Abstract
目的
探讨在正常饮食状态下,CD36基因缺失对小鼠肌肉胰岛素信号通路的影响及作用机制。
方法
野生型小鼠(WT)和CD36基因敲除小鼠(CD36-/-)给予正常饮食喂养14周(n=12)。小鼠禁食4 h,腹腔注射胰岛素(1 U/kg)进行胰岛素耐量实验。Real-time PCR检测小鼠肌肉胰岛素受体(IR)、胰岛素受体底物1/2(IRS1/2)、蛋白酪氨酸磷酸酶1B(PTP1B)基因表达。Western blot检测小鼠肌肉蛋白激酶B(AKT)、IR、IRS1/2和PTP1B的蛋白表达。免疫共沉淀(Co-IP)检测肌肉IR和IRS1的酪氨酸磷酸化程度。染色质免疫共沉淀(ChIP)技术检测肌肉PTP1B启动子组蛋白乙酰化水平。
结果
在正常饮食状态下,与WT小鼠相比,CD36-/-小鼠的胰岛素耐量显著增强(P < 0.05),血清胰岛素浓度升高(P < 0.01),胰岛素抵抗指数(HOMA-IR)升高(P < 0.05)。在肌肉组织中,CD36-/-小鼠与WT小鼠相比,p-AKT/AKT蛋白表达比值显著降低(P < 0.01)。Real-time PCR和Western blot结果表明,肌肉组织IR,IRS1,IRS2的mRNA和蛋白水平在WT和CD36-/-小鼠间无显著差异(P>0.05)。Co-IP实验显示IR和IRS1的酪氨酸磷酸化水平在CD36-/-小鼠中显著降低(P < 0.05)。CD36-/-小鼠肌肉中PTP1B mRNA和蛋白表达均高于WT小鼠(P < 0.05),ChIP实验显示PTP1B基因启动子的组蛋白乙酰化水平显著升高(P < 0.01)。腹腔注射PTP1B的抑制剂可改善CD36-/-小鼠的胰岛素敏感性。
结论
在正常饮食条件下,CD36基因对于维持生理肌肉胰岛素敏感性十分重要,小鼠CD36基因缺失通过上调PTP1B基因表达,诱导IR、IRS1去酪氨酸磷酸化而使肌肉胰岛素信号传导受损。
Keywords: CD36, 胰岛素敏感性, 肌肉, PTP1B
Abstract
Objective
To investigate the effect CD36 deficiency on muscle insulin signaling in mice fed a normal-fat diet and explore the possible mechanism.
Methods
Wild-type (WT) mice and systemic CD36 knockout (CD36-/-) mice with normal feeding for 14 weeks (n=12) were subjected to insulin tolerance test (ITT) after intraperitoneal injection with insulin (1 U/kg). Real-time PCR was used to detect the mRNA expressions of insulin receptor (IR), insulin receptor substrate 1/2 (IRS1/2) and protein tyrosine phosphatase 1B (PTP1B), and Western blotting was performed to detect the protein expressions of AKT, IR, IRS1/2 and PTP1B in the muscle tissues of the mice. Tyrosine phosphorylation of IR and IRS1 and histone acetylation of PTP1B promoter in muscle tissues were detected using co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP), respectively.
Results
CD36-/- mice showed significantly lowered insulin sensitivity with obviously decreased area under the insulin tolerance curve in comparison with the WT mice (P < 0.05). CD36-/- mice also had significantly higher serum insulin concentration and HOMA-IR than WT mice (P < 0.05). Western blotting showed that the p-AKT/AKT ratio in the muscle tissues was significantly decreased in CD36-/- mice as compared with the WT mice (P < 0.01). No significant differences were found in mRNA and protein levels of IR, IRS1 and IRS2 in the muscle tissues between WT and CD36-/- mice (P>0.05). In the muscle tissue of CD36-/- mice, tyrosine phosphorylation levels of IR and IRS1 were significantly decreased (P < 0.05), and the mRNA and protein levels of PTP1B (P < 0.05) and histone acetylation level of PTP1B promoters (P < 0.01) were significantly increased as compared with those in the WT mice. Intraperitoneal injection of claramine, a PTP1B inhibitor, effectively improved the impairment of insulin sensitivity in CD36-/- mice.
