf of Mexico. Sci. Rep. 2021;11:3889. doi: 10.1038/s41598-021-81688-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Haelewaters D., Gorczak M., Kaishian P., De Kesel A., Blackwell M. Encyclopedia of Mycology. Elsevier; Amsterdam, The Netherlands: 2021. Laboulbeniomycetes, enigmatic fungi with a turbulent taxonomic history; pp. 263–283. [Google Scholar]
  • 150.Hartmann M., Howes C.G., VanInsberghe D., Yu H., Bachar D., Christen R., Nilsson R.H., Hallam S.J., Mohn W.W. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J. 2012;6:2199–2218. doi: 10.1038/ismej.2012.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Ihrmark K., Bödeker I.T.M., Cruz-Martinez K., Friberg H., Kubartova A., Schenck J., Strid Y., Stenlid J., Brandström-Durling M., Clemmensen K.E., et al. New primers to amplify the fungal ITS2 region—Evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012;82:666–677. doi: 10.1111/j.1574-6941.2012.01437.x. [DOI] [PubMed] [Google Scholar]
  • 152.Davey M.L., Heegaard E., Halvorsen R., Ohlson M., Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol. 2012;195:844–856. doi: 10.1111/j.1469-8137.2012.04215.x. [DOI] [PubMed] [Google Scholar]
  • 153.Peay K.G., Baraloto C., Fine P. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013;7:1852–1861. doi: 10.1038/ismej.2013.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Davey M.L., Heegaard E., Halvorsen R., Kauserud H., Ohlson M. Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Mol. Ecol. 2013;22:368–383. doi: 10.1111/mec.12122. [DOI] [PubMed] [Google Scholar]
  • 155.Talbot J.M., Bruns T.D., Taylor J.W., Smith D.P., Branco S., Glassman S.I., Erlandson S., Vilgalys R., Liao H.-L., Smith M.E., et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl. Acad. Sci. USA. 2014;111:6341–6346. doi: 10.1073/pnas.1402584111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Tedersoo L., Bahram M., Põlme S., Kõljalg U., Yorou N.S., Wijesundera R., Ruiz L.V., Vasco-Palacios A.M., Thu P.Q., Suija A., et al. Global diversity and geography of soil fungi. Science. 2014;346:e1256688. doi: 10.1126/science.1256688. [DOI] [PubMed] [Google Scholar]
  • 157.Kadowaki K., Sato H., Yamamoto S., Tanabe A., Hidaka A., Toju H. Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Popul. Ecol. 2014;56:301–310. doi: 10.1007/s10144-013-0424-z. [DOI] [Google Scholar]
  • 158.Geml J., Gravendeel B., Van Der Gaag K., Neilen M., Lammers Y., Raes N., Semenova T.A., De Knijff P., Noordeloos M.E. The Contribution of DNA Metabarcoding to Fungal Conservation: Diversity Assessment, Habitat Partitioning and Mapping Red-Listed Fungi in Protected Coastal Salix repens Communities in the Netherlands. PLoS ONE. 2014;9:e99852. doi: 10.1371/journal.pone.0099852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Davey M.L., Kauserud H., Ohlson M. Forestry impacts on the hidden fungal biodiversity associated with bryophytes. FEMS Microbiol. Ecol. 2014;90:313–325. doi: 10.1111/1574-6941.12386. [DOI] [PubMed] [Google Scholar]
  • 160.McHugh T.A., Schwartz E. Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland. Plant Soil. 2015;388:175–186. doi: 10.1007/s11104-014-2269-4. [DOI] [Google Scholar]
  • 161.Op De Beeck M., Lievens B., Busschaert P., Declerck S., Vangronsveld J., Colpaert J.V. Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies. PLoS ONE. 2014;9:e97629. doi: 10.1371/journal.pone.0097629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Yamamoto S., Sato H., Tanabe A.S., Hidaka A., Kadowaki K., Toju H. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercusspecies. PLoS ONE. 2014;9:e96363. doi: 10.1371/journal.pone.0096363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Walker D.M., Lawrence B.R., Esterline D., Graham S.P., Edelbrock M.A., Wooten J.A. A metagenomics-based approach to the top-down effect on the detritivore food web: A salamanders influence on fungal communities within a deciduous forest. Ecol. Evol. 2014;4:4106–4116. doi: 10.1002/ece3.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Veach A., Dodds W.K., Jumpponen A. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem. FEMS Microbiol. Ecol. 2015;91:fiv109. doi: 10.1093/femsec/fiv109. [DOI] [PubMed] [Google Scholar]
  • 165.Zhang T., Wei X.-L., Zhang Y.-Q., Liu H.-Y., Yu L.-Y. Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci. Rep. 2015;5:e14850. doi: 10.1038/srep14850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Elliott D.R., Caporn S.J.M., Nwaishi F., Nilsson H., Sen R. Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation. PLoS ONE. 2015;10:e0124726. doi: 10.1371/journal.pone.0124726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Geml J., Morgado L.N., Semenova T.A., Welker J.M., Walker M.D., Smets E. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS Microbiol. Ecol. 2015;91:fiv095. doi: 10.1093/femsec/fiv095. [DOI] [PubMed] [Google Scholar]
  • 168.Hoppe B., Purahong W., Wubet T., Kahl T., Bauhus J., Arnstadt T., Hofrichter M., Buscot F., Krüger D. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers. 2016;77:367–379. doi: 10.1007/s13225-015-0341-x. [DOI] [Google Scholar]
  • 169.Jarvis S.G., Woodward S., Taylor A.F.S. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol. 2015;206:1145–1155. doi: 10.1111/nph.13315. [DOI] [PubMed] [Google Scholar]
  • 170.Chaput D.L., Hansel C.M., Burgos W.D., Santelli C.M. Profiling Microbial Communities in Manganese Remediation Systems Treating Coal Mine Drainage. Appl. Environ. Microbiol. 2015;81:2189–2198. doi: 10.1128/AEM.03643-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.van der Wal A., Ottosson E., de Boer W. Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology. 2015;96:124–133. doi: 10.1890/14-0242.1. [DOI] [PubMed] [Google Scholar]
  • 172.Clemmensen K.E., Finlay R., Dahlberg A., Stenlid J., Wardle D., Lindahl B.D. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 2015;205:1525–1536. doi: 10.1111/nph.13208. [DOI] [PubMed] [Google Scholar]
  • 173.Gao C., Zhang Y., Shi N., Zheng Y., Chen L., Wubet T., Bruelheide H., Both S., Buscot F., Ding Q., et al. Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytol. 2015;205:771–785. doi: 10.1111/nph.13068. [DOI] [PubMed] [Google Scholar]
  • 174.Liu J., Sui Y., Yu Z., Shi Y., Chu H., Jin J., Liu X., Wang G. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 2015;83:29–39. doi: 10.1016/j.soilbio.2015.01.009. [DOI] [Google Scholar]
  • 175.Oja J., Kohout P., Tedersoo L., Kull T., Kõljalg U. Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol. 2015;205:1608–1618. doi: 10.1111/nph.13223. [DOI] [PubMed] [Google Scholar]
  • 176.Goldmann K., Schöning I., Buscot F., Wubet T. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems. Front. Microbiol. 2015;6:1300. doi: 10.3389/fmicb.2015.01300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Tedersoo L., Anslan S., Bahram M., Põlme S., Riit T., Liiv I., Kõljalg U., Kisand V., Nilsson H., Hildebrand F., et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 2015;10:1–43. doi: 10.3897/mycokeys.10.4852. [DOI] [Google Scholar]
  • 178.Rime T., Hartmann M., Brunner I., Widmer F., Zeyer J., Frey B. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol. Ecol. 2015;24:1091–1108. doi: 10.1111/mec.13051. [DOI] [PubMed] [Google Scholar]
  • 179.Sterkenburg E., Bahr A., Durling M.B., Clemmensen K., Lindahl B.D. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 2015;207:1145–1158. doi: 10.1111/nph.13426. [DOI] [PubMed] [Google Scholar]
  • 180.Štursová M., Bárta J., Šantrůčková H., Baldrian P. Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiol. Ecol. 2016;92:fiw185. doi: 10.1093/femsec/fiw185. [DOI] [PubMed] [Google Scholar]
  • 181.Semenova T.A., Morgado L.N., Welker J.M., Walker M.D., Smets E., Geml J. Compositional and functional shifts in arctic fungal communities in response to experimentally increased snow depth. Soil Biol. Biochem. 2016;100:201–209. doi: 10.1016/j.soilbio.2016.06.001. [DOI] [Google Scholar]
  • 182.Santalahti M., Sun H., Jumpponen A., Pennanen T., Heinonsalo J. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil. FEMS Microbiol. Ecol. 2016;92:fiw170. doi: 10.1093/femsec/fiw170. [DOI] [PubMed] [Google Scholar]
  • 183.Rime T., Hartmann M., Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J. 2016;10:1625–1641. doi: 10.1038/ismej.2015.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Roy-Bolduc A., Laliberté E., Hijri M. High richness of ectomycorrhizal fungi and low host specificity in a coastal sand dune ecosystem revealed by network analysis. Ecol. Evol. 2016;6:349–362. doi: 10.1002/ece3.1881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Roy-Bolduc A., Laliberté E., Boudreau S., Hijri M. Strong linkage between plant and soil fungal communities along a successional coastal dune system. FEMS Microbiol. Ecol. 2016;92:fiw156. doi: 10.1093/femsec/fiw156. [DOI] [PubMed] [Google Scholar]
  • 186.Tedersoo L., Bahram M., Cajthaml T., Põlme S., Hiiesalu I., Anslan S., Harend H., Buegger F., Pritsch K., Koricheva J., et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016;10:346–362. doi: 10.1038/ismej.2015.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Wilhelm R.C., Cardenas E., Leung H., Maas K., Hartmann M., Hahn A., Hallam S., Mohn W.W. A metagenomic survey of forest soil microbial communities more than a decade after timber harvesting. Sci. Data. 2017;4:170092. doi: 10.1038/sdata.2017.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Urbina H., Scofield D.G., Cafaro M., Rosling A. DNA-metabarcoding uncovers the diversity of soil-inhabiting fungi in the tropical island of Puerto Rico. Mycoscience. 2016;57:217–227. doi: 10.1016/j.myc.2016.02.001. [DOI] [Google Scholar]
  • 189.Valverde A., De Maayer P., Oberholster T., Henschel J., Louw M.K., Cowan D. Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a Living Fossil. PLoS ONE. 2016;11:e0153353. doi: 10.1371/journal.pone.0153353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Nacke H., Goldmann K., Schöning I., Pfeiffer B., Kaiser K., Castillo-Villamizar G.A., Schrumpf M., Buscot F., Daniel R., Wubet T. Fine spatial scale variation of soil microbial communities under European Beech and Norway Spruce. Front. Microbiol. 2016;7:2067. doi: 10.3389/fmicb.2016.02067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Newsham K.K., Hopkins D., Carvalhais L.C., Fretwell P.T., Rushton S.P., O’Donnell A.G., Dennis P.G. Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat. Clim. Chang. 2016;6:182–186. doi: 10.1038/nclimate2806. [DOI] [Google Scholar]
  • 192.Nguyen D., Boberg J., Ihrmark K., Stenström E., Stenlid J. Do foliar fungal communities of Norway spruce shift along a tree species diversity gradient in mature European forests? Fungal Ecol. 2016;23:97–108. doi: 10.1016/j.funeco.2016.07.003. [DOI] [Google Scholar]
  • 193.Goldmann K., Schröter K., Pena R., Schöning I., Schrumpf M., Buscot F., Polle A., Wubet T. Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Sci. Rep. 2016;6:e31439. doi: 10.1038/srep31439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Bahram M., Kohout P., Anslan S., Harend H., Abarenkov K., Tedersoo L. Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 2016;10:885–896. doi: 10.1038/ismej.2015.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Gehring C.A., Hayer M., Flores-Rentería L., Krohn A.F., Schwartz E., Dijkstra P. Cheatgrass invasion alters the abundance and composition of dark septate fungal communities in sagebrush steppe. Botany. 2016;94:481–491. doi: 10.1139/cjb-2015-0237. [DOI] [Google Scholar]