Conclusion
CD36 is essential for maintaining muscle insulin sensitivity under physiological conditions, and CD36 gene deletion in mice causes impaired insulin sensitivity by up-regulating muscle PTP1B expression, which results in detyrosine phosphorylation of IR and IRS1.
Keywords: CD36, insulin sensitivity, muscle, PTP1B
脂肪酸转位酶(FAT/CD36)是一种促进长链脂肪酸(LCFAs)摄取和氧化的跨膜糖蛋白,广泛表达于脂肪细胞、巨噬细胞、肌肉细胞、内皮细胞和肝细胞[1]。该蛋白是一种多功能的B类清道夫受体,作为脂质稳态和免疫反应的重要调节因子,在脂质代谢、胰岛素反应和炎症中发挥重要作用,并参与代谢性疾病的发病机制,如肥胖、2型糖尿病、动脉粥样硬化、非酒精性脂肪性肝病[2, 3]。代谢综合征也被称为“胰岛素抵抗综合征”[4],胰岛素抵抗是代谢综合征的核心组成部分,是代谢性疾病发生发展的重要病理生理因素。
CD36异常高表达可促进代谢综合征和胰岛素抵抗的发生[5]。目前CD36基因缺失对胰岛素抵抗的影响尚存争议,这极大的限制了以CD36作为代谢综合征干预靶点的药物研发。有研究表明,缺乏CD36基因可以保护小鼠免受高脂饮食引起的肥胖、高血糖和胰岛素抵抗[6]。相反的是,遗传性CD36基因缺陷患者在亚洲和非洲人群中较为常见,CD36基因缺陷患者全身葡萄糖摄取降低,同时患者还表现出高脂血症、代谢综合征症状和胰岛素抵抗[7, 8]。大型的队列研究[9]也显示CD36基因表达降低与胰岛素抵抗和2型糖尿病风险增加有关。CD36基因缺失改善或者加重胰岛素抵抗受什么因素的影响仍然是未知的。我们课题组前期研究发现,在高脂饮食状态下,CD36基因缺失可改善高脂诱导的脂代谢紊乱和胰岛素抵抗,而在正常饮食状态下,CD36基因缺失反而会削弱生理的胰岛素敏感性。这表明CD36对胰岛素抵抗的调控受到营养状态的影响,部分解释了CD36在胰岛素抵抗中扮演矛盾作用的潜在原因。
肌肉是机体主要的胰岛素敏感组织,对调控葡萄糖代谢稳态至关重要,密切参与胰岛素抵抗的发生机制。在高脂饮食状态下,我们已经发现CD36基因缺失可以增强小鼠肌肉组织的胰岛素敏感性[10],促进葡萄糖的利用。然而,在正常饮食状态下,CD36基因缺失对小鼠肌肉胰岛素敏感性的影响却没有相关报道。在本研究中,我们主要探讨正常饮食状态下,CD36基因缺失调控小鼠肌肉胰岛素信号通路的作用机制。我们发现,CD36基因缺失会导致正常饮食喂养下小鼠的肌肉组织胰岛素信号通路传导受损。肌肉组织中蛋白酪氨酸磷酸酶1B(PTP1B)表达在CD36基因缺失小鼠中异常升高,而PTP1B是胰岛素信号传导的负调控因子[11, 12]。本研究首次揭示了在正常饮食状态下,小鼠CD36基因缺失通过促进肌肉组织中PTP1B的表达从而导致胰岛素敏感性受损的分子机制。我们的研究部分解释了CD36基因缺陷患者葡萄糖摄取降低和易发胰岛素抵抗的原因。这一发现提示可将PTP1B作为预防和治疗CD36基因缺陷人群胰岛素抵抗的新靶点。
1. 材料和方法
1.1. 动物
野生型(wild type, WT)小鼠为C57BL/6J小鼠,购自重庆医科大学动物中心,许可证号为SYXK(渝)2012- 0001。全身性CD36敲除(CD36-/-)小鼠由美国Maria Febbraio教授惠赠(Lerner Research Institute, U.S.)。所有的动物实验均符合实验动物伦理委员会规定的标准(2014056)。
1.2. 主要试剂
饲料(D12450B);TRIzol RNA提取试剂、逆转录试剂盒和SYBR Green PCR Master Mix(TaKaRa);细胞总蛋白提取试剂(凯基公司);BCA蛋白含量检测试剂盒(北京鼎国公司);AKT、p-AKT、IRβ、IRS1、IRS2、PI3K抗体购自CST;PTP1B抗体(Proteintech Group);抗β- actin抗体(北京博奥森公司);免疫共沉淀(Co-IP)试剂(LSKMAGG02)、PVDF膜(Millipore);免疫荧光二抗(中杉金桥公司);ECL化学发光试剂(Bio-Rad);引物由擎科引物公司合成;血糖检测仪(罗氏);葡萄糖检测试剂盒(北京普利莱基因技术公司);胰岛素(诺和诺德);胰岛素试剂盒(北京鼎国公司);claramine(SigmaAldrich)。
1.3. 动物选择与分组
根据基因型将小鼠分为WT组和CD36-/-组,每组12只,正常饮食喂养14周。
1.4. 葡萄糖耐量实验(GTT)和胰岛素耐量实验(ITT)
正常饮食喂养14周时,所有小鼠禁食12 h,取尾静脉血,用血糖检测仪测定此时血糖浓度,计为0 min的血糖浓度。然后腹腔注射1 g/kg的D-葡萄糖,分别在30、60、90、120 min后测定所有小鼠的血糖浓度,即为GTT实验。ITT实验则将小鼠禁食4 h,腹腔注射1 units/kg的胰岛素,同样取尾静脉血,用血糖仪测定0、30、60、90、120 min的血糖浓度。
1.5. Western blot检测蛋白表达
正常饮食喂养结束后,所有小鼠禁食过夜,每组各选6只腹腔注射1 units/kg的胰岛素,10 min后收集骨骼肌,−80 ℃保存备用。用总蛋白提取试剂盒提取肌肉总蛋白,BCA试剂盒测定蛋白浓度。SDS-PAGE电泳分离蛋白,PVDF膜转膜,37 ℃条件下3% BSA封闭1.5 h,4 ℃条件下孵育一抗(抗AKT、p-AKT、IR、IRS1、IRS2、PTP1B和β-actin抗体)过夜,TBST洗3次,每次15min,HRP标记的二抗室温孵育1 h,TBST清洗3次,每次15 min,利用化学发光剂ECL显影,条带的强度用ImageJ软件(灰度×面积)进行定量分析。
1.6. 免疫荧光染色
按照免疫荧光试剂盒说明书,小鼠肌肉组织切片用山羊血清封闭15 min,抗GLUT4抗体4 ℃条件下孵育过夜(放在湿盒中),室温下避光加入山羊抗兔IgG-FITC孵育30 min,DAPI染液作用10 min,PBS冲洗,黑暗条件下防荧光淬灭剂封片,共聚焦荧光显微镜下观察。
1.7. RT-PCR检测mRNA表达
TRIzol试剂提取肌肉总RNA,并检测其含量和纯度,用逆转录试剂盒在37 ℃ 5 min、85 ℃ 5 s、4 ℃ 5 min条件下1 μg总RNA逆转录成cDNA,并保存于−20 ℃。取2 μL cDNA进行RT-PCR,β-actin作为内参,反应总体积为25 μL,设置扩增条件为:94 ℃预变性1 min;94 ℃变性10 s、54 ℃退火10 s、72 ℃延伸10 s,共39个循环。记录每个标本和内参的Ct值,根据2−△△Ct计算目的基因的表达水平。
1.8. 免疫共沉淀
将等量的小鼠肌肉蛋白裂解物与抗体在4 ℃条件下孵育过夜,然后添加G蛋白磁珠(LSKMAGG02)孵育2 h,冷裂解缓冲液洗涤3次后,将结合的蛋白质在SDS样品缓冲液中煮沸5 min以洗脱,SDS-PAGE电泳分离上清液蛋白,并用抗IR和IRS1酪氨酸磷酸化的抗体免疫印迹。
1.9. 染色质免疫共沉淀(ChIP)
检测该过程是根据制造商的说明用Magna ChIP G试剂盒(Millipore)进行的。PTP1B启动子特异性引物(表 1)。
表 1.