  • 196.Gourmelon V., Maggia L., Powell J., Gigante S., Hortal S., Gueunier C., Letellier K., Carriconde F. Environmental and Geographical Factors Structure Soil Microbial Diversity in New Caledonian Ultramafic Substrates: A Metagenomic Approach. PLoS ONE. 2016;11:e0167405. doi: 10.1371/journal.pone.0167405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Bissett A., Fitzgerald A., Meintjes T., Mele P.M., Reith F., Dennis P.G., Breed M., Brown B., Brown M.V., Brugger J., et al. Introducing BASE: The Biomes of Australian Soil Environments soil microbial diversity database. GigaScience. 2016;5:21. doi: 10.1186/s13742-016-0126-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Cox F., Newsham K.K., Bol R., Dungait J.A.J., Robinson C.H. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol. Lett. 2016;19:528–536. doi: 10.1111/ele.12587. [DOI] [PubMed] [Google Scholar]
  • 199.Oh S.-Y., Fong J.J., Park M.S., Lim Y.W. Distinctive Feature of Microbial Communities and Bacterial Functional Profiles in Tricholoma matsutake Dominant Soil. PLoS ONE. 2016;11:e0168573. doi: 10.1371/journal.pone.0168573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Frey B., Rime T., Phillips M., Stierli B., Hajdas I., Widmer F., Hartmann M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 2016;92:fiw018. doi: 10.1093/femsec/fiw018. [DOI] [PubMed] [Google Scholar]
  • 201.de Gannes V., Bekele I., Dipchansingh D., Wuddivira M.N., De Cairies S., Boman M., Hickey W.J. Microbial Community Structure and Function of Soil Following Ecosystem Conversion from Native Forests to Teak Plantation Forests. Front. Microbiol. 2016;7:1976. doi: 10.3389/fmicb.2016.01976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Li Y., Wang S., Jiang L., Zhang L., Cui S., Meng F., Wang Q., Li X., Zhou Y. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 2016;222:213–222. doi: 10.1016/j.agee.2016.02.020. [DOI] [Google Scholar]
  • 203.Kielak A.M., Scheublin T.R., Mendes L.W., Van Veen J.A., Kuramae E.E. Bacterial Community Succession in Pine-Wood Decomposition. Front. Microbiol. 2016;7:231. doi: 10.3389/fmicb.2016.00231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Ji M., van Dorst J., Bissett A., Brown M.V., Palmer A.S., Snape I., Siciliano S.D., Ferrari B.C. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: A potential biodiversity “hotspot”. Polar Biol. 2016;39:237–249. doi: 10.1007/s00300-015-1776-y. [DOI] [Google Scholar]
  • 205.Baldrian P., Zrůstová P., Tláskal V., Davidová A., Merhautová V., Vrška T. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 2016;23:109–122. doi: 10.1016/j.funeco.2016.07.001. [DOI] [Google Scholar]
  • 206.Barnes C.J., Maldonado C., Frøslev T.G., Antonelli A., Rønsted N. Unexpectedly High Beta-Diversity of Root-Associated Fungal Communities in the Bolivian Andes. Front. Microbiol. 2016;7:1377. doi: 10.3389/fmicb.2016.01377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Porter T.M., Shokralla S., Baird D., Golding G.B., Hajibabaei M. Ribosomal DNA and Plastid Markers Used to Sample Fungal and Plant Communities from Wetland Soils Reveals Complementary Biotas. PLoS ONE. 2016;11:e0142759. doi: 10.1371/journal.pone.0142759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Zhou J., Deng Y., Shen L., Wen C., Yan Q., Ning D., Qin Y., Xue K., Wu L., He Z., et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat. Commun. 2016;7:12083. doi: 10.1038/ncomms12083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Zhou X., Tian L., Zhang J., Ma L., Li X., Tian C. Rhizospheric Fungi and Their link with the nitrogen-fixing Frankia harbored in host plant Hippophaerhamnoides L. J. Basic Microbiol. 2017;57:1055–1064. doi: 10.1002/jobm.201700312. [DOI] [PubMed] [Google Scholar]
  • 210.Wang W., Zhai Y., Cao L., Tan H., Zhang R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.) Microbiol. Res. 2016;188–189:1–8. doi: 10.1016/j.micres.2016.04.009. [DOI] [PubMed] [Google Scholar]
  • 211.Žifčáková L., Větrovský T., Howe A., Baldrian P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter: Seasonal dynamics of a soil microbial community. Environ. Microbiol. 2016;18:288–301. doi: 10.1111/1462-2920.13026. [DOI] [PubMed] [Google Scholar]
  • 212.Van Der Wal A., Gunnewiek P.J.A.K., Cornelissen J.H.C., Crowther T.W., De Boer W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere. 2016;7:01393. doi: 10.1002/ecs2.1393. [DOI] [Google Scholar]
  • 213.Varenius K., Lindahl B.D., Dahlberg A. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests. FEMS Microbiol. Ecol. 2017;93:fix105. doi: 10.1093/femsec/fix105. [DOI] [PubMed] [Google Scholar]
  • 214.van der Wal A., Klein Gunnewiek P., de Hollander M., de Boer W. Fungal diversity and potential tree pathogens in decaying logs and stumps. For. Ecol. Manag. 2017;406:266–273. doi: 10.1016/j.foreco.2017.08.018. [DOI] [Google Scholar]
  • 215.Wang M., Chen M., Yang Z., Chen N., Chi X., Pan L., Wang T., Yu S., Guo X. Influence of Peanut Cultivars and Environmental Conditions on the Diversity and Community Composition of Pod Rot Soil Fungi in China. Mycobiology. 2017;45:392–400. doi: 10.5941/MYCO.2017.45.4.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.van der Wal A., kleinGunnewiek P., de Boer W. Soil-wood interactions: Influence of decaying coniferous and broadleaf logs on composition of soil fungal communities. Fungal Ecol. 2017;30:132–134. doi: 10.1016/j.funeco.2017.08.006. [DOI] [Google Scholar]
  • 217.Vasutova M., Edwards-Jonášová M., Baldrian P., Čermák M., Cudlín P. Distinct environmental variables drive the community composition of mycorrhizal and saprotrophic fungi at the alpine treeline ecotone. Fungal Ecol. 2017;27:116–124. doi: 10.1016/j.funeco.2016.08.010. [DOI] [Google Scholar]
  • 218.Vaz A.B., Fonseca P., Góes-Neto A., Leite L.R., Badotti F., Salim A.C., Araujo F.M., Cuadros-Orellana S., Duarte Â.A., Rosa C.A., et al. Using next-generation sequencing (NGS) to uncover diversity of wood-decaying fungi in neotropical Atlantic forests. Phytotaxa. 2017;295:1–21. doi: 10.11646/phytotaxa.295.1.1. [DOI] [Google Scholar]
  • 219.Yang T., Adams J., Shi Y., He J.-S., Jing X., Chen L., Tedersoo L., Chu H. Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytol. 2017;215:756–765. doi: 10.1111/nph.14606. [DOI] [PubMed] [Google Scholar]
  • 220.Wicaksono C.Y., Gutiérrez J.A., Nouhra E., Pastor N., Raes N., Pacheco S., Geml J. Contracting montane cloud forests: A case study of the Andean alder (Alnus acuminata) and associated fungi in the Yungas. Biotropica. 2017;49:141–152. doi: 10.1111/btp.12394. [DOI] [Google Scholar]
  • 221.Yang T., Adams J., Shi Y., Sun H., Cheng L., Zhang Y., Chu H. Fungal community assemblages in a high elevation desert environment: Absence of dispersal limitation and edaphic effects in surface soil. Soil Biol. Biochem. 2017;115:393–402. doi: 10.1016/j.soilbio.2017.09.013. [DOI] [Google Scholar]
  • 222.Zhang W., Lu Z., Yang K., Zhu J. Impacts of conversion from secondary forests to larch plantations on the structure and function of microbial communities. Appl. Soil Ecol. 2017;111:73–83. doi: 10.1016/j.apsoil.2016.11.019. [DOI] [Google Scholar]
  • 223.Zhang Z., Zhou X., Tian L., Ma L., Luo S., Zhang J., Li X., Tian C. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China. PLoS ONE. 2017;12:e0187575. doi: 10.1371/journal.pone.0187575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 224.Purahong W., Pietsch K.A., Lentendu G., Schöps R., Bruelheide H., Wirth C., Buscot F., Wubet T. Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique. Front. Microbiol. 2017;8:574. doi: 10.3389/fmicb.2017.00574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Poosakkannu A., Nissinen R., Männistö M., Kytöviita M.-M. Microbial community composition but not diversity changes along succession in arctic sand dunes: Deschampsiaflexuosa associated microbiomes. Environ. Microbiol. 2017;19:698–709. doi: 10.1111/1462-2920.13599. [DOI] [PubMed] [Google Scholar]
  • 226.Bergottini V., Hervé V., Sosa D., Otegui M., Zapata P.D., Junier P. Exploring the diversity of the root-associated microbiome of Ilex paraguariensis St. Hil. (Yerba Mate) Appl. Soil Ecol. 2017;109:23–31. doi: 10.1016/j.apsoil.2016.09.013. [DOI] [Google Scholar]
  • 227.Dean S.L., Tobias T.B., Phippen W.B., Clayton A.W., Gruver J., Porras-Alfaro A. A study of Glycine max (soybean) fungal communities under different agricultural practices. Plant Gene. 2017;11:8–16. doi: 10.1016/j.plgene.2016.11.003. [DOI] [Google Scholar]
  • 228.Fernández-Martínez M.A., Pérez-Ortega S., Pointing S.B., Green T.G.A., Pintado A., Rozzi R., Sancho L., Rios A.D.L. Microbial succession dynamics along glacier forefield chronosequences in Tierra del Fuego (Chile) Polar Biol. 2017;40:1939–1957. doi: 10.1007/s00300-017-2110-7. [DOI] [Google Scholar]
  • 229.Ge Z.-W., Brenneman T., Bonito G., Smith M.E. Soil pH and mineral nutrients strongly influence truffles and other ectomycorrhizal fungi associated with commercial pecans (Carya illinoinensis) Plant Soil. 2017;418:493–505. doi: 10.1007/s11104-017-3312-z. [DOI] [Google Scholar]
  • 230.Gomes S.I.F., Aguirre-Gutiérrez J., Bidartondo M.I., Merckx V.S.F.T. Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants. New Phytol. 2017;213:1418–1427. doi: 10.1111/nph.14249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Almario J., Jeena G., Wunder J., Langen G., Zuccaro A., Coupland G., Bucher M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc. Natl. Acad. Sci. USA. 2017;114:E9403–E9412. doi: 10.1073/pnas.1710455114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Anthony M.A., Frey S.D., Stinson K.A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere. 2017;8:e01951. doi: 10.1002/ecs2.1951. [DOI] [Google Scholar]
  • 233.Grau O., Geml J., Pérez-Haase A., Ninot J.M., Semenova-Nelsen T.A., Peñuelas J. Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic. Mol. Ecol. 2017;26:4798–4810. doi: 10.1111/mec.14227. [DOI] [PubMed] [Google Scholar]
  • 234.Hiiesalu I., Bahram M., Tedersoo L. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Mol. Ecol. 2017;26:4846–4858. doi: 10.1111/mec.14246. [DOI] [PubMed] [Google Scholar]
  • 235.Nguyen D., Boberg J., Cleary M., Bruelheide H., Hönig L., Koricheva J., Stenlid J. Foliar fungi of Betula pendula: Impact of tree species mixtures and assessment methods. Sci. Rep. 2017;7:41801. doi: 10.1038/srep41801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 236.Kolaříková Z., Kohout P., Krüger C., Janoušková M., Mrnka L., Rydlová J. Root-associated fungal communities along a primary succession on a mine spoil: Distinct ecological guilds assemble differently. Soil Biol. Biochem. 2017;113:143–152. doi: 10.1016/j.soilbio.2017.06.004. [DOI] [Google Scholar]
  • 237.Kyaschenko J., Clemmensen K., Hagenbo A., Karltun E., Lindahl B.D. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J. 2017;11:863–874. doi: 10.1038/ismej.2016.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238.Oja J., Vahtra J., Bahram M., Kohout P., Kull T., Rannap R., Kõljalg U., Tedersoo L. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. Mycorrhiza. 2017;27:355–367. doi: 10.1007/s00572-016-0755-7. [DOI] [PubMed] [Google Scholar]
  • 239.Miura T., Sánchez R., Castañeda L.E., Godoy K., Barbosa O. Is microbial terroir related to geographic distance between vineyards? Environ. Microbiol. Rep. 2017;9:742–749. doi: 10.1111/1758-2229.12589. [DOI] [PubMed] [Google Scholar]
  • 240.Oono R., Rasmussen A., Lefèvre E. distance decay relationships in foliar fungal endophytes are driven by rare taxa: Distance decay in fungal endophytes. Environ. Microbiol. 2017;19:2794–2805. doi: 10.1111/1462-2920.13799. [DOI] [PubMed] [Google Scholar]