Real-time PCR引物序列
Primer sequences for real-time PCR
| Name | The sequences of the primers (5'-3') |
| PTP1B promoter 1 | Forward: ACTCTGCTCGCTGGGATGTG |
| Reverse: TCGGGCTCCGTTCTTTATTTT | |
| PTP1B promoter 3 | Forward: TCTGCTCCTCGGGTTCGG |
| Reverse: GTACGGGAGGACCAGTCAGCT | |
| PTP1B promoter 5 | Forward: CTAGCTGACTGGTCCTCCCG |
| Reverse: GGCTCCGCACCTGGTAAAT |
1.10. 统计学处理
本研究实验数据均采用软件SPSS25.0进行统计学分析,数据均以均数±标准差,采用t-test对两样本进行比较,以P < 0.05为差异有统计学意义。
2. 结果
2.1. CD36基因缺失引起小鼠胰岛素敏感性受损
正常饮食喂养14周后,注射1 U/kg的胰岛素或1 g/kg的葡萄糖,检测所有小鼠0、30、60、90、120 min的血糖水平,并分析胰岛素敏感性的差异或糖耐量差异。与WT小鼠相比,CD36-/-小鼠对胰岛素的敏感性明显减弱(图 1A),胰岛素耐量曲线下面积显著升高(P < 0.05,图 1B)。CD36-/-小鼠糖耐量明显升高(图 1C),糖耐量曲线下面积显著降低(P < 0.01,图 1D)。CD36-/-小鼠血清胰岛素浓度升高(P < 0.01,图 1E),胰岛素抵抗指数(HOMA-IR)也升高(P < 0.05,图 1F)。
图 1.

CD36基因缺失对小鼠胰岛素敏感性的影响
Deletion of CD36 gene lowers insulin sensitivity in mice. A, B: Insulin tolerance test (ITT) in the wild-type (WT) and CD36-/- mice with intraperitoneal injection of 1 U/kg of insulin after fasting for 4 h. The AUC was used to quantify the ITT results (n=5). *P < 0.05 vs WT group. C and D: Glucose tolerance test (GTT) in the WT and CD36-/- mice with intraperitoneal injection of 1 g/kg glucose after fasting for 12 h. The area under the curve (AUC) was used to quantify the GTT results (n=5). **P < 0.01 vs WT group. E: Serum insulin concentration of the mice (n=5). **P < 0.01 vs WT group. F: HOMA-IR index of the mice (n=5). *P < 0.05 vs WT group.
2.2. 小鼠CD36基因缺失降低肌肉组织胰岛素敏感性
Western blot检测正常饮食喂养条件下WT和CD36-/-小鼠肌肉中胰岛素刺激的蛋白激酶B(AKT)磷酸化水平,结果显示P-AKT/AKT蛋白表达比值显著降低(P < 0.01,图 2A、B)。CD36-/-小鼠肌肉中葡萄糖转运蛋白4(GLUT4)表达降低,肌肉组织的葡萄糖利用能力减弱(图 2C)。胰岛素信号传导通路中AKT上游的mRNA和蛋白表达情况显示CD36-/-小鼠肌肉中胰岛素受体(IR)和胰岛素受体底物1/2(IRS1/2)的mRNA水平没有降低(图 2D),并且两组小鼠肌肉中IR、IRS1、IRS2和磷脂酰肌醇3-激酶(PI3K)的蛋白水平均没有显著差异(P>0.05,图 2E、F)。
图 2.

小鼠CD36基因缺失对肌肉组织胰岛素敏感性的影响
Deletion of CD36 gene affects insulin sensitivity in the muscle tissues of the mice. A and B: The protein levels of AKT and p-AKT in the muscle tissues measured by Western blotting. The relative ratio of p-AKT and AKT is shown on the right (n=3). **P < 0.01 vs WT group. C: Immunofluorescence (IF) staining of the muscle sections from the WT and CD36-/- mice. D: The mRNA levels of insulin receptor β (IRβ), insulin receptor substrate 1 (IRS1) and 2 (IRS2) in the muscle tissues of the mice detected by RT-PCR (n=5). *P < 0.05 vs WT group. E and F: Protein levels of IR, IRS1, IRS2 and PI3K in the muscle tissues detected by Western blotting. Quantitative analysis of the relative protein levels is shown on the right (n=3).