  • 241.Kamutando C.N., Vikram S., Kamgan-Nkuekam G., Makhalanyane T.P., Greve M., Le Roux J.J., Richardson D., Cowan D., Valverde A. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci. Rep. 2017;7:6472. doi: 10.1038/s41598-017-07018-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 242.Shen Z., Penton C.R., Lv N., Xue C., Yuan X., Ruan Y., Li R., Shen Q. Banana Fusarium Wilt Disease Incidence Is Influenced by Shifts of Soil Microbial Communities under Different Monoculture Spans. Microb. Ecol. 2018;75:739–750. doi: 10.1007/s00248-017-1052-5. [DOI] [PubMed] [Google Scholar]
  • 243.Smith M.E., Henkel T.W., Williams G.C., Aime M.C., Fremier A.K., Vilgalys R. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbecorymbosa. New Phytol. 2017;215:443–453. doi: 10.1111/nph.14570. [DOI] [PubMed] [Google Scholar]
  • 244.Tian H., Wang H., Hui X., Wang Z., Drijber R.A., Liu J. Changes in soil microbial communities after 10 years of winter wheat cultivation versus fallow in an organic-poor soil in the Loess Plateau of China. PLoS ONE. 2017;12:e0184223. doi: 10.1371/journal.pone.0184223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Tu B., Domene X., Yao M., Li C., Zhang S., Kou Y., Wang Y., Li X. Microbial diversity in Chinese temperate steppe: Unveiling the most influential environmental drivers. FEMS Microbiol. Ecol. 2017;93:fix031. doi: 10.1093/femsec/fix031. [DOI] [PubMed] [Google Scholar]
  • 246.Sharma-Poudyal D., Schlatter D., Yin C., Hulbert S., Paulitz T. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems. PLoS ONE. 2017;12:e0184611. doi: 10.1371/journal.pone.0184611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Cross H., Sønstebø J.H., Nagy N.E., Timmermann V., Solheim H., Børja I., Kauserud H., Carlsen T., Rzepka B., Wasak K., et al. Fungal diversity and seasonal succession in ash leaves infected by the invasive ascomycete Hymenoscyphus fraxineus. New Phytol. 2017;213:1405–1417. doi: 10.1111/nph.14204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 248.Kazartsev I., Shorohova E., Kapitsa E., Kushnevskaya H. Decaying Piceaabies log bark hosts diverse fungal communities. Fungal Ecol. 2018;33:1–12. doi: 10.1016/j.funeco.2017.12.005. [DOI] [Google Scholar]
  • 249.Bickford W.A., Goldberg D.E., Kowalski K.P., Zak D.R. Root endophytes and invasiveness: No difference between native and non-native Phragmites in the Great Lakes Region. Ecosphere. 2018;9:02526. doi: 10.1002/ecs2.2526. [DOI] [Google Scholar]
  • 250.Cline L.C., Schilling J.S., Menke J., Groenhof E., Kennedy P.G. Ecological and functional effects of fungal endophytes on wood decomposition. Funct. Ecol. 2018;32:181–191. doi: 10.1111/1365-2435.12949. [DOI] [Google Scholar]
  • 251.Cregger M.A., Veach A., Yang Z.K., Crouch M.J., Vilgalys R., Tuskan G.A., Schadt C.W. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome. 2018;6:e31. doi: 10.1186/s40168-018-0413-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Marasco R., Mosqueira M.J., Fusi M., Ramond J.-B., Merlino G., Booth J.M., Maggs-Kölling G., Cowan D.A., Daffonchio D. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:e215. doi: 10.1186/s40168-018-0597-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Glynou K., Nam B., Thines M., Maciá-Vicente J.G. Facultative root-colonizing fungi dominate endophytic assemblages in roots of nonmycorrhizal Microthlaspi species. New Phytol. 2018;217:1190–1202. doi: 10.1111/nph.14873. [DOI] [PubMed] [Google Scholar]
  • 254.Montagna M., Berruti A., Bianciotto V., Cremonesi P., Giannico R., Gusmeroli F., Lumini E., Pierce S., Pizzi F., Turri F., et al. Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Mol. Ecol. 2018;27:3671–3685. doi: 10.1111/mec.14817. [DOI] [PubMed] [Google Scholar]
  • 255.Schlegel M., Queloz V., Sieber T.N. The Endophytic Mycobiome of European Ash and Sycamore Maple Leaves—Geographic Patterns, Host Specificity and Influence of Ash Dieback. Front. Microbiol. 2018;9:e2345. doi: 10.3389/fmicb.2018.02345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Schneider-Maunoury L., Leclercq S., Clément C., Covès H., Lambourdière J., Sauve M., Richard F., Selosse M.-A., Taschen E. Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecol. 2018;31:59–68. doi: 10.1016/j.funeco.2017.10.004. [DOI] [Google Scholar]
  • 257.Schön M.E., Nieselt K., Garnica S. Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS ONE. 2018;13:e0208493. doi: 10.1371/journal.pone.0208493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Rasmussen P.U., Hugerth L.W., Blanchet F.G., Andersson A., Lindahl B.D., Tack A.J.M. Multiscale patterns and drivers of arbuscular mycorrhizal fungal communities in the roots and root-associated soil of a wild perennial herb. New Phytol. 2018;220:1248–1261. doi: 10.1111/nph.15088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Rogers T.J., Leppanen C., Brown V., Fordyce J.A., LeBude A., Ranney T., Simberloff D., Cregger M.A. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere. 2018;9:e02524. doi: 10.1002/ecs2.2524. [DOI] [Google Scholar]
  • 260.Purahong W., Wubet T., Kahl T., Arnstadt T., Hoppe B., Lentendu G., Baber K., Rose T., Kellner H., Hofrichter M., et al. Increasing N deposition impacts neither diversity nor functions of deadwood-inhabiting fungal communities, but adaptation and functional redundancy ensure ecosystem function. Environ. Microbiol. 2018;20:1693–1710. doi: 10.1111/1462-2920.14081. [DOI] [PubMed] [Google Scholar]
  • 261.Qian X., Chen L., Guo X., He D., Shi M., Zhang D. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient. PeerJ. 2018;6:e5767. doi: 10.7717/peerj.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Park M.S., Eimes J.A., Oh S.H., Suh H.J., Oh S.-Y., Lee S., Park K.H., Kwon H.J., Kim S.-Y., Lim Y.W. Diversity of fungi associated with roots of Calanthe orchid species in Korea. J. Microbiol. 2018;56:49–55. doi: 10.1007/s12275-018-7319-9. [DOI] [PubMed] [Google Scholar]
  • 263.Mirmajlessi S.M., Bahram M., Mänd M., Najdabbasi N., Mansouripour S., Loit E. Survey of Soil Fungal Communities in Strawberry Fields by Illumina Amplicon Sequencing. Eurasian Soil Sci. 2018;51:682–691. doi: 10.1134/S106422931806011X. [DOI] [Google Scholar]
  • 264.Purahong W., Wubet T., Lentendu G., Hoppe B., Jariyavidyanont K., Arnstadt T., Baber K., Otto P., Kellner H., Hofrichter M., et al. Determinants of deadwood-inhabiting fungal communities in temperate forests: Molecular evidence from a large scale deadwood decomposition experiment. Front. Microbiol. 2018;9:2120. doi: 10.3389/fmicb.2018.02120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Si P., Shao W., Yu H., Yang X., Gao D., Qiao X., Wang Z., Wu G. Rhizosphere Microenvironments of Eight Common Deciduous Fruit Trees Were Shaped by Microbes in Northern China. Front. Microbiol. 2018;9:e3147. doi: 10.3389/fmicb.2018.03147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Saitta A., Anslan S., Bahram M., Brocca L., Tedersoo L. Tree species identity and diversity drive fungal richness and community composition along an elevational gradient in a Mediterranean ecosystem. Mycorrhiza. 2018;28:39–47. doi: 10.1007/s00572-017-0806-8. [DOI] [PubMed] [Google Scholar]
  • 267.Santalahti M., Sun H., Sietiö O.-M., Köster K., Berninger F., Laurila T., Pumpanen J., Heinonsalo J. Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in Finnish Lapland. Appl. Soil Ecol. 2018;132:74–82. doi: 10.1016/j.apsoil.2018.08.013. [DOI] [Google Scholar]
  • 268.Sukdeo N., Teen E., Rutherford P.M., Massicotte H.B., Egger K.N. Selecting fungal disturbance indicators to compare forest soil profile re-construction regimes. Ecol. Indic. 2018;84:662–682. doi: 10.1016/j.ecolind.2017.09.021. [DOI] [Google Scholar]
  • 269.Zhu S., Wang Y., Xu X., Liu T., Wu D., Zheng X., Tang S., Dai Q. Potential use of high-throughput sequencing of soil microbial communities for estimating the adverse effects of continuous cropping on ramie (Boehmeria nivea L. Gaud) PLoS ONE. 2018;13:e0197095. doi: 10.1371/journal.pone.0197095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 270.Zhang J., Zhang B., Liu Y., Guo Y., Shi P., Wei G. Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci. Total Environ. 2018;644:791–800. doi: 10.1016/j.scitotenv.2018.07.016. [DOI] [PubMed] [Google Scholar]
  • 271.Zhang B., Zhang Y., Li X., Zhang Y. Successional changes of fungal communities along the biocrust development stages. Biol. Fertil. Soils. 2018;54:285–294. doi: 10.1007/s00374-017-1259-0. [DOI] [Google Scholar]
  • 272.Sun R., Li W., Dong W., Tian Y., Hu C., Liu B. Tillage changes vertical distribution of soil bacterial and fungal communities. Front. Microbiol. 2018;9:699. doi: 10.3389/fmicb.2018.00699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 273.Weißbecker C., Wubet T., Lentendu G., Kühn P., Scholten T., Bruelheide H., Buscot F. Experimental evidence of functional group-dependent effects of tree diversity on soil fungi in subtropical forests. Front. Microbiol. 2018;9:2312. doi: 10.3389/fmicb.2018.02312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Purahong W., Mapook A., Wu Y.T., Chen C.T. Characterization of the Castanopsis carlesii deadwood mycobiome by pacbio sequencing of the full-length fungal nuclear ribosomal Internal Transcribed Spacer (ITS) Front. Microbiol. 2019;10:983. doi: 10.3389/fmicb.2019.00983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 275.Egidi E., Delgado-Baquerizo M., Plett J., Wang J., Eldridge D.J., Bardgett R.D., Maestre F.T., Singh B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019;10:2369. doi: 10.1038/s41467-019-10373-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 276.Frøslev T.G., Kjøller R., Bruun H.H., Ejrnæs R., Hansen A.J., Læssøe T., Heilmann-Clausen J. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biol. Conserv. 2019;233:201–212. doi: 10.1016/j.biocon.2019.02.038. [DOI] [Google Scholar]
  • 277.Ogwu M.C., Takahashi K., Dong K., Song H.-K., Moroenyane I., Waldman B., Adams J.M. Fungal elevational rapoport pattern from a high mountain in Japan. Sci. Rep. 2019;9:6570. doi: 10.1038/s41598-019-43025-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278.Ovaskainen O., Abrego N., Somervuo P., Palorinne I., Hardwick B., Pitkänen J.-M., Andrew N.R., Niklaus P.A., Schmidt N.M., Seibold S., et al. Monitoring fungal communities with the global spore sampling project. Front. Ecol. Evol. 2020;7:511. doi: 10.3389/fevo.2019.00511. [DOI] [Google Scholar]
  • 279.Qian X., Li H., Wang Y., Wu B., Wu M., Chen L., Li X., Zhang Y., Wang X., Shi M., et al. Leaf and root endospheres harbor lower fungal diversity and less complex fungal co-occurrence patterns than rhizosphere. Front. Microbiol. 2019;10:1015. doi: 10.3389/fmicb.2019.01015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280.Ramirez K.S., Snoek L.B., Koorem K., Geisen S., Bloem L.J., ten Hooven F., Kostenko O., Krigas N., Manrubia M., Caković D., et al. Range-expansion effects on the belowground plant microbiome. Nat. Ecol. Evol. 2019;3:604–611. doi: 10.1038/s41559-019-0828-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 281.Pellitier P.T., Zak D.R., Salley S. Environmental filtering structures fungal endophyte communities in tree bark. Mol. Ecol. 2019;28:5188–5198. doi: 10.1111/mec.15237. [DOI] [PubMed] [Google Scholar]
  • 282.Semenova-Nelsen T.A., Platt W.J., Patterson T.R., Huffman J., Sikes B.A. Frequent fire reorganizes fungal communities and slows decomposition across a heterogeneous pine savanna landscape. New Phytol. 2019;224:916–927. doi: 10.1111/nph.16096. [DOI] [PubMed] [Google Scholar]
  • 283.Sheng Y., Cong J., Lu H., Yang L., Liu Q., Li D., Zhang Y. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. Microbiology Open. 2019;8:e874. doi: 10.1002/mbo3.874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Shigyo N., Umeki K., Hirao T. Seasonal dynamics of soil fungal and bacterial communities in cool-temperate montane forests. Front. Microbiol. 2019;10:1944. doi: 10.3389/fmicb.2019.01944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 285.Schröter K., Wemheuer B., Pena R., Schöning I., Ehbrecht M., Schall P., Ammer C., Daniel R., Polle A. Assembly processes of trophic guilds in the root mycobiome of temperate forests. Mol. Ecol. 2019;28:348–364. doi: 10.1111/mec.14887. [DOI] [PubMed] [Google Scholar]
  • 286.Singh J., Silva K.J.P., Fuchs M., Khan A. Potential role of weather, soil and plant microbial communities in rapid decline of apple trees. PLoS ONE. 2019;14:e0213293. doi: 10.1371/journal.pone.0213293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 287.Song H., Singh D., Tomlinson K.W., Yang X., Ogwu M.C., Slik J.W.F., Adams J.M. Tropical forest conversion to rubber plantation in southwest China results in lower fungal beta diversity and reduced network complexity. FEMS Microbiol. Ecol. 2019;95:fiz092. doi: 10.1093/femsec/fiz092. [DOI] [PubMed] [Google Scholar]
  • 288.U’Ren J.M., Lutzoni F., Miadlikowska J., Zimmerman N.B., Carbone I., May G., Arnold A.E. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 2019;3:1430–1437. doi: 10.1038/s41559-019-0975-2. [DOI] [PubMed] [Google Scholar]
  • 289.Unuk T., Martinović T., Finžgar D., Šibanc N., Grebenc T., Kraigher H. Root-associated fungal communities from two phenologically contrasting silver fir (Abies alba Mill.) groups of trees. Front. Plant Sci. 2019;10:214. doi: 10.3389/fpls.2019.00214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Araya J.P., González M., Cardinale M., Schnell S., Stoll A. Microbiome dynamics associated with the atacama flowering desert. Front. Microbiol. 2020;10:3160. doi: 10.3389/fmicb.2019.03160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 291.Álvarez-Garrido L., Viñegla B., Hortal S., Powell J.R., Carreira J.A. Distributional shifts in ectomycorrizhal fungal communities lag behind climate-driven tree upward migration in a conifer forest-high elevation shrubland ecotone. Soil Biol. Biochem. 2019;137:e107545. doi: 10.1016/j.soilbio.2019.107545. [DOI] [Google Scholar]
  • 292.Wei Z., Yu D. Rhizosphere fungal community structure succession of Xinjiang continuously cropped cotton. Fungal Biol. 2018;123:42–50. doi: 10.1016/j.funbio.2018.11.007. [DOI] [PubMed] [Google Scholar]
  • 293.Pan H., Chen M., Feng H., Wei M., Song F., Lou Y., Cui X., Wang H., Zhuge Y. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res. 2020;198:104540. doi: 10.1016/j.still.2019.104540. [DOI] [Google Scholar]
  • 294.Detheridge A.P., Cherrett S., Clasen L.A., Medcalf K., Pike S., Griffith G.W., Scullion J. Depauperate soil fungal populations from the St. Helena endemic Commidendrum robustum are dominated by Capnodiales. Fungal Ecol. 2020;45:e100911. doi: 10.1016/j.funeco.2020.100911. [DOI] [Google Scholar]
  • 295.Li S.-P., Wang P., Chen Y., Wilson M.C., Yang X., Ma C., Lu J., Chen X.-Y., Wu J., Shu W.-S., et al. Island biogeography of soil bacteria and fungi: Similar patterns, but different mechanisms. ISME J. 2020;14:1886–1896. doi: 10.1038/s41396-020-0657-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 296.Barghoorn E.S., Linder D.H. Marine fungi: Their taxonomy and biology. Farlowia. 1944;1:395–467. doi: 10.5962/p.315987. [DOI] [Google Scholar]
  • 297.Roth F.J., Jr., Orpurt P.A., Ahearn D.G. Occurrence and distribution of fungi in a subtropical marine environment. Can. J. Bot. 1964;42:375–383. doi: 10.1139/b64-037. [DOI] [Google Scholar]
  • 298.Höhnk W. Über den pilzlichen Befall kalkigerHartteile von Meerestieren. Ber. Dtsch. Wiss. Komm. Meeresforsch. 1969;20:129–140. [Google Scholar]
  • 299.Gaertner A.N. mit Pollen koderbare marine Pilzediesseits und jenseits des Island-Faroer-RiickensimOberflachenwasser und im Sediment. Veroeff. Inst. Meeresforsch. Bremerhav. 1968;11:65–82. [Google Scholar]
  • 300.Kohlmeyer J., Volkmann-Kohlmeyer B. Illustrated Key to the Filamentous Higher Marine Fungi. Bot. Mar. 1991;34:1–61. doi: 10.1515/botm.1991.34.1.1. [DOI] [Google Scholar]
  • 301.Raghukumar C., Raghukumar S. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat. Microb. Ecol. 1998;15:153–163. doi: 10.3354/ame015153. [DOI] [Google Scholar]
  • 302.Nagahama T., Hamamoto M., Nakase T., Horikoshi K. Rhodotorula lamellibrachii sp. nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay and its phylogenetic analysis. Antonie Leeuwenhoek. 2001;80:317–323. doi: 10.1023/A:1013043301388. [DOI] [PubMed] [Google Scholar]
  • 303.Edgcomb V.P., Kysela D.T., Teske A., de Vera Gomez A., Sogin M.L. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc. Natl. Acad. Sci. USA. 2002;99:7658–7662. doi: 10.1073/pnas.062186399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 304.Lopez-Garcia P., Philippe H., Gail F., Moreira D. Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. USA. 2003;100:697–702. doi: 10.1073/pnas.0235779100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 305.Raghukumar C., Raghukumar S., Sheelu G., Gupta S., Nagendernath B., Rao B. Buried in time: Culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004;51:1759–1768. doi: 10.1016/j.dsr.2004.08.002. [DOI] [Google Scholar]
  • 306.Biddle J., House C.H., Brenchley J.E. Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology. 2005;3:287–295. doi: 10.1111/j.1472-4669.2006.00062.x. [DOI] [Google Scholar]
  • 307.Damare S., Raghukumar C., Raghukumar S. Fungi in deep-sea sediments of the Central Indian Basin. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006;53:14–27. doi: 10.1016/j.dsr.2005.09.005. [DOI] [Google Scholar]
  • 308.Takishita K., Tsuchiya M., Reimer J.D., Maruyama T. Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles. 2006;10:165–169. doi: 10.1007/s00792-005-0495-7. [DOI] [PubMed] [Google Scholar]
  • 309.Damare S., Raghukumar C., Muraleedharan U.D., Raghukumar S. Deep-sea fungi as a source of alkaline and cold-tolerant proteases. Enzym. Microb. Technol. 2006;39:172–181. doi: 10.1016/j.enzmictec.2006.03.032. [DOI] [Google Scholar]
  • 310.Bass D., Howe A., Brown N., Barton H., Demidova M., Michelle H., Li L., Sanders H., Watkinson S.C., Willcock S., et al. Yeast forms dominate fungal diversity in the deep oceans. Proc. R. Soc. B Boil. Sci. 2007;274:3069–3077. doi: 10.1098/rspb.2007.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 311.Lai X., Cao L., Tan H., Fang S., Huang Y., Zhou S. Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J. 2007;1:756–762. doi: 10.1038/ismej.2007.51. [DOI] [PubMed] [Google Scholar]
  • 312.López-García P., Vereshchaka A., Moreira D. Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ. Microbiol. 2007;9:546–554. doi: 10.1111/j.1462-2920.2006.01158.x. [DOI] [PubMed] [Google Scholar]
  • 313.Damare S., Raghukumar C. Fungi and Macroaggregation in Deep-Sea Sediments. Microb. Ecol. 2008;56:168–177. doi: 10.1007/s00248-007-9334-y. [DOI] [PubMed] [Google Scholar]
  • 314.Connell L., Barrett A., Templeton A., Staudigel H. Fungal Diversity Associated with an Active Deep Sea Volcano: Vailulu’u Seamount, Samoa. Geomicrobiol. J. 2009;26:597–605. doi: 10.1080/01490450903316174. [DOI] [Google Scholar]
  • 315.Dupont J., Magnin S., Rousseau F., Zbinden M., Frebourg G., Samadi S., de Forges B.R., Jones E.G. Molecular and ultrastructural characterization of two ascomycetes found on sunken wood off Vanuatu Islands in the deep Pacific Ocean. Mycol. Res. 2009;113:1351–1364. doi: 10.1016/j.mycres.2009.08.015. [DOI] [PubMed] [Google Scholar]
  • 316.Le Calvez T., Burgaud G., Mahé S., Barbier G., Vandenkoornhuyse P. Fungal Diversity in Deep-Sea Hydrothermal Ecosystems. Appl. Environ. Microbiol. 2009;75:6415–6421. doi: 10.1128/AEM.00653-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 317.Burgaud G., Le Calvez T., Arzur D., Vandenkoornhuyse P., Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol. 2009;11:1588–1600. doi: 10.1111/j.1462-2920.2009.01886.x. [DOI] [PubMed] [Google Scholar]
  • 318.Burgaud G., Arzur D., Durand L., Cambon-Bonavita M.-A., Barbier G. Marine culturable yeasts in deep-sea hydrothermal vents: Species richness and association with fauna: Culturable yeasts from hydrothermal vents. FEMS Microbiol. Ecol. 2010;73:121–133. doi: 10.1111/j.1574-6941.2010.00881.x. [DOI] [PubMed] [Google Scholar]
  • 319.Nagano Y., Nagahama T., Hatada Y., Nunoura T., Takami H., Miyazaki J., Takai K., Horikoshi K. Fungal diversity in deep-sea sediments—The presence of novel fungal groups. Fungal Ecol. 2010;3:316–325. doi: 10.1016/j.funeco.2010.01.002. [DOI] [Google Scholar]
  • 320.Sauvadet A.-L., Gobet A., Guillou L. Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ. Microbiol. 2010;12:2946–2964. doi: 10.1111/j.1462-2920.2010.02272.x. [DOI] [PubMed] [Google Scholar]
  • 321.Singh P., Raghukumar C., Verma P., Shouche Y. Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers. 2010;40:89–102. doi: 10.1007/s13225-009-0009-5. [DOI] [Google Scholar]
  • 322.Bhadury P., Bik H., Lambshead J.D., Austen M.C., Smerdon G.R., Rogers A.D. Molecular Diversity of Fungal Phylotypes Co-Amplified Alongside Nematodes from Coastal and Deep-Sea Marine Environments. PLoS ONE. 2011;6:e26445. doi: 10.1371/journal.pone.0026445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 323.Edgcomb V.P., Beaudoin D., Gast R., Biddle J.F., Teske A. Marine subsurface eukaryotes: The fungal majority: Marine subsurface eukaryotes. Environ. Microbiol. 2011;13:172–183. doi: 10.1111/j.1462-2920.2010.02318.x. [DOI] [PubMed] [Google Scholar]
  • 324.Eloe E.A., Shulse C.N., Fadrosh D.W., Williamson S.J., Allen E.E., Bartlett D.H. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment: Microbial diversity in the puertorico trench. Environ. Microbiol. Rep. 2011;3:449–458. doi: 10.1111/j.1758-2229.2010.00223.x. [DOI] [PubMed] [Google Scholar]
  • 325.Nagahama T., Takahashi E., Nagano Y., Abdel-Wahab M.A., Miyazaki M. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ. Microbiol. 2011;13:2359–2370. doi: 10.1111/j.1462-2920.2011.02507.x. [DOI] [PubMed] [Google Scholar]
  • 326.Quaiser A., Zivanovic Y., Moreira D., López-García P. Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J. 2010;5:285–304. doi: 10.1038/ismej.2010.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 327.Singh P., Raghukumar C., Verma P., Shouche Y. Fungal Community Analysis in the Deep-Sea Sediments of the Central Indian Basin by Culture-Independent Approach. Microb. Ecol. 2011;61:507–517. doi: 10.1007/s00248-010-9765-8. [DOI] [PubMed] [Google Scholar]
  • 328.Singh P., Raghukumar C., Meena R.M., Verma P., Shouche Y. Fungal diversity in deep-sea sediments revealed by culture-dependent and culture-independent approaches. Fungal Ecol. 2012;5:543–553. doi: 10.1016/j.funeco.2012.01.001. [DOI] [Google Scholar]
  • 329.Thaler A.D., Van Dover C.L., Vilgalys R. Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol. 2012;5:270–273. doi: 10.1016/j.funeco.2011.07.002. [DOI] [Google Scholar]
  • 330.Kimes N.E., Callaghan A.V., Aktas D.F., Smith W.L., Sunner J., Golding B.T., Drozdowska M., Hazen T.C., Suflita J.M., Morris P.J. Metagenomic analysis and metabolite profiling of deep–sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front. Microbiol. 2013;4:50. doi: 10.3389/fmicb.2013.00050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 331.Orsi W., Biddle J., Edgcomb V. Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces. PLoS ONE. 2013;8:e56335. doi: 10.1371/journal.pone.0056335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 332.Zhang T., Zhang Y.-Q., Liu H.-Y., Wei Y.-Z., Li H.-L., Su J., Zhao L.-X., Yu L.-Y. Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica. FEMS Microbiol. Lett. 2013;341:52–61. doi: 10.1111/1574-6968.12090. [DOI] [PubMed] [Google Scholar]