2.3. 小鼠CD36基因缺失抑制肌肉IR/IRS1酪氨酸磷酸化
免疫共沉淀(Co-IP)检测小鼠肌肉组织中胰岛素反应蛋白质的酪氨酸磷酸化水平。结果显示,与WT小鼠相比,CD36-/-小鼠肌肉中总蛋白的酪氨酸磷酸化水平明显降低(P < 0.05,图 3A、D)。CD36-/-小鼠肌肉中IR的酪氨酸磷酸化水平显著降低(P < 0.01,图 3B、E),同时发现IRS1的酪氨酸磷酸化水平也降低(P < 0.05,图 3C、F)。
图 3.

小鼠CD36基因缺失对肌肉中胰岛素信号传导通路的影响
Deletion of CD36 gene affects insulin signaling pathways in the muscle tissues of the mice. A and D: Insulin-stimulated protein tyrosine phosphorylation in the muscles detected by Western blotting. The result of densitometric quantification of the blots is shown in the right panel (n=3). *P < 0.05 vs WT group. B: Equal amounts of lysate protein from the muscles of the WT and CD36-/- mice were used for immunoprecipitation (Co-IP) with anti-insulin receptor (IR) and immunoblotting for detecting the levels of tyrosine phosphorylation of IR. C: Equal amounts of lysate protein from muscles of the WT and CD36-/- mice were used for IP with anti-IRS1 and immunoblotted to determine the levels of tyrosine phosphorylation of IRS1. D: Densitometric quantification of the blots in (B) (n=3). **P < 0.01 vs WT group E: Densitometric quantification of the blots in (C) (n=3). *P < 0.05 vs WT group.
2.4. CD36基因缺失通过促进肌肉中PTP1B的表达降低小鼠的胰岛素敏感性
CD36-/-小鼠肌肉中PTP1B mRNA水平明显升高(P < 0.01,图 4A),并且PTP1B的蛋白表达水平也显著高于WT小鼠(P < 0.05,图 4D、E)。与WT小鼠相比,CD36-/-小鼠肌肉中乙酰组蛋白3(H3)与PTP1B启动子的结合水平增加(P < 0.01,图 4B、C)。而claramine对PTP1B的药理抑制有效地消除了CD36-/-小鼠的胰岛素敏感性受损(图 4F、G)。
图 4.

CD36基因缺失通过影响肌肉中PTP1B的表达引起小鼠胰岛素敏感性的改变
Deletion of CD36 gene causes changes in insulin sensitivity in mice by affecting the expression of PTP1B in the muscle. A: mRNA levels of PTP1B in the muscles of the mice detected by RT-PCR (n=4, **P < 0.01 vs WT group). B and C: Chromatin immunoprecipitation (ChIP) was used to examine the levels of acetyl histones binding to PTP1B promoters in the muscles of WT or CD36-/- mice. The result of densitometric quantification of the blots is shown in the right panel (n=3, **P < 0.01 vs WT group). D and E: Protein levels of PTP1B in the muscles of the mice detected by Western blotting. The relative protein level was quantified on the right (n=3, *P < 0.05 vs WT group). F and G: ITTs performed 12 h after claramine treatment (n=5).
3. 讨论
多项研究发现CD36和胰岛素抵抗的病因有关,但其潜在的机制仍然不清楚[13]。有文献报道在肥胖相关的2型糖尿病患者中CD36过表达减弱胰岛素信号传导,产生胰岛素抵抗[14]。因此通常认为CD36缺乏可以改善高脂肪饮食诱导的肥胖和胰岛素抵抗[15, 16]。但近期有研究显示,人类CD36基因缺陷患者表现为胰岛素抵抗和高脂血症,并出现代谢综合征症状。自发性高血压大鼠缺乏CD36表现为胰岛素抵抗和高游离脂肪酸(FFA)水平的代谢表型,转基因过表达CD36可改善这一表型[17]。我们推测CD36在胰岛素抵抗中矛盾的作用可能是由营养状态不同所导致的[18-21]。课题组前期研究发现在高脂饮食状态下,CD36基因缺失可以增强小鼠肌肉的胰岛素敏感性。而本研究结果表明,在正常饮食状态下,CD36基因缺失导致小鼠肌肉胰岛素敏感性受损,提示CD36基因缺失对肌肉胰岛素敏感性的影响依赖于营养状态的调控。因此将CD36作为治疗临床多种代谢性疾病的靶点时必须要考虑不同营养状况对疗效的影响。
经典的胰岛素信号包括IR、IRS1、IRS2、PI3K和AKT等,它们在胰岛素在许多类型的细胞和组织的代谢活动中发挥着重要作用[22, 23]。IR属于酪氨酸激酶家族,由α亚基和β亚基组成,胰岛素发挥生物学作用首先与细胞膜上的IRα结合,使IRβ自身磷酸化,随后通过IRS1、IRS2、PI3K和AKT等信号通路发挥一系列生物学效应。其中AKT的磷酸化激活是反应胰岛素敏感性的金指标[24-28]。本研究发现在正常饮食条件下,CD36-/-小鼠肌肉中p-AKT/AKT的蛋白比值和GLUT4的表达显著降低,提示CD36基因缺失降低肌肉组织的胰岛素敏感性,且葡萄糖利用能力减弱。接着检测胰岛素信号通路中AKT上游的mRNA和蛋白表达情况,发现CD36-/-小鼠肌肉中IR、IRS1、IRS2和PI3K的mRNA和蛋白水平均没有显著差异,提示CD36-/-小鼠不是通过降低肌肉中IR/IRS1/IRS2/PI3K信号通路的蛋白表达水平导致胰岛素敏感性受损。胰岛素信号通路是由IR引发的蛋白质酪氨酸磷酸化级联激活的[29],因此我们分析了小鼠肌肉中胰岛素反应蛋白质的酪氨酸磷酸化水平。结果显示,CD36-/-小鼠肌肉中胰岛素刺激的IR和IRS1的酪氨酸磷酸化水平明显降低,表明CD36基因缺失可以通过降低肌肉中IR/IRS1的酪氨酸磷酸化水平抑制胰岛素信号通路传导。而胰岛素信号通路的缺陷是胰岛素抵抗的主要原因[30]。以上结果提示在正常饮食条件下,CD36基因缺失可以通过抑制IR/IRS1的酪氨酸磷酸化信号传导导致肌肉组织胰岛素敏感性受损。
胰岛素在发挥作用过程中最重要的是与胰岛素受体结合,使胰岛素受体磷酸化从而激活下游信号通路,而PTP1B能够使磷酸化的胰岛素受体去磷酸化,从而阻断下游信号通路的激活。因此,PTP1B作为胰岛素信号传导的重要负调控因子,在胰岛素抵抗中发挥着重要作用[31]。目前PTP1B已成为治疗2型糖尿病的新靶点[32]。研究发现,小鼠体内PTP1B是全身胰岛素敏感性的主要调节因子。PTP1B-/-小鼠在肝脏和肌肉两大主要代谢靶组织中表现出增强的IR和IRS1酪氨酸磷酸化[33]。我们首次揭示了CD36在调节小鼠肌肉组织中PTP1B表达的作用。本研究发现在正常饮食条件下,CD36-/-小鼠肌肉中PTP1B表达增加,且PTP1B基因启动子的组蛋白乙酰化水平也显著升高。本课题组前期研究显示CD36可以通过ROS影响肝细胞组蛋白去乙酰化酶HDAC表达水平,进而调控靶基因启动子组蛋白乙酰化水平[34],提示CD36可以影响基因的表观修饰,CD36-/-小鼠肌肉PTP1B启动子乙酰化水平升高可能与ROS/ HDAC途径相关,但具体的分子机制还有待进一步解析。此外PTP1B抑制剂阻断了CD36基因缺失对小鼠胰岛素敏感性受损的影响。以上结果表明,PTP1B在CD36-/-小鼠肌肉的胰岛素信号传导中发挥了重要作用,提示CD36基因缺失可以通过促进PTP1B的表达从而抑制胰岛素信号传导引起肌肉组织的胰岛素敏感性受损。
综上所述,在正常饮食状况下,CD36基因缺失通过削弱IR/IRS1通路的酪氨酸磷酸化导致肌肉组织的胰岛素敏感性受损,其机制可能与PTP1B基因的表达上调有关。该研究表明CD36基因对于维持肌肉生理的胰岛素信号通路传导至关重要,CD36基因以非脂质依赖的分子机制调控生理胰岛素信号通路。我们的研究结果为阐明临床上CD36基因缺陷患者葡萄糖摄取降低和易发胰岛素抵抗这一现象提供了理论依据。
Biography
陈琳,在读硕士研究生,E-mail: 2190943931@qq.com
Funding Statement
国家自然科学基金(81400786);重庆市渝中区基础研究与前沿探索项目(20190120);重庆市自然科学基金(cstc2020jcyj-msxmX0205)
Supported by National Natural Science Foundation of China (81400786)
Contributor Information
陈 琳 (Lin CHEN), Email: 2190943931@qq.com.