  • 333.Bernhard J.M., Kormas K., Pachiadaki M., Rocke E., Beaudoin D.J., Morrison C., Visscher P., Cobban A., Starczak V.R., Edgcomb V. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Front. Microbiol. 2014;5:605. doi: 10.3389/fmicb.2014.00605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 334.Rédou V., Ciobanu M.C., Pachiadaki M.G., Edgcomb V., Alain K., Barbier G., Burgaud G. In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microbiol. Ecol. 2014;90:908–921. doi: 10.1111/1574-6941.12447. [DOI] [PubMed] [Google Scholar]
  • 335.Wei W., Isobe K., Shiratori Y., Nishizawa T., Ohte N., Otsuka S., Senoo K. N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer. Soil Biol. Biochem. 2014;69:157–167. doi: 10.1016/j.soilbio.2013.10.044. [DOI] [Google Scholar]
  • 336.Zhang D., Ge H., Zou J.-H., Tao X., Chen R., Dai J. Periconianone A, a new 6/6/6 carbocyclic sesquiterpenoid from endophytic fungus Periconia sp. with neural anti-inflammatory activity. Org. Lett. 2014;16:1410–1413. doi: 10.1021/ol500197x. [DOI] [PubMed] [Google Scholar]
  • 337.Rédou V., Navarri M., Meslet-Cladière L., Barbier G., Burgaud G. Species richness and adaptation of marine fungi from deep-subsea floor sediments. Appl. Environ. Microbiol. 2015;81:3571–3583. doi: 10.1128/AEM.04064-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 338.Edgcomb V.P., Pachiadaki M., Mara P., Kormas K., Leadbetter E.R., Bernhard J. Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins. ISME J. 2016;10:2643–2657. doi: 10.1038/ismej.2016.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 339.Tisthammer K.H., Cobian G., Amend A.S. Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 2016;19:39–46. doi: 10.1016/j.funeco.2015.09.003. [DOI] [Google Scholar]
  • 340.Boraks A., Amend A.S. Fungi in soil and understory have coupled distribution patterns. PeerJ. 2021;9:e11915. doi: 10.7717/peerj.11915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 341.Zhang T., Wang N.-F., Liu H.-Y., Zhang Y.-Q., Yu L.-Y. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic) Front. Microbiol. 2016;7:227. doi: 10.3389/fmicb.2016.00227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 342.Ali S.H., Alias S.A., Siang H.Y., Smykla J., Pang K.L., Guo S.Y., Peter C. Studies on diversity of soil microbfungi in the Hornsund area, Spitsbergen. Pol. Polar Res. 2013;34:39–54. [Google Scholar]
  • 343.Pachiadaki M., Rédou V., Beaudoin D.J., Burgaud G., Edgcomb V.P. Fungal and Prokaryotic Activities in the Marine Subsurface Biosphere at Peru Margin and Canterbury Basin Inferred from RNA-Based Analyses and Microscopy. Front. Microbiol. 2016;7:846. doi: 10.3389/fmicb.2016.00846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 344.Bochdansky A.B., Clouse M.A., Herndl G.J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 2017;11:362–373. doi: 10.1038/ismej.2016.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 345.Vera J., Gutiérrez M.H., Palfner G., Pantoja S. Diversity of culturable filamentous Ascomycetes in the eastern South Pacific Ocean off Chile. World J. Microbiol. Biotechnol. 2017;33:157. doi: 10.1007/s11274-017-2321-7. [DOI] [PubMed] [Google Scholar]
  • 346.Nagano Y., Miura T., Nishi S., Lima A., Nakayama C.R., Pellizari V., Fujikura K. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017;146:59–67. doi: 10.1016/j.dsr2.2017.05.012. [DOI] [Google Scholar]
  • 347.Orsi W.D., Richards T.A., Francis W.R. Predicted microbial secretomes and their target substrates in marine sediment. Nat. Microbiol. 2018;3:32–37. doi: 10.1038/s41564-017-0047-9. [DOI] [PubMed] [Google Scholar]
  • 348.Wei X., Guo S., Gong L.-F., He G., Pang K.-L., Luo Z.-H. Cultivable Fungal Diversity in Deep-Sea Sediment of the East Pacific Ocean. Geomicrobiol. J. 2018;35:790–797. doi: 10.1080/01490451.2018.1473531. [DOI] [Google Scholar]
  • 349.Barone G., Rastelli E., Corinaldesi C., Tangherlini M., Danovaro R., Dell’Anno A. Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea. Prog. Oceanogr. 2018;168:57–64. doi: 10.1016/j.pocean.2018.09.011. [DOI] [Google Scholar]
  • 350.Xu W., Gong L.F., Pang K.L., Luo Z.H. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018;131:16–26. doi: 10.1016/j.dsr.2017.11.001. [DOI] [Google Scholar]
  • 351.Li J., Meng B., Chai H., Yang X., Song W., Li S., Lu A., Zhang T., Sun W. Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) Grasses via Altering Antioxidant Enzyme Activities and Photosynthesis. Front. Plant Sci. 2019;10:499. doi: 10.3389/fpls.2019.00499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 352.Vargas-Gastélum L., Chong-Robles J., Lago-Lestón A., Darcy J.L., Amend A.S., Riquelme M. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ. Microbiol. 2019;21:4046–4061. doi: 10.1111/1462-2920.14754. [DOI] [PubMed] [Google Scholar]
  • 353.Wei F., Zhao L., Xu X., Feng H., Shi Y., Deakin G., Feng Z., Zhu H. Cultivar-Dependent Variation of the Cotton Rhizosphere and Endosphere Microbiome Under Field Conditions. Front. Plant Sci. 2019;10:1659. doi: 10.3389/fpls.2019.01659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 354.Velez P., Gasca-Pineda J., Riquelme M. Cultivable fungi from deep-sea oil reserves in the Gulf of Mexico: Genetic signatures in response to hydrocarbons. Mar. Environ. Res. 2020;153:104816. doi: 10.1016/j.marenvres.2019.104816. [DOI] [PubMed] [Google Scholar]
  • 355.Wieser A., Schneider L., Jung J., Schubert S. MALDI-TOF MS in microbiological diagnostics—Identification of microorganisms and beyond (mini review) Appl. Microbiol. Biotechnol. 2012;93:965–974. doi: 10.1007/s00253-011-3783-4. [DOI] [PubMed] [Google Scholar]
  • 356.Rossman A.Y., Samuels G.J. Towards a single scientific name for species of fungi. Inoculum. 2005;56:3–6. [Google Scholar]
  • 357.Stadler M., Læssøe T., Fournier J., Decock C., Schmieschek B., Tichy H.-V., Persoh D. A polyphasic taxonomy of Daldinia (Xylariaceae) Stud. Mycol. 2014;77:1–143. doi: 10.3114/sim0016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 358.Bhunjun C.S., Dong Y., Jayawardena R., Jeewon R., Phukhamsakda C., Bundhun D., Hyde K.D., Sheng J. A polyphasic approach to delineate species in Bipolaris. Fungal Divers. 2020;102:225–256. doi: 10.1007/s13225-020-00446-6. [DOI] [Google Scholar]
  • 359.Crous P.W., Hawksworth D.L., Wingfield M.J. Identifying and Naming Plant-Pathogenic Fungi: Past, Present, and Future. Annu. Rev. Phytopathol. 2015;53:247–267. doi: 10.1146/annurev-phyto-080614-120245. [DOI] [PubMed] [Google Scholar]
  • 360.Bhunjun C.S., Phukhamsakda C., Jayawardena R.S., Jeewon R., Promputtha I., Hyde K.D. Investigating species boundaries in Colletotrichum. Fungal Divers. 2021;107:107–127. doi: 10.1007/s13225-021-00471-z. [DOI] [Google Scholar]
  • 361.Hebert P.D.N., Cywinska A., Ball S.L., Dewaard J.R. Biological identifications through DNA barcodes. Proc. R. Soc. B Boil. Sci. 2003;270:313–321. doi: 10.1098/rspb.2002.2218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 362.Lücking R., Aime M.C., Hawksworth D.L., Hyde K.D., Irinyi L., Jeewon R., Johnston P.R., Kirk P.M., Malosso E., May T.W., et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus. 2020;11:14. doi: 10.1186/s43008-020-00033-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 363.Lindahl J.F., Grace D. The consequences of human actions on risks for infectious diseases: A review. Infect. Ecol. Epidemiol. 2015;5:30048. doi: 10.3402/iee.v5.30048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 364.Taylor J.W., Jacobson D.J., Kroken S., Kasuga T., Geiser D.M., Hibbett D.S., Fisher M. Phylogenetic Species Recognition and Species Concepts in Fungi. Fungal Genet. Biol. 2000;31:21–32. doi: 10.1006/fgbi.2000.1228. [DOI] [PubMed] [Google Scholar]
  • 365.Ariyawansa H.A., Hyde K.D., Jayasiri S.C., Buyck B., Chethana K.T., Dai D.Q., Dai Y.C., Daranagama D.A., Jayawardena R.S., Lücking R., et al. Fungal diversity notes 111–252—Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2015;75:27–274. doi: 10.1007/s13225-015-0346-5. [DOI] [Google Scholar]
  • 366.Lawrence D.P., Gannibal P., Peever T.L., Pryor B.M. The sections of Alternaria: Formalizing species-group concepts. Mycologia. 2013;105:530–546. doi: 10.3852/12-249. [DOI] [PubMed] [Google Scholar]
  • 367.Woudenberg J., Groenewald J., Binder M., Crous P. Alternaria redefined. Stud. Mycol. 2013;75:171–212. doi: 10.3114/sim0015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 368.Woudenberg J.H.C., van der Merwe N.A., Jurjević Ž., Groenewald J.Z., Crous P.W. Diversity and movement of indoor Alternaria alternata across the mainland USA. Fungal Genet. Biol. 2015;81:62–72. doi: 10.1016/j.fgb.2015.05.003. [DOI] [PubMed] [Google Scholar]
  • 369.Kim M.-S., Klopfenstein N.B., Hanna J.W., McDonald G.I. Characterization of North American Armillaria species: Genetic relationships determined by ribosomal DNA sequences and AFLP markers. For. Pathol. 2006;36:145–164. doi: 10.1111/j.1439-0329.2006.00441.x. [DOI] [Google Scholar]
  • 370.Coetzee M.P.A., Wingfeld B.D., Wingfeld M.J. Armillaria root-rot pathogens: Species boundaries and global distribution. Pathogens. 2018;7:83. doi: 10.3390/pathogens7040083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 371.Dissanayake A.J., Phillips A.J.L., Li X.H., Hyde K.D. Botryosphaeriaceae: Current status of genera and species. Mycosphere. 2016;7:1001–1073. doi: 10.5943/mycosphere/si/1b/13. [DOI] [Google Scholar]
  • 372.Li G.J., Hyde K.D., Zhao R.L., Hongsanan S., Abdel-Aziz F.A., Abdel-Wahab M.A., Alvarado P., Alves-Silva G., Ammirati J.F., Ariyawansa H.A., et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016;78:1–237. doi: 10.1007/s13225-016-0366-9. [DOI] [Google Scholar]
  • 373.Chen Q., Jiang J.R., Zhang G.Z., Cai L., Crous P.W. Resolving the Phoma enigma. Stud. Mycol. 2015;82:137–217. doi: 10.1016/j.simyco.2015.10.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 374.Chen Q., Hou L.W., Duan W.J., Crous P.W., Cai L. Didymellaceae revisited. Stud. Mycol. 2017;87:105–159. doi: 10.1016/j.simyco.2017.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 375.Jayasiri S.C., Hyde K.D., Jones E.B., Jeewon R., Ariyawansa H.A., Bhat J.D., Camporesi E., Kang J.C. Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Mycosphere. 2017;8:1080–1101. doi: 10.5943/mycosphere/8/8/9. [DOI] [Google Scholar]
  • 376.Berner D., Cavin C., Woudenberg J.H., Tunali B., Büyük O., Kansu B. Assessment of Boeremiaexigua var. rhapontica, as a biological control agent of Russian knapweed (Rhaponticum repens) Biol. Control. 2015;81:65–75. doi: 10.1016/j.biocontrol.2014.11.009. [DOI] [Google Scholar]
  • 377.Manamgoda D.S., Cai L., McKenzie E.H.C., Crous P.W., Madrid H., Chukeatirote E., Shivas R.G., Tan Y.P., Hyde K.D. A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-Curvularia Complex. Fungal Divers. 2012;56:131–144. doi: 10.1007/s13225-012-0189-2. [DOI] [Google Scholar]
  • 378.Phillips A.J.L., Alves A., Abdollahzadeh J., Slippers B., Wingfield M.J., Groenewald J.Z., Crous P.W. The Botryosphaeriaceae: Genera and species known from culture. Stud. Mycol. 2013;76:51–167. doi: 10.3114/sim0021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 379.Hyde K.D., Nilsson R.H., Alias S.A., Ariyawansa H.A., Blair J.E., Cai L., De Cock A.W.A.M., Dissanayake A.J., Glockling S.L., Goonasekara I.D., et al. One stop shop: Backbones trees for important phytopathogenic genera: I. Fungal Divers. 2014;67:21–125. doi: 10.1007/s13225-014-0298-1. [DOI] [Google Scholar]
  • 380.Crous P.W., Kang J.C., Schoch C.L., Mchua G.R.A. Phylogenetic relationships of Cylindrocladium pseudogracile and Cylindrocladium rumohrae with morphologically similar taxa, based on morphology and DNA sequences of internal transcribed spacers and β-tubulin. Can. J. Bot. 1999;77:1813–1820. doi: 10.1139/cjb-77-12-1813. [DOI] [Google Scholar]