杨 萍 (Ping YANG), Email: 420577305@qq.com.
References
- 1.Maréchal L, Laviolette M, Rodrigue-Way A, et al. The CD36-PPARγ pathway in metabolic disorders. Int J Mol Sci. 2018;19(5):1529. doi: 10.3390/ijms19051529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Zhao L, Varghese Z, Moorhead JF, et al. CD36 and lipid metabolism in the evolution of atherosclerosis. Br Med Bull. 2018;126(1):101–12. doi: 10.1093/bmb/ldy006. [DOI] [PubMed] [Google Scholar]
- 3.Love-Gregory L, Abumrad NA. CD36 genetics and the metabolic complications of obesity. Curr Opin Clin Nutr Metab Care. 2011;14(6):527–34. doi: 10.1097/MCO.0b013e32834bbac9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Lebovitz H. Insulin resistance: definition and consequences. ExpClin Endocrinol Diabetes. 2001;109(Suppl 2):S135–48. doi: 10.1055/s-2001-18576. [DOI] [PubMed] [Google Scholar]
- 5.Wilson CG, Tran JL, Erion DM, et al. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology. 2016;157(2):570–85. doi: 10.1210/en.2015-1866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kennedy DJ, Kuchibhotla S, Westfall KM, et al. A CD36-dependent pathway enhances macrophage and adipose tissue inflammation and impairs insulin signalling. Cardiovasc Res. 2011;89(3):604–13. doi: 10.1093/cvr/cvq360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Yamashita S, Hirano KI, Kuwasako T, et al. Physiological and pathological roles of a multi-ligand receptor CD36 in atherogenesis; insights from CD36-deficient patients. Mol Cell Biochem. 2007;299(1/2):19–22. doi: 10.1007/s11010-005-9031-4. [DOI] [PubMed] [Google Scholar]
- 8.Petrie JR, Collison M, Connell JM, et al. CD36 deficiency and insulin resistance. Lancet. 2001;358(9277):242–3. doi: 10.1016/S0140-6736(01)05428-9. [DOI] [PubMed] [Google Scholar]
- 9.Gautam S, Agrawal CG, Bid HK, et al. Preliminary studies on CD36 gene in type 2 diabetic patients from north India. Indian J Med Res. 2011;134(1):107–12. [PMC free article] [PubMed] [Google Scholar]
- 10.罗 小青, 曾 晗, 谭 伟, et al. CD36基因缺失改善高脂饮食诱导的糖代谢异常并促进肝脏脂质积聚. 生理学报. 2021;73(5):805–12. [PubMed] [Google Scholar]
- 11.Tiganis T. PTP1B and TCPTP-nonredundant phosphatases in insulin signaling and glucose homeostasis. FEBS J. 2013;280(2):445–58. doi: 10.1111/j.1742-4658.2012.08563.x. [DOI] [PubMed] [Google Scholar]
- 12.Xu Q, Luo J, Wu N, et al. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes. Int J Biol Macromol. 2018;106:379–86. doi: 10.1016/j.ijbiomac.2017.08.042. [DOI] [PubMed] [Google Scholar]
- 13.Zhu BL, Li MY, Lin QM, et al. Lipid oversupply induces CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1:an early event prior to insulin resistance. Theranostics. 2020;10(3):1332–54. doi: 10.7150/thno.40021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.NAGAO M, ESGUERRA J L S, ASAI A, et al. Potential protection against type 2 diabetes in obesity through lower CD36 expression and improved exocytosis in beta-cells. Diabetes. 2020;69(6):1193–205. doi: 10.2337/db19-0944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Rekhi UR, Omar M, Alexiou M, et al. Endothelial cell CD36 reduces atherosclerosis and controls systemic metabolism. Front Cardiovasc Med. 2021;8:768481. doi: 10.3389/fcvm.2021.768481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Yang J, Sambandam N, Han XL, et al. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res. 2007;100(8):1208–17. doi: 10.1161/01.RES.0000264104.25265.b6. [DOI] [PubMed] [Google Scholar]
- 17.Zhao L, Li YQ, Ding QY, et al. CD36 senses dietary lipids and regulates lipids homeostasis in the intestine. Front Physiol. 2021;12:669279. doi: 10.3389/fphys.2021.669279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Goudriaan JR, Dahlmans VEH, Teusink B, et al. CD36 deficiency increases insulin sensitivity in muscle, but induces insulin resistance in the liver in mice. J Lipid Res. 2003;44(12):2270–7. doi: 10.1194/jlr.M300143-JLR200. [DOI] [PubMed] [Google Scholar]