  • 381.Schoch C.L., Crous P.W., Wingfield B.D., Wingfield M.J. Phylogeny of Calonectria based on comparisons of β-tubulin DNA sequences. Mycol. Res. 2001;105:1045–1052. doi: 10.1016/S0953-7562(08)61966-8. [DOI] [Google Scholar]
  • 382.Lombard L., Crous P., Wingfield B., Wingfield M. Species concepts in Calonectria (Cylindrocladium) Stud. Mycol. 2010;66:1–13. doi: 10.3114/sim.2010.66.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 383.Lombard L., Crous P.W., Wingfield B.D., Wingfield M.J. Phylogeny and systematics of the genus Calonectria. Stud. Mycol. 2010;66:31–69. doi: 10.3114/sim.2010.66.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 384.Lombard L., Wingfield M., Alfenas A., Crous P. The forgotten Calonectria collection: Pouring old wine into new bags. Stud. Mycol. 2016;85:159–198. doi: 10.1016/j.simyco.2016.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 385.Groenewald J., Nakashima C., Nishikawa J., Shin H.-D., Park J.-H., Jama A., Groenewald M., Braun U., Crous P. Species concepts in Cercospora: Spotting the weeds among the roses. Stud. Mycol. 2013;75:115–170. doi: 10.3114/sim0012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 386.Albu S., Sharma S., Bluhm B.H., Price P.P., Schneider R.W., Doyle V.P. Draft Genome Sequence of Cercospora cf. sigesbeckiae, a Causal Agent of Cercospora Leaf Blight on Soybean. Genome Announc. 2017;5:e00708-17. doi: 10.1128/genomeA.00708-17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 387.Guatimosim E., Schwartsburd P., Barreto R., Crous P. Novel fungi from an ancient niche: Cercosporoid and related sexual morphs on ferns. Persoonia. 2016;37:106–141. doi: 10.3767/003158516X690934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 388.Bakhshi M., Arzanlou M., Babai-Ahari A., Groenewald J.Z., Braun U., Crous P.W. Application of the consolidated species concept to Cercospora spp. from Iran. Persoonia. 2015;34:65–86. doi: 10.3767/003158515X685698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 389.Bakhshi M., Arzanlou M., Babai-Ahari A., Groenewald J.Z., Crous P.W. Novel primers improve species delimitation in Cercospora. IMA Fungus. 2018;9:299–332. doi: 10.5598/imafungus.2018.09.02.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 390.Jiang M., Kirschner R. Unraveling two East Asian species of Clinoconidium (Cryptobasidiaceae) Mycoscience. 2016;57:440–447. doi: 10.1016/j.myc.2016.07.007. [DOI] [Google Scholar]
  • 391.Kakishima M., Ji J.-X., Nagao H., Wang Q., Denchev C.M. Clinoconidium globosum, nom. nov. (Cryptobasidiaceae) producing galls on fruits of Cinnamomum daphnoides in Japan. Phytotaxa. 2017;299:267–272. doi: 10.11646/phytotaxa.299.2.11. [DOI] [Google Scholar]
  • 392.Kakishima M., Nagao H., Ji J.-X., Sun Y., Denchev C.M. Clinoconidium onumae, comb. nov. (Cryptobasidiaceae) producing galls on shoot buds of Cinnamomum tenuifolium in Japan. Phytotaxa. 2017;313:175–184. doi: 10.11646/phytotaxa.313.2.3. [DOI] [Google Scholar]
  • 393.Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Fungal Barcoding Consortium Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA. 2012;109:6241–6246. doi: 10.1073/pnas.1117018109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 394.Doyle V.P., Oudemans P., Rehner S.A., Litt A. Habitat and Host Indicate Lineage Identity in Colletotrichum gloeosporioides s.l. from Wild and Agricultural Landscapes in North America. PLoS ONE. 2013;8:e62394. doi: 10.1371/journal.pone.0062394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 395.Gunjan S., Navinder K., Weir B.S., Hyde K.D., Shenoy B.D. Apmat gene can resolve Colletotrichum species: A case study with Mangifera indica. Fungal Divers. 2013;61:117–138. [Google Scholar]
  • 396.Silva D.N., Talhinas P., Várzea V., Cai L., Paulo O.S., Batista D. Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: An example from coffee (Coffea spp.) hosts. Mycologia. 2012;104:396–409. doi: 10.3852/11-145. [DOI] [PubMed] [Google Scholar]
  • 397.Castlebury L.A., Rossman A.Y., Jaklitsch W.J., Vasilyeva L.N. A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia. 2002;94:1017–1031. doi: 10.2307/3761867. [DOI] [PubMed] [Google Scholar]
  • 398.Van Niekerk J.M., Groenewald J.Z.E., Verkley G.J., Fourie P.H., Wingfield M.J., Crous P.W. Systematic reappraisal of Coniella and Pilidiella, with specific reference to species occurring on Eucalyptus and Vitis in South Africa. Mycol. Res. 2004;108:283–303. doi: 10.1017/S0953756204009268. [DOI] [PubMed] [Google Scholar]
  • 399.Phookamsak R., Liu J.-K., McKenzie E.H.C., Manamgoda D.S., Ariyawansa H., Thambugala K.M., Dai D.-Q., Camporesi E., Chukeatirote E., Wijayawardene N.N., et al. Revision of Phaeosphaeriaceae. Fungal Divers. 2014;68:159–238. doi: 10.1007/s13225-014-0308-3. [DOI] [Google Scholar]
  • 400.Alvarez L., Groenewald J., Crous P. Revising the Schizoparmaceae: Coniella and its synonyms Pilidiella and Schizoparme. Stud. Mycol. 2016;85:1–34. doi: 10.1016/j.simyco.2016.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 401.Chethana K.W.T., Zhou Y., Zhang W., Liu M., Xing Q.K., Li X.H., Yan J.Y., Hyde K.D. Coniellavitis sp. nov. Is the Common Pathogen of White Rot in Chinese Vineyards. Plant Dis. 2017;101:2123–2136. doi: 10.1094/PDIS-12-16-1741-RE. [DOI] [PubMed] [Google Scholar]
  • 402.Manamgoda D., Rossman A., Castlebury L., Crous P., Madrid H., Chukeatirote E., Hyde K. The genus Bipolaris. Stud. Mycol. 2014;79:221–288. doi: 10.1016/j.simyco.2014.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 403.Hyde K.D., Norphanphoun C., Abreu V.P., Bazzicalupo A., Chethana K.W.T., Clericuzio M., Dayarathne M.C., Dissanayake A.J., Ekanayaka A.H., He M.-Q., et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species. Fungal Divers. 2017;87:1–235. doi: 10.1007/s13225-017-0391-3. [DOI] [Google Scholar]
  • 404.Marin-Felix Y., Groenewald J.Z., Cai L., Chen Q., Marincowitz S., Barnes I., Bensch K., Braun U., Camporesi E., Damm U., et al. Genera of phytopathogenic fungi: GOPHY 1. Stud. Mycol. 2017;86:99–216. doi: 10.1016/j.simyco.2017.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 405.Lombard L., Cheewangkoon R., Crous P.W. New Cylindrocladiella spp. from Thailand soils. Mycosphere. 2017;8:1088–1104. doi: 10.5943/mycosphere/8/8/14. [DOI] [Google Scholar]
  • 406.Marin-Felix Y., Hernández-Restrepo M., Wingfield M., Akulov A., Carnegie A., Cheewangkoon R., Gramaje D., Groenewald J., Guarnaccia V., Halleen F., et al. Genera of phytopathogenic fungi: GOPHY 2. Stud. Mycol. 2019;92:47–133. doi: 10.1016/j.simyco.2018.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 407.Réblová M., Untereiner W.A., Réblová K. Novel evolutionary lineagesrevealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PLoS ONE. 2013;8:e63547. doi: 10.1371/journal.pone.0063547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 408.Feng P., Lu Q., Najafzadeh M.J., van den Ende A.G., Sun J., Li R., Xi L., Vicente V.A., Lai W., Lu C., et al. Cyphellophora and its relatives in Phialophora: Biodiversity and possible role in human infection. Fungal Divers. 2014;65:17–45. doi: 10.1007/s13225-012-0194-5. [DOI] [Google Scholar]
  • 409.Alves A., Linaldeddu B.T., Deidda A., Scanu B., Phillips A.J.L. The complex of Diplodia species associated with Fraxinus and some other woody hosts in Italy and Portugal. Fungal Divers. 2014;67:143–156. doi: 10.1007/s13225-014-0282-9. [DOI] [Google Scholar]
  • 410.Abdollahzadeh J., Javadi A., Zare R., Phillips A. A phylogenetic study of Dothiorella and Spencermartinsia species associated with woody plants in Iran, New Zealand, Portugal and Spain. Persoonia. 2014;32:1–12. doi: 10.3767/003158514x678606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 411.Jayawardena R., Ariyawansa H., Singtripop C., Li Y.M., Yan J., Li X., Nilthong S., Hyde K.D. A re-assessment of Elsinoaceae (Myriangiales, Dothideomycetes) Phytotaxa. 2014;176:120–138. doi: 10.11646/phytotaxa.176.1.13. [DOI] [Google Scholar]
  • 412.Fan X., Barreto R., Groenewald J., Bezerra J., Pereira O., Cheewangkoon R., Mostert L., Tian C., Crous P. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoe (Myriangiales, Dothideomycetes) Stud. Mycol. 2017;87:1–41. doi: 10.1016/j.simyco.2017.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 413.Da Silva C.S., Pereira M.B., Pereira J. New accounts on Hypoxylaceae and Xylariaceae from Brazil. Rodriguésia. 2020;71:03012018. doi: 10.1590/2175-7860202071146. [DOI] [Google Scholar]
  • 414.Kruse J., Piątek M., Lutz M., Thines M. Broad host range species in specialised pathogen groups should be treated with suspicion—A case study on Entyloma infecting Ranunculus. Persoonia. 2018;41:175–201. doi: 10.3767/persoonia.2018.41.09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 415.Rooney-Latham S., Lutz M., Blomquist C.L., Romberg M.K., Scheck H.J., Piątek M. Entyloma helianthi: Identification and characterization of the casual agent of sunflower white leaf smut. Mycologia. 2017;109:520–528. doi: 10.1080/00275514.2017.1362314. [DOI] [PubMed] [Google Scholar]
  • 416.Ghobad-Nejhad M., Hallenberg N. Erythricium atropatanum sp. nov. (Corticiales) from Iran, based on morphological and molecular data. Mycol. Prog. 2011;10:61–66. doi: 10.1007/s11557-010-0674-5. [DOI] [Google Scholar]
  • 417.Thynne E., McDonald M.C., Evans M., Wallwork H., Neate S., Solomon P.S. Re-classification of the causal agent of white grain disorder on wheat as three separate species of Eutiarosporella. Australas. Plant Pathol. 2015;44:527–539. doi: 10.1007/s13313-015-0367-2. [DOI] [Google Scholar]
  • 418.Burgess T.I., Tan Y.P., Garnas J., Edwards J., Scarlett K.A., Shuttleworth L.A., Daniel R., Dann E.K., Parkinson L., Dinh Q., et al. Current status of the Botryosphaeriaceae in Australia. Australas. Plant Pathol. 2019;48:35–44. doi: 10.1007/s13313-018-0577-5. [DOI] [Google Scholar]
  • 419.Santana M.D.C., Amalfi M., Robledo G., da Silveira R.M.B., Decock C. Fomitiporia neotropica, a new species from South America evidenced by multilocus phylogenetic analyses. Mycol. Prog. 2014;13:601–615. doi: 10.1007/s11557-013-0943-1. [DOI] [Google Scholar]
  • 420.Chen H., Cui B.-K. Multi-locus phylogeny and morphology reveal five new species of Fomitiporia (Hymenochaetaceae) from China. Mycol. Prog. 2017;16:687–701. doi: 10.1007/s11557-017-1306-0. [DOI] [Google Scholar]
  • 421.Morera G., Robledo G., Ferreira-Lopes V., Urcelay C. South American Fomitiporia (Hymenochaetaceae, Basidiomycota) ‘jump on’exotic living trees revealed by multi-gene phylogenetic analysis. Phytotaxa. 2017;321:277–286. doi: 10.11646/phytotaxa.321.3.5. [DOI] [Google Scholar]
  • 422.Zhou L.W. Fulvifomes hainanensis sp. nov. and F. indicus comb. nov. (Hymenochaetales, Basidiomycota) evidenced by a combination of morphology and phylogeny. Mycoscience. 2014;55:70–77. doi: 10.1016/j.myc.2013.05.006. [DOI] [Google Scholar]
  • 423.Zhou L.-W. Fulvifomes imbricatus and F. thailandicus (Hymenochaetales, Basidiomycota): Two new species from Thailand based on morphological and molecular evidence. Mycol. Prog. 2015;14:89. doi: 10.1007/s11557-015-1116-1. [DOI] [Google Scholar]
  • 424.Ji X.H., Wu F., Dai Y.C., Vlasák J. Two new species of Fulvifomes (Hymenochaetales, Basidiomycota) from America. MycoKeys. 2017;22:1–13. doi: 10.3897/mycokeys.22.12380. [DOI] [Google Scholar]
  • 425.Salvador-Montoya C.A., Popoff O.F., Reck M., Drechsler-Santos E.R. Taxonomic delimitation of Fulvifomes robiniae (Hymenochaetales, Basidiomycota) and related species in America: F. squamosus sp. nov. Plant Syst. Evol. 2018;304:445–459. doi: 10.1007/s00606-017-1487-7. [DOI] [Google Scholar]
  • 426.Laurence M.H., Summerell B.A., Burgess L.W., Liew E.C.Y. Fusarium burgessii sp. nov. representing a novel lineage in the genus Fusarium. Fungal Divers. 2011;49:101–112. doi: 10.1007/s13225-011-0093-1. [DOI] [Google Scholar]
  • 427.O’Donnell K., Rooney A.P., Proctor R.H., Brown D.W., McCormick S.P., Ward T.J., Frandsen R.J.N., Lysøe E., Rehner S.A., Aoki T., et al. RPB1 and RPB2 phylogeny supports an early Cretaceous origin and a strongly supported clade comprising all agriculturally and medically important fusaria. Fungal Genet. Biol. 2013;52:20–31. doi: 10.1016/j.fgb.2012.12.004. [DOI] [PubMed] [Google Scholar]
  • 428.O’Donnell K., Sutton D.A., Fothergill A., McCarthy D., Rinaldi M.G., Brandt M.E., Zhang N., Geiser D.M. Molecular Phylogenetic Diversity, Multilocus Haplotype Nomenclature, and In Vitro Antifungal Resistance within the Fusarium solani Species Complex. J. Clin. Microbiol. 2008;46:2477–2490. doi: 10.1128/JCM.02371-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 429.Coetzee M.P.A., Marincowitz S., Muthelo V.G., Wingfield M.J. Ganoderma species, including new taxa associated with root rot of the iconic Jacaranda mimosifolia in Pretoria, South Africa. IMA Fungus. 2015;6:249–256. doi: 10.5598/imafungus.2015.06.01.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 430.Xing J.-H., Song J., Decock C., Cui B. Morphological characters and phylogenetic analysis reveal a new species within the Ganoderma lucidum complex from South Africa. Phytotaxa. 2016;266:115–124. doi: 10.11646/phytotaxa.266.2.5. [DOI] [Google Scholar]
  • 431.Xing J.H., Sun Y.F., Han Y.L., Cui B.K., Dai Y.C. Morphological and molecular identifcation of two new Ganoderma species on Casuarina equisetifolia from China. MycoKeys. 2018;34:93–108. doi: 10.3897/mycokeys.34.22593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 432.Tchoumi J.M.T., Coetzee M.P.A., Rajchenberg M., Roux J. Taxonomy and species diversity of Ganoderma species in the Garden Route National Park of South Africa inferred from morphology and multilocus phylogenies. Mycologia. 2019;111:730–747. doi: 10.1080/00275514.2019.1635387. [DOI] [PubMed] [Google Scholar]
  • 433.Luangharn T., Karunarathna S.C., Mortimer P.E., Hyde K.D., Xu J. Additions to the knowledge of Ganoderma in Thailand: Ganoderma casuarinicola, a new record; and Ganoderma thailandicum sp. nov. MycoKeys. 2019;59:47–65. doi: 10.3897/mycokeys.59.36823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 434.Ye L., Karunarathna S.C., Mortimer P.E., Li H., Qiu M.-H., Peng X.-R., Luangharn T., Li Y.-J., Promputtha I., Hyde K.D., et al. Ganoderma weixiensis (Polyporaceae, Basidiomycota), a new member of the G. lucidum complex from Yunnan Province, China. Phytotaxa. 2019;423:75–86. doi: 10.11646/phytotaxa.423.2.3. [DOI] [Google Scholar]
  • 435.Cabarroi-Hernández M., Villalobos-Arámbula A.R., Torres-Torres M.G., Decock C., Guzmán-Dávalos L. The Ganoderma weberianum-resinaceum lineage: Multilocus phylogenetic analysis and morphology confrm G. mexicanum and G. parvulum in the Neotropics. MycoKeys. 2019;59:95–131. doi: 10.3897/mycokeys.59.33182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 436.Braun U., Bradshaw M., Zhao T.-T., Cho S.-E., Shin H.-D. Taxonomy of the Golovinomyces cynoglossi complex (Erysiphales, Ascomycota) disentangled by phylogenetic analyses and reassessments of morphological traits. Mycobiology. 2018;46:192–204. doi: 10.1080/12298093.2018.1509512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 437.Braun U., Shin H., Takamatsu S., Meeboon J., Kiss L., Lebeda A., Kitner M., Götz M. Phylogeny and taxonomy of Golovinomyces orontii revisited. Mycol. Prog. 2019;18:335–357. doi: 10.1007/s11557-018-1453-y. [DOI] [Google Scholar]
  • 438.Takamatsu S., Matsuda S., Grigaliunaite B. Comprehensive phylogenetic analysis of the genus Golovinomyces (Ascomycota: Erysiphales) reveals close evolutionary relationships with its host plants. Mycologia. 2013;105:1135–1152. doi: 10.3852/13-046. [DOI] [PubMed] [Google Scholar]
  • 439.Qiu P.-L., Liu S.-Y., Li Y., Wang L.-L., Braun U., Bradshaw M., Rooney-Latham S., Takamatsu S., Bulgakov T., Tang S.-R., et al. Multi-locus phylogeny and taxonomy of an unresolved, heterogeneous species complex within the genus Golovinomyces (Ascomycota, Erysiphales), including G. ambrosiae, G. circumfusus and G. spadiceus. BMC Microbiol. 2020;20:e51. doi: 10.1186/s12866-020-01731-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 440.Qiu P.L., Qi X.F., Li Y., Braun U., Liu S.Y. Epitypifcation and molecular confrmation of Erysiphe cucurbitacearum as a synonym of Golovinomyces tabaci. Mycoscience. 2020;61:30–36. doi: 10.1016/j.myc.2019.09.002. [DOI] [Google Scholar]
  • 441.Chen J.-J., Cui B., Zhou L.-W., Korhonen K.T., Dai Y.-C. Phylogeny, divergence time estimation, and biogeography of the genus Heterobasidion (Basidiomycota, Russulales) Fungal Divers. 2015;71:185–200. doi: 10.1007/s13225-014-0317-2. [DOI] [Google Scholar]
  • 442.Cabral A., Groenewald J.Z., Rego M.C.N.F., Oliveira H., Crous P.W. Cylindrocarpon root rot: Multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol. Prog. 2012;11:655–688. doi: 10.1007/s11557-011-0777-7. [DOI] [Google Scholar]
  • 443.Cabral A., Rego C., Crous P.W., Oliveira H. Virulence and cross-infection potential of Ilyonectria spp. to grapevine. Phytopathol. Mediterr. 2012;52:340–354. [Google Scholar]
  • 444.Cabral A., Rego C., Nascimento T., Oliveira H., Groenewald J.Z., Crous P.W. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biol. 2012;116:62–80. doi: 10.1016/j.funbio.2011.09.010. [DOI] [PubMed] [Google Scholar]
  • 445.Lombard L., Bezuidenhout C.M., Crous P.W. Ilyonectria black foot rot associated with Proteaceae. Australas. Plant Pathol. 2013;42:337–349. doi: 10.1007/s13313-012-0188-5. [DOI] [Google Scholar]
  • 446.Lombard L., Van Der Merwe N.A., Groenewald J.Z., Crous P.W. Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathol. Mediterr. 2014;53:515–532. [Google Scholar]
  • 447.Diederich P., Lawrey J.D., Sikaroodi M., Gillevet P.M. A new lichenicolous teleomorph is related to plant pathogens in Laetisaria and Limonomyces (Basidiomycota, Corticiales) Mycologia. 2011;103:525–533. doi: 10.3852/10-255. [DOI] [PubMed] [Google Scholar]
  • 448.Zhang W., Nan Z.B., Liu G.D. First Report of Limonomyces roseipellis causing pink patch on bermudagrass in South China. Plant Dis. 2013;97:561. doi: 10.1094/PDIS-10-12-0986-PDN. [DOI] [PubMed] [Google Scholar]
  • 449.Crous P.W., Slippers B., Wingfield M.J., Rheeder J., Marasas W.F.O., Philips A.J.L., Alves A., Burgess T., Barber P., Groenewald J.Z. Phylogenetic lineages in the Botryosphaeriaceae. Stud. Mycol. 2006;55:235–254. doi: 10.3114/sim.55.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 450.Sarr M.P., Ndiaye M., Groenewald J.Z., Crous P.W. Genetic diversity in Macrophomina phaseolina, the causal agent of charcoal rot. Phytopathol. Mediterr. 2014;53:250–268. [Google Scholar]
  • 451.LoBuglio K.F., Pfister D.H. Placement of Medeolaria farlowii in the Leotiomycetes, and comments on sampling within the class. Mycol. Prog. 2010;9:361–368. doi: 10.1007/s11557-009-0644-y. [DOI] [Google Scholar]
  • 452.Pfister D.H., Agnello C., Lantieri A., LoBuglio K.F. The Caloscyphaceae (Pezizomycetes, Ascomycota), with a new genus. Mycol. Prog. 2013;12:667–674. doi: 10.1007/s11557-012-0874-2. [DOI] [Google Scholar]
  • 453.Hongsanan S., Tian Q., Persoh D., Zeng X.-Y., Hyde K.D., Chomnunti P., Boonmee S., Bahkali A.H., Wen T.-C.  Meliolales. Fungal Divers. 2015;74:91–141. doi: 10.1007/s13225-015-0344-7. [DOI] [Google Scholar]
  • 454.Justavino D.R., Kirschner R., Piepenbring M. New species and new records of Meliolaceae from Panama. Fungal Divers. 2015;70:73–84. doi: 10.1007/s13225-014-0292-7. [DOI] [Google Scholar]
  • 455.Nguyen T.T., Duong T., Lee H. Characterization of two new records of Mucoralean species isolated from gut of soldier fy larva in Korea. Mycobiology. 2016;44:310–313. doi: 10.5941/MYCO.2016.44.4.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 456.Nguyen T.T., Jung H.Y., Lee Y.S., Voigt K., Lee H.B. Phylogenetic status of two undescribed zygomycete species from Korea: Actinomucor elegans and Mucor minutus. Mycobiology. 2017;45:e34. doi: 10.5941/MYCO.2017.45.4.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 457.Walther G., Pawłowska J., Alastruey-Izquierdo A., Wrzosek M., Rodriguez-Tudela J., Dolatabadi S., Chakrabarti A., de Hoog G. DNA barcoding in Mucorales: An inventory of biodiversity. Persoonia. 2013;30:11–47. doi: 10.3767/003158513X665070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 458.Walther G., Wagner L., Kurzai O. Updates on the Taxonomy of Mucorales with an Emphasis on Clinically Important Taxa. J. Fungi. 2019;5:106. doi: 10.3390/jof5040106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 459.Wagner L., Stielow J., De Hoog G., Bensch K., Schwartze V.U., Voigt K., Alastruey-Izquierdo A., Kurzai O., Walther G. A new species concept for the clinically relevant Mucor circinelloides complex. Persoonia. 2020;44:67–97. doi: 10.3767/persoonia.2020.44.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 460.Heluta V., Takamatsu S., Harada M., Voytyuk S. Molecular phylogeny and taxonomy of Eurasian Neoerysiphe species infecting Asteraceae and Geranium. Persoonia. 2010;24:81–92. doi: 10.3767/003158510X501696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 461.Gregorio-Cipriano R., González D., Félix-Gastélum R., Chacón S. Neoerysiphesechii (Ascomycota: Erysiphales): A new species of powdery mildew found on Sechium edule and Sechium mexicanum (Cucurbitaceae) in Mexico. Botany. 2020;98:185–195. doi: 10.1139/cjb-2019-0193. [DOI] [Google Scholar]
  • 462.Braun U., Cook R.T.A. Taxonomic Manual of the Erysiphales (Powdery Mildews) Centraalbureau voor Schimmelcultures; Utrecht, The Netherlands: 2012. (CBS Biodiversity Series No. 11). [Google Scholar]
  • 463.Chen C., Verkley G.J., Sun G., Groenewald J.Z., Crous P. Redefining common endophytes and plant pathogens in Neofabraea, Pezicula, and related genera. Fungal Biol. 2016;120:1291–1322. doi: 10.1016/j.funbio.2015.09.013. [DOI] [PubMed] [Google Scholar]
  • 464.Choi S., Paul N., Lee K.-H., Kim H.-J., Sang H. Morphology, Molecular Phylogeny, and Pathogenicity of Neofusicoccum parvum, Associated with Leaf Spot Disease of a New Host, the Japanese Bay Tree (Machilus thunbergii) Forests. 2021;12:440. doi: 10.3390/f12040440. [DOI] [Google Scholar]
  • 465.Prasannath K., Shivas R.G., Galea V.J., Akinsanmi O.A. Neopestalotiopsis Species Associated with Flower Diseases of Macadamia integrifolia in Australia. J. Fungi. 2021;7:771. doi: 10.3390/jof7090771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 466.Maharachchikumbura S.S., Larignon P., Al-Sadi A.M., Zuo-Yi L.I.U. Characterization of Neopestalotiopsis, Pestalotiopsis and Truncatella species associated with grapevine trunk diseases in France. Phytopathol. Mediterr. 2017;55:380–390. [Google Scholar]
  • 467.Jayawardena R., Liu M., Maharachchikumbura S.S.N., Zhang W., Xing Q., Hyde K.D., Nilthong S., Li X., Yan J. Neopestalotiopsis vitis sp. nov. causing grapevine leaf spot in China. Phytotaxa. 2016;258:63–74. doi: 10.11646/phytotaxa.258.1.4. [DOI] [Google Scholar]
  • 468.Abdel-Wahab M.A., Bahkali A.H., El-Gorban A.M., Hodhod M.S. Natural products of Nothophoma multilocularis sp. nov. an endophyte of the medicinal plant Rhazya stricta. Mycosphere. 2017;8:1185–1200. doi: 10.5943/mycosphere/8/8/15. [DOI] [Google Scholar]