- 19.Hajri T, Han XX, Bonen A, et al. Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest. 2002;109(10):1381–9. doi: 10.1172/JCI0214596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Hirano K. Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc Med. 2003;13(4):136–41. doi: 10.1016/S1050-1738(03)00026-4. [DOI] [PubMed] [Google Scholar]
- 21.Samovski D, Dhule P, Pietka T, et al. Regulation of insulin receptor pathway and glucose metabolism by CD36 signaling. Diabetes. 2018;67(7):1272–84. doi: 10.2337/db17-1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Sun SS, Tan PC, Huang XH, et al. Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes. J Biol Chem. 2018;293(7):2383–94. doi: 10.1074/jbc.M117.811471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Wu WL, Gan WH, Tong ML, et al. Over-expression of NYGGF4 (PID1) inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway. Mol Genet Metab. 2011;102(3):374–7. doi: 10.1016/j.ymgme.2010.11.165. [DOI] [PubMed] [Google Scholar]
- 24.Aouadi M, Vangala P, Yawe JC, et al. Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. Am J Physiol Endocrinol Metab. 2014;307(4):E374–83. doi: 10.1152/ajpendo.00187.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Cai L, Wang Z, Ji AL, et al. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in dietinduced obesity. PLoS One. 2012;7(5):e36785. doi: 10.1371/journal.pone.0036785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Ekici M, Kisa U, Arikan Durmaz S, et al. Fatty acid transport receptor soluble CD36 and dietary fatty acid pattern in type 2 diabetic patients: a comparative study. Br J Nutr. 2018;119(2):153–62. doi: 10.1017/S0007114517003269. [DOI] [PubMed] [Google Scholar]
- 27.Shiju TM, Mohan V, Balasubramanyam M, et al. Soluble CD36 in plasma and urine: a plausible prognostic marker for diabetic nephropathy. J Diabetes Complicat. 2015;29(3):400–6. doi: 10.1016/j.jdiacomp.2014.12.012. [DOI] [PubMed] [Google Scholar]
- 28.Yang P, Zeng H, Tan W, et al. Loss of CD36 impairs hepatic insulin signaling by enhancing the interaction of PTP1B with IR. FASEB J. 2020;34(4):5658–72. doi: 10.1096/fj.201902777RR. [DOI] [PubMed] [Google Scholar]
- 29.Posner BI. Insulin signalling: the inside story. Can J Diabetes. 2017;41(1):108–13. doi: 10.1016/j.jcjd.2016.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Guo SD. Insulin signaling, resistance, and metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220(2):T1–23. doi: 10.1530/JOE-13-0584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Sharma B, Xie LX, Yang F, et al. Recent advance on PTP1B inhibitors and their biomedical applications. Eur J Med Chem. 2020;199:112376. doi: 10.1016/j.ejmech.2020.112376. [DOI] [PubMed] [Google Scholar]
- 32.Ferhati X, Matassini C, Fabbrini MG, et al. Dual targeting of PTP1B and glucosidases with new bifunctional iminosugar inhibitors to address type 2 diabetes. Bioorg Chem. 2019;87:534–49. doi: 10.1016/j.bioorg.2019.03.053. [DOI] [PubMed] [Google Scholar]
- 33.Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab. 2007;21(4):621–40. doi: 10.1016/j.beem.2007.08.004. [DOI] [PubMed] [Google Scholar]
- 34.Zhong S, Zhao L, Wang Y, et al. Cluster of differentiation 36 deficiency aggravates macrophage infiltration and hepatic inflammation by upregulating monocyte chemotactic protein-1 expression of hepatocytes through histone deacetylase 2-dependent pathway. Antioxid Redox Signal. 2017;27(4):201–14. doi: 10.1089/ars.2016.6808. [DOI] [PubMed] [Google Scholar]