  • 469.Valenzuela-Lopez N., Cano-Lira J.F., Guarro J., Sutton D.A., Wiederhold N., Crous P.W., Stchigel A.M. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud. Mycol. 2018;90:1–69. doi: 10.1016/j.simyco.2017.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 470.Chethana K.W.T., Jayawardene R.S., Zhang W., Zhou Y.Y., Liu M., Hyde K.D., Li X.H., Wang J., Zhang K.C., Yan J.Y. Molecular characterization and pathogenicity of fungal taxa associated with cherry leaf spot disease. Mycosphere. 2019;10:490–530. doi: 10.5943/mycosphere/10/1/8. [DOI] [Google Scholar]
  • 471.Zhang L.X., Yin T., Pan M., Tian C.M., Fan X.L. Occurrence and identifcation of Nothophoma spiraeae sp. nov. in China. Phytotaxa. 2020;430:147–156. [Google Scholar]
  • 472.Maharachchikumbura S., Guo L.-D., Chukeatirote E., Bahkali A., Hyde K.D. Pestalotiopsis—Morphology, phylogeny, biochemistry and diversity. Fungal Divers. 2011;50:167–187. doi: 10.1007/s13225-011-0125-x. [DOI] [Google Scholar]
  • 473.Keith L.M., Velasquez M.E., Zee F.T. Identification and Characterization of Pestalotiopsis spp. Causing Scab Disease of Guava, Psidium guajava, in Hawaii. Plant Dis. 2006;90:16–23. doi: 10.1094/PD-90-0016. [DOI] [PubMed] [Google Scholar]
  • 474.Gramaje D., León M., Pérez-Sierra A., Burgess T., Armengol J. New Phaeoacremonium species isolated from sandalwood trees in Western Australia. IMA Fungus. 2014;5:67–77. doi: 10.5598/imafungus.2014.05.01.08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 475.da Silva M.A., Correia K.C., Barbosa M.A.G., Câmara M.P.S., Gramaje D., Michereff S.J. Characterization of Phaeoacremonium isolates associated with Petri disease of table grape in Northeastern Brazil, with description of Phaeoacremonium nordesticola sp. nov. Eur. J. Plant Pathol. 2017;149:695–709. doi: 10.1007/s10658-017-1219-4. [DOI] [Google Scholar]
  • 476.Spies C., Moyo P., Halleen F., Mostert L. Phaeoacremonium species diversity on woody hosts in the Western Cape Province of South Africa. Persoonia. 2018;40:26–62. doi: 10.3767/persoonia.2018.40.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 477.Drechsler-Santos E.R., Robledo G.L., Lima-Júnior N.C., Malosso E., Reck M.A., Gibertoni T.B., Cavalcanti M.A.D.Q., Rajchenberg M. Phellinotus, a new neotropical genus in the Hymenochaetaceae (Basidiomycota, Hymenochaetales) Phytotaxa. 2016;261:218–239. doi: 10.11646/phytotaxa.261.3.2. [DOI] [Google Scholar]
  • 478.Tomšovský M., Vampola P., Sedlák P., Byrtusová Z., Jankovský L. Delimitation of central and northern European species of the Phellinus igniarius group (Basidiomycota, Hymenochaetales) based on analysis of ITS and translation elongation factor 1 alpha DNA sequences. Mycol. Prog. 2010;9:431–445. doi: 10.1007/s11557-009-0653-x. [DOI] [Google Scholar]
  • 479.Brazee N.J. Phylogenetic Relationships among Species of Phellinus sensu stricto, Cause of White Trunk Rot of Hardwoods, from Northern North America. Forests. 2015;6:4191–4211. doi: 10.3390/f6114191. [DOI] [Google Scholar]
  • 480.Zhou L.-W., Vlasák J., Qin W.-M., Dai Y.-C. Global diversity and phylogeny of the Phellinus igniarius complex (Hymenochaetales, Basidiomycota) with the description of five new species. Mycologia. 2016;108:192–204. doi: 10.3852/15-099. [DOI] [PubMed] [Google Scholar]
  • 481.Zhu L., Ji X., Si J., Cui B.-K. Morphological characters and phylogenetic analysis reveal a new species of Phellinus with hooked hymenial setae from Vietnam. Phytotaxa. 2018;356:91–99. doi: 10.11646/phytotaxa.356.1.8. [DOI] [Google Scholar]
  • 482.Slippers B., Boissin E., Phillips A., Groenewald J., Lombard L., Wingfield M., Postma A., Burgess T., Crous P. Phylogenetic lineages in the Botryosphaeriales: A systematic and evolutionary framework. Stud. Mycol. 2013;76:31–49. doi: 10.3114/sim0020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 483.Wu S.-P., Liu Y.-X., Yuan J., Wang Y., Hyde K.D., Liu Z.-Y. Phyllosticta species from banana (Musa sp.) in Chongqing and Guizhou Provinces, China. Phytotaxa. 2014;188:135–144. doi: 10.11646/phytotaxa.188.3.2. [DOI] [Google Scholar]
  • 484.Blair J.E., Coffey M.D., Park S.-Y., Geiser D.M., Kang S. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 2008;45:266–277. doi: 10.1016/j.fgb.2007.10.010. [DOI] [PubMed] [Google Scholar]
  • 485.Martin F.N., Blair J.E., Coffey M.D. A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genet. Biol. 2014;66:19–32. doi: 10.1016/j.fgb.2014.02.006. [DOI] [PubMed] [Google Scholar]
  • 486.Zhang W., Manawasinghe I.S., Zhao W., Xu J., Brooks S., Zhao X., Xu J.P., Brooks S., Zhao X., Hyde K.D., et al. Multiple gene genealogy reveals high genetic diversity and evidence for multiple origins of Chinese Plasmopara viticola population. Sci. Rep. 2017;7:17304. doi: 10.1038/s41598-017-17569-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 487.Tennakoon D.S., Phookamsak R., Wanasinghe D.N., Yang J.B., Lumyong S., Hyde K.D. Morphological and phylogentic insights resolve Plenodomus sinensis (Leptosphariaceae) as a new species. Phytotaxa. 2017;324:73–82. doi: 10.11646/phytotaxa.324.1.5. [DOI] [Google Scholar]
  • 488.Maharachchikumbura S., Guo L.-D., Cai L., Chukeatirote E., Wu W.P., Sun X., Crous P.W., Bhat D.J., McKenzie E.H.C., Bahkali A., et al. A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers. 2012;56:95–129. doi: 10.1007/s13225-012-0198-1. [DOI] [Google Scholar]
  • 489.Maharachchikumbura S.S., Guo L.-D., Liu Z.-Y., Hyde K.D. Pseudopestalotiopsis ignota and Ps. camelliae spp. nov. associated with grey blight disease of tea in China. Mycol. Prog. 2016;15:22. doi: 10.1007/s11557-016-1162-3. [DOI] [Google Scholar]
  • 490.Pordel A., Khodaparast S.A., McKenzie E.H.C., Javan-Nikkhah M. Two new species of Pseudopyricularia from Iran. Mycol. Prog. 2017;16:729–736. doi: 10.1007/s11557-017-1307-z. [DOI] [Google Scholar]
  • 491.Klaubauf S., Tharreau D., Fournier E., Groenewald J., Crous P., de Vries R., Lebrun M.-H. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae) Stud. Mycol. 2014;79:85–120. doi: 10.1016/j.simyco.2014.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 492.Crous P.W., Wingfeld M.J., Burgess T.I., Hardy G.E.S.T.J., Barber P.A., Alvarado P., Barnes C.W., Buchanan P.K., Heykoop M., Moreno G. Fungal planet description sheets: 558–624. Persoonia. 2017;38:240–384. doi: 10.3767/003158517X698941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 493.Quaedvlieg W., Verkley G., Shin H.-D., Barreto R., Alfenas A., Swart W., Groenewald J., Crous P. Sizing up Septoria. Stud. Mycol. 2013;75:307–390. doi: 10.3114/sim0017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 494.Abe A., Asano K., Sone T. A Molecular Phylogeny-Based Taxonomy of the Genus Rhizopus. Biosci. Biotechnol. Biochem. 2010;74:1325–1331. doi: 10.1271/bbb.90718. [DOI] [PubMed] [Google Scholar]
  • 495.Gryganskyi A.P., Golan J., Dolatabadi S., Mondo S., Robb S., Idnurm A., Muszewska A., Steczkiewicz K., Masonjones S., Liao H.-L., et al. Phylogenetic and Phylogenomic Definition of Rhizopus Species. G3 Genes|Genom.|Genet. 2018;8:2007–2018. doi: 10.1534/g3.118.200235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 496.Vebliza Y., Sjamsuridzal W., Oetari A., Santoso I., Roosheroe I.G. Re-identifcation of five strains of Rhizopus arrhizus from tempeh based on ITS regions of rDNA sequence data. AIP Conf. Proc. 2018;2023:e02016. [Google Scholar]
  • 497.Hsieh H.-M., Lin C.R., Fang M.J., Rogers J.D., Fournier J., Lechat C., Ju Y.-M. Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol. Phylogenet. Evol. 2010;54:957–969. doi: 10.1016/j.ympev.2009.12.015. [DOI] [PubMed] [Google Scholar]
  • 498.Bahl J., Jeewon R., Hyde K.D. Phylogeny of Rosellinia capetribulensis sp. nov. and its allies (Xylariaiceae) Mycologia. 2005;97:1102–1110. doi: 10.1080/15572536.2006.11832758. [DOI] [PubMed] [Google Scholar]
  • 499.Daranagama D.A., Camporesi E., Tian Q., Liu X., Chamyuang S., Stadler M., Hyde K.D. Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Divers. 2015;73:203–238. doi: 10.1007/s13225-015-0329-6. [DOI] [Google Scholar]
  • 500.Wendt L., Sir E.B., Kuhnert E., Heitkamper S., Lambert C., Hladki A.I., Romero A.I., Luangsa-ard J.J., Srikitikulchai P., Peršoh D., et al. Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol. Prog. 2018;17:115–154. doi: 10.1007/s11557-017-1311-3. [DOI] [Google Scholar]
  • 501.Keirnan E.C., Tan Y.P., Laurence M.H., Mertin A.A., Liew E.C.Y., Summerell B.A., Shivas R.G. Cryptic diversity found in Didymellaceae from Australian native legumes. MycoKeys. 2021;78:1–20. doi: 10.3897/mycokeys.78.60063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 502.Jayasiri S.C., Hyde K.D., Jones E.B.G., McKenzie E.H.C., Jeewon R., Phillips A.J.L., Bhat D.J., Wanasinghe D.N., Liu J.K., Lu Y.Z., et al. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere. 2019;10:1–186. doi: 10.5943/mycosphere/10/1/1. [DOI] [Google Scholar]
  • 503.Hou L.W., Hernández-Restrepo M., Groenewald J., Cai L., Crous P.W. Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes) MycoKeys. 2020;65:49–99. doi: 10.3897/mycokeys.65.47704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 504.Moslemi A., Ades P.K., Groom T., Nicolas M.E., Taylor P.W. Alternaria infectoria and Stemphylium herbarum, two new pathogens of pyrethrum (Tanacetum cinerariifolium) in Australia. Australas. Plant Pathol. 2017;46:91–101. doi: 10.1007/s13313-016-0463-y. [DOI] [Google Scholar]
  • 505.Woudenberg J.H.C., Hanse B., van Leeuwen G.C.M., Groenewald J.Z., Crous P.W. Stemphylium revisited. Stud. Mycol. 2017;87:77–103. doi: 10.1016/j.simyco.2017.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 506.Brahmanage R.S., Hyde K.D., Li X.H., Jayawardena R.S., McKenzie E.H.C., Yan J.Y. Are pathogenic isolates of Stemphylium host specifc and cosmopolitan? Plant Pathol. Quarant. 2018;8:153–164. doi: 10.5943/ppq/8/2/7. [DOI] [Google Scholar]
  • 507.Senwanna C., Wanasinghe D.N., Bulgakov T.S., Wang Y., Bhat D.J., Tang A.M.C., Mortimer P.E., Xu J., Hyde K.D., Phookamsak R. Towards a natural classification of Dothidotthia and Thyrostroma in Dothidotthiaceae (Pleosporineae, Pleosporales) Mycosphere. 2019;10:701–738. doi: 10.5943/mycosphere/10/1/15. [DOI] [Google Scholar]
  • 508.Crous P.W., Schumache R.K., Akulov A., Thangavel R., Hernández Restrepo M., Carnegie A.J., Cheewangkoon R., Wingfeld M.J., Summerel B.A., Quaedvlieg W., et al. New and interesting fungi. 2. Fungal Syst. Evol. 2019;3:57–134. doi: 10.3114/fuse.2019.03.06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 509.Shivas R.G., Barrett M.D., Barrett R.L., McTaggart A.R. Tilletia micrairae. Persoonia. 2009;22:171–172. [Google Scholar]
  • 510.Shivas R.G., Beasley D.R., McTaggart A.R. Online identification guides for Australian smut fungi (Ustilaginomycotina) and rust fungi (Pucciniales) IMA Fungus. 2014;5:195–202. doi: 10.5598/imafungus.2014.05.02.03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 511.McTaggart A.R., Shivas R.G. Tilletia challinorae McTaggart & RG Shivas, sp. nov. Persoonia. 2009;23:36. [Google Scholar]
  • 512.Li Y.M., Shivas R.G., Cai L. Three new species of Tilletia on Eriachne from north-western Australia. Mycoscience. 2014;55:361–366. doi: 10.1016/j.myc.2013.12.003. [DOI] [Google Scholar]
  • 513.Vánky K., Lutz M. Tubisorus, a new genus of smut fungi (Ustilaginomycetes) for Sporisorium pachycarpum. Mycol. Balc. 2011;8:129–135. [Google Scholar]
  • 514.Zhang J., Dou Z., Zhou Y., He W., Zhang X., Zhang Y. Venturia sinensis sp. nov. a new ventuarialean ascomycete from Khingan Mountains. SaudiJ. Biol. Sci. 2016;23:592–597. doi: 10.1016/j.sjbs.2015.06.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 515.Zhang Y., Crous P., Schoch C., Bahkali A., Guo L., Hyde K.D. A molecular, morphological and ecological re-appraisal of Venturiales—A new order of Dothideomycetes. Fungal Divers. 2011;51:249–277. doi: 10.1007/s13225-011-0141-x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Journal of Fungi are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES